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This paper discusses a method for numerical evaluation of the vibrations

of a cylindrical shell structure induced by a low-speed external turbulent flow.

The direction of flow is along the axis of revolution of the shell (see Figure I),

and the source of excitation is the pressure fluctuations in the turbulent bound-

ary layer (TBL).

For the investigation of vibration and noise problems it is usually more

desirable to utilize the modal expansion approach. The axisymmetric shell struc-

ture shown in Figure I can be modeled by the assemblage of conical-shell finite-

elements. This modeling allows the eigenfunction _mn(X,8) to be represented

in a rectangular product of a longitudinal modal function fmn(X) and a circular
harmonic function cos m0 (or sin mg), i.e.,

_mn(X,8) = fmn(X) cos m8 (i)

m=0, i, 2, . . .

n=l, 2, 3, . . .

The forcing function from the TBL is assumed to be spatially homogeneous

and temporally stationary. It is commonly expressed in terms of the wavevector-

frequency spectrum @ (k ,k ,_) where k is the streamwise wavenumber and k3P z a I
is the transverse wavenumber. For the calculation of the structural acceptance

with this forcing function, the structural modes must also be expressed in wave-

number space. This can be accomplished by taking a spatial Fourier transform
of the modes. The flnite-element modeling provides the computed eigenfunction

defined at a set of discrete points. If the grid points on the flow surface are

equally spaced, a Fast Fourier Transform (FFT) routine may be used. From the

FFT spectral coefficients, we may express

U 2v_ 2u_

fmn (x) = ao + Z [a_ cos _ x + b_ sin-- x] (2)
v=l L L

where U is one less than one half of the total number of FFT data points and L

is the axial length of the structure.

The effective modal input spectral density _mn(m) from the TBL can be
evaluated as follows,

_mn(_) = A2 _(_) J_n,mn (_) (3)

3



where A is the total area of the flow surface, J2mn,mn(_) is the modal joint-

acceptance (or called self-acceptance), which provides a measure of the degree of

coupling between the turbulent pressure field and the structure, and _(_) is

the frequency spectrum of the TBL pressure fluctuations. The joint-acceptance

can be computed by the following summation, i.e.,

J2mn,mn(_) = [(2_)3/A_(_)]

m I U 2_ m

x [a_ _p(0,_,_) + _ _ (a_+b_) _p(-_-,- ,_)]_=I R (4)

where R is the radius of the cylindrical shell.

Often it is required to evaluate the summation up to the convection wavenumber.

This requires that the number of FFT data points to be approximately mL/_Uc,

where Uc is the convection velocity of the TBL. If the length L of the structure
is large and the frequencies of interest are high, the required data points will

generally exceed the number of finlte-element grid points. This difficulty can
be overcome by obtaining additional data points from spline fitting and interpola-

tion of the eigenfunctions.

If the size of structure is larger than the correlation length of the pressure

field, the cross-modal acceptance J2mn,m,n,(m), can be neglected. In this case,
the structural displacement response spectrum [s(m)] evaluated at 8 = eo can be
calculated as follows:

[s(_)] = [_] IH*mn(_)__mn (_)_IHmn(_) 1[_]T (5)

where [_] is the assembly of eigenvectors, each column represents one eigen-

vector {fmn(X i) cos moo}. Hmn(m) is the modal admittance function which is
defined as

-i

Hmn(_) = {Mmn[(_n__2 ) + i(_ n nmn+_mn 6ran)]} (6)

and where Mmn is the mode mass, _mn is the structural modal loss factor, and

6mn is the modal acoustic loss factor.

The most difficult task in the numerical evaluation of flow induced vibration

is the uncertainty about the forcing functions, i.e., the wavevector-frequency

spectrum. Several theoretical forcing function models have been published in

recent years, all of them require an empirical fit with experimental data. Pub-

lished experimental data are very widely scattered depending on the measuring
facility, surface property, the method of scaling the data, etc. Selection of a

suitable forcing function model and the experimental data thus depend heavily on

experienced engineering judgement and knowledge of how the experimental data are
obtained.
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FIG..1 A CYLINDRICAL SHELL STRUCTURE. WITH
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