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SECTION 1 

INTRODUCTION 

One of the important factors in the design and testing of high perfor­

mance aircraft is that of aeroelastic stability. Quite often the aircraft 

performance envelope is limited by the flutter boundary, the set of flight 

conditions at which aeroelastic instability occurs. Active techniques for 

flutter suppression are currently under investigation; however, in order to 

safely test these techniques as well as to identify the flutter boundary it~ 

self, a reliable technique for real-time monitoring of the aeroelastic 

stability of the aircraft is required. 

Under a recent contract [1J sponsored by the National Aeronautics and 

Space Administration Dryden Flight Research Facility, Integrated Systems, 

Inc. implemented a recursive prediction error (RPEM) algorithm to estimate 

flutter mode parameters of test aircraft in real~time. The RPEM algorithm 

estimates the coefficients of the numerator and denominator polynomials in a 

transfer function description of the system being identified. The modal 

frequencies and damping coefficients are estimated by computing the roots of 

the denominator polynomial. The algorithm was tested on simulated data and 

then applied to actual flight test data from the Qrones for ~erodynamic 

Structural Iesting (DAST) program. The simulated data tests involved known 

inputs as well as unknown random inputs (turbulence). The results of the 

study are documented in detail in [1J. 

The RPEM algorithm has several deficiencies however. The first and 

probably most important deficiency is the inherent single-input single­

output (SISO) nature of the algorithm. Though RPEM can be extended to the 

multi~input multi-output (MIMO) case, the extensions result in significant 

over-parameterization problems. Not only does this result in increased com­

putational requirements, but it raises issues of parameter identifiability 

and convergence. Another critical problem with RPEM is the inherent re-

quirement for 'synchronous' operation. 

drop-out' problem necessitate the 

Non-uniform data rates and the 'data 

use of special robust estimation 

techniques. Since the intended application involves real-time processing of 
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data, recognizing and efficiently handling data drop-outs and spurious data 

points (or outliers) is a requirement. 

Further problems with the RPEM algorithm applied to real-time flutter 

parameter monitoring include a potentially large sensitivity of the 

parameters of interest (frequencies and damping coefficients) to variations 

in the parameters being estimated (polynomial coefficients). The choice of 

model form, i.e. the transfer function or polynomial fraction description, 

results in an input/output parameterization which is not 'physically 

meaningful' and is nonlinearly related to the parameters of the internal 

state description desired. Though this may seem to be something of a mathe­

matical abstraction, it is an important issue, in that, to make the 

estimation algorithm adaptive, a certain amount of 'tuning' is required. 

Tuning of adaptive algorithms is the engineering art of selecting parameters 

which govern trade~offs between speed of adaptation and estimation error, 

and this tuning is simpler when performed with physically meaningful 

parameters. 

To develop an algorithm for providing reliable real-time estimates of 

flutter mode parameters, the following issues were deemed important: 

1) appropriate modeling of the multi-input multi-output characteris­
tics of the flutter identification problem, 

2) estimation of the parameter estimate error variances as well as 
of the parameters themselves, 

3) detection handling of data outliers in a real-time data process­
ing environment, 

4) capability to predict the onset of instability (and an associated 
uncertainty) with sufficient lead-time to allow for preventative 
actions to be taken, 

5) and finally, algorithm flexibility and adaptability to various 
flight test situations such as unknown inputs and different num­
bers of important modes. 

The MOdal Parameter IDentification (MOPID) algorithm developed and tested 

and discussed in this report directly addresses these issues. It overcomes, 

to various degrees, the inherent deficiencies of other algorithms recently 

applied to the flutter parameter identification problem. A brief discussion 

of the various algorithms applied to the flutter parameter identification 

problem is presented in Section 2. 
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1.1 SUMMARY OF APPROACH 

The initial effort in this study involved the selection of candidate 

algorithms for real~time flutter parameter identification. The candidate 

algorithms included Ljung's [2J modified ~xtended ~alman !ilter (EKF), an 

over-parameterized SISO RPEM algorithm, and a full EKF formulation 

parameterized in terms of the frequencies and damping coefficients of the 

dominant modes. These algorithms were then compared with respect to their 

ability to successfully address the issues raised above. The full EKF algo­

rithm was selected for final implementation based primarily on its superior 

performance in tracking closely spaced modes (a common occurrence in the 

flutter identification problem) and its physically meaningful (MIMO) model 

parameterization. A small extension also resulted in the capability to es­

timate time-to-instability and its variance for each mode identified. This 

estimate provides valuable information during the course of a flight test, 

and potentially could be used in an automated instability prevention system. 

The model for the flutter dynamics is based on the continuous equa~ 

tions for second order under-damped linear systems. The parameters in the 

model are the frequency and damping coefficient of the modes, i.e. the 

parameters 

Analytic 

tion, a 

of interest in the real-time flutter monitoring application. 

integration of these equations enables asynchronous digital opera­

feature which is required for efficient handling of potential data 

drop-outs and outlier problems. The algorithm tuning parameters are basi­

cally the measurement noise variance, a parameter easily estimated by 

inspection of the data and a priori instrument calibration, and the process 

noise variance density, a parameter directly related to the model uncer­

tainty and the anticipated time~variation of the parameters being estimated. 

This basically allows for the inclusion of considerable a priori information 

which may be available concerning the expected variations of frequencies and 

damping coefficients with flight conditions such as Mach number and dynamic 

pressure. These tuning parameters also open the possibility of closed-loop 

adaptive operation in which the tuning parameters are made functions of the 

flight conditions, ego Mach number and dynamic pressure: 

Prefilters were implemented in order to avoid the necessity of data 

bias estimation. For the purposes of flutter mode identification, the 

d~finition of data biases is extended to include not only the measurement 
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device nominal 

the aircraft 

zero~level , 

detected in 

but the low~frequency center~of~mass motion of 

the instruments (accelerometers) as well. 

Elimination of these effects is mandatory to ensure unbiased estimates of 

the parameters of interest. 

The algorithm was tested on simulated data to verify the code and to 

investigate its performance under various conditions. Simulated data 

closely resembling data for the two flight tests for which data were avail~ 

able were analyzed. Though extensive simulations were not performed, the 

results obtained verified algorithm convergence and indicated an ability to 

accurately track closely~spaced time~varying modes. Analysis of actual 

flight test data included a known input case (DAST) as well as one in which 

the only excitation source was turbulence (F~16). The results of the DAST 

data analysis indicate that moderately accurate estimates of time~to~ 

instability can be obtained with proper tuning. The results of the F~16 

data analysis manifest interesting behavior indicative of possible control 

surface activity. However, since no collateral information were available, 

the analysis was performed assuming only random inputs. Simulation data 

with similar spectral characteristics to the F-16 turbulence excited test 

data were processed and showed desirable estimation performance. 

1.2 REPORT ORGANIZATION 

Section 2 presents an overview of candidate algorithms for real~time 

parameter identification. Previous approaches to the problem of real-time 

flutter parameter monitoring are discussed, including the RPEM and modified 

EKF techniques. The full EKF as an algorithm for real-time parameter iden= 

tification is discussed in Section 3. Section 4 presents the extensions to 

the algorithm for stability prediction and addresses the issue of data 

prefiltering for bias removal. The results of the simulated data analyses 

are presented in Section 5, followed in Section 6 by the flight test data 

analysis results for both the DAST and F=16 flight tests. An overview of 

the program organization is given in Section 7 along with some relevant 

operations counts, leaving the details of the input definitions and operator 

selections to the MOPID User's Guide in Appendix A. 
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SECTION 2 

REAL~TIME ALGORITHMS FOR FLUTTER PARAMETER IDENTIFICATION 

This section summarizes some of the important features of the real­

time flutter parameter identification problem. It gives an overview of 

previous approaches summarizing their strengths and weaknesses and concludes 

with a detailed description of recursive predictive error methods (RPEM). 

The strengths and weaknesses of RPEM for both the single-input single-output 

(SISO) and multiple-input multiple-output (MIMO) systems are discussed. 

2.1 FLUTTER PARAMETER IDENTIFICATION PROBLEM CHARACTERISTICS 

Several 

problem are 

goal is the 

aspects of the real-time flutter parameter identification 

important in determining algorithm requirements. The primary 

real-time monitoring of the stability of the system being 

tested. The key issue is the determination of an appropriate measure of the 

stability and methods for obtaining estimates and estimated variances 

thereof, 

reliable 

tors as 

given the a priori information and data which are available. The 

estimation of these parameters involves consideration of such fac­

the number of modes (or size of the approximate dynamical model), 

the need to properly account for data outliers as well as data drop-outs, 

and the ability to adapt to changing operating conditions. 

2.1.1 Stability Monitoring 

There are several ways to quantify the stability of a linear (or 

suitably linearized) system. For SISO systems, gain and phase margins are 

commonly used measures of stability. Several problems arise, however, in 

the interpretation of these quantities once the system has become unstable, 

and furthermore, they are complex and for that reason not potentially useful 

quantities for multi-input multi~output (MIMO) systems. Fundamentally, the 

quantities of interest are the locations of the natural frequencies of the 
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system under 

'distance' from 

investigation (in the 

the stability boundary. 

s-plane) and specifically their 

The commonly used damping coeffi-

cient is basically a frequency normalized distance from the jw-axis which is 

normally chosen as the stability boundary. Thus, an accurate (i.e. low 

variance) estimate of the damping coefficient of the flutter modes is a 

desirable algorithm output for real~time monitoring. If the estimates are 

of the current conditions based on the past information, the estimation (or 

prediction) of future values of the damping coefficient is left to the 

operator. However, if estimates of the rates of change of the stability 

measures are available, reliable prediction of future values is possible and 

provides the operator with information regarding estimates of the future 

stability of the system. 

Section 3 discusses the inclusion of the rate of change of the damping 

coefficient into the continuous state~space model form. The use of these 

estimates in extending the algorithm to estimate quantities such as future 

values of the damping coefficients and a 'time~to~instability' is discussed 

in Section 4. The results presented in Sections 5 and 6 aptly demonstrate 

the value of these stability measures. 

2.1.2 Number of Modes 

Classical flutter often involves more than just a single natural fre­

quency of the aeroelastic structure. Such structures are quite complex, 

involving many natural modes of oscillation, all of which change with chang­

ing flight conditions. It is not uncommon to find that, as a function of 

increasing dynamic pressure for example, two modes coalesce near the 

stability boundary, then bifurcate with one of the modes crossing into the 

unstable region (the right-half plane). The key point is that in such ap­

plications, it is likely that more than one mode may be important in the 

accurate characterization of the system dynamics (stability) in a certain 

region in the frequency domain. The underestimation of the number of impor­

tant modes usually results in over-optimistic estimates of system stability 

which will in turn dramatically degrade the algori thm' s ability to ac­

curately predict future stability. 
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2.1.3 Algorithm Start~up and Reset Requirements 

Although a priori modal analysis is available for nearly every flight 

test vehicle, the modal results are approximate at best and therefore one 

requirement of an algorithm is that it have a robust start~up procedure. 

Secondly, the algorithm should be capable of being reset during a flight 

test should it get stuck in a local minimum which is known not to be a 

global minimum (such as higher harmonics of a fundamental frequency) or 

diverge because of some abrupt change that it was not able to track. In or­

der to facilitate verification of proper initialization and/or 

respecification of parameters, they should be as physically meaningful as 

possible. This is best exemplified by choosing a parameterization in terms 

of frequencies and damping coefficients rather than coefficients in a poly­

nomial whose roots are the characteristic frequencies! This helps prevent 

errors during algorithm set-up. 

2.1.4 Parameter Variations 

The basic objective in the testing of aeroelastic structures is to ob­

tain information from which an accurate description of the system dynamics 

can be reconstructed throughout the entire flight envelope. Since aeroelas­

tic dynamics are inherently nonlinear, current methods involve linearization 

of the system at various pOints throughout the flight envelope, with par­

ticular emphasis placed on regions near the stability boundary. As the 

flight 

Thus, 

adapt 

conditions change, so do the parameters in the linearized models. 

it is important that any real~time algorithm have the capability to 

to changing conditions; specifically the algorithm should at least be 

capable of tracking variations of the parameters in its dynamical model as a 

function of time. This requirement is most easily satisfied by a class of 

algorithms known as recursive algorithms. The parameters are updated each 

time a measurement of the system output becomes available. Though batch 

processing algorithms can be modified to operate in a pseudo real~time en­

vironment by decreasing the batch size and performing sequential batch 

analysis, 

issue of 

the computational requirements are in general too great, and the 

how often to update estimates and the appropriate batch size is 
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difficult to resolve in real-time. There is an obvious trade-off between 

timeliness of estimates, their estimated variance, and computational load. 

It should be mentioned, however, that batch algorithms are capable of yield­

ing lower variance estimates of desired parameters since they are in effect 

including all the information in the batch interval in estimating the 

parameters at each point in the interval (i.e fixed-interval smoothing). 

The increased computational cost and attendant delay in producing estimates 

of the critical parameters is not currently justified, however, in light of 

the limited improvement in estimation accuracy, especially in the 'current' 

parameter estimates. In fact, the parameter estimates at the endpoint of 

the interval are not improved at all by smoothing since they already contain 

all the information over the entire interval. 

The characteristics of the flutter identification problem discussed 

above affect the choice of model form and its parameterization, the choice 

of a method for updating the parameter values as new data become available, 

and also influence the choice of numerical technique. These issues are dis­

cussed further in a review of some recent approaches given below. Gilyard 

and Edwards [3J discuss some of the issues involved in using FFT based tech~ 

niques for on~line flutter parameter estimation. A significant point that 

they make is that since flight conditions are not exactly repeatable, output 

responses cannot be overlaid to average out the effects of noise. 

Therefore, recent techniques have tended to use time~domain based models 

which allow incorporation, in a statistical sense, of the effects of both 

measurement noise and turbulence or unknown input noise. 

2.2 OVERVIEW OF PREVIOUS APPROACHES 

Russo and his colleagues at Grumman Data Systems [4J applied a com­

plete flight-testing maximum likelihood parameter identification technique 

to the flutter estimation problem. They used a modal coordinate continuous 

state-space model form and propagated a Kalman filter for the discrete 

measurement model. This r~quired propagating sensitivities with respect to 

all of the parameters of the Kalman filter equations as well as the equa­

tions themselves. They experimented with different model structures 
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choosing them based on analysis of power spectral densities. This approach 

required multiple passes through the data to obtain reasonable parameter 

es timates. The 

Newton method. 

parameters 

This is a 

are updated after each pass using a modified 

classic approach to a powerful identification 

method which is fundamentally, however, an off~line batch, rather than an 

on~line recursive technique. Another factor is that extensive computation 

is required to propagate the Kalman filter sensitivity equations. The ad­

vantage of the method is that it works in physical mOdal coordinates so that 

no factorization of polynomials is required to determine the damping of the 

identified modes. A discussion of the use of an array processor was in­

cluded by the authors, however current array processors are not particularly 

well suited to iterative time-domain equations. There has been research 

done on specialized processors that are well suited to these sorts of 

covariance propagations, however, other algorithms address the problem much 

more directly with a recursive rather than a semi-block method. 

Wendler of Lockheed [5J used a recently derived identification algo~ 

rithm and implemented it in a manner which does not require factorization of 

a polynomial. A lattice algorithm was employed to identify the parameters 

of an ~uto~egressive (AR) model of the input~output relationship. The lat­

tice algorithm identifies reflection coefficients which are coordinates of 

an orthogonal basis and are numerically well~conditioned. A least squares 

regression of each reflection coefficient against dynamic pressure was then 

performed to extrapolate and predict near-instability. The autoregressive 

model order was determined using an energy threshold and counting peaks in a 

periodogram. It should be pointed out, however, that this is not an on-line 

approach. Furthermore, the lattice algorithm is designed for stationary 

processes and under certain conditions yields only stable estimates of the 

system. As the system approaches the flutter boundary, the performance of 

the algorithm degrades and it is incapable of yielding accurate estimates 

past the flutter boundary. It should also be noted that in the implementa­

tion discussed, no provision was made for the inclusion of exogenous inputs. 

The algorithm was designed to handle the unknown input case only though this 

need not be the case. 

An advantage of the lattice formulation is that it can be extended to 

actually increase the model order as well as updating the parameters on­

line. However, while the AR parameterization is perhaps better conditioned 
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numerically than an ~uto!egressive ~oving ~verage (ARMA) formulation, it 

shares a number of model form difficulties with the ARMA formulation dis~ 

cussed in the next subsection. 

Molusis and Kleinman [6J used an autoregressive moving average model 

to perform recursive maximum likelihood identification of parameters of a 

second~order system for on-line rotorcraft elastic mode identifiqation. 

From the second~order model parameter estimates, they estimated both the 

frequency and damping coefficients and their variances. A bandpass filter 

was used to separate the desired mode from possible interfering modes. When 

closely spaced modes were present, this approach experienced obvious 

difficulties. Bandpass filters cannot separate closely spaced modes. Since 

the autoregressive moving average with exogenous input model, or ARMAX 

model, is basically identifying the coefficients of the characteristic poly­

nomial, and since it is well-known that the roots of such polynomials are 

very sensitive to the coefficients, unwanted contributions from closely 

spaced modes can lead to large errors in estimated pole locations. 

2.3 RECURSIVE PREDICTION ERROR METHODS 

Recursive prediction error methods (RPEM) constitute a class of algo­

rithms which are based on the minimization of a prediction error. This 

error is most often the difference between the measurement and a one-step 

ahead prediction of the measurement. RPEM can be applied to a variety of 

model forms including those with known, or exogenous inputs as well as ran­

dom inputs. The choice of model form and parameterization depend upon the 

details of the problem to be solved. 

Independently from Molusis and Kleinman [6J, Walker and Gupta [1J ap­

plied this algorithm to the real~time flutter parameter estimation problem. 

The analysis addressed the difficulty of multiple modes by overparameteriza­

tion of the model; basically estimating a number of parameters in excess of 

the number required. This was also done in an attempt to minimize the sen­

sitivity of the desired root locations to the coefficients being estimated. 

Simulations were performed for two-mode models with both known and unknown 
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inputs. In addition, a novel approach was developed to compute the Cramer-

Rao estimate of the variance of the flutter parameters. Flight data were 

also processed for conditions with unknown inputs (turbulence excitation) 

and with swept sine-wave and pulse or doublet inputs. The problem of data 

outliers was addressed using robust estimation techniques. Software im­

plementing this approach was delivered to NASA for further analysis. 

2.3.1 A MOdified EKF Extension of RPE Methods 

Lennart Ljung [2J has shown the equivalence of a modified extended 

Kalman filter algorithm for identifying parameters of a linear model, with 

the ARMAX model form used in recursive prediction error methods. There were 

three reasons for evaluating this modified EKF for the real-time flutter 

identification problem. 

1) It is capable of handling the multiple-input multiple-output 
(MIMO) nature of the problem. 

2) The modified EKF is potentially computationally less expensive 
than a full EKF. 

3) The modified EKF does not require that the model form be an ARMAX 
form. A modal form can be used to estimate frequency and damping 
coefficients directly rather than polynomial coefficients. 

The equations for this modified EKF are given below. 

x (t+ 1 ) 

yet) 

vet) 

F(t)x(t) + G(t)u(t) + K(t)v(t) 

H(t)x(t) + vet) 

yet) - yet) 

A(t) A(t-1) + y(t)[v(t)vT(t) - A(t-1)] 

R(t) R(t-1) + y(t)[w(t) A-1w(t) - R(t-1)J 

e(t) e(t-1) + yet) R-1(t)w (t) A-1 (t) vet) 
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Update F, G, H, K, M, D as functions of e(t), and then obtain: 

where 
1jJT(t,e) 

W(t,e) 

x (t+ 1 ) 

y (t+ 1 ) 

W(t+1 ) 

1jJ (t+ 1 ) 

Ftx(t) + Gtu(t) + Ktv(t) 

Ht x(t+1) 

[Ft-KtHcJW(t) + Mt - KtD t 

WT(t+1)H~ + DT(~(t), x(t+1)) 

d de y (tie) D(e, x) ~ [H(e)xJle=~ ae 

d 
de x(t,e) 

- a A 

M = as [x(t+1, e)Jle=e • 

A forgetting factor (A) determines a weighting factor (y) in the equations 

which effectively weights recent data more heavily than past data. A Y 

enters the covariance equation as well as the parameter updates equations, 

and directly effects the parameter convergence rate. 

Initial studies with the MIMO modified EKF algorithm performed well on 

several simulation examples. These results were achieved without estimating 

the parameters in the the Kalman gain matrix in the innovations form of the 

equations even though process noise was present. This approach can be used 

as long as the plant remains stable. For unstable plants, the Kalman gain 

must be estimated to prevent filter divergence. This, however, results in 

an unacceptable increase in the number of parameters which must be estimated 

since the algorithm is to run in a real-time environment. The solution to 

this problem was the implementation of a full extended Kalman filter which 

propagates the covariance of the states as well as the parameters, including 

the correlation between the two, rather than only propagating the covariance 

of the parameters as the modified EKF does. The Kalman gain matrix is cal­

culated as a function of various other parameters in the algorithm rather 

than being estimated on-line. 

There are several aspects of the full EKF formulation worthy of fur­

ther comment. In the modified EKF formulation, estimation of the parameters 

in the Kalman gain matrix does not guarantee the stability of the resulting 

filter equations. This implies the necessity for periodic testing of the 

filter stability requiring an eigendecomposition or singular-value decom­

position of a matrix the size of the state dimension. In either case this 

amounts to a significant computational burden. The full EKF propagates the 
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associated Riccati equation which guarantees the stability of the resulting 

filter equations. Secondly, the process noise variance density matrix used 

in the 'tuning' of the full EKF has a number of degrees of freedom equal to 

the dimension of the state vector, whereas the modified EKF equivalent which 

is the forgetting factor is a scalar quantity. The result is that in the 

modified EKF, the prediction of the state covariance is performed by multi­

plicative modification of the filtered covariance matrix (by a scalar times 

the identity matrix) whereas selective parameter variance augmentation can 

be performed in the full EKF algorithm. This allows the inclusion of a 

priori information concerning the relative dynamics of the parameter varia­

tions (at least in a statistical sense). The remainder of this report 

develops this approach and its software implementation. 
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SECTION 3 

THE EXTENDED KALMAN FILTER AS A REAL-TIME FLUTTER PARAV£TER IDENTIFIER 

This section discusses the application of extended Kalman filtering to 

the problem of real~time flutter parameter identification with emphasis on 

frequency and damping coefficient estimation. The equations governing the 

algorithm are presented without rigorous derivation. Derivations can be 

found in the references ([10J,[13J,[14J) and are not repeated here for the 

sake of brevity. The section begins with a discussion of the simplified 

model chosen to approximate the complex nonlinear dynamics of aeroelastic 

structures. The equations are given in continuous-time state space form and 

the conversion to discrete~time is performed. The augmentation of the state 

with the parameters to be identified is discussed and the Kalman filter 

equations are presented. The implementation of these equations in square­

root form is also discussed. Issues such as prefiltering of the data and 

algorithm extension for stability prediction are deferred to the next 

section. 

3.1 FLUTTER DYNAMICS MODELING 

A key concept in the development of simplified dynamical models is 

that of prediction. 

is to be able to 

One of the primary reasons for developing such models 

predict the outputs of the underlying system given the 

inputs. 

are often 

Quantitative measures of the model's ability to predict the future 

used as criteria for the selection of model forms and their 

parameterization. The more complex the model, the greater its ability to 

accurately predict future outputs of the system. The price of increased ac­

curacy, however, is an increased computational load. 

A fundamental trade-off between prediction accuracy and model 

(computational) complexity exists as attempts are made to predict farther 

and farther into the future. For most physical systems, as the interval 

over which the models are required to predict decreases, so does the rela~ 

tive error. Furthermore, in applications such as real-time flutter 
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monitoring, corrective information in the form of measurements of the system 

outputs is available and can be used in a recursive manner to keep the 

prediction errors small. In such situations, simplified models can be en­

tirely adequate if the input information rate is sufficient, since the 

overall objective is to monitor the stability of the system. Linearized 

models can give more than adequate predictions, obviating the need for com­

plex predictive models of the phenomenon. 

From the class of linear models, the choice of a continuous-time 

second~order system parameterized in terms of its natural frequency (w) and 

its damping coefficient (~) is appropriate. Equation 3-1 gives an input­

output continuous-time state-space description of a single mode dynamical 

system with two inputs and two outputs. The effect of possible process 

noise terms (i.e. disturbances and unknown inputs) is also indicated, and 

measurement noise is included in the output equation. 

i(t) FC x(t) + GC u(t) + GC wC(t) 
x- u- w-

(3-1 a) 

z(t) c c c H x(t) + D u(t) + v (t) x- u-

where the superscript "c" is used to denote continuous-time. For a 2-

input, 2~output, single~mode system (2,2,1) with independent noise processes 

forcing each state, the system matrices can be written in the following 

form: 

FC · [-~, -2~.] x 

GC · [g" g,~ 
U g21 g22 

GC · [~w, :w,] w 
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[

h 11 

H~ = h2 i 
h12l 

h22..J 

[

d ll 
DC 

U d 21 

d
12

] 
d 22 

wC 
- N(O,diag{q }) 

xi 
V

C 
- N(O,diag{r.}). 

1 

(3=1 b) 

The inclusion of another mode would increase the state dimension to four 

(4). The systems dynamics matrix (F) becomes block diagonal; a 2x2 block 

with the form given in equation 3~1 describes the dynamics of each mode. 

Notably the number of parameters in the control distribution matrix (G) and 

the measurement distribution matrix (H) double, and in general increase 

linearly with the number of states. 

Since the measurement devices can be accelerometers mounted on the 

wings near the control surfaces used for modal suppression, a direct 

feedthrough term is included in the measurement equation. This term ac= 

counts for the direct effect of control actuator motion on accelerometer 

outputs. The noise processes (~) and (~) are assumed to be independent ran= 

dom Gaussian processes with zero=mean and the indicated spectral densities. 

Though the independence assumption can easily be removed and correlations 

included, the resulting computational burden is not warranted. Note that 

measurement noise correlation could be introduced by linear operations on 

the data prior to identification such as summing and differencing the out= 

puts, but that such operations are not required since the algorithm is fully 

capable of handling the general MlMO identification problem. 

The process noise inputs are included to account for the effects of 

unknown random disturbances as well as model uncertainties. The random dis= 

turbances are generally in the form of turbulence and gusts. The model 

uncertainties are an attempt to quantitatively and statistically measure the 
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accuracy with which the simplified model of flutter dynamics is able to 

predict future outputs. 

Since the underlying physical process in the real-time flutter 

monitoring problem is certainly a continuous-time process, a continuous-time 

description and parameterization are appropriate. However, the measurements 

processed are in the form of sampled data vectors. Thus, the real-time 

flutter parameter identification problem is a continuous-discrete problem. 

The predicted outputs of the system model are required at discrete times, 

those at which the measurements are made. This requires integration of the 

underlying continuous system equations, which can be accomplished in many 

ways. For the class of models employed, however, analytic integration is by 

far the most accurate and is not computationally intensive. Integration of 

the state-space equations in equation 3-1 yields the following set of 

discrete-time state-space equations: 

x(k+1 ) d d d d F x(k) + G u(k) + G w (k); x- u- w-
C3-2a) 

d d d z(k) = H x(k) + D u(k) + v (k); - x- u- -

where the discrete analogs of the continuous-time system matrices can be 

written as follows: 

d -,wi> [CO.(BI,) + iW 
slo(SO) i .io(SO) ] 

F = e 2 

x _ ~ sin(S~) cos(S~) - ~W sin(S~) 

Gd r GC 

u x u 

Gd r GC C3-2b) w x w 

[, + ,W , 1, ] r c S s S s 
X w2 

I - l;W I - - I 
S s c S s 
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Hd HC 
x x 

Dd = DC 
u u 

and the following definitions have been employed for notational simplicity; 

I 
c 

I s 

t, 

B 

t, 

f -1,;WT e COS(ST) dT; 
o 

t, 

f -1,;WT 
e sin(ST) dT; 

o 

t k+
1

- t k ; 

~ 

Note that in performing the integration, the noise processes are 

'integrated' as well. However, under the assumption that they are white 

Gaussian noise processes, the integral can not be performed in the tradi­

tional sense; nor is it required to be performed since the mean value, or 

expectation, is zero. In tuning of the filter, however, the value of the 

spectral density is input and it is assumed to be the variance density of 

the continuous-time noise process. In order for the resulting state es-

timate error variances to be approximately the same for the continuous and 

and discrete systems at the sampling times, there is a factor of the sam­

pling time which appears in the formulation, i.e. 

d c q - q t,; 

where c . q 1S the continuous process noise variance density, and qd is the 

corresponding discrete process noise variance. 

Given the equations describing the simplified dynamical model, and 

given the set of measurements, the basic idea is to use the measurements at 

each sample time to correct the estimated outputs of the simplified model to 

more closely correspond to the 'true' system outputs. Taking into account 

the stochastic nature of the input and output processes, an 'optimal' es­

timation problem can be formulated whose solution is the well-known Kalman 
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filter. There are extensive references on the subject so the derivation of 

the equations will not be repeated here. However, the underlying concept is 

that during the prediction step information is lost (the covariance of the 

states increases due to the addition of the process noise covariance) and 

that during the measurement update step information is gained, or extracted 

from the measurements. Remembering these intuitive concepts is helpful when 

adjusting the tuning parameters as will be discussed later. 

Thus far, it has been assumed that the parameters wand s are known, 

as well as the control distribution matrix elements g. .. If they are not 
IJ 

known, they too must be estimated along with the dynamic states. Augmenting 

the state vector with these parameters to be estimated (identified) is the 

additional idea behind the extended Kalman filter (EKF). The term extended 

is used to indicate that the estimation problem is now a nonlinear one. In 

the case of the control and measurement distribution matrix parameters, it 

is bilinear in the states and parameters; but in the frequencies and damping 

coefficients the nonlinearity is transcendental (cf. sine, cosine and ex­

ponential functions). 

Augmenting the state vector x with a vector e containing parameters to 

be identified also requires the specification of a dynamical model for 

predicting the parameters as a function a time. If the parameters are truly 

time-invariant (as the connotation of the word 'parameter' suggests), then 

in discrete~time the state transition matrix is simply the identity matrix. 

If a more detailed model is appropriate or deSired, it can be included. In 

an effort to provide reliable real~time estimates of futur~ values of the 

flutter mode stability, a slightly more complex model than the zero time~ 

derivative model is employed. The parameter vector is augmented further by 

the addition of a damping coefficient velocity (s ) state; i.e. instead of 
v 

assuming that the rate of change (or time derivative) of the damping coeffi-

cient is zero, it is assumed to be a constant (s ) to be estimated as well. v 
The dynamical model for s is assumed to be the zero time-derivative model. 

v 
Assuming the same model for the frequency as well results in the following 

set of continuous-time equations: 
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~ I r 0 o l r ~ l r w~ l 
~v I I 0 0 o II ~v I + I w~ I (3-3 ) 

v 

I 0 0 o I I w I Iw c w I w 

The integration of these equations yields the following set of difference 

equations for the prediction of the flutter parameters: 

~(k+1) I I 1 I:J. o I I ~ (k) I I w
d 
~ 

~v(k+1) I = I 0 o I I ~v(k) I d I . (3-4) + I w 
~v 

w(k+1) I I 0 0 1 I I w(k) I I w
d 
w 

Finally, assuming that the G-matrix and H-matrix elements to be identified 

are also time-invariant, we have: 

p 
c 

w 
p 

which in discrete-time can be written: 

p(k+1) d p(k) + w (k). 
p 

(3-5 ) 

(3-6 ) 

The process noise is included to account for possible parameter time­

variations which are unknown. The variance density of these processes is 

directly related to the expected variation of the parameters as a function 

of time. The ability to change the variance density as a function of time 

allows for tracking of step-like changes in the parameters (such as is the 

case in the flutter problem when the aircraft configuration changes due to a 

release of stores). This is discussed in greater detail in the sequel. 
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3.2 EXTENDED KALMAN FILTER EQUATIONS 

The equations described in the previous subsection are stochastic in 

nature and are models for the evolution of the 'true' state of the system. 

However, the true state is not known nor can it be computed; the idea is to 

obtain a 'best' estimate of the true state given all of the available 

information. If a 'best' estimate of the state at the present time is as­

sumed to be available, the best estimate of the state at a future time, 

assuming no measurements are available during the time interval, is found by 

taking the expected value of the equations above. Combining the state and 

parameter propagation equations for 2-modes, 2-inputs, and 2-outputs, the 

full (2,2,2) system of equations can be written as shown in equation 3-7. 

The symbol IIAII is used to denote an estimated quantity. Variables without 

A,S are assumed to be known or given. Unspecified elements of the matrices 

are assumed to be zero. Note that in the formation of the state vector, no 

account was taken of the critical issue of which parameters are actually es­

timable from the given information. This issue will be discussed in detail 

later in this section. For the (2,2,2) problem formulated, this state vec­

tor contains the union of all possible sets of parameters to be identified. 
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Xl 
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Xl 
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2 
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gll 
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g21 
1 

g 11 
2 

g21 
2 

g12 
1 

g22 
1 

g12 
2 

g22 
2 

d 11 
" 
d 12 
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d 21 

" 
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r 0 I I g 11 1 g 12 
Xl 1 

: _____ ::21 
1 g21 1 

g22 [ U'(k)] 1 

+ 
gll g12 u 2 (k) (3-7) 

2 2 
0 

g21 g22 
2 2 

where 

I 11 0 

Fd 0 I 0 
~W 

0 0 I 

and 

r x. r (w., ~.). 
XII 

1 

In order to reduce the complexity of the EKF equations which follow, 

some notation is helpful. First, let! denote the entire state vector com­

posed of the dynamic states x and the parameters e to be estimated. 

xT 
[./, ~TJ; 

(3-8) 

eT 
[~ ,~ ,w,,"" giJ. , , v, k 

••• , h ] 1m ' ••• 
n 

As before, the symbol nAn denotes an estimated quantity. The notation (j Ik) 

is used to indicate that the associated quantity is an estimate at time j 

given data up to and including time k. Thus, (i+' Ii) indicates a one step 

ahead prediction and (iii) a filtered estimate. The entire state transition 

matrix is given by ~. P is used to denote the state estimate error 

covariance matrix; K the Kalman gain matrix; and v the innovations or 

predicted data residuals. The time-update, or prediction step, of the EKF 

is then given by the following set of equations. 
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X (1<+1 II<) ;(1<+1,1<)~(1<11<) + G~ ~(I<) 
(3-9) 

p(k+111<) E{[~(I<+1) - !(1<+111<)J[(~(1<+1) - ~(1<+111<)JT} 

[(\4>J P(I< II<) [d
X

4>J
T 

+ Qd(I<+1,1<) 

where the notation a 4> = ~~ has been used. 
a oa 

Though complex to derive, the partial derivatives can be calculated 

analytically. The derivations are not given, however the expressions for 

the derivates are, as they are important factors in the EKF equations. 

d d ax[F x ~ + Gu~J 

ax</> 0 Fd 0 z:;w 

0 0 I 

Defining; c( SlI) cos(SlI) 

s(SlI) sin(SlI) 

S w/(1 - z:;2) 

we can write (omitting the mode subscript "i" for clarity): 

Fd [ e -~oo6 c(SlI) + ;w s(SlI) 3(66) ] 

c(SlI) _S;w s(SlI) x w2s(SlI) 
S 

-z:;wll e f. 

For a E {w.,z:;.}, we have; 
1 1 

where; 

a Fd (a e-z:;wll) f + e-z:;wll a f 
a x a a 

a f = 
a 

[ 

daC(SlI) + a z:;ws(SlI) 
a S 

_ a .w2s(SlI) 
a S 
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Using; 

a c(811) 
a. 

a s(811) 
a. 

-l1s(811) d 8 
a. 

I1c(811)a 8 
a. 

a 8 = In":'2) 
00 

a 8 = -z;w
2 

Z; -8-

the partials are calculated; 

d a wF x -Z;I1Fd + e -Z;WI1 
x 

a Fd 
Z; x 

where 

-wt.Fd + e-Z;wt. 
x 

a s(811) 
Z; 8 

-l1s(M)I(F~2) + Z;l1c(M) 8I1c(811) - s(811) 
800 

ws(BA) + w8I1c(8t.) 
8 

-l1s(BA)a 8 + ws(811) 
z; 8 

-l1s(8t.)/(1-Z;2) - Z;l1c(811) 

+ z;wa S(8t.) z; -8--
a s(M) 

z; 8 

-w2 a s(8t.) 
z; 8 

-l1s(811)a 8 - ws(811) 
z; 8 

z;wa s(811) 
Z; 8 

_ z;w 2 

~ [Ac(8t.) - S~811)J 

Since the discrete-time input distribution matrix Gd is a function of 
u 

the modal parameters via the term r , its x partials with respect to these 

parameters are required as well. Using the fact that i is not a function 

of 00, we can write 

and, 

a r 
00 x 

a I + Z;W a I 
00 c 8 00 s 

00
2 

- ~ I - -a Is 
8 s 8 00 s 

a 8 a I 
-~I+ wS 

82 s 8 

a I - z;w a I 
00 s Boos 
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a r z; x 

r al as 1 a I + z;w a I + a (z;w) I ~ - _Z;_ I 

l 
z; s B z; s z; s s S S2 S 

w
2 
(I a s - s a I ) a I - I a (z;w) - z;wa I J S2 S z; z; s z; c x z; s s z; s 

where further shortening notation by defining c c(Sll.) and s s(Sll.): 

a I Z; c 

a I Z; s 

a I w c 

a I w s 

..!. ll. -z;wll. e (Ss - z;wc) w w 

-z;wll. 
+ ~2 e (ca s + sa s - we - z;wa c) w z; z; z; 

a s ll. -z;wll. z; 
'7 + -z e (z;ws + Sc) w 

1 -z;wll. - -z e (ws + Z;wa s + ca s + sa c) w Z; Z; Z; 

.f + 
-Z;wll. 

2 e 
w2 --;r (Z;ll. + -)(z;wc - Z;wa c) w w 

+ 
-z;wll. -2 e (sa S + sa s - z;c - z;wa c) w w w w 

s + - -3 
W 

-z;wll. e 2 --2- (z;ll. + -)(z;ws + Sc) w w 

1 -z;wll. 
- -:-:3 e (z;s + Z;wa s + ca s + sa c) • w w w w 

If e contains elements of the control distribution matrix g .. , then 
lJ k 

further partial calculations are required. The terms required are: 

a (r Gdu) r (a Gd)u 
CL xu- x CLU-

Denoting the (i,j)-th element of a matrix by (0) .. and using the standard 
lJ 

repeated index summation convention, we have; 
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Now for a 

where Olm 
jk 

Therefore; 

glm' 

0 

3 Cr Gdu) d 
(r ),,(3 G )'k(u)k a x u- x IJ a u J -

d 1m 
(3aG~)jk = 0jk 

j = 1 and k = m 
otherwise 

3 (r G
d 

u) 
g x u-1m 

(r )'1 (u) x 1 - m 

The discrete process noise covariance matrix required for the time­

update of the state estimate error covariance matrix is calculated as 

follows: 

where; 

Qd 
Xl 

Qd 0 
X2 

Qd(k+l,k) d 
QC;;Wl 

Qd 
xi 

QC = 
xi 

o 
d 

QC;;W2 

Qd 
P 

I
t:, T 

Fd (T) GC QC GC Fd (T) dT 
o Xi w xi w xi 

diag{q ,q }; 
Xl X2 

i i 

which can be approximated by: 

T T 2 T T 2 T T 3 

Qd = GCQC GC t:, + FC GCQc GC ~ + GCQc GC FC ~ + FC GCQC GC FC t:, + 
Xi w xi w xi W xi W 2 W xi W xi 2 xi W xi W xi 3 
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for the dynamic states. For the parameter states, the process noise 

covariance matrix can be calculated exactly as follows (since F is 

nilpotent): 

f::,3 f::,2 
0 q f::, + q - q1;; "2 1;;i 1;;v. 3 v. 

1 1 

Qd f::,2 
q f::, 0 1;;Wi 

q1;; "2 1;;v. v. 
1 1 

0 0 qw. f::, 

1 

Qd = diag {q f::,} for p E: {g .. , h .. , d .. } . 
P P lJ lJ lJ 

Note that the gradient of the state propagation equations with respect the 

entire state vector is required. Since the equations are linear in the 

dynamic states!, the gradient with respect to these states is the estimated 

state transition matrix. The terms involving gradients with respect to the 

modal parameters are more complex, but can be computed analytically. It is 

precisely these gradient terms which provide the necessary coupling between 

the inputs and outputs (measurements) of the system and the parameters to be 

identified (the flutter parameters). 

The remaining step is to perform the measurement update incorporating 

the new information in the measurements into the current best estimate of 

the states. This filtering step is given by the following system of 

equations: 

A A 

!(k+1\k+1) !(k+1\ k) + K(k+1) ~(k+1) 

A 

~(k+1) ~(k+1) - ~(k+1 \k) (3-10) 

i(k+1\k) = H~(k+1 \k) ~(k+1\k) + D~(k+1 \k) ~(k) • 
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Defining: 

d d 
HX {dX[H X ~ + DU ~J}X 

A 

~(k+ 11 k) , 

the equation for the gain matrix becomes; 

K(k+1) P(k+1 Ik)H~(H~(k+1 Ik)H~ + R)-l 

and the recursion is complete with the following formula for updating the 

covariance matrix; 

P(k+1 1 k+1) (I - K(k+l )HX) P(k+ll k) • 

Note, for the 2-mode example, assuming mode 1 has a fixed measurement dis­

tribution matrix and assuming that direct~feedthrough is being estimated for 

both measurements: 

h12 h13 hllt o o o o u l u 2 0 0] 
o 0 u l u 2 

HX 
[ 

~ll 
h2l 

o 
h22 h23 h2lt Xl x 2 X3 xlt 

where the indexing on the dynamic states has been simplified in an obvious 

manner in order to reduce the notational complexity. 

Equations 3-9 and 3~10 comprise the EKF formulation of the flutter 

parameter identification problem. They are recursive in time, incorporate a 

priori knowledge about expected parameter variations as a function of time, 

are fully M1MO, and can operate in an asynchronous environment since there 

is no requirement that the measurement update interval be kept fixed. 

Computational savings can be and are realized when the data rate is constant 

however. The only remaining tasks are the determination of the parameters 

to be identified (model structure determination), the specification of the 

initial conditions, and the determination of the process noise covariance 

density matrix. 
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3.2.1 Specification of Initial Conditions 

In general, reasonably accurate initial conditions are available for 

the flutter frequencies and damping coefficients in the form of predictions 

from ground vibration tests and finite element modeling programs. These 

parameters turn out to be important in determining the algorithm 

performance. Since the estimation problem as formulated is nonlinear, the 

estimates and the associated estimated variances are random variables which 

are dependent upon the initial conditions to varying degrees. For 

parameters appearing linearly in the problem such as the Grmatrix and H~ 

matrix parameters, the gradients with respect to these parameters are fixed 

(i.e. the measured system inputs) rather than functions of parameters being 

estimated. Since the nonlinearities are manifest in gradients which are 

themselves functions of the state being estimated, the estimation problem is 

not overly sensitive to the initial conditions for the Grmatrix and D~matrix 

parameters. Since the H=matrix elements appear bilinearly in the estimation 

equations, the sensitivity to their initial conditions is somewhat greater 

than for the Grmatrix or D~matrix parameters. 

The gradients of the state transition matrix are, however, strong 

functions of the frequency and damping coefficient for each mode. If, for 

example, the initial damping coefficient estimate is of the wrong sign, fil= 

ter divergence can occur. Since the system can initially be assumed to be 

stable, this problem should rarely arise. A less obvious potential problem 

is that of initial frequency estimates which are closer to harmonics 

(multiples) of the actual frequencies present than to the frequencies 

themselves. The harmonics actually represent local minima in the sense of 

optimizing or minimizing the data residuals, and the estimated frequencies 

can get 'trapped' there. For this reason, care must be exercised in the 

selection of the initial frequency estimates, and more importantly in the 

allowable range of frequencies. However, with a priori information concern~ 

ing the locations of the modal frequencies, it should be possible in most 

circumstances, not only to provide the algorithm acceptable initial fre~ 

quency estimates, but to set reasonable limits on the frequency variations 

which circumvent the problem of harmonic minima. 
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As far as initial conditions for the remaining parameters and the 

dynamic states are concerned, there is in general no a priori information 

available whatsoever. In this situation, a zero value is an appropriate 

initial estimate. A notable exception to this is the case of estimation in 

the presence of unknown inputs only. If there are no deterministic (known) 

inputs 

being 

of H 

tions 

present, and estimation of frequencies and damping coefficients is 

performed with outputs only, initializing the states and all elements 

to zero is not advised. Since the gradients of the measurement equa­

with respect to the dynamic states and H-matrix parameters depend 

linearly on the H-matrix parameter and dynamic state estimates respectively, 

zero gradients will result. The null gradients will in turn yield zero 

gains, which imply no state correction regardless of the residuals present. 

The state and parameter estimates will never change from their initial value 

zero This singularity is a consequence of the bilinear and homogenous na­

ture of the nonlinear measurement equations when no exogenous inputs are 

present. In this situation, initializing an element of H for each mode to 

some non-zero value is necessary. 

Once appropriate initial conditions have been determined, the problem 

of obtaining reasonable estimates of their associated variances remains. As 

a 'rule-of-thumb', the initial sigma (the square-root of the variance) is 

set to approximately one-third of the maximum expected deviation from the 

estimated initial condition; thus, if the initial condition is expected to 

lie in the interval [0,6] and no further a priori information is available, 

then 3 is an appropriate initial condition with variance (cr 2
) 1. As far 

as the dynamic states are concerned, zero initial conditions with large a 

priori sigmas are appropriate since a priori state information is rarely 

available. Fortunately, the sensitivity of the parameter estimates to 

variations in the initial state estimate error variances is quite small for 

all reasonable values of the variances. This is due to the model structure 

in which the outputs are linear combinations of the states and thus contain 

a great deal of information concerning the 'true' values of the states. 

Overly large initial dynamic state estimate error variances can lead 

to potential problems in the case where H-matrix parameters are part of the 

state being estimated/identified. (The term 'identification' is commonly 

associated with the 'parameter' states, and 'estimation' with the 'dynamic' 
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states. ) Concentrating for the moment on the measurement equations and 

their partial derivatives, the bilinear nature of the equations is clear and 

implies that the covariance propagation will contain terms proportional to 

the square of the state/parameter estimates times the associated 

parameter/ state 

coupled with 

estimated variance. Large state estimate error variances, 

large H-matrix parameter variances can result in large state 

and parameter 

divergence. In 

avoided. 

estimate transients, which 

the real-time environment, 

in turn 

this is 

can cause covariance 

a situation to be 

pose 

will 

next 

the 

The initial variances for the flutter mode parameters (0 2 ,0 2
) should 

~ w 
little problem, since as aforementioned, reliable initial conditions 

usually be available. However, as is discussed in more detail in the 

subsection, large transients in the frequency estimates can result in 

filter 'locking-on' to local minima at harmonics of the frequencies 

present in the outputs. This is a situation which is usually easy to 

detect, but should be avoided in the real-time environment (presuming of 

course that there are no harmonics actually present due to nonlinearities 

for example) since the corrective action will usually involve a 'reset' and 

subsequent loss of all information processed up to that point! As a 'rule­

of-thumb', the initial sigma should be no larger than 25% of the initial 

frequency estimate. 

3.2.2 Identifiability and Parameter Selection 

In the previous subsection, the basic guidelines for determination of 

appropriate initial conditions were discussed. The discussions were based 

on the assumption that an appropriate model structure had been determined. 

The determination of an appropriate model structure for a given problem is 

critical for ensuring reasonable algorithm performance, and basically in­

volves selecting the set of parameters to be identified and the set of 

parameters to be fixed (and their values). If the estimation problem is 

over-parameterized (too many parameters), then some of the parameters (or 

combinations thereof) are not identifiable from the information available 

(measurements) • Filter divergence in a subspace of the parameter space 
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being searched is highly likely. Since the problem is nonlinear, this will 

most likely result in total filter divergence, necessitating a reformulation 

of the problem. 

In the example given in equation 3-7, the entire set of parameters was 

included in the state vector X. That these are not all simultaneously iden­

tifiable from measurements of the inputs and outputs alone is easily 

verified by noting that in the transfer function description of the equa-

tions 

hIm 

descri bing 

appear. In 

the input-output relationships, only products of g .. and 
IJ 

the SISO case, the residue is the observable/identifiable 

quantity; the g and h parameters can not be uniquely determined without a 

further constraint (eg. setting h=1). In the MIMO case, the situation is a 

bit more complex, but again only the residues are observable. This implies 

that the dimension of the observable subspace of the G-matrix and H-matrix 

parameters is less than its maximum value by the number of dynamic states 

being estimated. Thus, a row of H or a column of G can be fixed to 

reasonable values without loss of generality. Zeroing out a row or column 

is not appropriate since this is tantamount to eliminating an input or out-

put equation from the model while still including the respective 

measurement. In general, unless contrary a priori information is available, 

contributions to or from each mode must be accounted for in constraining 

either columns of G or rows of H. 

Care should be taken in the specification of the g or h parameters 

when they are not being identified. For example, if a row of H is being 

fixed, the values (assuming 2-modes) [ 1 0 1 0 ] seem appropriate a priori, 

and indeed they are. However, if it happens to be the case that the as-

sociated measurement contains predominantly one mode, the states associated 

with the second mode will be forced to assume exceedingly small values. The 

appearance of significant amounts of this mode in the other measurement will 

result in potentially large estimated values for the associated H-matrix 

parameters. 

problems, 

environment. 

In severe cases, this could potentially lead to numerical 

especially in the real-time single-precision computing 

If this problem is suspected, a more judicious constraint 

should be considered. 
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3.2.3 Tuning the Process Noise Covariance Density Matrix 

The variance densities (q's) of the continuous-time noise processes 

which are assumed to be 'driving' the true system and are the parameters 

with which the analyst can 'tune' the filter. Recall the variance densities 

are directly related to the expected parameter and state variations over 

time due to unknown sources (such as wind gusts and turbulence or simply a 

variation due to a change in the operating conditions). A large variance 

density expresses a large amount of uncertainty in predicting the next state 

from the previous filtered state estimate. This is precisely the case for 

example when stores are released from an aircraft and the flutter parameters 

essentially step to new values. At these times, a large process noise 

variance density input for the appropriate flutter parameter states is 

appropriate. During periods when their is little change in operating condi-

tion, small values of parameter process noise variance denSity are 

warranted. Though subjectively described, these guidelines are a direct 

means for inclusion of a priori knowledge of the statistics of the underly­

ing physical principles governing the process. 

Feedback is provided in the form of the variance of the predicted data 

residuals. When the tuning parameters are properly set, the theoretical , 
variance of 

proximated 

there is a 

Thus, the 

formance of 

the predicted data residuals (innovations v) is well ap­

by the sample variance. If the innovations are not zero-mean, 

basic problem inherent in the estimation problem formulation. 

residuals provide a measure for continuously monitoring the per­

the algorithm in real-time processing applications such as the 

flutter parameter identification problem. 

As a practical matter, the variance densities of the dynamic state 

noise processes are directly related to the amount of turbulence present at 

the current time and flight condition. If the amount of turbulence can be 

quantified (measured) in real-time, this information can certainly be used 

in specifying appropriate values for q , the dynamic state process noise x 
variance densities. In the absence of such information, q is usually set -x 
to yield innovations with the appropriate variance and left unchanged from 

then on. If the turbulence changes dramatically during the course of an 

event, qx can be changed on-line to account for this fact. 
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As a final note on the tuning of the EKF, the tuning parameters are 

actually the square~roots of the the associated process noise variance 

density. By inputting these values in the continuous domain, the effect of 

non~uniform data rates is taken into account automatically when the integra~ 

tion is performed. The variance densities need not be a~usted as the data 

interval 

however, 

should 

product 

changes. 

invol ving 

The units of the continuous density q are different, x 
factors of square~root time (usually seconds), and this 

be remembered when setting the values initially. Basically, the 

q ~ should be approximately equal to the expected variation in the x 
associated state from its predicted value based on the simple model 

employed, taking into account both modeling errors and unknown disturbances 

such as gusts and turbulence. 

3.3 SQUARE-ROOT FILTER FORMULATION AND UNITS NORMALIZATION 

To reduce the computational load sufficiently, the majority of the 

computations are performed in single-precision. While reducing the time re­

quired to perform the basic operations of multiply and add, this has the 

undesirable effect of reducing the dynamic range of allowed estimate values 

and more importantly their variances. Since the frequencies involved in the 

flutter parameter identification problem can be on the order of hundreds of 

radians/second and the damping coefficients on the order of a few percent (~ 

0.01), and since the data rates required to adequately sample these si~ 

nals can approach KHz (0.001 second sampling interval), the underlying 

characteristic number associated with these problems can be as large as 108 

(recall variances are squares of associated sigmas). Linear combination 

with numbers on the order of unity places the accuracy of a single computa­

tion at the single-precision threshold on most machines. Thousands of such 

operations can result in unacceptable accumulated roundoff errors. Such er­

rors can lead to negative definite covariance matrix estimates (a situation 

to be avoided at all costs) and filter numerical divergence. There are two 

methods for alleviating these problems, both of which were implemented in 

the flutter parameter identification algorithm -- state normalization and 

square~root covariance propagation. 
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3.3.1 State and Parameter Normalization 

Units normalization redefines the units of the parameters and states 

being estimated so that both the estimates and their variances are on the 

or der of one. For example, measuring frequency in units of 100's of 

rads/sec and damping coefficient in percent yields estimates on the order of 

unity for both parameters in the case of the DAST data (see Section 6) where 

the frequencies were on the order of 20 Hz and the damping coefficients were 

only a few percent. On the other hand, for the F-16 data, the frequencies 

were on the order of rads/sec requiring no normalization and the damping 

coefficient normalization to units of 10% was appropriate for the estimates 

obtained. 

The normalization of the dynamic states is particularly valuable in 

the high frequency cases where the 'velocity' states are larger than the as­

sociated 'position' states by a factor equal to the natural frequency (in 

rads/sec) of the mode. Since the covariance calculations involve squares of 

these factors, potential numerical problems are circumvented via this 

normalization. Keeping the dynamic state estimates small also results in 

reasonable H-matrix element estimates, values which would otherwise be exce­

edingly small (on the order of 1/(velocity state estimate))! 

The G-matrix parameter estimates are normalized in one of two ways. 

Direct units normalization can be performed as with the H-matrix elements or 

the dynamic states. The need for normalization is a consequence of the con­

tinuous model form chosen, wherein the input-output transfer function can be 

seen (for a SI80 system) to be of the form: 

z (s) hg 
u(s) '" S2 + 21;wS + w2 

For values of h on the order of unity, low frequency components of the input 

will be suppressed by a factor of 1/w2 unless g is on the order of w2• 

Normalization of g similar to that used for the frequencies will mitigate 

the problem. 

An alternate approach implemented in the algorithm is to redefine the 

gl-parameter to be wg~ and the g2-parameter to be w2g~ and to estimate the 
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control distribution vector ~' instead of~. This increases the complexity 

of the gradient expressions somewhat, but has the desireable feature of 

being 'auto-normalizing' in the sense that the normalization is a function 

of the frequency estimates themselves. This normalization is a 

reparameterization of the model structure. This reparameterization is espe­

cially useful with regards to the process noise distribution matrix. In the 

low frequency region (such as the case for the F-16 data), the amount of 

continuous-time process noise variance density required to properly tune the 

algorithm becomes a strong function of the frequency unless aut 0-

normalization is performed. With auto-normalization engaged, tuning of the 

algorithm can be performed uSing values for q which are essentially inde-x 
pendent of the frequency of the mode being estimated. 

There is 

stability which 

malization is 

another useful feature aside from increased numerical 

is derived from proper units normalization. If the nor­

performed such that the expected values of each of the 

state estimates are on the order of unity, detecting either parameter and 

input errors or filter divergence becomes an easy task. Estimates or es­

differing significantly from unity are indications of timated variances 

potential problems and/or instabilities. 

3.3.2 Square-Root Formulation 

The second technique for increasing numerical stability involves 

propagation of the square-root of the covariances associated with the state 

estimates, rather than the covariances themselves. This has several desire­

able consequences in real-time applications such as the flutter parameter 

identification problem. Since the object being propagated is a square-root 

of a covariance, in order to form the covariance (not that this is ever 

required) the appropriate matrix must be 'squared'. The resulting 

covariance is guaranteed to be positive semi-definite regardless of the na­

ture of the original matrix! Furthermore, the characteristic number of the 

problem associated with the covariance propagation is essentially halved 

since the square-root operation halves the exponent in the dynamic range 

calculation. Thus, for a fixed wordlength, in this case single-precision, 
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numerical stability can be ensured over essentially twice the dynamic range 

of the standard EKF algorithm. These features make square-root filtering a 

desirable concept in real-time applications. As a historical note, such al­

gorithms are used in the space shuttle guidance and control systems and were 

used in the Apollo program as well with a great degree of success. 

The square-root filtering equations can be derived in many ways, some 

more algorithmic in nature than others. These derivations are left to the 

references except to indicate that the key concept is that for any positive 

definite matrix B (covariance matrices are in this class), there exists 

another matrix A such that: 

B ATA 

where "T" is used to denote matrix transposi tion. Furthermore, if the 

matrix A is constrained to be upper (or lower) triangular, the factorization 

is unique. In any case, the matrix A is called a 'square-root of B'. The 

idea then is, given a set of equations describing the evolution of the 

matrix B, find a set of equations for the evolution of A such that the above 

relationship between A and B is satisfied at each step in the evolution. 

The algorithm is initialized by computing the square-roots of the 

initial covariance matrices in the problem. Triangular square-roots are 

chosen since they are unique and there are fast algorithms for extraction of 

triangular factors in the literature. For matrices whose structure is 

initially diagonal and whose entries are initially specified in terms of 

sigmas rather than variances, this is easily accomplished. For covariance 

matrices with off-diagonal non-zero entries, the Cholesky factorization al­

gorithm can be used to obtain the appropriate triangular factors. 

Once the square-root EKF algorithm has been initialized, the following 

equations are used to recursively update the estimates and covariances. In 

order to simplify the notation somewhat, define: 

P
F P(k!k) 

Pp P (k+1 ! k); 

- 39 -

~ 

X = X(k!k); -F -

~=~(k+1!k); 



In order to perform the time~update or prediction, form: 

[Cd <j»pl/2 
X F 

Ql/2 
X ] • 

At this pOint the objective is to find a set of orthonormal transformations 

which will lower triangularize the rectangular matrix. The resulting equiv~ 

alent matrix will be the square-root of the predicted covariance matrix! 

The technique used to perform the triangularization is a numerically stable 

procedure known as the Householder transformation. Basically, the transfor­

mation zeroes out all elements in the first column of the subject matrix by 

performing a multi~dimensional rotation about a suitable axis. Performing 

this rotation on sequentially smaller principal submatrices of the original 

matrix results in the triangularization desired. Thus, the procedure uses 

Householder transformations to lower triangularize the augmented matrix 

yielding: 

[ P 1/2 0 ] 
p 

The states are updated as follows: 

~p 
Ad A Ad 
F )L+ G u x.;;...r- u-

~p [ :~. : ] ~F 
The bulk of the computation effort in the prediction is in performing the 

Householder triangularization of the augmented matrix. The number of opera­

tions required is proportional to n3
, where n is the dimension of the state 

vector. 
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The equations for performing the measurement update are given below. 

Though more complex in structure, the philosophy is the same. Form an aug-

mented matrix and triangularize it. The resulting triangular matrix 

contains the updated quantities required to perform the next prediction. 

To perform the measurement update, form: 

[ 

R1/2 H!~/2] 

o P 1/2 
P 

and lower triangularize with Householder transformations to obtain: 

[ :~12 :~I2J 
Invert R1/2 and find K as follows: 

£ 

K K R-T/ 2 
£ 

Finally, update the states: 

~F ~p + K\! 

v z - ~p 

As is the case with the time-update, the majority of the computational ef­

fort is in performing the Householder triangularization. 
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The above equations describe the recursion for the EKF flutter 

parameter algorithm in square~root form. These equations have been imple­

mented in the MOPID program which performed the analysis presented in the 

subsequent sections. Advantage was taken of the structure of the flutter 

parameter identification problem to minimize the number of computations at 

each iteration resulting in special purpose routines for performing the 

Householder transformations and the various required matrix multiplications. 

This was done in an effort to increase the maximum throughput rate which 

could be achieved. In the next section, algorithm extensions to address the 

'real data' processing issues are discussed along with estimation of ap­

propriate performance parameters for real-time monitoring. Sections 5 and 6 

present results from simulated and actual flight data processing, and 

Section 7 discusses the program structure and gives some computation counts. 
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SECTION 4 

ALGORITHM EXTENSIONS 

In the previous section, the details of the EKF algorithm applied to 

the flutter parameter identification problem were presented. Several issues 

must still be addressed in the real=time aircraft flutter parameter iden= 

tification environment, however. The measurements used by the algorithm 

include (but are not limited to) accelerometer (specific force meter) out= 

puts and control surface (aileron) deflection commands or actual positions. 

These data contain information about center=of=mass motion and non=zero set 

point control surface deflections as well as the 'high frequency' flutter 

information. If not properly taken into account, the presence of the cen= 

ter=of=mass motion will result in erroneous (biased) parameter estimates. 

A second problem faced with 'real' data is that of data 'outliers'. 

In the real=time environment, valid data may not be present at each sample 

time due to hardware/software malfunction. Detection of these data outliers 

is necessary since they can lead to biased parameter estimates and possible 

filter divergence. 

Another issue, somewhat unrelated to the first two, is that of extend= 

ing the algorithm to provide sufficient information for presentation to an 

operator in a real=time environment. The information should be accurate in 

the minimum variance unbiased sense, and should be timely. Indicating that 

the closed=loop modes of the system went unstable several seconds ago is not 

as useful as an indication that the system is approaching instability and is 

likely to be unstable within the next few seconds. The extensions of the 

EKF algorithm to address these issues are discussed in this section. 

4.1 DATA CONDITIONIN G 

In real=time flutter parameter monitoring, the inputs to the EKF algo= 

rithm are the outputs of various measurement devices onboard the test 

vehicle. In most flutter tests, the system outputs will be measurements 
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from accelerometers mounted on the aeroelastic surfaces, usually wing~tip 

accelerometers. The system inputs can be either measurements of actual con~ 

trol surface deflections or measurements of 'commanded' control surface 

deflections. These system inputs and outputs are the measurements used in 

the EKF algorithm and will in general contain more than just the high fre~ 

quency information of interest. 

In the real~time environment, the accelerometers will be sensing not 

only the acceleration of the wing due to the excited structural modes, but 

the center~of~mass motion of the vehicle as well. To minimize these ef~ 

fects, the test vehicles are usually flown straight~and~level in possibly 

horizontally accelerated flight during the flutter parameter identification 

phase of the tests. Thus, center~of-mass (and potential body~rate and an~ 

gular acceleration) effects are expected to be small, resulting primarily 

from disturbances filtered by the vehicle's stability augmentation system 

(SAS) • 

There are several methods for taking into account the presence of low~ 

frequency information unrelated to the flutter parameters of interest. A 

direct open~loop approach is to measure the center~of~mass and angular ac~ 

celerations with suitable measurement devices, and subtract out the 

appropriate combinations of these from the FSS accelerometers. This method, 

though conceptually straightforward, is susceptible to potentially dis~s~ 

terous errors due to miscalibration and unmodeled parameter variations. 

A second approach is to augment the state vector with a 'bias' 

parameter for each measurement. The bias parameter could have the same 

trivial dynamical model as the other data parameters, with process noise 

used to allow for low~frequency variations over time. If the EKF algorithm 

is viewed as a 'data filter', inclusion of such states is loosely equivalent 

to inserting a high~pass filter in the forward path from the data inputs to 

the parameter/state estimate outputs. The locations of the poles and zeroes 

of the filter are determined by the solution of a time~varying Ricatti equa~ 

tion involving the stochastic parameters in the problem. Thus, the pole 

locations are not necessarily time~invariant. Note that this filter removes 

not only the center~of-mass motion, but the accelerometer zero-g level as 

well, since from an input-output standpoint, there is no difference between 

- 44 -



the two. However, the augmentation of the state vector results in increased 

computational requirements. 

In order the circumvent the need for increasing the dimension of the 

state vector, a suboptimal but computationally less expensive alternative is 

employed. A fixed-parameter high-pass filter is used to 'condition' the in-

put data before inclusion in the EKF algorithm. Though this is a 

'suboptimal' approach to low-frequency information removal, it satisfies the 

more immediate goal of computational efficiency while not sacrificing much 

in the way of optimality. It is suboptimal in the sense that the low-

frequency information could be 'optimally' estimated by incorporating a 

complete six degree-of-freedom estimation algorithm· for estimating the 

vehicle's center-of-mass and rotational motion. However, since such an al­

gorithm is computationally expensive, a simple high-pass filter sufficies 

for most situations. The only requirement is that the filter pole be ap-

preciably below the lowest frequency of interest. 

The high-pass filter employed is a bilinear transform equivalent of a 

simple first-order lead network given by the following continuous-time 

transfer function description: 

s 
FHP (s) s + a 

The location of the pole a is selectible by the operator, appropriate values 

being on the order of 1/10 the lowest flutter frequency expected. 

Formulation in the continuous-time domain allows for non-uniform data rates 

which is consistent with the requirement for asynchronous operation of the 

overall real-time algorithm. Using trapezoidal integration techniques for 

transforming to the discrete-time domain leads to the use of the bilinear 

transform for conversion from the s-plane to the z-plane. The bilinear 

transform of FHP(s) gives: 

FHP(z) [ 1 -
z -

toa/(1 + toa/2) 
- toa/2 
+ toa/2 

] 

where to = t k+ 1- t
k

. Bode plots of the gain and phase of the discrete trans­

fer function for a pole at 1 Hz are shown in Figure 4-1. The sampling rate 
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was assumed to be 250 Hz. For frequencies above 10 Hz, the high-pass filter 

introduces no significant distortion in gain or phase. 
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Figure 4-1: Bias Rejection Filter Bode Plots for Pole at 1 Hz. 

A key point in the implementation of the bias rejection filter is that 

both the system inputs and outputs are filtered identically, whether it is 

required for bias rejection or not. In the closed-loop identification 

problem where the inputs to the system are chosen to be the control surface 

excitation commands, the inputs mayor may not require bias filtering for 

removal of any DC-components, however the bias filtering is performed none­

theless in order that the system inputs and outputs (which almost surely 

require high-pass filtering) experience the same phase-shift at the flutter 

frequencies, regardless of how small the phase shift is in magnitude. 

4.2 DATA OUTLIER REJECTION 

In the real-time environment, the possibility of a malfunction of the 

data collection system is always present and must be taken into account in 

the design of any robust real-time estimation algorithm. When data which 

are not accurate measurements of the system inputs or outputs (i.e. bad data 

points) are input to the EKF algorithm, biased estimates and filter diver-

gence can result. To 'optimally' address this issue of outlier detection 

and rejection requires the theory of multiple hypothesis testing. In a 

real-time environment, this approach is not computationally feasible. A 

sub-optimal computationally feasible approach can be taken however, to im­

part some robustness to the EKF algorithm employed. 
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The outlier detection algorithm involves testing the predicted data 

residuals against their theoretical variance. If a particular data residual 

or innovation exceeds the square-root of its theoretically predicted 

variance by an operator selectible factor (usually on the order of 5-10), 

the data value associated with that residual is declared an outlier. 

The use of the predicted data residuals restricts this algorithm to detec­

tion of output outliers only. Rejection of output outliers is an easy task 

since the algorithm is designed to run asynchronously. The bad data point 

is simply deleted from the data vector at the current time only, and the al­

gorithm proceeds as if no output from that particular device were present at 

the current time. If the outlier were the only measurement at that time, a 

data drop-out of one sample time results. Prediction of data values is re­

quired only for the innovations calculation. The predicted data value is 

not inserted in place of the outlier, since the new residual would be iden­

tically zero resulting in zero state adjustment, and processing of the 

'predicted' measurement 

propriate action given 

output. 

would decrease the covariance which is not an ap­

the decision that the datum was not a valid system 

The previous discussion was directed primarily towards handling system 

output measurement outliers. The situation is a bit more difficult with 

regards to system input measurement anomalies. Since the system inputs are 

not functions of the states being estimated, there is no analog to the 

predicted 

order to 

output residuals and their theoretical variance. Furthermore, in 

predict the state at the next measurement time, a measurement of 

the input to the system at the current time is required since the inputs are 

not states being estimated. In the absence of a valid input value, assuming 

there were an efficient way for detecting input outliers, an input value 

must be assumed. The implementation currently assumes a 'sample-and-hold' 

strategy in the presence of invalid input data. Linear extrapolation could 

be used but is less stable in the presence of extended input drop-outs. 

Furthermore, the validity of the input data is assumed to have been ascer­

tained prior to inclusion in the algorithm by the telemetry processing 

system. Upon encountering an invalid input data flag, the algorithm uses 

the previous system input as the current value. 

This strategy could be made more complex. It would certainly seem ap­

propriate to increase the process noise variance density on the oscillator 
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states when invalid inputs are detected. Sliding window fixed~order polyno~ 

mial predictors could be used to estimate the 'missing' input value, at the 

expense of an increase in computational load and potential processing 

delays. A third easily implementable and potentially more stable solution 

would be to ignore all the data at that time and wait for the next sample 

time. However, little gain is expected since input data outliers, especially 

involving commanded inputs, are infrequent. 

4.3 REAL=TIME INSTABILITY PREDICTION 

The 

ing is 

of the 

dynamics 

measure 

primary objecti ve of any algori thm for real~time flutter moni tor~ 

to provide accurate and timely information concerning the stability 

system being tested. In the locally linearized model of flutter 

employed, the damping coefficient estimates provide a direct 

of the local stability of the system at the current operating 

conditions. For the purposes of this discussion, it is assumed that the sys= 

tern being identified is the one in operation; i.e. if the flutter 

suppression system (FSS) is ON, then it is assumed that the closed=loop sys= 

tern is being identified. In this configuration, the exogenous input 

commands to the ailerons are the EKF algorithm system inputs. If the FSS is 

OFF, it is assumed that the open=loop system is being identified and the ap= 

propriate EKF algorithm inputs are the actual aileron positions 

(deflections). Note that this need not be the case; however, if these cond= 

itions are not satisfied, then the system being identified does not 

accurately reflect the current input=output stability Which is desired. 

A commonly used measure of the stability of time=invariant linear sys= 

terns 

this 

system 

(Le. 

is the 'phase margin'. For single=input single=output (SISO) systems, 

concept is well=defined and is the difference between the phase of the 

transfer function and 180 degrees at the unity gain crossover point 

the frequency w such that !F(w)! = 1). If the magnitude of the phase 

of the transfer function is greater than 180 degrees at the unity gain fre= 

quency, then the phase margin is negative and the system is unstable. For 

multi=input mUlti=output (MIMO) systems, however, the concept of phase mar= 

gin is much more complex, and consequently is not a desirable performance 

measure for real=time monitoring. 
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What characterizes MIMO instability most directly is the crossing of 

one of the systemts natural frequencies into the right half-plane. Thus, 

estimation and therefore prediction of pole locations as a function of time 

(or a possibly more appropriate independent variable such as dynamic pres­

sure or Mach number) is certainly an appropriate stability performance 

measure for real-time monitoring. Furthermore, the capability to predict 

future pole locations is certainly desireable since this opens the pos­

sibility of automated instability detection/warning systems which relieves 

some of the burden of real-time decision making from the operator. 

As discussed in detail in Section 3, the capability to predict future 

values of the damping coefficient of each mode being estimated was 

facilitated by the addition of a damping coefficient velocity state for each 

mode. Making the assumption that the model for the damping coefficient as a 

function of the independent variable is locally linear, prediction of future 

values of the damping coefficient given all the past information is easily 

performed. Letting k be the current time and T be the desired prediction 

interval, the best T-second ahead predictor is given by: 

z: (k+T) z:(k) + Tz: (k) 
v 

The variance of this estimate is also easily calculable: 

2 

cr ~ (k+T) [1 T ] P [ 
z:z:v 

T JT. , 

where P is the covariance of the estimate error of [ z: 
z:z:v 

(4-1) 

z: JT v • Clearly as 

the prediction interval increases, the variance increases as well. For 

large intervals, the variance becomes quadratic in time (or other independ­

ent variable) eventually resulting in statistically meaningless estimates. 

If the model is appropriate, predictions prior to this time are significant 

estimates of the systems future stability. 

A possibly more valuable measure of the systems future stability is an 

estimate of the time-to-instability (TTl). Again, time can be replaced by a 

different independent variable such as dynamic pressure if desired. Though 

a slightly more complex calculation than the simple prediction given in 

equation 4-1, its value lies in its potential to provide an increasingly 
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more accurate estimate of a critical system parameter (essentially the flut= 

ter boundary) as instability is approached. The estimate of TTl is given 

by: 

TTI(k) - 1';(k) / I;; (k) v 
(4=2) 

Clearly this is a nonlinear estimator and its implementation requires cer= 

tain limits to be imposed. 

Since there is no lower bound to the magnitude of I;; , the estimated v 
TTl can become infinitely large. This corresponds to a system estimated to 

be invariant as far as damping coefficient is concerned. Such systems pose 

no potential stability problems (unless of course they happen to be already 
1 1V"1 0 +- ~ 'h 1 ,... \ 
I.,.oULV VO.U-L.. v J • Placing a y-easonable upper bound on estimates of TTl is there~ 

fore certainly warranted. For example, in the results discussed in Sections 

5 and 6, a bound of 10 seconds was placed on estimated values of TTl. 

Values in excess of this bound were simply ignored (practically they were 

set to zero to avoid plot scaling problems). Secondly, the estimate of TTl 

becomes 

positive. 

negative whenever I;;(k) is greater than zero and I;; (k) becomes 
v 

This corresponds to the situation where the estimated system is 

becoming increasingly more stable and certainly poses no instability 

problems in the near future. Note that the estimate of TTl also becomes 

negative when both I;;(k) and 1'; (k) are negative. v In this case, there are 

certainly more serious problems facing the operator than a negative TTl 

estimate. Thus, zero is a logical lower bound to the estimate of TTl. 

Finally, for the estimate to be meaningful, its estimated sigma should 

be small. The variance of the TTl estimate is calculated as follows: 

2 G
TTI 

[ ~ J-
1';. 

v 

~ ] p [~ J- ~ JT 
1;;2 I;; I;; v I;; 1';2 
v V V 

and all estimated quantities are assumed to be at time k. It should be kept 

in mind that though not explicity indicated as such, the covariance P is 
1'; I;; v 

also an estimated quantity since it is a function of other estimates in the 

problem which in turn are a function of the measurements. 
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As eluded to several times in the previous discussions, using time as 

the independent variable in the dynamical model for the damping coefficient 

and its derivative may not be as appropriate as another choice. For ex~ 

ample, extensive experimental evidence suggests that most aerodynamic 

parameters (stability coefficients in particular) are 'locally' linear func~ 

tions of dynamic pressure and/or Mach number. Since the damping coefficient 

of a particular mode depends strongly on these parameters, a more ap~ 

propriate independent variable would seem to be dynamic pressure or Mach 

number. For constant altitude flight tests, dynamic pressure is probably to 

be preferred over Mach number since it is roughly quadratic in airspeed 

whereas for constant atmospheric density, Mach number is linear in airspeed, 

and experimental evidence indicates that the variation is more nearly 

quadratic. 

If dynamic pressure were monitored, an appropriate extension of the 

algorithm to incorporate the damping coefficient dependence upon this 

parameter would be to include the dynamic pressure as another measurement. 

The damping coefficient dynamical model would remain unchanged. A measure~ 

ment model of the form: 

p(k) h (k) ~(k) + b (k) 
p p 

would effectively create the desired dependence of damping coefficient on 

dynamic pressure. The vector of parameters being identified would then be 

augmented with the measurement parameters h 
p 

dynamical models assumed for the parameters: 

h (k+1) 
p 

b (k+1) 
p 

h (k) + W~(k) 
p P 

b (k) + W~(k) 
p P 

and b and the following 
p 

where p is dynamic pressure output. The required partials are entirely 

analogous to those for the accelerometer measurements. 

Note that a measurement of dynamic pressure rate could also be in~ 

cluded in the algorithm using exactly the same approach. The measurement 

would be proportional to ~ and would provide exceedingly valuable informa~ 
v 

tion on the rate of change of~. The variances of the parameters used to 
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predict future system stability would be greatly reduced. The generaliza­

tion of these ideas to include other measurement device outputs with strong 

functional dependence on the frequency parameter related states is obvious. 

The interesting feature of this approach is the implied inversion of 

the functional relationships as currently accepted, i.e. viewing dynamic 

pressure as a function of damping coefficient rather than damping coeffi­

cient as a function of dynamic pressure. Observability issues need to be 

addressed however, since in this approach there would be, at least concep­

tually, several measurement equations for each output. Further dynamic 

state vector augmentation might be required at the expense of increase com­

putational load. Investigation into alternate measurement model forms might 

be appropriate to avoid this potential increase in dimensionality. 

As a final note, with time as the independent variable and a constant 

acceleration profile (such as was the case for the last minute or so of the 

actual DAST test), the results of Sections 5 and 6 can be viewed in light of 

the previous discussion as having a measurement of Mach number (or airspeed) 

and assuming a linear dependence of the measurement on the damping 

coefficient. The use of the quadratic model for the damping coefficient in 

the simulation (cf. Section 5) was an attempt to approximate a linear 

dynamic pressure dependence in the presence of a linear speed profile. 
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SECTION 5 

SIMULATED TEST CASE RESULTS 

This section presents the results of two simulated test cases. The 

two cases were used to illustrate the performance of the algorithm under 

conditions similar to those encountered in both of the 'real' data cases 

analyzed (DAST and F-16 data, cf. Section 6). The value of the simulations 

lies not only in proof-of-concept and its implementation, but also in provi­

ding some insight into such issues as input design for improved parameter 

identifiability. These issues are discussed in this section and in the next 

section as well. 

The first test case to be discussed is the simulated DAST test. The 

test was designed to contain many of the aspects present in the real DAST 

test flight. The input excitation is very similar, and the presence of 

lightly damped closely spaced modes, one of which eventually becomes un­

stable, is an attempt to model the last twenty seconds of the (third) DAST 

test flight. The second test case was designed to simulate the actual F-16 

data which were analyzed. The basic objective was to illustrate the perfor­

mance of the algorithm when exogenous inputs are not present. The only 

forcing functions are the random disturbances encountered in flight. Since 

very little information concerning the actual conditions of the real F-16 

test flight was available, only a simple test case with fixed modes was 

used. The results of both tests verify the correctness of the algorithm im­

plementation and to some extent demonstrate proof-of-concept. 

5.1 SIMULATED DAST TEST CASE 

The objective of the simulated DAST test case was to investigate the 

performance of the EKF algorithm for flutter parameter identification under 

conditions similar to those encountered in the real DAST test flight. To 

this end, a 2-input, 2-mode, 1-output system was simulated using the simu­

lated data generation capability of the program. The two modes were closely 
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spaced and time-varying in both frequency and damping, with one of the modes 

becoming unstable approximately one second before the end of the data 

interval. The exogenous (or deterministic) inputs consisted of a sequence of 

'pulses' and chirps, or frequency sweeps. The 'pulses' consisted of a 

single cycle of a sinewave whose frequency was the average of the fre­

quencies of the simulated modes at the time of the pulse (on the order of 20 

Hz). The chirps were logarithmic frequency sweeps from 10 Hz to 40 Hz, with 

linear tapering at both ends of the sweep interval. Neglecting the taper­

ing, the functional form of the input is: 

u(t) A . [wowlT 1 ( w1T Sln ----- n ----­Wl -Wo Wl -Wo 
- t) ] 

where Wo and Wl are the starting and stopping frequencies (10 and 40 Hz 

respectively), T is the sweep duration and A is the amplitude (set to 1 

second and 1 degree respectively). 

Two inputs were applied to the two-mode time-varying linear system. 

The first input (u 1) consisted of a sequence of pulses and chirps, each oc­

curring in 'pairs'. The sign of the input waveform was changed at the onset 

of each functional form. This resulted in a sequence of 'plus then minus' 

pulses followed by 'plus then minus chirps'. As indicated in Figure 5-1, 

the second input (u 2 ) was identical to the first except no sign switching 

was performed. Thus, the two inputs provided 'symmetric' and 'asymmetric' 

excitation for the two mode system. The input distribution vectors (columns 

of the G-matrix) for each input were chosen such that their sum and dif­

ference placed most of the symmetric and asymmetric input power into 

separate modes. The 'isolation' was chosen to be approximately 10d8. 

2 2ri----~--~----~--~~--~----~--~------------___ 
1 ~--~-------.--

5 0 W L m ~ all m 
_1 f_-+ ___ il-__ • ______ i1.l1lJ.q.tl!IU~U+_--~----t ... lll'~II~ -1 1I--___ + _______ ~-__ f-___ 4-U~U~1!~l'11+-------i__---.~Jllll! Lt.'. 

_2~t __ ~~ __ ~~L_ __ ~ __ ~ __ ~ __ ~~~~ __ ~~ 

0.5 1.5 2 2.~ 

-2' [ i 
o.s 1.5 --

nWE (SEC) 

Figure 5-1: Simulated DAST Input Waveforms 

Random disturbance inputs were also modeled as 100 Hz low-pass fil­

tered white Gaussian noise processes. Two independent processes were used 

- 54 -



with different input distribution vectors to model possible differences in 

disturbability in the symmetric and asymmetric modes. The variance density 

of each process was chosen such that the output SNR was approximately 20dB 

(an amplitude ratio of 10:1) where SNR is defined momentarily as the ratio 

of output power due to deterministic as well as stochastic inputs to that 

due to stochastic inputs alone. 

The output of the system was chosen to be a unity weighted sum of the 

'position' states of the two modes with some direct feedthrough, i.e. 

Zl Hx + Du + v 

where Ho was set to [ 1 0 1 0 ], and where v was a normal (0,0.0004) white 

Gaussian noise process used to model measurement noise in the data acquisi­

tion system. The direct feedthrough term was incorporated to model control 

surface feedforward components in accelerometer outputs. Figure 5-2 shows 

the two inputs and the output of the simulation over the entire 20 second 

interval simulated. Other than the compressed time scale and decreased time 

interval between deterministic inputs, comparison with Figure 6-2 indicates 

the similarity of the simulated data to the actual DAST flight data. 

Technically there are no units affixed to the simulation problem since 

it is a mere mathematical model. However, by adhering as closely as pos­

sible to the conditions of the actual DAST test flight, the inputs can be 

viewed as aileron commands in degrees, and the output can be viewed as that 

of an accelerometer in g's. The measurement noise sigma 0.02 was chosen as 

twice the value for RMS output noise (in g's) given in the specifications 

for the actual DAST accelerometers. 

Estimation Problem Formulation 

In order to minimize the nonlinearities in the estimation problem, es­

timation of the elements of the G-matrix was chosen in favor of estimating 

those in H. Thus, in addition to the six modal parameter states, eight G­

matrix elements and two direct feedthrough terms were identified. The 

initial conditions for the G and D elements were set to zero with sigma 1 

for the G elements and 0.5 for the elements of D. The initial frequencies 

were chosen to be 15 Hz and 30 Hz with a sigma of 5 Hz for each. The true 
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initial frequencies were 20 Hz and 25 Hz. The initial damping coefficients 

(in percent) were set to 10% with sigma 5% for both modes. The true initial 

values were 4% and 2% respectively. 

The measurement noise sigma for the simulated data was chosen to be 

0.02 as discussed previously, and the sigma used in the estimation algorithm 

was set to 0.02 as well. The square roots of the process noise variance 

densities (q's) for the four dynamic states were chosen to be 1 in units of 

the states per square~root time. Frequency normalized process noise was not 

used for this test though it easily could have been. This would have re~ 

suIted in values of 0.01 being appropriate instead of unity. Values of 

0.001 and 0.0001 for the G and D parameter q's were used even though the 

true parameter values were not time~varying. These values were used as 

being representative of values for 'real' data cases where the parameters 

are expected to be slowly time~varying. Q's of 0.2 were used for the fre~ 

quency states and 0.0004 was used for the damping coefficient velocity 

states. 

The integration of the simulation was performed at 250 Hz, a decade 

above the highest frequency mode. Trapezoidal integration was used to more 

closely approximate the output of a continuous dynamic system. The estima~ 

tion data rate was chosen to be 250 Hz as well. No data drop~outs were 

simulated and no spurious data points were added. 

Resul ts 

Figures 5~2 through 5=6 present the results of the simulated DAST 

flutter parameter estimation. The predicted data residuals and their theor~ 

etical sigma are shown at the bottom of Figure 5~2. Their randomness and 

concentration within the theoretical one~sigma values indicate that the fil~ 

ter has been properly 'tuned' (i.e., the process noise variance density has 

been set appropriately). The 'impulse' in the theoretical one~sigma value 

at one second is due to the nonlinear nature of the estimation of the ele~ 

ments in G. Prior to one second, the only input to the system was 'asym~ 

metric'. ThUS, no information was present concerning the 'symmetric' input 

distribution matrix terms and their variances remained near their initial 

values. When the associated partials (i.e. symmetric input values) became 

large at one second, the residual variance increased (cf. HPH' increased). 

~ 56 ~ 



Figure 5=3 presents the time histories of the modal parameter es= 

timates, their estimated sigmas, and the true estimate error for each para= 

meter. 

plotted. 

On each parameter estimate plot, the true time history is also 

These are the 'straight lines' on the frequency and damping coef= 

ficient velocity plots and the 'parabolas' on the damping coefficient plots. 

On the plots of the estimate error, the plus and minus estimated one=sigma 

values are given as well. With the possible exception of the estimate error 

for W2, the errors are compatible with the estimated one=sigma values. When 

sufficient input excitation is present, the estimate error for the second 

modal frequency becomes quite small; but when no input is forcing the sys= 

tem, the error increases due to the linearly decreasing nature of the under= 

lying true value coupled with the constant frequency dynamical model used to 

predict the frequency. 

Figure 5=4 is an s=plane plot of the time histories of the estimated 

pole locations. The parabolic curves are the time histories of the true 

modal locations. After the initial transients die down, the algorithm quite 

successfully tracks the poles even into the right half=plane. The erratic 

nature of the estimated time histories is a consequence of the measurement 

and process noise disturbances. By increasing the deterministic input power 

(increased amplitude and/or increased waveform duration and repetition 

frequency), the variance (both theoretical and actual) of the estimated pole 

locations can be decreased. 

As far as real time flutter parameter monitoring is concerned, Figure 

5=5 presents the most relevant estimates. As discussed in Section 4, the 

reason for estimating damping coefficient velocity was to allow for future 

values of damping coefficient to be predicted. These calculations are em= 

bodied in the estimates of time=to=instability (TTI) (and its variance) and 

the '5=second ahead' prediction of damping coefficient (and its variance) 

shown. The straight lines in the TTI plots are the actual values of TTI, 

and thus have slope =1 and intersect the time axis at 19.1 seconds (the time 

at which the actual damping coefficient for the first mode becomes 

negati ve). The estimates of TTI were limited to a value of 10 seconds. 

Larger estimates were arbitrarily set to zero in order to avoid plot scaling 

problems resulting from exceedingly large TTI estimates. The parabola in the 

5=second prediction plot at the bottom of the figure is the actual value of 

the associated damping coefficient displaced backward in time by 5 seconds 
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(thus it terminates at 15 seconds). The plus and minus one~sigma estimates 

are indicated as well, and the predictions are seen to be quite good. 

Finally, Figure 5~6 gives the estimates for the G~matrix and D~matrix 

parameters and the plus and minus one~sigma estimates. The estimate error 

for the parameters is not plotted since the true parameter values were 

constants. With reference to the true values given below, it is easily seen 

that the estimates are all within their theoretical one~sigma values. 
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5.2 SIMULATED F-16 TEST CASE 

The objective of the simulated F-16 test case was to illustrate the 

performance of the EKF flutter parameter identification algorithm in the ab­

sence of deterministic inputs. The only forcing functions in such situa­

tions are the random disturbances normally encountered in flight; distur­

bances due to wind gusts and turbulence. A two-mode, two-output model was 

chosen to simulate the conditions of the F-16 test flight. The modal fre­

quencies and damping coefficients were not time-varying for this test; Wl 

and W2 were set to 4.5 Hz and 8 Hz (28 rad/sec and 50 rad/sec) and the as­

sociated damping coefficients to 8% and 6% respectively. 

The inputs to the two-mode model were two independent 50 Hz low-pass 

filtered white Gaussian noise processes; one driving the 'velocity' state of 

each oscillator. The square-root of the process noise variance density for 

both processes was set to 0.025. The outputs were chosen as linear combina­

tions of the four dynamic states whose output power spectra as closely as 

possible approximated the power spectra of the actual F-16 outputs (cf. 

Section 6). Measurement noise with sigma 0.02 was added to the outputs as 

well. The resulting H-matrix was: 

Ho [ 
3.0 -0.2 

-0.02 0.05 
0.05 
0.5 

0.02 ] 
-0.01 • 

The simulation was integrated at 400 Hz in order to more closely ap­

proximate the outputs of a continuous time system. Five seconds of sim­

ulation were run before the estimation was begun in order to allow the 

simulation to reach statistical steady-state. Five seconds were needed 

since the bias filter pole was set to 0.2 Hz in order to be a factor of 10 

below the lowest mode of interest. The estimation data rate was chosen to 

be 100 Hz, roughly a factor of 10 greater than the highest frequency of 

interest. 
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Estimation Problem Formulation 
----------~--------.---------

In the estimation problem, all elements of H were estimated with 

initial values set as follows: 

H(O) [ ~ o 0 
o 1 ~ ] ' 

with sigma for each element. Note that as discussed in Section 3, in-

itializing H to zero herein is not appropriate since there are no exogenous 

inputs forcing the dynamic states. Zero H results in zero partials which 

lead to zero gains resulting in zero dynamic state estimates for all time. 

The initial frequency estimates were set to 5 Hz and 10 Hz with sigmas 0.5 

Hz and 1 hz respectively. The associated damping coefficient estimates were 

initialized to 10% with a sigma of 2% for both modes. 

The values for the square-root of the dynamic state process noise 

variance density (q's) were set to 0.025 in units of the state units per 

square-root time. Frequency normalized process noise was used in this 

simulation since the ratio of the frequencies of the two modes was approxi­

mately 2. Without using frequency normalized sigmas, different values would 

be required for the two modes (differing by the same frequency ratio of 2). 

This leads to potential problems however, since the process noise sigmas are 

a priori assigned to specific modes. Should the estimated frequencies of 

the two modes 'cross' due to random effects, the process noise variances 

would become inappropriate for the modes. Frequency normalization overcomes 

this problem by adjusting the variances proportional to the modal disturb-

ability. A value of 0.0001 was also used for the q's on the elements of H 

even though the actual values were not time-varying. As in the DAST simula­

tion, this was done to more closely approximate the conditions of the actual 

F-16 test flight. Q's of 0.0005 were used for the frequency states and 

0.000005 was used for the damping coefficient velocity states. 

Results 

Figures 5-7 through 5-11 summarize the results of the simulated F-16 

test case. Figure 5-7 shows the simulated measurements and the associated 
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predicted data residuals and their theoretical sigmas. The amplitudes of 

the outputs are seen to be comparable to those of the actual F-16 outputs 

(cf. Section h). Figure 5-8 shows the power spectra corresponding to each 

of the plots in Figure 5-7. The output power spectra are shown to provide a 

meaningful comparison with the actual F-16 data whose power spectra are 

given in Section 6. The power spectra of the predicted data residuals are 

presented to demonstrate that the EKF algorithm has extracted 'all' of the 

information possible from the measurements. The spectra are flat with the 

exception of the effects of the bias filter at DC. 

Figure 5-9 shows the time histories of the estimated pole locations in 

the s-plane. The two XIS in the figure indicate the true locations of the 

poles. As is intuitively obvious, there is more information in the data 

concerning the frequency of the pole locations than the damping coefficient. 

This results in the observed variations in damping coefficient being much 

larger than those in frequency. Figure 5-10 gives the time histories of the 

frequency and damping coefficient estimates and their estimated si~as as 

well. Again the relative information content with respect to frequency and 

damping coefficient is clear from the 'plus and minus' one-sigma values 

indicated. Furthermore, the rate of decrease of the one-sigma values for 

the damping coefficient estimates is quite small, indicating that little in-

formation is being acquired. The overall rate at which information is 

accumulated by the algorithm is directly proportional to the input process 

noise power to measurement noise power ratio; thus, increasing the distur­

bance power will increase the rate of convergence of the sigmas and decrease 

the final stead~state sigmas as well. 

Figure 5-11 presents the estimates and estimated sigmas for the ele­

ments in both rows of the H~matrix. The final H~matrix parameter estimates 

were: 

H(40 140) [ 
1.3 0.6 0.3 

-0.4 -0.06 -1.9 
0.05 ] 
-0.4 ' 

Comparison of these asymptoti c estimates with the true values given above 

indicates that there is very little s·imilari ty, and for this reason the 

parameter estimate errors are not shown. The primary reason for the nonzero 

asymptotic parameter estimate errors is mismodeling of the (stochastic) 

inputs. Two independent process noise sequences were used as inputs in the 
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simulation as discussed above. However, the model used in the estimation 

problem formulation effectively assumes the presence of four independent 

noise processes by allowing tuning for each of the oscillator states separ-

ately. The result is that at each measurement update, the filter is given 

freedom to adjust the position and velocity states of each oscillator inde-

pendently. The interdependence of the states which is a consequence of the 

natural oscillator equations of motion is, partially destroyed; more specifi­

cally, the derivative~integral relationship specified by the dynamical model 

is no longer exactly satisfied. Equivalently, the phase relationship be­

tween the two states is partially destroyed. In effect, the problem has 

been overparameterized stochastically, and this leads to the observed steady 

state H-'matrix parameter estimate errors. The overparameterization also 

manifests itself in the slow convergence of the damping coefficient es­

timates and the relatively large steady state estimate error sigmas. 

A second factor contributing to the H-matrix parameter estimate errors 

is the difference in the simulation and estimation data rates. By using an 

integration rate in the simulation of the data which was a factor of four 

larger than the estimation data rate, effectively different bandwidth noise 

processes were being used. 

mismodeling. 

This contributed further to the stochastic 

Another factor contributing to the H-matrix parameter estimate error 

is the presence of the bias rejection, or high-pass filters. By removing 

the low~frequency content in the data, information concerning the location 

of the input-output zeroes near the origin is suppressed relative to high 

frequency components. Thus, disparity between estimated H-matrix elements 

and the 'true' values is to be expected. However, since fidelity of the H­

matrix parameter estimates is not the primary goal in the modal parameter 

identification problem, the lack of convergence to the "true" values is of 

no real concern. Note that the modal parameter estimates do not suffer from 

this lack of identifiability; and they are the parameters of interest. 
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SECTION 6 

FLIGHT TEST RESULTS 

In the previous section, the results of two simulated data test cases 

were presented in order to illustrate the EKF algorithm's performance in 

situations similar to those encountered in the actual flight test data which 

were processed. This section presents the results of the processing of the 

actual DAST and F-16 flight test data. Since the actual values of the fre­

quency and damping coefficient estimates are not available, the discussion 

of the results necessarily involves consistency arguments where comparison 

is made between 'batch processed' results (i.e. FFT analysis) and the recur-

sive EKF results. Particular attention is paid to the estimates of the 

parameter error variances, since these are an indication of the amount of 

information contained in the data available about the parameters of 

interest. 

The first flight test to be discussed is the third DAST flight of the 

ARW-1 wing. This test is of particular value in ascertaining the perfor-

mance of the EKF algorithm as a real-time flutter parameter monitor for two 

reasons. First, throughout the test the ailerons were given sine-wave pulse 

and swept-sine commands to excite the structural modes. Secondly, due to an 

FSS implementation error, the vehicle experienced severe flutter which 

caused the right wing to separate from the fuselage with subsequent ground 

impact. Since it is of great interest to know how the algorithm performs in 

such circumstances, the data processing concentrated on th~ last 100 seconds 

of this flight. 

The second flight test discussed is an F-16 flight in which no ex­

ogenous inputs were applied to the control surfaces. The data represent 

approximately 90 seconds of accelerometer outputs during a period of tur­

bulence induced vibration (flutter). Since very little else was known about 

the F-16 flight test at the time of analysis, the discussion of the results 

is limited to comments concerning the general identifiability of flutter 

parameters without exogenous inputs. 
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6.1 VAST FLIGHT TEST RESULTS 

Background and Data Base 

The purpose of NASA's drones for aerodynamic and structural testing 

(DAST) program is to test aeroelastic research wings (ARW) in an attempt to 

correlate theoretical predictions and experimental flight test results of 

aeroelastic effects in the high subsonic to transonic speed range. The 

first wing to be tested in the program (ARW~1) was a sweptback, supercriti~ 

cal airfoil, transport type wing. The primary research objective of the 

ARW~1 was to investigate techniques for the active control of flutter 

utilizing an onboard analog flutter suppression system (FSS). Three test 

flights of the ARW~1 were conducted. An error in the 'implementation of the 

gain in the FSS caused a violent flutter incident at the end of the third 

flight. The right wing separated and the vehicle impacted the ground. 

TABLE 6~1: DAST FLIGHT TEST CHANNEL IDENTIFICATIONS 

Channel Descriptor Description 

1 ALFSO Left~wing front spar outboard accelerometer 
2 ALFSS Left~wing FSS accelerometer 
3 ALRS Left~wing rear spar accelerometer 
4 ARFSS Right~wing FSS accelerometer 
5 ARRS Right-wing rear spar accelerometer 
6 DAL Left aileron position 
7 DAR Right aileron position 
8 FSSEXC FSS excitation ~ aileron command 

-- -- - -----

The data available for processing at the time the analysis was per­

formed included eight telemetry channel outputs; five accelerometer outputs, 

two aileron position outputs, and an aileron command signal (the exogenous 

input used to excite the structural modes). The channels were labelled 1 

through 8 and the Table 6~1 gives the channel identifications. The data 

sampling rate was 500 Hz and several minutes of data prior to the flutter 

incident were on the tapes. During this time period the drone was being ac~ 

celerated from Mach 0.7 to Mach 0.825 and was at an altitude of 15000 feet. 
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The FSS excitation signal was composed of 'pulses' which contained ex= 

actly one cycle of a 20 Hz sinewave, with either 1.7 0 or 3.4 0 amplitude, and 

logarithmic frequency sweeps from 10 Hz to 40 Hz in 7 seconds with 1° or 2° 

amplitude. The sweeps were tapered at both ends to eliminate transients. 

The equation for the sweeps was given in Section 5. The FSS excitation in­

put was applied both symmetrically and asymmetrically to the ailerons with 

the FSS both ON and OFF during various segments of the flight. The objec= 

tive was to excite the symmetric as well as the asymmetric modes of both the 

closed=loop and open-loop system. However, as the speed approached Mach 

0.8, the FSS OFF tests were terminated as the vehicle was predicted to be 

open-loop unstable near that altitude and Mach number. Furthermore, after 

exceeding Mach 0.8, asymmetric excitation was terminated altogether in favor 

of symmetric excitation since the closed-loop symmetric modes were predicted 

to be unstable above about Mach 0.85. 

Estimation Problem Formulation 

As discussed earlier, there was quite a large amount of data present, 

however, only a limited amount of data was processed in this analysis. 

Since the primary objective of the EKF algorithm is to identify potential 

instabilities and provide some indication of pending flutter, the analysis 

was conducted over the last 100 seconds of the test flight. Less data could 

have been used, however in order to include at least one symmetric and one 

asymmetric sweep excitation in the interval, the processing was started at 

26035 seconds (07:13:55) as indicated on the data tapes. During the last 

100 seconds of flight, the vehicle was initially stabilized at Mach 0.8 to 

obtain sweep responses, then accelerated to Mach 0.825 near which point the 

flutter incident occurred. The FSS was ON during this time interval. 

Since the expected flutter frequencies were in the 20 Hz region, the 

sampling rate of 500 Hz was more than sufficient to adequately sample the 

analog device outputs. Furthermore, this algorithm is expected to run in 

real-time, and a realistic upper bound on the average throughput rate is 

about 250 Hz (cf. Section 7). Thus, the analysis was conducted with data 

sampled at 250 Hz initially. In order to provide some insight into the ef­

fects of sampling at lower rates for problems of this nature (which may be 
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necessary 

processed 

due to computational speed limitations), the data were also 

at a 125 Hz rate. The altering of the sample rates was performed 

by placing a lower bound (in software) on the minimum sampling interval. 

The original estimation problem formulation was based on closed~loop 

analysis at 250 Hz with two inputs, one output, and two modes (2,1,2). 

Since both the aileron command and the aileron position were available, 

there was a choice of performing closed~loop or open~loop analysis. The 

open~loop analysis basically uses the aileron positions as system inputs and 

the accelerometers as system outputs and identifies (under certain persist~ 

ent excitation conditions) the natural frequencies of the open~loop (or 

uncontrolled) system, i.e. the natural flutter frequencies. The closed~loop 

analysis uses the command signal as the system input instead, and thereby 

results in estimates of the modes of the controlled system (assuming the FSS 

is ON). Since the closed~loop system is the system whose stability is 

critical in the real~time environment, the closed~loop analysis was 

performed. 

The inputs to the original (2,1,2) estimation problem were the right 

wing FSS accelerometer (ARFSS ~ Channel 4) and the FSS excitation signal 

(FSSEXC ~ Channel 8). The two inputs were composed of the FSSEXC time his~ 

tory and its appropriately negated counterpart; the excitation signal 

generated by accounting for the fact that some of the sweeps and pulses were 

symmetric and others asymmetric. However, there were no asymmetric pulses 

or sweeps over the last half of the estimation interval, presumably because 

the symmetric modes were expected to be the least stable as the flutter 

boundary was being approached. Thus, the two inputs were identical for most 

of the interval, resulting in a lack of identifiability of the asymmetric 

component of the input distribution matrix (G). Therefore, an alternate, 

computationally more attractive approach was used. 

Instead of constructing a two~input problem, from one which was in~ 

herently a single~input problem, the estimation problem was reformulated as 

a single~input (1,1,2) problem. During the few instances in the estimation 

interval when the symmetry of the excitation was switched from symmetric to 

asymmetric, impulses in the parameter process noise variance densities (q's) 

were used to allow the parameters to adjust to the 'new conditions'. 

Basically, this amounted to estimating different models for symmetric and 

asymmetric excitation periods. Since the actual modes excited during the 
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symmetric and asymmetric excitation periods were different, and since the 

level of exogenous input far exceeded that due to random effects, the iden~ 

tification of a new model after each excitation symmetry switch was 

justified. 

The use of impulsive q's has the effect of decoupling the estimation 

of the modal parameters from one type of excitation to the next occurrence 

of the same polarity excitation if an excitation of the opposite polarity 

intervenes. However, due to the dynamics of the changes in the damping 

coefficients and frequencies over the last 100 seconds of flight, the q's on 

the frequency and damping coefficient states required to track their time~ 

variations outweighed the impulsive contributions as far as the critical 

mode was concerned. Very little information regarding the instability was 

lost. Consequently, the estimates of the means and variances of the perfor= 

mance measures discussed in Section 4, TTl and T~second ahead prediction, 

were not significantly affected. 

Another issue in the estimation problem formulation concerned the es= 

timation of a direct feedthrough term. Such a term was estimated for two 

reasons. First, the underlying physics of the process relating the aileron 

deflections to the observed accelerations dictates that a certain amount of 

the force generated by the deflection is transmitted directly to the obser= 

vat ion point virtually without delay (certainly on the time scale of these 

problems the delay is negligible). Secondly, it was clear from extensive 

plotting of outputs and excitations that a direct feedthrough term was 

present. A sample of such output is shown in Figure 6~1. In the plot on the 
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Figure 6~1: Expanded DAST Pulse Excitation and Responses Indicating Presence 
of a Direct Feedthrough Component 

left, a pulse excitation (solid line) is shown along with the aileron 

deflections (dashed lines). The FSS was ON and the excitation was 
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symmetric. 

The plot 

There is clearly a significant lag in the aileron deflections. 

on the right shows the right aileron position (dashed line) over~ 

layed on the ARFSS output (solid line). Assuming there were no telemetry 

sampling problems and no excessive differential delays in the data acquisi~ 

tion system, there is clearly a component of FSSEXC in ARFSS since ARFSS 

leads significantly DAR (the aileron position). Therefore, a D~matrix 

parameter was estimated in spite of the increased computational burden. The 

intial value was set to zero and the initial sigma to 0.5 g/deg. 

The increased computational burden resulting from the estimation of an 

element of the D~matrix was small in this case due to the fact that for a 

majority of the estimation interval, the excitation was zero. By taking 

into account the zero value of the input, the EKF algorithm was optimized to 

minimize unnecessary multiplies by zero thus realizing significant computa~ 

tional savings. Furthermore, since the excitation over the last 50 seconds 

consisted solely of short duration pulses, very little estimation accuracy 

would have been lost if the direct feedthrough term were neglected. 

However, since a major conclusion of this analysis is that continuous 

wideband excitation significantly improves estimation accuracy, the direct 

feedthrough term was retained. 

Thus, the estimation problem for the last 100 seconds of the DAST 

flight was implemented as a (1,1,2) estimation problem with direct 

feedthrough by taking advantage of the time multiplexed nature of the multi~ 

input aspect of the problem. Both channels, FSSEXC and ARFSS, were filtered 

with the bias rejection filter with the pole set at 1 Hz. This was required 

as discussed in Section 4 in order to eliminate the low~frequency center~of= 

mass motion as well as the static lift force/zero=g accelerometer output 

level. Inspection of the unfiltered ARFSS output shown in Figure 6~2 

manifests the need for such bias rejection (cf. zero~level shift at 26045 

seconds). Though highly compressed, the time history of the excitation sig= 

nal (FSSEXC) also shown in Figure 6~2 indicates the sequence of sweeps and 

pulses eluded to earlier. 

As in the simulated 

parameters in G was chosen 

DAST estimation problem, estimation of the 

in favor of- those in H due to the inherently 

bilinear nature of H=matrix parameter estimation compared to the linear na~ 

ture of the G~matrix parameter estimation. Initial values for the G~matrix 

parameters were set to zero with unit variance. These were appropriate 
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since autonormalization of the G-matrix elements was used (cf. Section 3.3). 

The measurement distribution was arbitrarily set to: 

H=[1010], 

without loss of generality. Inspection of the data indicated that a 

measurement noise sigma of 0.1 g's was appropriate, and it was used 

throughout the analysis. 

The initial values for the modal parameters were set based on the a 

priori 

damping 

knowledge that the frequencies were in the 15 to 30 Hz range and the 

coefficients were on the order of 5%. The initial frequency es­

timates were set to 20 and 25 Hz with sigma 1 Hz, and the intial damping 

coefficient estimates were set to 0.05 with sigma 0.02. Since no a priori 

knowledge concerning the damping coefficient velocities was available, they 

were initially set to zero with sigma 0.0002. 

The tuning of the process noise variance densities was performed as 

discussed in Section 3.2. The values for the dynamic state q's were set to 

unity in the associated state units. No impulsive q's were added to the 

dynamic state q's at input excitation symmetry switching times. The fre­

quency q's were set to 0.02, and at the times of input symmetry switching 

(26046.5, 26067.9, 26089.9, 26098.0, and 26102.0 seconds) an impulsive q 

value of 10 was added over a single prediction interval. A q of 0.0002 was 

used for the damping coefficient velocities, with an impulsive q of 0.02 

used. The damping coefficient q's were set to zero (so that the velocities 

would integrate to the coefficients); however, impulsive q's of 0.4 were 

used to allow for immediate tracking of new damping coefficients resulting 

from different modes being excited. The q's for the G-matrix and D-matrix 

parameters were set to 0.0001 to allow for tracking of slow time-variations, 

with impulsive q values of 10 used to allow adjustment when the symmetry of 

the excited modes changed. 

As is easily seen from the initial values, there was quite a dynamic 

range in this problem. In order to avoid potential numerical difficulties, 

units 

Section 

normalization 

3.3.1. The 

was performed on the estimated states as discussed in 

frequency units were changed from rad/sec to 100 

rad/sec. The damping coefficients were estimated in percent (i.e. 0.01 

units), and the units for the 'velocity' states in the two oscillators were 
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set to 100 times there unsealed units. Other than the fact that the 

'velocity' states must have the units of the 'position' states per unit 

time, the units of the dynamie states are completely arbitrary. It should 

be noted that these unit conversions are internal to the algorithm, and that 

before outputting any results for plotting, the algorithm converts back to 

original units. Thus, frequency estimates are plotted in rad/sec, even 

though internally calculations were performed in 100 rad/sec units. 

RESULTS FOR 250 HZ DATA RATE 

Figures 6~2 through 6~10 present the results of the DAST data 

analysis for a sampling rate of 250 Hz. Figure 6~2 shows the algorithm in~ 

puts ARFSS and FSSEXC prior to high~pass filtering. Of particular note is 

the ARFSS response to the symmetric pulse at 26090 seconds indicating near 

instability, and the 'unforced' ARFSS output at 26132 seconds. This 

unforced output was probably gust/turbulence induced. Due to the fact that 

the asymmetric modes were more heavily damped during this transition from 

Mach 0.80 to 0.825, the asymmetric and symmetric excitations are easily 

found by noting the duration of the associated pulse responses. The peak 

response to the symmetric sweep is also significantly larger than the asym~ 

metric sweep peak response. Also shown in this figure are the predicted data 

residuals along with their theoretical l~cr values. It should be noted that 

due to core limitations, only every tenth residual was saved for plotting. 

The sample sigma of these residuals was 0.25 in good agreement with the 

steady-state theoretical value (approximately 0.20). The 'spikes' in the 

sigma 

ing 

estimate are due to the impulsive q's added at input symmetry switch~ 

times, and the vertical line at 26110 seconds is the result of the 

outlier rejection algorithm placing zero values where data were rejected. 

Figures 6~3 and 6-4 give the time histories of the parameters being 

estimated with their plus and minus 1~cr values plotted as well. The modal 

parameter estimates are given in Figure 6-3. The large jumps in the 

parameter estimates occur at input excitation symmetry switching times where 

impulsive q's allow rapid parameter variations, though smaller impulsive ad~ 

justments also occur at the times of each of the pulses. These small 

adjustments are due to the impulsive nature of the increase in information 

content in the data at these times. 
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The behavior of the frequency and damping coefficient estimates during 

the frequency sweep excitations is quite interesting. During the first 

(asymmetric) sweep, low variance estimates of a pole near 115 rad/sec and 

155 rad/sec were achieved for modes 1 and 2 respectively. The estimate of 

the frequency for mode 1 actually settled for a short while at 120 rad/sec 

before converging at the end of the sweep interval to 115 rad/sec. These 

results are consistent with the FFT derived 3130 transfer functions shown in 

Figure 6~5. Plots of the data from all eight channels are shown at the top 

of the figure, while the transfer functions are shown at the bottom. Of 

particular note is the dramatic difference in the 'left=wing' transfer func= 

tion estimates on the left versus those for the 'right=wing' accelerometer 

outputs shown on the right. This dramatic asymmetry is evidence of either 

an asymmetry in the wing configuration or a possible control law problem. 

The ARF33/F33EXC power spectrum (the solid line on the bottom right plot) 

indicates two poles at 20 and 25 Hz (125 and 155 rad/sec respectively). The 

mode 2 frequency estimate 'locks~on' to the power at 25 Hz, while the mode 1 

estimate converges to 20 Hz at 26040 seconds, drifting down about 1Hz as the 

sweep excitation frequency exceeds 20 Hz. This could be the result of 

momentary excitation of a 20 Hz symmetric mode between a 15=17 Hz asymmetric 

mode and a 25 Hz asymmetric mode. 

Figure 6=6 presents FFT transfer function estimates for the response 

to the symmetric sweep. The symmetric transfer function estimates display 

the expected similarity as seen at the bottom of Figure 6=6. Furthermore, 

the symmetric mode at 20 Hz is more lightly damped than any of its asym= 

metric counterparts (note the decreased variance in the FFT transfer 

function estimates as well), resulting in low variance estimates as indi~ 

cated in the mode 1 parameter plots. The mode 2 frequency estimate step to 

a value near 175 rad/sec (28 Hz) at 26055 seconds which is possibly a 

moderately damped mode (cf. ~2 estimate) momentarily excited by the sweep 

excitation. It might also be the first harmonic of a mode in evidence near 

15 Hz (note the 'notch' at 15.5 Hz). 

From 26068 to 26090 seconds, there were four successive asymmetric 

pulse excitations (cf. Figure 6=2). The frequency and damping coefficient 

estimates (especially those for mode 1) are quite different than their 

respective values during the symmetric excitation periods as expected. The 

mode estimate, being initially closer to the 'new' mode and allowed to 
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move due to the impulsive q's added, did so. The increased variance in the 

estimates is worthy of comment as well. As noted above, the asymmetric 

modes were more heavily damped than the symmetric modes. Since the excita~ 

tion was limited to short duration pulses which resulted in short duration 

responses, much less information was contained in the data than during the 

sweep excitations or the extended responses to the symmetric pulses. The 

reduced information content resulted in increased variances (sigmas). This 

is quantitatively evidenced in the significantly smaller estimate sigmas at 

26045 seconds, the end of the asymmetric sweep interval, and the associated 

sigmas at any time during the sequence of asymmetric pulses. By con~ 

tinuously exciting the asymmetric modes during the sweep, more information 

concerning the damping coefficient and frequency was extracted. 

The effect of the impulsive q's is most dramatically manifest in the 

response of the algorithm to the extended system pulse response initiated at 

26090 seconds. The estimates rapidly converge to appropriate values for the 

lightly damped symmetric mode which was excited, and just as rapidly return 

to values appropriate to the asymmetric modes when the next asymmetric pulse 

excitation occurs at 26098 seconds (cf. Figure 6~3). 

From 26100 seconds to the end of the flight, only symmetric pulse ex~ 

citation was used. As a result the output power was concentrated near 20 Hz 

in what oas clearly the dominant mode. During this interval, the mode 2 

frequency estimate apparently drifts off. However, inspection of the power 

spectra shown in Figure 6~7 indicate that there was sufficient power at the 

third harmonic (60 Hz or 380 rad/sec) for the mode 2 estimate to 'lock onto' 

the third harmonic. The third harmonic became pronounced just prior to the 

flutter incident (due to the increased amplitude of the response and pos~ 

sible attendant 

estimates and 

Figure 6~3. 

nonlinearities) and the frequency and damping coefficient 

their associated variances responded accordingly as seen in 

Figure 6~8 shows an s~plane plot of the time histories of the es~ 

timated pole locations. Figures 6~9 and 6~10 present the most important 

results in terms of real~time flutter parameter and stability monitoring, 

the TTl and T~second ahead predictions. At the top of Figure 6~9, the TTl 

estimate for mode 1 is shown for the entire estimation interval. As dis~ 

cussed earlier, TTl estimates larger than 10 seconds and less than zero were 

arbitrarily set to zero to avoid plot scaling problems. Thus the estimates 
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appear to transition abruptly from zero to non=zero values and vice versa as 

the thresholds are crossed. The estimated time=to=instability for mode 2 

was never less than the 10 second upper bound, so it is not shown. During 

the extended symmetric pulse response from 26090 to 26095 seconds, the TTl 

estimate indicated potential instability within a few seconds, however the 

estimated sigma was as large as the estimate itself during the response 

period, and increased steadily thereafter as seen in the second and third 

plots in Figure 6=9. In contrast, during the response to the last pulse, 

the TTl estimate and its sigma continually decrease until just prior to 

26140 seconds, instability is indicated. Figure 6=10 shows the time history 

of the mode 1 damping coefficient estimate, its 5=second ahead prediction, 

and the TTl estimate over a 10 second interval just prior to the flutter 

incident. The 5=second ahead ~l estimate plot also displays the ~l estimate 

retarded by 5 seconds. During the period where the excitation is non=zero 

(the turbulence response at 26131.5 seconds followed by the pulse at 26132.5 

seconds), the estimates are in close agreement. During the 4=second gap in 

the excitation, the estimates drift apart, clearly indicating the value of 

continuous excitation during these critical periods of the test flight. 

RESULTS FOR 125 HZ DATA RATE 

In order to ascertain the effect of reducing the input data 

(information) rate, the same estimation was performed at 125 Hz. The 

results of this estimation are given in Figure 6=11 through 6=16. The 

figures are in the same format as the corresponding ones for the 250 Hz es= 

timation for ease of comparison. The results are quite similar as they are 

expected to be since the sampling rate is still a factor of 5 above the 

modal frequencies of interest. However, there is an increase in the 

variance of the parameter estimates over most of the estimation interval due 

to the loss of information. Figures 6=15 and 6=16 indicate that in spite of 

the reduced data rate, the TTl and 5=second ahead prediction estimates are 

still 

the 

cated 

significant instability indicators. Quantitative differences between 
_. 

results for the two data rates can be seen in the increase in the indi= 

time of instability (approximated 0.4 seconds). The key point to be 

made concerning both sets of results is that higher quality (lower variance) 

estimates are produced during periods of continuous excitation. 
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6.2 F=16 FLIGHT TEST RESULTS 

Background and Data Base 

In addi tion to processing the DAST data which involved the processing 

of high quality (large SNR) data from a test designed with exogenous inputs 

to actively probe the aeroelastic response, turbulence excited F=16 data 

were also made available for processing. The objective of this analysis was 

to investigate the behavior of the EKF algorithm for flutter parameter iden~ 

tification in low SNR conditions where no exogenous inputs are present or 

available. As is discussed, identification of frequencies and damping coef= 

ficients under these conditions is quite different than in the presence of 

probing inputs. 

The data available for processing included only three wing=mounted ac~ 

celerometer outputs recorded during straight and level flight conditions. 

The channel identifications for these outputs are given in Table 6=2. The 

TABLE 6~2: F~16 FLIGHT TEST CHANNEL IDENTIFICATIONS 

Channel Descriptor Description 

1 AS031 Left=wing forward normal accelerometer 
2 AS032 Right=wing forward normal accelerometer 
3 AS033 Left""wing rear normal accelerometer 

data available were sampled at a 400 Hz rate and spanned a contiguous inter"" 

val of approximately 90 seconds in duration (46486 to 46575 seconds). No 

control surface position measurements were available, and no other informa"" 

tion concerning the flight conditions, aircraft configuration, or 

accelerometer location was available either. Under these circumstances, the 

somewhat unrealistic assumption that no control surface deflections were 

present had to be made. 
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Estimation Problem Formulation 

Figure 6~17 shows plots of the entire available time histories for all 

three channels at the maximum available data rate (400 Hz). There are 

several interesting observations which can be made based on the time his~ 

tories alone. First and most perplexing is the observation that the left~ 

forward normal accelerometer (AS031) indicates a distinct change in 'static' 

normal specific force at 46498 seconds. Neither AS032 nor AS033 show a 

similar change. Since center~of~mass motion would be sensed to some degree 

in all three accelerometers, it is hypothesized that a change in the 

measurement device output such as a zero~level shift is the cause. Such oc~ 

currence,s however, make the high frequency output suspect as well. 

A second observation concerning the data can be made by noting the 

relative amplitudes as a function of time. There is an apparent decrease in 

vibration level near 46540 seconds Which continues for approximately 20 

seconds indicative of a decrease in turbulence amplitude. However, the last 

5 seconds of data give some indication of significantly larger amplitude 

vibrations than during the preceding minute. Based on information available 

a posteriori, significant control surface activity during this interval may 

have contributed to the increased acceleration, however this was not in~ 

cluded in the analysis. Under the given conditions, the system identified 

was one with only random inputs and accelerometer outputs. 

In order to obtain some information regarding the expected range of 

frequency 

This was 

estimates, 

basically 

some preliminary analysis was performed on the data. 

done in lieu of a priori information on the expected 

flutter frequency locations. Included in Figure 6~17 along with the time 

histories are FFT power spectra estimates for all three channels. Two fre~ 

quency ranges are shown in order to provide better resolution at the low 

frequency range. The power spectra for AS031 and AS032 are quite similar 

and indicate that there are possibly two closely spaced modes at 4.5 and 5.5 

Hz. There is also indication of a mode near 8 Hz, a frequency at which 

there is a mode clearly visible in the power spectrum of AS033. The very 

broad peaks in AS031 and AS032 near 20 and 40 Hz are of unknown origin, and 

are so heavily damped that identification of the parameters of these modes 

is not possible without exogenous inputs. 
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In view 

model (0,2.2) 

of the FFT results discussed above, a two=output, two=mode 

was chosen as the model to be identified. Since AS031 and 

AS032 had such similar spectra, only AS031 was used along with AS033 in the 

estimation. Two modes were chosen somewhat arbitrarily. and in light of the 

possibility of the presence of two closely spaced modes, gives some indica= 

tion of the performance of the algorithm under such conditions 

(mismodeling). The high=pass (bias) filter was required due the the 

presence of low=frequency and DC offsets. Since the modal frequencies were 

expected to be on the order of 5 Hz, the bias filter pole was set to 0.2 Hz. 

Since no exogenous inputs were present, the H=matrix elements had to 

be identified. As discussed earlier, zero initial conditions are not ap= 

propriate in these circumstances (with no exogenous inputs, the state 

estimates would remain zero!); thus the initial H=matrix was set to: 

H(O) [
1000J o 0 1 0 • 

Sigmas of unity in the appropriate units were chosen. 

The initial frequencies were set to 4 Hz and 8 Hz with sigmas of 0.5 

Hz. The initial damping coefficient estimates were set to 10% with sigmas 

of 2%. The initial damping coefficient velocity estimates were set to zero 

with sigmas 0.0001. Units normalization was performed in order to prevent 

potential numerical instabilities. The units of frequency were chosen as 10 

rad/sec and the damping coefficient states were measured in 10% or 0.1 

uni ts. The oscillator velocity states were in 10 units and the correspond= 

ing H=matrix elements were estimated in units of 0.1 g/velocity state unit. 

The dynamic state qts were set to 0.05 on all four states. As dis= 

cussed in Section 3, this was reasonable in light of the auto=normalization 

capability added to prevent frequency estimates differing by factors larger 

than 1.2 or so from creating the need to tune the different modes with qts 

of different orders of magnitude. In the absence of any information con= 

cerning the flight conditions under which the data were collected and 

possible variations therein, moderately large qts were used for the fre= 

quency and damping coefficient velocity states, 0.01 and 0.0005 

respectively. Though the results indicate that further time=varying tuning 

might have been reasonable due to some tstep=like t changes in the flight 

condition, none was performed. Finally, moderately large qts of 0.001 were 
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used on the H~matrix parameters (in the appropriate units) in order to adapt 

to possibly rapidly changing conditions. 

Resul ts 

The results of the F~16 flight data analysis are presented in Figures 

6~18 through 6~21. The accelerometer outputs after bias filtering are shown 

in Figure 6~18 along with the predicted data residuals and their theoretical 

sigmas. The effect of the bilinear nature of the estimation of H~matrix 

elements along with the dynamic states is clearly seen in the slow conver~ 

gence of the sigmas to their steady~state values. The frequency and damping 

coefficient estimates are given in Figure 6~19. As far as the damping coef~ 

ficient estimates are concerned, there is clearly a change in flight 

conditions during the interval 46535 to 46560 seconds. There also appears to 

be some change in conditions at 46520 seconds where the estimate of W2, 

having converged to about 8 Hz, starts drifting down to 7 Hz and the ~l es~ 

timate also steps to a new value and begins drifting off. 

Figure 6~20 shows an s~plane plot of the time histories of the es~ 

timated pole locations. Figure 6~21 gives the estimated H~matrix parameters 

and their estimated sigmas. The slow convergence of the velocity state as~ 

sociated parameters is evident and as discussed earlier is a manifestation 

of the nonlinear nature of the estimation problem coupled with the 

moderately large q's used to allow for parameter adaptation. 
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SECTION 7 

PROGRAM DOCUMENTATION AND COMPUTATIONAL REQUIREMENTS 

The purpose of this section is to provide an overview of the MOPID 

program organization and give some preliminary results on operation counts 

for various estimation problem configurations. The discussions are of a 

general nature; this is not intended to be a programmer's guide. Detailed 

descriptions of the program inputs can be found in Appendix A. The program 

described is MOPID Version 0.9 dated December 26, 1984. 

7.1 MOPID PROGRAM OVERVIEW 

The MOPID computer program is a FORTRAN-77 implementation of an ex­

tended Kalman filter designed primarily for aeroelastic flutter parameter 

identification in a real-time environment. The majority of the code is ANSI 

standard FORTRAN-77, however, in its current state, the inputs to the 

program are through the DEC supplied NAMELIST extension to FORTRAN-77. The 

major design consideration was computational efficiency. While substantial 

efforts were undertaken to minimize the amount of computation, no attempt 

was made to minimize storage requirements. 

7.1.1 Storage Requirements 

The EKF algorithm is recursive in nature, and there is currently no 

requirement to save the past information stored in the state estimates and 

covariances for further processing. Thus, the estimates and their as­

sociated estimated sigmas (square-roots of the diagonal elements of the 

filtered covariance matrix) as well as the data, residuals (predicted and 

filtered if calculated), and their sigmas are stored in arrays for plotting 

only. The calculation of the sigmas (a dot product is required for each 

sigma since the covariance is propagated in square-root form) and subsequent 

storing of the estimates occurs at a user selectible interval. The maximum 

number of time points which can currently be saved is 5000; the program cur­

rently detects plotting array overflow and stops when the arrays are full. 
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Thus, it is necessary that a plot output frequency (cf. IPLFQ) be chosen 

which guarantees that the arrays will not overflow if the entire amount of 

data specified (cf. WINDOW) is to be processed. 

The maximum number of parameter estimates and sigmas which can be 

stored each time is 48, and the maximum number of data values (both system 

inputs and outputs), residuals, and sigmas which can be stored is 34. In 

the simulation mode, simulated modal parameter trajectories can be saved and 

their are a maximum of 12 allowed (4 modes and 3 parameters per mode). 

Finally, up to a maximum of 15 modal parameter correlations can be saved for 

plotting as well. In each of the arrays for plotting, the first two columns 

are absolute time and relative time respectively; thus the plotting array 

storage requirements are: 

No. of single-precision words 5000 x ( 50 + 36 + 14 + 17 ) 585k. 

These requirements can be easily altered by any of several techniques. The 

array limit of 5000 could be simply reduced at the expense of reducing the 

output data rate. To eliminate the storage requirements altogether while 

providing a potentially unlimited output data rate (bounded of course by the 

input data rate), file access in the inner loop could be performed. This 

approach was not used in the current implementation since file access (reads 

and wri tes) are potentially much slower than array access. 

The algorithm storage requirements are modest in comparison to those 

for output plotting. They are governed by the maximum state dimension which 

is currently 50. With the maximum number of system inputs and outputs set 

to 4 and 6 respectively, the amount of storage currently allocated to algo­

rithm related quantities is approximately 14000 single-precision words. 

This requirement could easily be halved, if necessary, with dynamic storage 

allocation programming methods. 

7.1.2 Input Data File Structure 

The only file access in the inner loop of the algorithm occurs when 

reading input data. The data input .to the program are assumed to be stored 

in a binary file (named EKFINP and opened in read-only mode) wri tten wi th 

FORTRAN 'unformatted' writes. All records are exactly the same format; 
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time, data(1),data(2), data(n). See the entries NINPS and NOUTPS in 

Table A-1 in Appendix A for further details. These records are read into 

the algoritlliu sequentially and windowed to determine whether or not to 

process the data (cf. WINDOW). This file can be as large as the operating 

system allows. 

7.1.3 Output File Structure 

Currently, the only files output by MOPID are the plot files. 

Potentially, four (4) files can be written: EKFDAT, EKFPEST, EKFPCOR, and 

EKFSIM. These files are written by the subroutine SAVLOD, and are in 

MATRIX format. Currently, the output is only plotted by the MATRIX x x 
program [16J, however SAVLOD could be modified to format the data for input 

into any available plot program. Note the plot files are limited in size by 

the size of the plot arrays. 

The data are stored in the arrays tcolumnwiset . The first two columns 

in each file are time; the first column being absolute time (i.e. the time 

associated with the input data vector), and the second column being time 

relative to the user specified input TO (cf. TO). The data stored in EKFDAT 

are in the following order: 

[T(I),T(I)-TO,U 1 (1), ••• ,u.·U(I),Zl(I),v 1 (I),0 (I),E 1 (I),0 (I),z2(I), ... J 
N v 1 El 

where u. is the i-th element of the system input vector, z. is the i-th ele-
1 1 

ment of the system output vector whose associated predicted and filtered 

residuals are v. and E. respectively. Elements associated with a particular 
1 1 

system input datum which has been rejected as an outlier (in RESCHK) are all 

currently set to zero so as not to create plot scaling problems in MATRIX • 
x 

A similar structure is used for the file EKFPEST in which the parameter es­

timates, TTl estimates, and their sigmas are stored: 

[T,T-TO,1,;l'O ,1,; ,0 ,Wl'O , .•• ,gll,O , .•. ,h11,oh , ..• ,d11 'Od , ••. , 
1,; 1 V 1 0 Wl g 1 1 1 1 1 1 v 1 

TTI 1 ,OTTT" ••• ,TTI n 'OTTI J. 
• n 

- 111 -



The index I has been dropped for convenience. There are as many sets of 

frequency and damping coefficient parameters as there are modes being 

estimated. The g's are stored columnwise, and the hIs and d's rowwise. 

Constrained elements in any of the system matrices are not saved for plot­

ting in order to reduce the storage required (they are constants). The file 

EKFSIM has a structure similar to the first columns of the EKFPEST file, but 

no sigmas are present: 

[T,T-TO'~l,1; ,w1,1;2,l;v'w2, •.. ]. 
v 1 2 

The file EKFPCOR contains the correlations of the modal parameters for the 

first two modes only. Since the correlation matrix is symmetric, only the 

lower triangular portion is saved. The storing of the elements is done 

columnwise. Thus, assuming two modes were being identified, the correla-

tions of 1;1 with all five other parameters would be stored first, followed 

by the correlations of I; with the remaining four parameters, etc. This 
V1 

file is written only if requested by the user (cf. IPLCOR). 

7.1.4 Program Flow 

The program flow is dictated by the recursive nature of the EKF algo­

rithm, and the input-output access requirements. NAMELIST input (namelist 

name &INPUT) is used to initialize the algorithm (cf. Appendix A). The 

namelist is read in INIT after ZERO is called to initialize various arrays 

and -pointers. INISIM and SUMOUT are routines which printout initialization 

summary information if requested. Once various consistency checks are per­

formed on the algorithm initialization, the inner loop is entered. 

Unless internally generated simulated data are requested, the input 

data file is recursively read until a data time within the user specified 

WINDOW is encountered. At this point, data processing begins. The diagram 

on the following page illustrates the flow in the inner loop. Though the 

details of how the operations are performed are highly problem specific, the 

flow Indicated in the diagram is that of a very general continuous-discrete 

recursive filtering problem. Once the time associated with the input data 

exceeds the maximum specified by WINDOW(2), PLTOUT is called and the program 
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stops. At the current time, the only operator interaction is through the 

input namelist. 

course, is to 

program. 

No interactive capability is present. The final step, of 

plot the results. This is currently done using the MATRIX 
x 

DATLOD's function is to get the data (from GETSIM or GETDAT) and if 

requested pass them through the bias rejection filters (BFILTR). PRDCTR 

calls FLOAD to calculate the appropriate system matrices and partials and 

predicts the state and estimate error covariance (PHOUSE). PRDCTR then 

calls PRES to compute the predicted data residuals and their theoretical 

sigma. RESCHK performs a threshold test on the residuals and deletes the 

datum from the input data vector if the normalized residual exceeds the 

threshold (THRSH). FILTER then performs the filter step by calling FHOUSE. 

CALL INIT 

CALL DATLOD 

DONE? CALL PLTOUT 

CALL PRDCTR 

CALL FILTER 

CALL OUTPUT 

A call to OUTPUT concludes the processing in the inner loop, outputting sum­

mary information to the standard output unit (IOUNIT) and writing data into 

the plot arrays if requested (by various user selectible output frequency 

and option flags described in detail in Appendix A.) 
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7.2 MOPID COMPUTATIONAL REQUIREMENTS 

In an effort to accurately assess the computational requirements of 

the MOPID program's EKF implementation, an input flag (IOPCNT) was used to 

enable counting of floating-point operations in the computation intensive 

routines. The numbers presented below are the numbers output by the program 

under the various problem configurations stated. They are not intended to 

be an exact count, nor are operations such as memory fetches and indexing 

calculations included and for these reasons could very well be rounded up to 

the nearest 100 counts. They are included with the resolution indicated 

solely for comparison with similar results from other installations using 

the same code. 

The majority of the computations performed by the algorithm occur in 

the two routines PHOUSE and FHOUSE which perform the Householder trian­

gularization of the appropriate matrices corresponding to the prediction and 

filtering steps of the algorithm respectively (cf. Section 3.3). Since max­

imum advantage was taken of the structure of the partial matrices and 

vectors, the operations required to calculate covariance matrix products 

with the F- and H-matrices were minimized. In all cases, their total repre­

sented less than 10% of the overall operation counts so these counts are not 

included. 

One floating-point operation (FLOP) consisted of a single-precision 

floating-point multiply and add. The few divisions and square-roots re­

quired were counted as a single FLOP. The major factor in determining the 

number of FLOPS is the estimation problem formulation since that determines 

the number of elements in the state vector. The number of operations in the 

Householder routines is roughly proportional to the cube of the state vector 

dimension! Though there are significant computational savings realized in 

the case where G-matrix elements are being identified and the system inputs 

are zero over extended periods (several data points), for the purposes of 

these discussions, the inputs are assumed to be non-zero in all cases (which 

incidently is a condition for improved parameter identifiability as dis­

cussed in Sections 5 and 6). 
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The state vector being estimated in the EKF algorithm is composed of 

dynamic states, flutter modal parameters, G-matrix elements being iden­

tified, followed by H-matrix and D-matrix elements if any. Thus, the 

notation used below indicates the number of elements in each of these 

groups, in order. For example, the notation (4,6,4,0,1) indicates a state 

vector with 4 dynamic states (i.e. 2 modes), 6 modal parameters (frequencies 

damping coefficients, and damping coefficient velocity states), 4 G-matrix 

elements, no H-matrix elements, and 1 D-matrix element. 

TABLE 7-1: OPERATION COUNTS FOR VARIOUS ESTIMATION PROBLEM CONFIGURATIONS 

Configuration Subroutine 
(x,r;w,g,h,d) 

PHOUSE FHOUSE FLOAD TOTAL 

(2,3,2,0,0) 321 371 255 947 

(2,3,2,0,1) 424 524 255 1203 

(2,3,0,2,0) 414 106 265 785 

(2,3,0,2,1) 539 524 265 1328 

(4,6,4,0,0) 3022 494 530 4046 

(4,6,4,0,1) 3466 2855 530 6851 

(4,6,0,4,0) 2268 2359 510 5137 

(4,6,0,4,1) 2584 2855 51O 5949 

(4,6,4,4,0) 5004 4749 754 10507 

(4,6,4,4,2) 6221 6390 754 13365 

(4,6,8,0,0) 6270 710 774 7754 

"' (4,6,8,0,2) 7735 6390 774 14899 

As expected, the computational load increases dramatically with the number 

of modes being estimated. Assuming a computation speed of 1 ~sec/FLOP 

(approximately the SEL speed), the (4,6,4,0,0) problem can be run at ap­

proximately a 200 Hz throughput rate. This corresponds to the 1-input, 1-

output, 2-mode case with no direct feedthrough term being estimated. 
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Interestingly, the (4~6,4,0,1) problem requires approximately 70% more com­

putation than the (4,6,4,0,0) problem. Furthermore, the trend is the same 

for all configuration pairs (with and without D-matrix elements being 

identified). There is a significant increase in the number of FLOPS per­

formed (mostly in FHOUSE) with direct feedthrough terms being identified. 

The reason for this increase in computational burden with the addition 

of D-matrix elements has to do with the structure of the matrices on which 

the Householder triangularizations are performed. The code was originally 

optimized in the sense of requiring minimal computational effort for various 

problem configurations, none of which included direct feedthrough 

identification; so the D-matrix elements were placed at the 'end' of the 

state vector. Subsequent analysis of the DAST data (cf. Section 6) indi­

cated the need for D-matrix element identification. The computational load 

can be decreased significantly by optimizing the code for these configura­

tions, however a significant amount of programming effort is required. 
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SECTION 8 

SUMMARY OF RESULTS AND CONCLUSIONS 

This analysis and development effort described in this report has 

shown that it is possible to obtain reliable estimates of flutter parameters 

in a real-time environment using an approximate model of the system dynamics 

and an EKF algorithm for dynamic state estimation and model parameter 

i dentif i cat i on. Using linear oscillator models to approximate aeroelastic 

dynamics over short time intervals, measurements of the system inputs and 

outputs were used in an EKF algorithm to obtain significant estimates of fu­

ture system stability in both simulated and actual flight test data. 

ProceSSing simulated data for test cases with and without exogenous 

inputs was successfully performed. The results indicate that: 

1) With exogenous inputs, the algorithm is capable of tracking closely 
spaced, rapidly time-varying modes, providing low-variance es­
timates of the frequencies and damping coefficients of the modes as 
functions of time. 

2) Without exogenous inputs, the algorithm can still provide low­
variance estimates of slowly varying modes in the presence of light 
turbulence. Increasing the turbulence to measurement noise power 
ratio will only improve the algorithm's capability to track faster 
varying modes with smaller variance. 

3) Without exogenous inputs, damping coefficient relative error is 
significantly larger than the associated frequency estimate error 
due primarily to the lack of relative phase information. Exogenous 
inputs improve damping coefficient estimates and their variances 
dramatically! 

From these simulated data results, some preliminary conclusions can be 

drawn. More extensive simulated data analysis is required in order to fur-

ther quantify the indicated improvement in algorithm performance. 

1) The EKF algorithm's ability to track closely spaced, rapidly time­
varying modes is improved in the presence of continuous wide-band 
input excitation of sufficient amplitude. 

2) The ability to accurately predict future system stability is also 
improved substantially when continuous wide-band excitation is 
present as well. Actively probing the system during the critical 
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time intervals 
concerning the 
parameters! 

provides the algorithm with valuable information 
rates of change of the system's stability related 

3) In the presence of small disturbances (gusts), rapidly time­
varying modes can be accurately tracked only if exogenous inputs 
are also present. Slowly varying modes can be estimated given suf­
ficient time, the amount of time required being a function of 
disturbance power and the underlying modal damping coefficients. 
Heavily damped modes are difficult to estimate with small error 
variances. 

Processing of actual flight test data was also successfully performed. 

Results from the processing of data from the third ARW-1 flight test in the 

DAST program indicate that: 

1) With proper tuning, the EKF algorithm is capable of providing low­
variance estimates of frequencies and damping coefficients of 
multiple closely spaced time-varying modes. 

2) In the presence of multiple modes with Significantly different 
power levels, the high-power modes are estimated with small es­
timate error variances. Of the smaller power modes, if fewer modes 
are being estimated than are actually present, the modes which the 
algorithm 'locks-on to' are functions of the initial conditions and 
the tuning parameters. 

3) Even though limited duration (and power) exogenous excitation was 
applied during the critical period of the flight test (just prior 
to the flutter incident), accurate estimates of time-to-instability 
and a 5-second ahead prediction of the damping coefficient for the 
mode which eventually became unstable were obtained. 

From these DAST flight test results, in conjunction with the simulated DAST 

test case results, the following conclusions can be drawn. 

1) When the data sampling rate (information rate) is sufficient, a 
simplified linear modal model of the complex aeroelastic dynamics 
of aircraft flutter can be used in an EKF algorithm to provide ac­
curate estimates of system stability parameters and future 
predictions of system stability as well! 

2) The results stated in 1) can be achieved in the presence of sig­
nificant mismodeling. Many fewer modes can be estimated than are 
actually present as long as the number of high power modes does not 
exceed the number of modes being estimated. 

exogenous input results in significant im­
algorithm's performance in terms of smaller 

variances and improved parameter tracking 

3) Continuous wide-band 
provements in the 
estimate error 
capabili ty . 
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From the F-16 flight test results, in conjunction with the simulated F-16 

test case results, the following conclusions can be drawn. 

1) In the presence of low-power disturbances with no exogenous inputs, 
parameter convergence time increases significantly resulting in the 
capability to track only slowly-varying moderately stable modes. 

2) High power disturbances or nearly unstable modes lead to increased 
measurement (output) information to noise ratios resulting in sig­
nificant improvements in algorithm performance. 

3) With no exogenous inputs, the variances of damping coefficient es­
timates are strong functions of the associated underlying values of 
the coefficients themselves. Heavily damped modes result in es­
timated damping coefficients with large variances. 

4) Tuning of the algorithm in cases with no exogenous input becomes a 
more important factor in the final estimates and variances. This 
is due to the fact that without known persistent excitation, the a 
priori information included via q-tuning is a larger percentage of 
the overall information available to the algorithm. 

Finally, preliminary algorithm computation counts indicate that real­

time processing with a 2-input, 1-output, 2-mode model without direct 

feedthrough is currently possible at a throughput rate near 200 Hz on a 

processor whose FLOP time is 1~sec. Since asynchronous filter operation is 

possible, this represents an average proceSSing rate. The actual throughput 

rate can be significantly higher during periods of quiescent input (zero in­

put values), and lower during periods of intensive computation. The only 

caution is that the minimum processing rate be above approximately five 

times the Nyquist rate of the signals being processed, or else a suffi­

ciently large buffer may be required to store data for short periods. 

Program modifications can be performed to make this rate achievable with 

direct feedthrough as well. 
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SECTION 9 

RECOMMENDATIONS 

During the ~ourse of this effort, EKF techniques were successfully ap­

plied in the development of an algorithm and subsequent program (MOPID) for 

real-time modal (flutter) parameter identification (estimation). There are 

several directions in which the current effort can be extended to increase 

the algorithm's capability to provide better parameter estimates as well as 

more accurate predictions of future system stability. Practically, there is 

also a significant level of effort remaining in the interfacing of this al­

gorithm to an on-line data acquisition and real-time signal processing 

system. Future efforts in this direction include: 

1) development of user-friendly real-time operator interface with cur­
rent algorithm. This includes efficient input and algorithm set-up 
routines, as well as output interfaces and drivers to permit 
flexible selection of variables to be plotted and/or printed in 
real-time. 

2) development of interrupt procedures and protocol for allowing 
operator intervention in cases where problem reinitialization is 
deemed necessary. This may involve simply altering parameter 
values on-line or performing a restructuring of the model being 
identified. 

These tasks constitute basic requirements for installation of the MOPID 

program in a real-time system. Accomplishment of the following tasks will 

greatly improve the capabilities of the algorithm in several areas. 

1) Tuning of the algorithm is a task facing the operator in a real­
time environment. Though constant q's can be used, the results 
contained in this report indicate there is a significant improve­
ment in algorithm performance when the tuning is a function of 
changes in the time-derivatives of the flight conditions. The 
process of tuning the algorithm could be automated to some extent 
by incorporating measurements of the rates of changes of the flight 
conditions such as dynamic pressure rate, altitude rate, axial ac­
celeration, as well as potential changes in system configuration 
such as a stores or wing-tip mass release. This would remove some 
of the burden of tuning from the operator and would yield improved 
parameter convergence rates and estimates in rapidly changing 
environments. 
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2) Though excellent initial conditions are generally available for in­
itialization of the modal parameters, this process could be 
automated to some extent using efficient batch methods for estimat­
ing modal parameters such as signal-subspace eigen-decomposition 
methods. These methods could also be used to aid in determination 
of an appropriate number of modes to include in the estimation. 

3) Though the objective of the current effort was to provide estimates 
of current system parameters based on past information, the algo­
rithm could be extended in a straightforward manner to provide 
optimal 'smoothed' estimates of the parameters over a desired in­
terval by incorporating one of several fixed-interval smoothing 
algorithms. This would be appropriate in an off-line, batch 
processing environment since the computational load is sig­
nificantly increased over the forward filter algorithm 
requirements. 

4) As discussed in Section 7, the code was not optimized for direct 
feedthrough identification. Subsequent flight data analysis indi­
cated the need for D-matrix element identification. Optimizing the 
code for D-matrix element identification would result in sig­
nificant computational savings in these cases. 
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APPENDIX A 

MOPID PROGRAM USER'S GUIDE 

This appendix gives a description of the inputs to the MOPID program. 

Currently, NAMELIST (a DEC VAX/VMS extension to ANSI standard FORTRAN~77) 

input is used to initialize the filter parameters. The namelist is assumed 

to be located in a file whose name is EKFNML. On the VAX/VMS operating sys~ 

tem, a logical ASSIGNment can be used to associate this logical file name 

with the actual file name, ego 

$ASSIGN real file name EKFNML 

Directory extensions are required in the real_file_name specification if the 

file is not in the current working (or default) directory. The namelist 

name is &INPUT. The "&" must be in column two and the namelist terminates 

with &END, the It&" in column two as before. 

Since there are essentially two categories of input variables, one for 

the estimation problem set~up and one for the simulation set~up, they are 

described separately for ease of use of this appendix. The descriptions are 

intended to be brief, leaving discussions of the subtleties to the body of 

the report. 

The Table A~1 describes the use of the namelist inputs in specifying 

the estimation problem set~up. References to 'system inputs' and 'system 

outputs' (or simply 'inputs' and 'outputs') are used to describe those 

'channels' in the 'input sampled data vector' Which are the inputs to and 

outputs of the system being identified. These system inputs and outputs are 

outputs of the data collection system which comprise the 'input data vector' 

input to the MOPID program. 

Table A~2 gives a description of the variables appropriate for the 

generation of simulated data using the capabilities internal to the MOPID 

program. In general, when performing simulations, entries from both tables 

will be required. The estimation problem is largely separate from the 

simulation set~up with a few exceptions, so both categories of inputs are 

required. This may seem somewhat redundant, but the intent is to facilitate 

studies of mismodeling where n modes are simulated and only m < n are used 

in the estimation model. 
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TABLE A-1: ESTIMATION PROBLEM RELATED MOPID NAMELIST INPUTS 

VARIABLE 
NAME 

BFPOLE 

DNAMES( 10) 

DSIG(6) 

DTMIN 

DO(4,6) 

GO(4,8) 

G1UN 

G2UN 

HEADER 

DEFAULT 
VALUE 

1.0 

10*' 

6*0.0 

0.001 

24*0 

32*0 

1.0 

1.0 

Blank 

DES CRIPTI ON 

s-plane location of the bias rejection filter 
pole in Hz. 

Array of character*6 variables containing the 
names of the input data channels, ego ' ARFSS' 

Measurement noise sigmas (system outputs only). 

Minimum allowable time between measurements in 
seconds. 

Array containing initial values for the D-matrix 
elements. Used only if IDFT is non-zero. 
DO(I,J) is the (J,I)th element of the initial 
D-matrix estimate used to calculate the direct 
feedthrough component of the controls to the 
system outputs. The index reversal is 
intentionally designed so that specifying DO 
in the input namelist is easily accomplished 
by entering it as it would appear written 
in standard matrix form. The switch results 
from the FORTRAN standard column-wise matrix 
element storage versus the row-wise entry 
resulting from reading matrices entered in 
standard matrix form. 

Array containing initial values for the G-matrix 
elements. Used only if IUTYPE(I) > 0 for some 
I < number of inputs used! See DO for indexing 
convention discussion. 

Internal units conversion factor for G-matrix 
element corresponding to 'position' oscillator 
states. Applies to all modes estimated. 
A value of G1UN = 100, for example, will 
result in internal position state associated 
G-matrix element estimates which are a factor 
of 100 smaller than the default of 1.0 would 
yield. Used for state normalization to prevent 
numerical instabilities. 

Internal units conversion factor for G-matrix 
element corresRonding to 'velocity' oscillator 
states. See G1UN entry for an example of its 
use. 

Character*40 variable containing information 
about run conditions normally. Printed out 
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TABLE A-1: (CONTINUED) 

'--~ARIABLE DEFAULT DESCRIPTION -~ 
NAME VALUE I 

HO(8,6) 48*0 

H1UN 1.0 

H2UN 1 .0 

IDEBUG o 

IDFT ° 

IDUNIT 4 

IDUSW 

IGUMDL 

each time PFQ directs summary information to be 
output. 

Array containing initial values for the H-matrix 
elements. Used only if IYTYPE(I) > ° for some 
I < number of outputs used! See DO for indexing 
convention discussion. 

Internal units conversion factor for the H­
matrix element corresponding to the 'position' 
oscillator state. See G1UN for an example of 
its use. 

Internal units conversion factor for the H­
matrix element corresponding to the 'velocity' 
oscillator state. See G1UN for an example of 
its use. 

Debug printout flag. For values from 1 to 4, 
increasing amounts of debug output are sent 
to the standard output unit (usually the 
terminal). 

Flag to turn on estimation of a direct 
feedthrough (D-matrix) term in the measurement 
equations. IDFT = 1 enables D-matrix element 
identification. 

Input data unit number. If IDUNIT = 0, then 
simulation mode is assumed. A non-zero IDUNIT 
will cause a FORTRAN OPEN statement to be 
executed requiring EKFINP to be a valid 
file name (eg. under VAX/VMS, the following 
command will have to have been issued: 
"$ASSIGN input data file EKFINP" ). IDUNIT can 
assume any integer value but should not conflict 
with standard input or output unit numbers 
(eg. 5 or 6 in standard F77 implementations) 

Index of the system input whose value is to be 
calculated using USIGNO, TUSWCH, and the first 
system input. Basically this is used in the 
case where two elements of IUCHAN are the same 
(i.e. point to the same sampled data input 
channel), presumably an exogenous excitation, 
except for a possible time-varying sign change. 

Flag controlling G -matrix element definition. u Default is frequency normalized, i.e. for each 
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TABLE A-1: (CONTINUED) 

~------------~--------------

VARIABLE 
NAME 

IGWMDL 

IOPCNT 

IPFQFP 

IPLCOR 

IPLFQ 

IPRCOR 

IPRCOV 

DEFAULT 
VALUE 

o 

10 

o 

o 

o 

DESCRIPTION 

mode and each input, the input distribution 
vector has the form [ Wgl , W2g2 J'. Setting 
IGUMDL = 0 estimates [ gl , g2 J' instead. 

Flag controlling G -matrix element definition. 
Default is to scal~ input q's by the frequency 
estimates as discussed in IGUMDL description. 

FLOP counter flag. Default is OFF. IOPCNT = 1 
enables FLOP counting in computation intensive 
routines. A FLOP is considered as a single­
precision floating pOint multiply and add. The 
op-count adds themselves are not counted and 
be forewarned that copious amounts of output 
will be generated! 

Modal parameter estimate print-out frequency. 
Default is to print modal parameter summary 
information every tenth time a point is saved 
for plotting in the plot array (See IPLFQ). 

Modal parameter correlation print-out flag. 
Default is OFF. IPLCOR = 1 causes selected 
elements of the modal parameter correlation 
matrix to be saved every IPLFQth time point 
for plotting in a file given the default 
name RTFACOR.DAT (the" .DAT" extension is 
supplied by the VAX/VMS operating system). 

Output plot frequency. Every IPLFQth data 
vector and estimated parameter vector (and 
sigmas) are stored in arrays for plotting. 
The inputs, outputs, and predi cted data 
residuals and sigmas are written to file 
RTFADAT.DAT. The parameter estimates and sigmas 
are written to file RTFAPEST.DAT, and the 
selected correlation matrix elements are 
written to file RTFACOR.DAT. Note that 
the" .DAT" extension is supplied by the 
VAX/VMS operating system. 

State correlation matrix printout flag. Default 
is OFF. IPRCOR • 1 causes predicted and filtered 
correlation matrices to be printed out each 
time print-out is requested via PFQ. 

State covariance matrix printout flag. Default 
is OFF. IPRCOV • 1 causes predicted and filtered 
covariance matrices to be printed out each i 
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TABLE A-1: (CONTINUED) 

r.:~IA~LETDEF~~-----------~ESCRIPTION 

~~~~ I I time print-out is requested via PFQ. 

IPREST I 1 I Estimated state vector print-out flag. Default 

IPRQ o 

IPRSIM 

IPRSUM 

IPUNIT 10 

IQAPPX o 

IUBF o 

IYBF o 

IUCHAN(4) 4*0 

is ON. IPREST = 0 suppresses print-out of the 
predicted and filtered state estimates each 
time print-out is requested via PFQ. 

Q-matrix print-out flag. Default is OFF. 
IPRQ = 1 causes the Q-matrix to be printed out 
each time print-out is requested via PFQ. 

Simulated data parameter summary information 
print-out flag. Default is ON. IPRSIM = 0 
suppresses print-out of the simulated parameter 
summary information. If requested, information 
is printed out at initialization time only. 

Estimation algorithm parameter specification 
summary print-out flag. Default is ON. 
IPRSUM = 0 suppresses algorithm initialization 
summary information print-out. If requested, 
information is printed out at initialization 
time only. 

Plot output unit number. Unless the default 
conflicts with a system definition, there is 
no need to alter this value. 

Q-matrix approximate calculation flag. Default 
is to use 'exact' expression for Q. lQAPPX = 1 
saves a bit of computation by approximating 
Q. The savings are not great however! 

System input bias rejection filter flag. Default 
is OFF. IUBF = 1 causes all system inputs to be 
passed through a bias rejection filter prior 
to inclusion in the identification algorithm. 

System output bias rejection filter flag. See 
IUBF description for further details. 

System input channel pointer array. Input to 
the algorithm is assumed to be in the form of 
a vector whose first element is the time of the 
measurement, and whose remaining elements are 
the measurements themselves. The first element 
(time) is given a zero index. Both system inputs 
and outputs are included in this vector and can 
occur in any order. IUCHAN(I) K J (I,J integer) 

f 
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TABLE A-1: (CONTINUED) 

VARIABLE 
NAME 

IUMDL 

IUTYPE(4) 

IYCHAN(6) 

IYTYPE(6) 

NINPS 

NIDDES 

DEFAULT 
VALUE 

o 

4*0 

6*0 

6*0 

o 

DESCRIPTION 

specifies that the Ith element of the system 
input vector is -the Jth element in the sampled 
data vector. The maximum size of the sampled 
data vector is 10 which is therefore the maximum 
J-value allowed. Non-zero values for J must 
occur sequentially starting from index I = 1. 
The number of system inputs used is the number 
of consecutive non-zero elements of IUCHAN 
starting from index 1 (in the real data case). 

System input approximation order. Default is 
zero-order hold approximation. IUMDL = 1 
causes trapezoidal input integration to be 
performed. Though the approximation is clearly 
superior to ZOH, more computation is required 
each iteration due to partial calculations 
primarily, so there are data rate versus 
model accuracy trade-offs here. 

Input type specification array. IUTYPE(I) = 
results in G-matrix elements being estimated 
for system input number I. A value of -1 
results in the appropriate G-matrix elements 
being constrained to their initial values 
specified in GO. A value of 1 or -1 is required 
for each system input specified in IUCHAN. 

System output channel pointer array. See IUCHAN 
for a description of the use of this input. 

Output type specification array. IYTYPE(I) = 
results in H-matrix elements being estimated 
for system output number I. A value of -1 
results in the appropriate H-matrix elements 
being constrained to their initial values 
specified in HO. A value of 1 or -1 is required 
for each system output specified in IYCHAN. 

For real data, NINPS is the total number of 
system inputs in the sampled data vector which 
is input to the program. NINPS + NOUTPS + 1 
must equal the number of elements in each 
sampled data vectpr (which in the off-line 
version of the program are stored in a data 
file written with unformatted FORTRAN writes!). 

Number of modes which are to be included in the 
system model being identified. The current 
maximum is four (4). 
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TABLE A-1: (CONTINUED) 

VARIABLE 
NAME 

NOUTPS 

OMEGAO (4) 

PFQ(2,10) 

QD(4,6) 

DEFAULT 
VALUE 

o 

4*0 

1E6,1,18*0 

24*0 

QDIMP(4,6)1 24*0 

QG(8,4) \ 32*0 

QGIMP(8,4)\ 32*0 

DESCRIPTION 

For real data, NOUTPS is the total number of 
system outputs in the sampled data vector. See 
NINPS for further details. 

Initial frequency estimates. 

Print-out frequency array. PFQ(1,J) = T(J), 
PFQ(2,J) = DTJ specifies that from relative 

I 

time T(J-1) to T(J) that estimate and covariance 
summary information is to be printed-out every 
DTJth second. Modulus arithmetic is used so 
the actual output times depend on the actual 
relative time values. Relative time is the 
time specified in the current sampled data 
vector minus the time specified in TO (which 
is usually the first sample time!). For example, 
for TO = WINDOW(1), PFQ=1,.1,10,1,1E6,100, 
requests print-out each 1/10 of a second (on the 
even 1/10th of a second relative time) until 
relative time 1 second, everyone second 
thereafter until 10 seconds, and every 100 
seconds from then on. This input is most 
useful in 'post-flight' or simulated data 
analysis where increased print-out frequency 
is desired during critical periods of the 
system acti vi ty! 

D-matrix element associated q's. The QD(I,J) is 
the square-root of the process noise variance 
density to be associated with the (J,I)th 
element of the D-matrix. The index reversal is 
the result of the column-wise storage convention 
employed by FORTRAN and the natural row-wise 
input when specifying arrays in the input 
namelist. This is done so that i~put namelists 
have matrices specified as they would be 
written down on paper for ease of input 
debugging! 

Impulsive q's associated with D-matrix elements. 
These q's are RSS'ed with associated QD 
specified q's at the times TUSWCH(I). See QD 
for further details on the indexing. 

G-matrix element associated q's. See QD for 
further details. 

Impulsive q's associated with G-matrix elements. 
See QDIMP for further details. 

- 131 -



TABLE A-1: (CONTINUED) 

r--
VARIABLE I DEFAULT 

NAME VALUE 

~. 
QH(8,6) 48*0 

QHIMP( 8, 6) 48*0 

QOMEGA (4) 4*0 

QWIMP (4) 4*0 

QX(8) 8*0 

QXIMP(8) 8*0 

QZETA(4) 4*0 

QZETAV(4) 4*0 

QZIMP (4) 4*0 

QZVIMP (4) 4*0 

SIGDO( 4.6) I 24*0 

SIGGO(4,8) 32*0 

SI GHO( 8,6) 48*0 

SIGOMO(4) 4*0 

SIGXO(8) 8*0 

SIGZO(4) 4*0 

SIGZVO(4) 4*0 

THRSH 10.0 

TSS 0.0 

DESCRIPTION 

H-matrix element associated q's. See QD for 
further details. 

Impulsive q's associated with H-matrix elements. 
See QDIMP for further details. 

Modal frequency parameter associated q's. 

Impulsive q's associated with frequency states. 

Dynamic state vector associated q's. 

Impulsive q's associated with dynamic states. 

Damping coefficient parameter q's. 

Damping coefficient velocity parameter q's. 

Impulsive q's associated with damping 
coefficient parameters. 

Impulsive q's associated with damping 
coefficient velocity parameters. 

Initial D-matrix element sigmas. See QD for 
further details on indexing. 

Initial G-matrix element sigmas. See QD for 
further details on indexing. 

Initial H-matrix element sigmas. See QD for 
further details on indexing. 

Ini tial frequency parameter sigmas. 

Initial dynamic state sigmas. 

Initial damping coefficient sigmas. 

Initial damping coefficient velocity sigmas. 

Data outlier rejection threshold. Predicted 
data residuals exceeding THRSH*theoretical sigma 
result in the measurement being disregarded. 

Steady-state time interval in seconds. Starting 
from WINDOW(1), inputs and outputs are high­
pass filtered (bias rejection) for TSS seconds 
before estimation proceeds. The intent is to 
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TABLE A-1: (CONTINUED) 

VARIABLE 
NAME 

DEFAULT 
VALUE 

TUSWCH(50) I 1E6,49*0 

TO I WINDOW( 1 ) 

UMIN 5E-3 

USIGNO 

WINDOW(2) -1D10,1D10 

WUN 1.0 

XO(8) 8*0 

X1UN 1.0 

X2UN 1.0 

WMAX O.5/DTMIN 

WMIN I BFPOLE 

ZETAO(4) 4*0 

--, 
DESCRIPTION 

allow the filter outputs to reach steady state 
in circumstances where the biases are signi­
ficant and the time constants are small. If 
IYBF and IUBF are both zero, this is a real 
waste of time! 

Array of times at which input symmetry switching 
is performed. Used basically for generating a 
second input excitation signal from a given 
excitation signal assuming that the sign of the 
excitation changed at time TUSWCH(I) from plus 
to minus or vice-versa. This is required since 
in some cases (eg. DAST data analysis) only one 
excitation signal is monitored, and is applied 
two system inputs differently at different 
times. The times are specified in absolute, 
not TO relative time! See USIGNO and IDUSW. 

Relative time reference for printout frequency 
calculation. 

Threshold on absolute value of inputs below 
which they are set to 0.0 to save computation. 

Initial sign to be applied to the input 
excitation signal when computing the value 
of the IDUSWth input. 

Algorithm start and stop times. Only data 
whose associated time falls within WINDOW 
will be processed. Used primarily for off­
line analysis of real and simulated data. 

Frequency units conversion factor. See G1UN 
for further details. 

Ini tial dynamic state vector estimates. 

Initial position dynamic state units 
conversion factor. See G1UN. 

Initial velocity dynamic state units 
conversion factor. See G1UN. 

Upper bound on estimated frequencies. 

Lower bound on estimated frequencies. 

Initial damping coefficient estimates. 
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TABLE A-1: (CONTINUED) 

VARIABLE DEFAULT DES CRIPTI ON 
NAME VALUE 

ZETAVO(4) 4*0 Initial damping coefficient velocity estimates. 

ZMAX 0.9999 Upper bound on damping coefficient estimate. 

ZMIN -0.9999 Lower bound on damping coefficient estimate. 

ZUN 1.0 Damping coefficient and damping coefficient 
velocity parameter units conversion factor. 
See G1UN. 

- - -
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The 

plication 

preceding 

to the 

table discussed the namelist variable inputs with ap­

estimation problem formulation. The following table 

describes the namelist input variables associated with the setting-up of 

simulated data cases. Some of the namelist variables appear in both tables. 

This is due to the fact that the interpretation of the namelist variable 

depends on the mode, simulated or real data. 

Simulated data refers to data generated by the simulated data gener­

ation capability of the MOPID program. Simulated data from other sources 

can certainly be accessed just as actual flight test (or real) data are ac­

cessed (through input_data_file input), but are treated as real data as far 

as the algorithm is concerned. The advantage of internal simulated data 

g~neration is that the 'true' parameter trajectories are saved for parameter 

estimate error calculations! These are potentially valuable for Monte Carlo 

analysis should it be desired. 
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TABLE A-2: SIMULATED DATA RELATED MOPID NAMELIST INPUTS 

VARIABLE 
NAME 

DEFAULT 
VALUE 

DESCRIPTION 

f-- -t------

DSIM( 4 ,6) 24*0 

DTSIM I 0.0 

DW I 30.0 

GUSIM(4,8)I 32*0 

GWSIM(2,8)I 16*0 

HSIM(8,6) I 48*0 

IDUNIT I 4 

INTYPE(10)1 10*1 

Simulated D-matrix initialization. The (I,J)th 
element of DSIM is the (J,I)th element of the 
D-matrix used to calculate the direct 
feedthrough component of the controls to the 
system outputs. The index reversal is 
intentionally designed so that specifying DSIM 
in the input namelist is easily accomplished 
by entering it as it would appear written 
in standard matrix form. The switch results 
from the FORTRAN standard column-wise matrix 
element storage versus the row-wise entry 
resulting from reading matrices entered in 
standard matrix form. 

Simulated data integration step size. A value 
greater than or equal to 1D-4 must be entered 
when simulating data. 

Swept sine-wave input delta frequency value 
in Hz. See INTYPE, WSTART, SWEEPDT, SWPAMP for 
further details. 

G -matrix values used in simulating data. 
THeir interpretation depends on ISGUML. See 
DSIM for an indexing convention discussion. 

G -matrix values used in simulating data. This 
i~ the process noise distribution matrix and the 
interpretation of the elements depends on 
ISGWML. See DSIM for an indexing convention 
discussion. 

H-matrix values used in simulating data. See 
DSIM for an indexing convention discussion. 

Input data unit number. Setting IDUNIT 0 
turns on the simulated data generation 
capability! 

Input type specification flag. INTYPE(I) = 1 
specifies that the Ith input interval is to 
contain an input whose function form is one 
cycle of a sine wave whose period is the average 
of the simulated modal frequencies at the time 
of the onset of the 'pulse'. INTYPE(I) - 2 
specifies the tapered swept sine-wave or chirp 
input waveform. See PLSINT, PLSAMP, TPULS1, 
WSTART, DW, SWEEPDT, SWPAMP. 
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TABLE A-2: (CONTINUED) 

VARIABLE 
NAME 

IPRSIM 

IS GUML 

IS GWML 

ISUMDL 

IUCHAN( 4) 

IWRTDT 

IYCHAN(6) 

DEFAULT 
VALUE 

4*0 

o 

6*0 

DES CRIPTI ON 

Simulated data parameter summary information 
print-out flag. Default is ON. IPRSIM = 0 
suppresses print-out of the simulated parameter 
summary information. If requested, information 
is printed out at initialization time only. 

Flag to determine interpretation of G -matrix 
elements in generating simulated data~ 
Default is frequency normalized, i.e. for each 
mode and each input, the input distribution 
vector has the form [ wg 1 , w2gz J'. Setting 
ISGUML = 0 simulates [ gl , g2 J' instead. 

Flag to determine interpretation of G -matrix 
elements in generating simulated data~ 
Default is frequency normalized, i.e. for each 
mode and each input, the input distribution 
vector has the form [ wg 1 , W2g2 J'. Setting 
ISGWML = 0 simulates [ gl , g2 J' instead. 

Input interpolation order flag. Default is to 
perform trapezoidal integration of 'continuous' 
simulated inputs (first-order hold). ISUMDL = 0 
specifies zero-order hold integration. 

System input channel specification array. For 
simulated data, these elements must take 
on values I, 0 <= I <= NINPS, since the inputs 
are arbitrarily given a channel number their 
cardinal number in the input ordering. 

Simulated data file control flag. The default 
is no file access whatsoever. IWRTDT > 0 
specifies that the un-noised outputs, inputs, 
and an entire simulated data summary are to be 
written out to file RTFASIM.DAT opened as unit 
number IWRTDT. IWRTDT < 0 specifies that 
instead of actually simulating data on-line, 
unit number -IWRTDT is to be opened (file name 
RTFASIM.DAT) and read for appropriate 
specifications and data. It is assumed that 
the file was written on a previous pass with 
IWRTDT > O. 

System output channel specification array. See 
IUCHAN for a discussion of valid entries. 
Note IUCHAN and IYCHAN can specify fewer inputs 
and/or outputs than were actually used in 
simulating the data to investigate mismodeling. 
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TABLE A-2: (CONTINUED) 

VARIABLE DEFAULT 
NAME VALUE 

NINPS I 0 

NMSIM I 0 

NOUTPS I 0 

PLSAMP I 1.7 

PLSINT(10) I 10*2.0 

QW(2) I 2*0 

SDSIG( 6) I 6*0 

SIMTSS I 0.0 

SWEEPDT I 1.0 

SWPAMP I 1.0 

DESCRIPTION 

Number of inputs to simulate. Must equal 
number written to simulated data file if 
such a file is being read. 

Number of modes to be used in simulation. A 
positive value less than 5 must be entered 
when requesting simulated data generation. 

Number of outputs to simulate. Meaning is 
distinctly different in real data case. 

Single cycle sine-wave ('pulse') amplitude. 

Time interval containing input type INTYPE(I). 
Time is in seconds and is the length of the 
interval. For example, PLSINT(3) = 5 specifies 
that input type INTYrE(3) will occur during the 
third input interval and the interval will be 
5 seconds in duration. See INTYrE, TPULS1, and 
SWEEPDT for further timing information. 

Process noise sigmas for disturbance simulation. 
Non-zero values are sigmas of WGN to be passed 
through a low-pass filter (if WPOLE > 0.0) and 
used as disturbance inputs to the simulation. 

Simulated data measurement noise sigma. WGN 
of sigma SDSIG(I) is added to output I after 
writing output I to the simulated data file 
if requested (see IWRTDT). 

Time interval in seconds during which the 
simulation integration is carried out, but 
no inputs or outputs are generated for 
estimation purpose. The idea is that during 
this time period the simulation is reaching 
a statistical steady-state. Note the relevant 
time constants in the problem are the bias 
filter pole and the largest l/~w product of the 
modes being simulated. 

Duration of the frequency sweep in seconds. 
Logarithmic frequency sweep starts at WSTART 
and in SWEEPDT second increases to WSTART + DW 
Hz. SWEEPDT should be < PLSINT(I) if 
INTYPE(I) = 2 ! 

Amplitude of the swept sine-wave (chirp) input 
waveform. 
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TABLE A-2: (CONTINUED) 

VARIABLE 
NAME 

TPULS1 

TO 

WINDOW(2) 

WPOLE 

WSIM( 4) 

WSTART 

WVSIM(4) 

ZAS IM( 4) 

ZSIM(4) 

ZVSIM(4) 

DEFAULT 
VALUE 

0.0 

DESCRIPTION 

Time relative to TO in seconds of the start 
of the first PLSINT interval for input 
function generation. 

WINDOW(1) Time reference for output determination as 
well as simulated modal parameter calculation. 
See WSIM and ZSIM. 

-1D10,lD10 I Start and stop time for simulated data 
generation. WINDOW=0,10 is a typical entry 
and specifies the simulation and estimation 
interval is to be 0 to 10 seconds. See DTMIN 
(in prior table) and DTSIM for further timing 
information. 

0.0 s-plane pole of the low-pass process noise 
'gust' filter for simulated data generation. 
The value is in Hz and 0.0 specifies no 
low-pass filtering is to be performed. Both 
process noise inputs, if specified, are filtered 
identically. 

4*0 Initial values of the frequencies of the NMSIM 
modes to be simulated. See WVSIM. 

10.0 Initial value of the frequency in Hz of the 
simulated chirp or swept sine-wave input. 

4*0 Values for the time derivative of the 
frequencies to be used in the simulations, cf. 
wet) = WSIM + (t-TO) * WVSIM for each mode. 

4*0 Damping coefficient acceleration specifications 
for simulated data generation. See ZSIM. 

4*0 Initial values of the damping coefficients for 
the modes to be simulated. The coefficients can 
be time-varying and are given by: 

4*0 

Z(t) = ZSIM + ZVSIM*(t-TO) + ZASIM*(t-TO)**2 

Damping coefficient velocity specifications 
for simulated data generation. See ZSIM. 
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