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SUMMARY

Using high-frequency approximations, the secondary pattern of a reflector
antenna can be calculated by numerically evaluating a radiation integral
I(u,v). 1In recent years, tremendous effort has been expended to reducing
I(u,v) to Fourier integrals. These reduction schemes are invariably reflector
geometry dependent. Hence, different analyses/computer software development
must be carried out for different reflector shapes/boundaries. The purpose of
this note is to point out, that, as the computer power improves, these reduc-
tion schemes are no longer necessary. Comparable accuracy and computation
time can be achieved by evaluating I(u,v) by a brute-force FFT described 1in
this note. Furthermore, there is virtually no restriction on the reflector
geometry by using the brute-force FFT.

RADIATION INTEGRAL

In calculating the radiation pattern of a reflector antenna, the central
step is to evaluate the following radiation integral:

1(u,v) = Jf a(x,y) IK(UXHVYHZ) gy gy (1)
;

where,

(9,4) observation direction

k = 2%/\ = wave number
u = sin e cos ¢
v =  sin 0 sin ¢

W o= cose=V1 - (u2 + v2)
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z f(x,y) (equation describing the reflector surface)

z projection of the reflector on the xy plane (fig. 1(b)).

We note that equation (1) 1s not a two-dimensional Fourier integral because of
the presence of the factor exp(jkwz), which reads explicitly

exp(3k V1 = (1% + v®) f(x,y)) (2)

In the past years, there has been a tremendous amount of effort to convert
the radiation integral (1) to a Fourier integral. A popular method is the
so-called "p-series expansion," in which the integral in equation (1) is
expressed as . '

I(u,v) = :E% (cos 6 - cos eo)p Ip(u,v) (3)
p=

Here o6g 1s the polar angle of the main beam (fig. 1(a)). Each integral
Ip(u,v) in equation (3) is indeed a Fourier integral. Several clever schemes
can be used for its evaluation (refs. 1 to 6). As an alternative to the
p-series expansion, we may first calculate the aperture field over a planar
surface by GO or GTD (refs. 7 and 8). Over the planar surface, z 1s equal to
a constant and the integral in equation (1) is reduced to a Fourier integral.
Needless to say, either the p-series expansion or GO/GTD involves sophisticated
mathematical manipulations.

While the above efforts are gratifying, they all suffer a drawback,
namely, the analyses are heavily geometry dependent. Usually a given analysis
fails if the reflector surfaces 1s changed from, for example, parabolic to
hyperbolic, or the reflector boundary from circular to trapezoidal. As a con-
sequence, one needs to develop different versions of computer code for differ-
ent reflector geometries.

BRUTE-FORCE FFT
The purpose of this note is to point out that, because of the rapid pro-
gress of computer power, it is no longer advantageous to reduce equation (1)
to a Fourier integral before going to a computer. We evaluate equation (1) by

a brute-force FFT in the following manner:

(a) Represent I(u,v) in terms of a sinc series, namely,

sin(«(uA - m) sin(w(vB - n))
I(u,v) = i; i Ion =~ w(uA —m) ° %(VB - n) (4)
m=-M+1 n=-N+]




where

AB j2w(ux]+vy])

- BB J2w(uA-m+vB-n)
Imn = amN © an €
(5)
an = Fourier series coefficients of J(x,y) ekjwz
Note that the coefficients {Iy,} are values of I(u,v) at sampling points
u = up = M/A, vV=vy=n/B (6)

(b) Use the FFT to find {Ipn} from equation (1). Since equation (1)
is not a Fourier integral, we must apply the FFT once for each and every Iy,.
Thus, we apply the FFT 2M by 2N times instead of once, if equation (1) was a
Fourier integral. Fortunately, modern computers can perform the FFT operation
very efficiently.

ACCURACY AND COMPUTATION TIME

To 11lustrate the accuracy and efficiency of the brute-force FFT method,
the secondary pattern of an offset parabolic reflector with a circular aperture
(fig. 2) was computed using the brute-force FFT, GO (ref. 7), GTD (ref. 7),
and Fourier-Bessel (ref. 1) methods. 1In each method, a 48 by 48 FFT grid
(fig. 1(b)) was taken and the secondary pattern was calculated at 101 observa-
tion points. As expected, the secondary patterns calculated by each method
are in good agreement. Taking a closer look, the gain and peak sideiobe levels
for the first six sidelobes are tabulated for each method in table I. These
values are in good agreement with the results calculated using the Jacobi-
Bessel series method (ref. 5). Another example with an off-focus feed is shown
in figure 3, where good agreements among all methods are again observed.

Table II shows the computation times of the methods on a CYBER 175 com-
puter. We note that the computation time of the brute-force FFT is of the
same order of magnitude as the computation times using GO, GTD, and the
Fourier-Bessel series method. For nonparabolic reflectors, the coefficients
of the p-series method must be computed for every observation point. Hence,
the computation times using the p-series are of the same order as the brute-
force FFT. The computation times using GO and GTD may also increase due to
the possibility of more specular points present for a nonparabolic reflector.

CONCLUSION

1. Unlike other methods described in the 1iterature, the brute-force FFT
is most general in the sense that it applies to reflector with arbitrary shape
and boundary. It is an ideal method for developing a user-friendly general
purpose reflector computer program.

2. Within the high-frequency approximation used in all reflector
analyses, the brute-force FFT is just as accurate as the other methods.




3. Its computation time is in the same order of magnitude as those of
other methods. 1In the worst case (a parabolic reflector with circular aper-
ture), it is three times slower than other methods that take advantage of the
special geometry and use clever mathematical manipulations.

4, The above time comparison is based on the fact that the FFT is per-
formed using a software subroutine. For the Cyber 175 computer, the FFT com-
puted using an array processor is five times faster than that using a software
subroutine. Our message is that, as computer power improves, the brute-force
FFT for reflector analysis will become more and more attractive.

ACKNOWLEDGEMENT

We would 1ike to thank Dr. Yayha Rahmat-Samii of JPL for many valuable
comments and for computing some of the data shown in table I.

REFERENCES

1. Hung, C.C.; and Mittra, R.: Secondary pattern and focal region
distribution of reflector antennas under wide-angle scanning. IEEE Trans.
Antennas Propag., vol. 31, no. 5, Sept. 1983, pp. 756-763.

2. Galindo-Israel, V.; and Mittra, R.: A new series representation for the
radiation integral with application to reflector antennas. IEEE Trans.
Antennas Propag., vol. 25, no. 5, Sept. 1977, pp. 631-641.

3. Mittra, R., et al.: An efficient technique for the computation of vector
secondary patterns of offset paraboloid refiectors. IEEE Trans. Antennas
Propag., vol. 27, no. 3, May 1979, pp. 294-304.

4. Hung, C.C.: Fourier-Bessel series representation for the far field pattern
of arbitrary reflector antennas. LMSC Report 844955, Lockheed Missiles and
Space Company, Sunnyvale, CA, 1982.

5. Rahmat-Samii, Y.; Galindo-Israel, V.: Shaped reflector antenna analysis
using the Jacobi-Bessel series. IEEE Trans. Antennas Propag., vol. 28,
no. 4, July 1980, pp. 425-435.

6. Hung, C.C.; and Mittra, R.: Fourier-Bessel technique for analyzing
spherical reflector antennas. Third International Conference on Antennas
and Propagation, (ICAP-83), Pt. 1, IEE CP-219, Institue of Electrical
Engineers, Stevenage, England, 1983, pp. 433-435.

7. Lam, P.T.; Lee, S.W.; and Acosta, R.: Secondary pattern computation of an
arbitrarily shaped main reflector. Electromagnetics Laboratory, University
of I119nois, Urbana, IL, 1984.

8. Chang, Y.C.; and Rudduck, R.C.: Extended aperture integration for the
analysis of offset reflector antennas. 1984 International Symposium Digest
on Antennas and Propagation, vol. 1, IEEE, 1984, pp. 293-296.



TABLE I. - GAIN AND SIDELOBE LEVELS OF OFFSET PARABOLIC
REFLECTOR COMPUTED USING SEVERAL DIFFERENT METHODS

Jacobi-Bessel,| FFT GTD GO Fourier-Bessel,

ref. 5 ref. 7 |ref. 17 ref. 7
Gain (dB) 48.28 48.25 | 48.31 | 48.29 48,22
1st SL 28.70 28.94 28.48 28.49 27.98
2nd SL 22.50 22.48 22.64 22.78 21.92
3rd SL 18.32 .| 18.85 17.72 17.63 17.76
4th SL 15.21 15.55 15.80 14.93 14.64
5th SL 12.67 12.76 12.09 8.54 12.14
6th SL 10.55 11.15 11.30 9.96 10.01

TABLE II. - EXECUTIVE TIME OF SEVERAL
DIFFERENT METHODS ON A CYBER 175 COMPUTER TO
COMPUTE SECONDARY PATTERN

Method FFT| GTD | GO | Fourier-Bessel

executive time
on CYBER (CPU sec)| 62 | 73 | 22 22
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Figure 2, - Offset parabolic reflector configuration,
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Figure 3, - Far-field antenna pattern comparison,
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