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ABSTRACT

This paper discusses the characteristics of the upper tro pobpheric
outflow patterns which occur with tropical cyclone intensifir ,:r'tion and
weakening over all of the global tropical cyclone basins during the year
long period of the First fj ARP jQlobal Experiment (FGGE). By
intensification we mean the change in the tropical cyclone's maximum
wind or central pressure, not the change of the cyclone's outer 1-30
radius mean wind which we classify as cyclone strength. All the 80
tropical cyclones which existed during the FGGE year are studied. 200
mb wind fields were derived from the analysis of the European _Qentre for
&diem Range jjeather forecasting (ECMWF) which made extensive use of
upper tropospheric satellite and aircrsft winds. Corresponding
satellite cloud pictures from the polar orbiting U.S. Defense
beteorological b%tellite Xrog^am (DKSP) and other supplementary polar
and geostationary satellite data are also used.

Intensifying tropical cyclones within the different global ocean
basins typically show upper level outflow patterns of three basic types:
Single channel (S) outflow which includes either poleward (Sp) or
equatorward (SE) outflow; Double channel outflow in both poleward and
equatorial directions (D); or No-channel (N) outflow (only 171 of
cases). Depending on the location of the tropical cyclone and its
associated anticyclone and the surrounding 200 mb environmental wind
fields, these outflow patterns can each be further divided into three to
four sub-patterns. Mid-latitude troughs and low latitude anticyclones
of the other hemisphere often play an important role in specifying the
location and strength of these outflow channels. Outflow patterns have
distinct seasonal and geographic differences. In general poleward
outflow channels are dominant for tropical cyclones in the Southern
Hemisphere and for spring and autumn Northern Hemisphere cyclones.
Equatorward outflow channels are dominant for tropical cyclones in the
Northern Hemisphere in summer.

The sudden weakening of tropical cyclones over tropical oceans also
appears to be often associated with the characteristics of the upper
level surrounding cyclone wind fields. When the existing outflow
channels of a tropical cyclone become cut off, it typically undergoes a
weakening of its intensity.

A short discussion of some of the likely physical processes which
may be involved with this observed association of 200 mb outflow
patterns and cyclone intensity change is also given.
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I . Introduction

For many years forecasters have often noted an association between

the eharaeteriaties of a tropical cyclone ' s ,rpper tropospheric outflow

at radius of S to 100 or beyond and the cyclones' current and subsequent

rate of intensity change. Intensification is freluontly observed to

occur when a cyclone develops one or two concentrated upper tropos ph eric

outflow channels on its poleward or equatorial flanks. Although a

number of individual carte studies hove been made on thin topic, there

has yet to be a systematic observational study of this subject ^n all

the global storm basins where upper level analysis procedures are the

same for all regions. It would appear that some systematic study of

these upper level outflow channels and treir possible role in intensity

change is warranted. This study was undertaken to try to help document

this likely upper outflow channel and cyclone intensity change link

Ooservati ons so far have shown that the establishment of

concentrated tropical cyclone outflow channels is almost always a

consequence of the favorable positioning about the cyclone of synoptic

scale 200 mb anticyclones or trolghs such as a Tropical Upper

Tropospheric Trough ( TUTT), a low latitude 200 mb anticyclone of the

opposite hemisphere, or other distinctive surrounding cyclone upper

level flow features. Furthermore, it appears that if a tropical

cycloae's S to 100 radius outflow circulation is indeed concentrated

into narrow channels there can result a more important influence or the

cyclone ' s inner-core deep cumulus convection and rate of intensification

thar, would have occurred if the same amoant of upper level mass outflow

were more uniformaly spread out ever a broader circle around the

cyclone.
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Studies by Sadler (1976, 1978) and others have shown an association

of these bynoptio scale influences on tivipieal cyclone intensification

such as favorable positions of the TUTT for intensification of west

Pacific typhoons and Atlantic hurricanes. Sadler observes thati

intensification often occurs when a cyclone's outflow becomes

concentrated into one nr two channels which extend outward to large

radius. The first author (Chen 1974) has also pointed out that the

interactions between Southern and Northern Hemisphere upper tropospheric

circulations can have an important influence on ncrthwestern Pacific

cyclone intensification. Likewise, R. SimpBon (1970) has stated that

upper tropospheric wind patterns can have strong triggering and

suppressive influences on tropical cyclone mass circulation ani

Intensity.

This paper discusses tropical cyclone intensity change as it is

related to a storm's 200 mb environmental wind fields and satellite

observed cloud patterns. All 80 tropical cyclones which occurred during

the 1978-79 First 2ARP Ulobal Experiment (FGGE) are studied. Use is

made of the large-scale 200 mb wind analysis of the European Eenter for

tedium Range jjeather Forecasting (ECMWF) where upper level satellite and

aircraft winds have been used in addition to the normal and special

rawinsondes employed during the FGGE year. This paper , attempts to

identify the characteristic upper troposphere outflow patterns which are

associated with tropical cyclones undergoing intensity change and how

these outflow patterns may vary geographically and seasonally. By

intensification we mean the change in the cyclone's inner-core maximum

wind or central pressure.

Global analysis of upper air observations is now available from the

---- -------
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ECMrF for the FGGE (December 1978 through November 1979) year. Global

uppe&-air coverage as provided during the FGGE year offers a chance to

examine this question of the link between intensity change and upper

level outflow from a glabal observational perspective. Using the

complete ECMrF upper tropospheric analysis of the 1978-79 FGGE year,

this paper attempts to more systematically investi3ate this likely

association of favorable 700 bb outflow with intensification for the 80

FGGE year tropical cyclones. We also analyze cases of cyclone weakening

over tropical waters. Cloud image data consists primarily of the polar

orbiting high resolution U.S. gefense beteorological ,satellite program

(DMSP) visual (1/2 n mi resolution) picturw-3. Where DMSP images were

occasionally missing supplementF.ry satellite data has been obtained from

geostationary and polar orbiting image sources.

Although cyclone intensification does not always require strong

outflow channels, they were observed in 80-85% of the cases during the

FGGE year. We believe this figure is also repre.ven'.:ative of other

years. These outflow channels can, however, be quite variable as to

their location and strength relative to the cyclone center. Outflow

also varies by storm basin and by season.

There ±s at present no well accepted theory as to the causes of

this apparent physical l:Lcika.ge between concentrated out, '.ow and cyclone

inte n sification. Holland and Merrill (1984) have recently hypothesized

that this physical linkage is related to the presence of low inertial

instability which is often established in the anticyclonic flow of the

upper troposphere on the flanks of tropical cyclones. This low inertial

instability occurs from the favorable superposition of troughs or other

special surrounding cyclone wind features. Merrill (1985) has recently

Ito
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carried these ideas such further and has developed a more integrated

rationale for this apparent important physical linkage. This is not, an

Easy task however.

Before we discurs this upper level outflow and cyclone intensity

change link it is important that we first define what we moan by cyclone

int^ra.ifieation. An important new idea ooming out of our CSU research

in the last few years is the concept of the necessity of distinguishing

between tropical cyclone " Sntanaxty" which is a measure of a tropical

cyclone's maximum sustained low level winds and/or central pressure, and

that of tropical cyclone " stronp th". which we define as the mean

tangential wind around the storm between 1-3 0 n mi radius. Figure A

shows + . . ese differences. We have measured both of the" quantities from

the ltuam aircraft reconnaissance flights. (See papers by Weatherford

and Gray , 1984, and Weatherford, 1985 for more details.) Weatherford

(op cit) does not observe a good correlation between tropical cyclone

strength and intensity ( see Fig. B) . This is particularly true of the

more intense cyclones. I: is possible to have a cyclone increase its

strength and simultaneously weaken its intensity and vice-versa. She

also does not find a good relationship between a cyclone's central

pressure (or its maximum winds) and its radius of 30 and 50 knot winds.

A cyclone's radius of 30 and 50 knot winds and rainfall is more related

to cyclone strength than it is to cyclone intensity. Merrill (1984)

finds that a tropical cyclone's size as defined by its mean radius of

outer closed isobar correlated with tropical cyclone intensity at a

value of only 0 . 3 and that there is hardly any correlation of the

changes of these features.

e'
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Fig. A. Definition of tropical cyclone intensity, strength, and outer
circulation on a radial profile of tangential ( azimuthal)
winds. Note that the winj profile representative of the dashed
line gives large intenrity but less strength than the solid

line.

Thus, the phyzacal requirement that has more commonly been

associated with the development of a tropical cyclone such as large-

scale low level vorticity and broad upward vertical motion may be more

related to the broader scale " strength" increase of a cyclone and may

be quite different than the more specialised requirements for only

inner-core (< 10 radius) cyclone " intensity" increase. We are finding

that cyclone intensity and intensity change appears to be much more
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related to the upper tropospheric outflow meohanisms of the cyclone and

the amount of deep convection near the eyelune oentor. By contrast we

have found that cyclone strength and its change appears to be much more

related to the large- scale lower tropospheric surrounding cyclone wind

fields and the not overall deep convection occurring within the entire

inner 3-4 0 radius of the cyclone. Cyclone intensification depends not

so much on the amount of deep oonvection occurring within the cyclone

system as a whole ( which was also shown by Arnold, 1976) but rather more

on the amount of deep organized convection and the resulting magnitude

of the 'in-ufrand -out' mass circulation which takes place within the

system's central 0-1 0 radiu„ core.

Our project is now involved in research to try to better ascertain

the different environmental conditions which lead some cyclones to

develop concentrated inner-core deep convection and to increase their

intensity vs. those environmental conditions which cause more net

convection within the cyclone cloud area as a whole but lesser amounts

of deep convection within the cyclone core.

This paper makes an extensive analysis only of the tropical

cyclone's surrounding environmental 200 mb wind fields and cloud

patterns as they may be related to the cyclone ' s intensity change. The

important question of tropical cyclone " RtrengU" change is not

discussed. Other factorA which may influence cyclone intensity change

are also not covered.

E
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I . Data Analysis

This paper will concentrate on the strong jet-)  ,° upper

tropospheric outflow channels of 10 - 50 m/s which often emanate 10-200 or

more from the cyclone. These outflow channels offer • extend long

distancc5 outward from the cyclone. In most caseL they appear to be

well resolved by the ECMMF analysis at least in the qualitative sense.

Intensification criteria for all FLOE year tropical cyclone., have

been determined on the basis of whether the cyclone had an

intensification or weakening rate of 20 knots (kts) per 24 hours yr

greater for at least one 24-hour period. The locations where the

tropical cyclones met this criteria are studied in this paper and are

shown by the dots and X's in Fig. I. It is believed that the FrGE- year

period was a representative year for tropical cyclones about the globe.

Its 80 tropical cyclones compared with a previous 20 year average of 79

cyclones. There were also no significant bnomalous storm frequency or

track alterations in any of the cyclone basins during the FOOE year.

Anomalous years occur mainly when E1 Nino-Southern Oscillation (ENSO)

events take place such as the 1982-83 ENSO. Statistical results derived

for the whole FGGE year are thus considered to be quite representative

of what would have been obtained if this analysis had been performed for

a multi-year period or in other individual non-ENSG years.

Intensity data for the FOGE year storms were obtained from aircraft

measurements and "best track" inforr Lion. For those ocean basins

which lacked reconnaissance aircraft determined wind speed data, maximum

winds have been determined from satellite derived T-numbers as specified

Cy the well-known Dvorak, (1975) scheme. US Military DMSP satellite

.I
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imagery has been obtained for most of our cases with some augmentation

from NOAA polar orbiting satellite data plus the FGGE year GMS picture

images.

The outflow channels that are discussed in this paper refer to the

narrow high speed near jet like features of the upper tropospheric

outflowing air that can move out a considerable distance from a tropical

cyclone ' s center as seen by satellite imagery or the upper-level wind

charts . These outflow channels usually have an anticyclonic turning

component and are usually observable in satellite images of cirrus bands

or lines stretching long distances outward around the storm center. In

general, the direction of upper cloud outflow is approximately the same

as that of the upper level wind outflow. When doubt occurred as to the

direction of the wind outflow, priority was given to the satellite cloud

pattern:, . •ather than the analyzed streamline outflow of the ECMWF

analysis.

The ECMWF III-b 1.875 0 Mercator-grid analysis at 200 mb which has

been used in this study was objectively analyzed in all of the ocean

basins. It is considered to be the best objective analysis that can be

obtained. This analysis made extensive use of satellite and ,jet

aircraft winds. Many extra upper-air rawinsonde were made during the

FGGE year. The ECMWF center uses a longer cut-off time for data receipt

than most other operational centers. This assists with a better data

coverage. All the 200 mb analysis shown in this paper are for 00 GMT

(Z) of the day shown. All multi-day changes refer to change from 00 GMT

on one day to 00 GMT in the other day.

It is known that the initializing procedures of the ECMWF analyses

act to suppress the divergent component of the tropical grind field on

A I
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the smaller acales. This divergent component suppression is not

believed. however, to unduely alter the character and the general

magnitude of the quite broadscale outflow channels which are studied

here.

The 200 mb winds used in this study were obtained from the maps of

the atlases distributed by the ECMW F center in Reading, U.K. (Bjorheim,

1981, 1982).
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3. Characteristics of the Outflow Wind Patterns and Satellite
Images of Intensifying Cyclonal

At upper troposphere levels, almost every tropical cyclone has a

corresponding anticyclone and an outward directed wind field.

In most caaes a mesoscale anticyclone is generally found directly

over or near the center of the tropical cyclone and represents the

location in the upper troposphere where there is a build-up of

temperature from the rising convective motion within the center of the

cyclone. On the other hand, it is often found that there is another

larger, synoptic scale anticyclone that pre-existed within the vicinity

of the intensifying tropical cyclone. This synoptic scale anticyclone

usually is a mayor component of the upper equatorial ridge in which the

tropical cyclone develops. The exact location, of this larger upper

level anticyclone with respect to its center of the tropical cyclone can

vary depending upon many environmental factors -- including the lower

level forcing mechanisms that are helping to create the cyclone. The

relative location of this large-scale anticyclone with respect to the

tropical cyclone center whether it is to its east, west, north, south or

superimposed over the smaller cyclone mesoscale anticyclone will help to

dictate the direction of the outflow patterns away from the cyclone.

These can vary greatly in size and strength. These outflow patterns

when linked to the environment generally result in one or more outflow

channels. It is the relative positions of these larger scale

anticyclones to the center of the tropical cyclone that will be

discussed in the rest of this chapter.

The majority of tropical cyclones nave some type of outflow channel

to their poleward or equatorward side. A few cyclones do not.

1
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a
Satellite imagery typically shows outgoing cirrus bands or lines

corresponding to these outflow channels. For an anticyclone without an

outflow channel, a synoptic-scale dense overcast cloud shield without

mayor outflow bands is typically seen in the satellite ima„e ry. Short

lateral cirrus plumes often exist around this type of anticyclone --

indicating a more uniform circular spread of the cyclone's upper level

outflow.

Upper level outflows can almost always be classified into one of

three basic categories depending on the number of channels:

1) Single-channel outflow (S)

2) Double-channel outflow (D), and

3) Systems without distinct outflow channels or non-channel
Outflow (h)

Each of these outflow patterns may be divided into three to four

subpatterns based on the position of the upper level anticyclone

relative to the tropical cyclone center and the resulting outflow

channel direction. The following sections present and discuss these

various 200 mb outflow models with examples of each pattern in the

Northern and Southern Hemisphere. Each pattern is identified by a

combination of one or more of the following terms:

S = Single channel

D = Double channel

N - Non-channel

P - Poleward outflow

E = Equatorward outflow

w = cyclone center is west of the 200 mb anticyclone center
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e - cyclone center is east of the 200 mb anticyclone center

s - cyclone center is south of the 200 mb anticyclone center

c - cyclone center is near the center of the 200 mb anticyclone
center

For example S E means a oycl one with a single channel outflow

towards the equator. SPe means a cyclone with a single channel outward

towards the pole where the cyclone center is to the east of the 200 mb

anticyclone center.

Examples of these various classes of outflow patterns and the

relative positions of the 200 mb large scale anticyclonic centers which

are associated with these intensifying cyclones will now be given.

a) Basic Northern Hemisphere Patterns

(1) Sinale Channel (S) Outf low.

This single channel outflow may be divided into four subpatterns

based on the direction of the outflow and the position of the upper

anticyclone center relative to the cyclone center.

Spyr . The tropical cyclone center is located to the west of an

upper anticyclone that has a poleward outflow channel (Fig. 2a). For

example, Typhoon Bess on 22 March 1979 and was located to the west of a

NW Pacific anticyclone that had an outflow channel directed towards the

northeast (Fig. 2b). In the satellite imagery for the same day, a

poleward cloud outflow pattern is observed (Fig. 2c). After this upper

level flow pattern was formed, the maximum sustained wind speed of Bess

increased from SS kts to 90 kts during the time period 22-24 March.

Spc . A poleward outflow extends from a tropical cyclone whose

center is located underneath the center of the 200 mb anticyclone (Fig.

3a). On 18 September 1979, a tropical depression moved into the

.5
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Fig. 2a-c. Pattern S ?kL: Diagram (a) is an idealized picture of a
singleeward 200 mb outflow channel with the cyclone
center to the west of the 200 mb anticyclone center.
Diagram (b) 200 mb winds on 22 March 1979 for future Typhoon
Bess. Diagram (c) 160OZ 22 March 1979 DHSP display (Typhoon
Bess). From 22 to 24 March the maximum sustained wind
increased from SS to 90 kta.
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Fig. 2c. Continued.

northern part of the South China Sea and under an anticyclone. Figure

3b shows the upper level stream field at the time this tropical storm

(Nancy) intensified. Figure 3c shows the cloud picture which Roes with

this. Outflow is to the northeast. For 18 to 19 September the maximum

winds increased from 25 to 45 kts.

SEc . ExamFle of a single equatorial directed outflow (Fig. 4a)

where the cyclone is underneath the 200 mb anticyclone (Fig. 4b). The

corresponding satellite cloud picture shows a large area of ey ustorward
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200 mb
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Fig. 3a--c. Pattern Sp̂ 	 Diagram (a) shows
m^ pMO Ieward outflow channel

center located directly over th,
(b) 200 mb flow on 18 September
Nancy. Diagram (c) 0629 GMT 18
of Tropical Storm Nancy.

a typical case of a single
with the 200 mb anticyclone

a cyclone center. Diagram
1979 for Tropical Storm
September 1979 DMSP display
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Fig. 3c.	 Continued.

cloud outflow (Fig. 40. Between 9 and 11 September, the maximum

sustained wind speed of this system (Guillermo) increased from 30 to 65

kt s.

SFe . The tropical cyclone center is located to the east of the

center of en upper level anticyclone that has an equatorward outflow

channel (Fig. Sa).

Two examples are given. In its tropical storm stage, future

Typhoon Irving was located northeast of the Philippines and below the

northeast 200 rib flow in the eastern sector of the South Asian summer



(8)

E

71T^7

19

200 mb

(b)
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FIg. 4a-e. Pattern S	 Diagram ( a) is a typical case cf a single
equatorwar outflow channel when the anticyclone center is
located directly over the cyclone center. Diagram (b) 200
mb winds on 10 September 1979 for future Hurricane
Guillermo. Diagram (e) 1626 GMT 9 September 1979 DHSP
display of future Hurricane Guillermo.
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Fig. 4c.	 (;ontinuea.

anticyclone. An equatorward outflow channel was present (Fig. 5b). no

corresponding satellite cloua picture also showed an area of equatorward

cloud outflow. Lateral cirrus lines at the cloud tail part indicated

quite strong upper level outflow (Fig. Sc). Within three days (i.e.,

12-15 August), the maximum sustained wind speed for Irving increased

frog 50 to 90 kts. Typhoon Irving's equatorward outflow channel is

typical 01' the upper level flow pattern found in intensifying tropical

cyclones over the northwestern Pacific Ocean during mid-summer.

Fquatorward outflow channels also frequently occur with northeast

Pacific tropical cyclones. For example, Hurricane Andrea, a tropical
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Fig. Sa-c. Pattern SEa: Diagram (a) a aingle equatorward channel for a
cyclone center to the east of the anticyclone center.
Diagram ( b) 200 mb flow for Typhoon Irving on 13 August
1979. Diagram ( c) 0611 GM' 12 August 1979 DMSP display
(Typhoon Irving). From 11 to 15 Auglj!+ t the maximum
sustained winds increased from SO to 90 knots.
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Fig. So. Continued.

depression on 1 June, was located to the east of an upper level

anticyclone that resulted in northeast aii flow over the system (Fig.

6a). A corresponding area of eq uatorwa:d outflow cirrus lines, which

shows the existence of strong upper level outflow is aeon in the

sat,ellite cloud picture (Fig. 6b). The maximum sustained wind speed of

Andres increasod from 30 kts to 65 kts in three days bbginning on 1

June.

When a Quasi-atationary 700 mb TUTT or sLear line oriented

northeast to southwest exists east of a tropical cyclone as is often the

case in summer over the central North Pacific, the 4Uleward cloud

outflow from the cy ,.:lone often flows out to the northeast and then

EL.
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Fig. 6a-b. The typical case of pattern Sgc in the north eastern

(

	

	 Pacific. Diagram (a) 200 mb flow on i June 1979 for
Hurricane Andres. Diagram (o) 1627 GMT 1 June 1979 DMSP
display. From ' to 3 June the maximum sustained winds
increased from 30 to 65 kts.

i



V
24

curves around and reverser+ itself into a a*)utheaatward directed cloud

sand. Though such a pattern may appear to have a double-channel cloud

outflow both cloud outflows are ultimately oriented only in an

equatorwara direction. his pattern is thus included in Lhe SF

category.

12_L_ Double-channel (D) 9-ujLLqjb

Some tropical cyclone patterns have both poleward and eruatorward

outflow channels. These double channel outflow cyclones typinally

exhibit moee rapid intensification.. Based on the ,elative position of

the cyclone center to the 200 mb anticyclone center. three sub-patterns

of double channel outflow can be identified.

Dw . The tropleal cyclone center is located to the weat of an upper

anticylone center (Fig. 7a). Take, for example, Hurricane .Henri over

the Atlantic. Its predecessor dnpreaai(,n developed over Lhe Caribbeen

Sea and to the went of an anticyclone and moved into the Gulf of Mexico

i
on 15 aeptember. It care be seen from Fig. 7b that the tropical

depression at this time is located between north and south outflow

patterns. These. two outflow enannels are alas reflected in the

satellite cloud picture (Fig. 70. In two days from 15 to 17 September,

the maximum sustained wind speed of this tropical cyclone (to be

Hurricane Henri) increased frog 25 to 75 kts.

Dc . The tropical cyclone center is located underneath the center

of the anticyclone (Fig. 8a). For example the center of Typhoon Owen

over the northwest Pacific coincided with that of an upper level

anticyclone (Fig. 8b). Two channels of outflow on each side of the

i
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Fig. 7a-c. Pattern Dw: Typical example of a double outflow channel
with the cyclone center to the west of the anticyclone
center Diagram (a). Diagram (b) 200 mb 16 September 1979 of
future Hurricane Henri. Diagram (c) 1621 GMT 16 September
1979 DMLSP display of future Hurricane Henri. From 15 to 17
September the maximum winds increased from 25 to 75 kts.
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Fig. 7c. Continued.

anticyclone are directed poleward and equatorward. The satellite cloud

picture shows corresponding poleward and equatorward cloud outflows

(Fig. 8c). These double outflow patterns contributed to Owen'a rapid

intensification Into a strong typhoon. The maximum austalned wind speed

of Owen increased from 45 kta on 24 September to 110 kta on 26

September.

D
A
. The tropical cyclone center is located to the east of an upper

level anticyclone (Fig. 9a). Super Typhoon Tip possessed these features

during the stage of its very rapid development. Tip reached typhoon

intensity on 9 October and moved to the east of an anticyclone over the

j.
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Fig. 8a-c. Pattern D.: Idealized case of a double channel. outflow
pattern where the anticyclone center is located directly
over the cyclone center, Diagram (a). Diagram (b) 200 mb
flow pattern on 25 September 1979 for future Typhoon Owen.
Diagram (c) 1652 GMT 25 September DMSP display of future
Typhoon Owen. From 24 to 26 September the maximum winds
increased from 45 to 110 kts. 	 ,r
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South China Sea from 10 to 12 Outober. The southern and the northern

flows of the anticyclone were thus linked up to form strong poleward and

equatorw and outflow channels (Fig. 9b). Tip eventually reached a

central pressure of 870 mb which is tha lowest pressure on record.

Corresponding poleward and equatorwand cloud outflow patterns apleared

in the satellite elosid pictures (Fig. 9c) . Upper level outflow from the

cyclone appears very strong. In two days the maximum sustained wind

speed of Tip increased from 80 to 165 kta. Such doible channel outflow

pattern3 often lead to very rapid and very deep cyclone intensification

(3) No O.cflow Channel M.

When upper tropospheric environmental winds around the typical

cyclone are weak or, though strong, do not form an outflow link with the

tropical cyclone, then distinct outflow channels are not observed. The

tropical cyclone (anticyclone over a cyclone) without a channel is

reflected in satellite cloud pictures as a donee overcast above the

cluster without distinct cloud outflow channels. The periphery of the

d^.nse overcast is often feathery with short lateral cirrus lines,

indicating that the cyclone's upper level outflow is more azimuthally 	 ^.
v
1

spread out over a broad area around the cyclone and is not concentrated

into one or two outflow channels.

Depending on the relative position of the tropical cyclone center

and the upper anticyclone center, the upper level stream field for a

non-channel intensifying cyclone has one of the following four patterns.

Pattern Nw . The tropical cyclone center is located to the west of

the center of an upper level anticyclone (Fig. 10a). For example in the

Pacific, Tropical Storm Ken was located to the west of an upper	
t

fi
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Fig. 9a-c. Pattern De: Typical case of a double channel outflow with
the cyclone center east of the anticyclone center, Diagram
(a). Diagram (b), 200 mb 12 October 1979 for Typhoon Tip.
Diagram (c) 1601 OM' 12 October 1979 DNSP display Typhoon
Tip. From 10 to 12 October the maximum winds increased from
80 to 165 knots.
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Fig. 10a-c. Pattern w: Idealized case with no
with the cyclone center west cf the
Diagram (a). Diagram (b), 200 mb 2
Tropical Storm Keu. Diagram (c) 06
DMSP display of Tropical Storm Ken.
the maximum winds increased from 35

outflow channel and
anticyclone center,
September 1979 wind for
11 GMT 1 September 1979

From 2 to 3 September
to 60 kts.
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Fig. 10c. Continued,

anticycloneon 2 September. The winds in the central area of the

anticyclone were weak, and the outflow channel was indistinct (Fig.

10b). In satellite imagery, Ken was reflected as a round cloud cluster

without concentrated cloud outflow in one direction; to Ken"s east was

the cloud free region of the large scale anticyclone (Fig. 10c).

However, spiral cirrus lines showed that divergence was strong at the

upper level. Ken's maximum sustained wind speed increased from 35 kts

on 2 September to 60 kta on 3 September.

Pattern N s . The tropical cyclono center is located south of the

upper anticyclone c nter. The cycline center is under an east wind flow

1

1. 1

(C)

..1
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south of the upper anticyclone (Fig. lla). Figure llb shown the upper,

level stream field of forming Typhoon Vera. After forming Verna moved

continuously westward. Ou 3 November. its center moved south of the

strong upper anticyclone. The cirrus lines around the cloud cluster

(Fig. lla) indicate strong but unoonoentrated upper level outflow. A

vary large anticyclonic aloud free area in seen to the north of the

atorm's cloud shield. From 2 to 4 November, this system showed a

dramatic increase in its oiximum sustained wind speeds from 25 to 140

kta.

Pattern N c. The tropical Uyclune center is located directly over

the center of the upper level anticyclone (Fig. 12a) . For example,

suture Typhoon Lola was located directly under an upper anticyclone

center on 4 September (Fig. 120). Me antioye l 3ne was surrounded by a

large cloud free moat region. Cloud o-Atflow did not extend very far

from the cluster system (Fig. 12c). However, marked clockwise outward

spiral cirrus lines existed around the dense cloud cluster of this

cyclone system (Fig. 12c). This indicates strong but unconcentrated

upper level outflow. Within one day, from 4 to S September, the maximum

sustained wind speed of Lola increased from 45 kta to 73 kta.

Pattern N
S
	The tropical cyclone center is located to the east of

an upper level anticyclone (Fig. 13a). For example, on 13 April

northwest Pacific Tropical Storm Cecil was located to the east of an

anticyclone over the South China Sea. This anticyclone had a weak upper

level outflow (Fig. 13b), and satellite imagery showed an isolated dense

i
cloud shield. No cloud outflow stretched equatorward (Fig. 13c).
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Fig. lla-c. Pattern N^ Idealized case with no outflow channel and
with the cyclone center south of the anticyclone Diagram
(a). Diagram (b), 200 mb 3 November 1979 for Typhoon Vera.
Diagram (c) 1614 GMT 2 November 1979 DMLSP display of
Typhoon Vera. From 2 to 4 November the maximum winds
increased frog 25 to 140 kts.
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Fig. 11c. Continued.

However, divergence at the upper levels was obvious. The maximum

sustalned wind of tropical storm Cecil increaaed from 45 to 65 kta from

the 13th to the 14th of April.

b. Basic bouthern Hemisphere Patterns

In the Southern Hemisphere, upper level outflow patterns above

tropical cyclonez can be divided into only Single channel ( S) and No

Outflow Channel ( N) categories. Very few double -channel outflow

patterne occur in the Southern Hemisphere.

a•y ^'•
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Fig. 12a-c. Patterns N.. : Idealized case with no outflow channel and
Tth the anticyclone center directly over the cyclone
center, Diagram (a). Diagram (b), 200 mb 4 September 1979
for Typhoon Lola. Diagram (c) 1601 GMT 4 September 1979
DMSP display of Typhoon Lola. From 4 to S SeptembnR , tno
maximum winds increased from 45 to 80 kts.



ORIGINAL	 Is
OF POOR QUALITY

^C^

a

38

Fig. 12c. Continued.

(1) Single Changel (S).

The following twc sub-patterns can be identified:

Pattern Sa,. The usual outflow pattern with this type of

Intensification is seen in Fig. 14a. Tropical Storm Celine is an

example. It was located in the South Indian Ocean on the poleward side

of an upper anticyclone and had a poleward outflow channel (Fig. 14b).
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Fig. 13a-c. P_atLern Ng: Idealized case with no outflow channel and
with the cyclone center east of the anticyclone center,
Diagram (a). Diagram (b) 200 mb 13 April 1979 of Typhoon
Cecil. Diagram (c) 1627 GMT 13 April 1979 DMSP display of
Typhoon Cecil. From 13 to 14 April tht< maximum winds
ricreased from 45 to 65 kts.
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Fig. 13c. Continued.

Though an aqua-orward outflow was on the east side of the anticyclone,

it did not link up with Lae tropical cyclone. There was no equatorward

cloud outflow in the satellite imagery, but a marked poleward cloud

outflow was evident (Fig. 14e). The T-number for Celine was TA (-30

kts) on 3 February and TS (-90 kts) on 7 February. The majority of

tropical cyclone intensification-, in the Southern Hemisphere are under

	

	
v
i

such an a SPW pattern.

Pattern c, This tropical storm has an equatorward outflow

channel as portrayed in Fig. 15a. Figure 15b shows the 200 mb wind

fiela for Tropical Storm Greta over the Gulf' of Carpentaria adjacent to

Australia. On 8 January Greta was located underneath a strong

anticyclone. There was a strong equator-crossing, flow between the

anticyclone and the Northern Hemispheric equatorial ridge. The

positioning of these anticyclones about Greta caused a substantial

equatorward outflow channel (Fig. 15c). The satellite imager} also

i
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Fig. 14a-c. Pattern: Typical case. Diagram (a). Diagram (b) 200
mb S February 1979 of Hurricane Celine. Diagram (c) 1600
GMT S February 1979 DMSP display of Hurricane Celine. From
3 to 7 February the intensity went from 72 (30 kts) to TS
(90 kts).
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Fig. 14c. Continued.

shows a large area of equatorward cloud outflow on the equatorward aide

of Greta; the cirrus ]tnea ran in the same direction as the streamlines

(Fig. 15e). From 8 to 9 January, Greta developed from a tropical

depression into a tropical storm.

r

	

	 A number of Southern Hemisphere tropical cyclones with equatorward

outflow channels have their centers located eabt of an upper level

antieyr,lones as Fig. 16a shows in idealized form. For example, the

center of 'Iropinal Storm Henry was located to the east of an upper

anticyclone in the South Pacific on 31 January 1979. The storm was

under an equatorward flowing south wind. It is believed to have formed

the equatorward outflow cloud channel as seen in Fig. 16c. The upper

level outflow appears rather strong. From 31 January to 3 February,

Henry developed from a tropical depression into a tropical storm.
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Fig. 15a-c. Pattern ^: '!'ypical case, Diagram (a). Diagram (b) 200
mm	 January 1979 of Sturm Greta. Diagram (c) 1601 GMT 8
January 1979 DMSP display of Tropical Storm Greta. Between
8 and 9 January this system went from a tropical depression
to a tropical storm.
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Fig. 15c. Continued,

(2) fik Outflow Channel (N)

This category of tropical cycloneci frequently occurs when the

cyclone is on the eluatorward-side of an anticyclone and when there is a

weaker-wind region to the north of the upper anticyclone. Figure 17a

shows the idealized picture. it im more difficult for outflow channels

to form in this particular arrangement.

Figure 17b shows the upper level stream field when Tropicai Cyclone

Idylle was still a tropical depression over the South Indian Ocean. On

S April the depression was in the weak east-wind region north of an

anticyclone. It had no apparent wind nor cloud outflow. However, at

the outer edge of the central tense overcast (Fig. 170, there were

marked counterclockwise outward spiraling cirrus lines. This indicates

that strong divergence existed above the cy^lcne, but was dust not
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Fig. 16a-c. Pattern Ste: Typical case, Diagram (a). Diagram (b) 200
mb Il January 1979 of Storm Henry. Diagram (c) 1602 GMT 31
January 1979 DMSP display of Tropical Storm Henry. From 30
January to 3 February the system was up L:raded from a
tropical depression to a tropical storm.
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Fig. 16c• Continued.

concentrated in any one quadrant. From 5 to 7 April, Idylle intensified

from a tropical depression into a strong hurricane (T6 -- maximum winds

115 ktai.

c. Synthesis of all Mayor Outflow Pattorns

Figure 18 gives a summary of the variety of upper tropospheric

outflow patterns which can occur with intensifying tropical cyclones of

the Northern Hemisphere. Similar but inverted patterns occur in the

Southern Hemisphere for a number of these cases.
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Fig. 18. Variety of outflow patterns associated wl;.h trnpleal cyclone
intensification for 'eorthern Hemisphere canes.

d. Intensity Changes Associated with Different Outflow Patterna

These different outflow patterns can have diffe r ent effoeta on the

magnitude of tropical cyclone intensity change. Statistical analyain of

the average intensifying rates of many of these cases was also made.

Intensifying rates are expressed in average wind speed ir.cr • east per 24

hours as reported by reconnaissance aircraft or as infer red from

satellite estimates of the Dvorak scheme ( 1975). A number of these

averages are taken over multi -days of intensification. Figure 19 shows

results.

Double- channel outflows are associated with the fastest

intensification rates. For singe-channel patterns, equatorial outflow

channels on average lead to faater intensification raters than do

poleward channel outflows.
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Fig. 19. Average maximum wind increase KTS/6 hr. asaociabbd with
different outflow patterns.
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1. Types of Synoptic Flow Patterns which Enhance Outflow Channel Chaide

The different types of outflow channels associated with tropical

cyclone intensification as discussed in the previous Chapter lead one to

pay close attention to changes in a cyclone's surrounding environmental

upper tropospheric flow conditions which can bring about enhancements or

reductions in such outflow channels. This, perhsps, can lead to some

improved techniqu ,	 r the forecasting of cyclone intensity change.

There are threw basic types r-f envirr,.imental influences to be

watched for:

a) Opposite hemisphere influences

b) Middle latitude upper trough and/or wcaterly wind Influence on

the poleward side of the cyclone such as a Tropical Upper Tropospheric

Trough (1UTT)

c) A coo,oination cf process (a) ana (b)

a) Opposite-hemispheric Influences

,'.n upper level anticyclone at low latitude on the opposite side of

the equator can have an important influence on the equatorial outflow of

a tropical cyclone existing across the equator from it.

(1) Impact of the Southern Hemisphere (S.H.) on the Northern
Hemisphere (N.H.)

A strong equatorial upper level anticyclone in the Southern

Hemisphere (S.H.) is extremely favorable for enhancing the equatorward

outflow of a Northern Hemisphere (N.H.) tropical cyclone and vice versa.

In particular, when a low latitude anticyclone of the opposite

hemisphere increases its strength or builds from west to east into a

r	 position. just equatorward of t:ie tropical cyclone, a general
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strengthening of the egiiatorward outflow channel of the tropical cyclone

is frequently observed. This often leads to an intensification of the

cyclone.

On 16 August, future Super Typhoon Judy (in the northwest Panlric)

wa." still a tropical depression with light easterly 200 mb wind over it

and weak appearing outflow (Fig. 20a). During 17-19 August, a low

latitude anticyclone in the S.H. extended westward and began to build

over North , : rn Australia (F' i.g. 20b, 20c) . This process dramatically

changed the equatorial outflow circulation aboi a Judy. Equator-ward of

the cyclone the wind changed from being weakly from the east to being

strongly from the northeast. A strong equatorward outflow channel was

established during the 16th to 17th of August. Following P.he

enhancement of the equatorward outflow, the tropical cyclone

dramatically intensified from the 17th to the 20th (Fig. 21). A

tropical storm was formed by the 17 August, and by 20 August the maximum

sustained wind speee of Typhoon Judy reached their then peak value of

135 kts.

Figure 22 givat another example of this type of cross-equator

enhancement for the northeast Pacific. Hurricane Andres was in a

tropical depression phase during 31 May - 1 June (Fig. 22a). Are

equatorial anticyclone over South America moved westward and

strengthened from the 31 May to the 3rd of June. Its approach to the

south of the tropical depression led to the generation of an equatorward

outflow channel for the tropical depression (Fig. 22b, 22c). During the

course of the anticyclone's intensif'ication and westward movement

tnnni no  •,*nr.00ai nn Aneinsaa ov nab nitinnori n nnnti nii A i ntcnai f i^nf . ^n 	 YL a i
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Fig. 20a-c. Illustration of how a Northern Hemisphere tropical cyclone
(Judy) with an equatorward outflow channel intensified when
an anticyclone over the opposite hemisphere moved close to
it. From 17 to 19 August Judy's maximum sustained wind
increased from 50 to 120 kts.
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Fig. 20c. Continued.

maximum sustained wind speed increasing from 30 kta on 2 June to 85 kta

on 4 June.

An opposite hemisphere anticyclone with the above-mentioned

characteristics can also contribute to enhancing some non-equatorial 200

mb ;)utflow. An example is shown in Fig. 23. Hurricane Ignacio was at

tropical depression stage on 24 October. A weak low latitude S.H.

anticyclone was located to its south (Fig. 23a). From 24 to 26 October,

the anticyclone began to build rapidly. This acted to enhance the

outflow of the cyclone to Ats west and contributed, we believe, to the

development of this system into a strong hurricane (Fig. 23b). From

26-28 October, the maximum sustained wind speed of Ignacio (a9 measured

by the Dvorak scheme increased from 45 kts to 120 kts.

In the opposite sense when a S.H. uppc p level equatorial

anticyclone weakens and/or moves away from a tropical system, canditions
i

t
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Fig. 21. Intensity (maximum wind in kts) of Typhoon Judy in the period
16-21 August.
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Fig. 22a-c. An east Pacific tropical cyclone (Andres) with an
eq uatorward outflow channel intensified when an anticyclone
of the southern hemisphere moved close to it. From 2 to 4
June Andres maximum sustained wind increased from 30 to 85
kta.
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Fig. 22c. Continued.

become less favorable for either development or intensification. For

example, on 23 July a tropical cyclone over the northwest Pacific ,joined

together with a neighboring powerful S.H. equatorial anticyclone to help

establish a strong equatorward outflow channel from the storm system

(Fig. 24a). After 23 July, however, the anticyclone split into twc

weaker anticyclones. The equatorward outflow channel which was well

established on the 23rd was consequently weakened (Fig. 24b). Two days

later on 25 July, this system filled over the sea.

(2) Effect of the N.H. Flow Patterns on S.H. Tropical Cyclones

The movement or intensification of a low latitude N.H. upper level

anticyclone to a S.H. tropical cyclone can have a similar enhancing

influence on the equatorward outflow auove a N.H. tropical cyclone.

Figure 25 shows the intensifying process of Tropical Cyclone Angele

over the South Indian Ocean. On 15 December, a 200 mb low latitude
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Fig. 23a-b. Illustration of a no-channel tropical cyclone (Ignacio)
intensified when a stationary anticyclone near the cyclone,
but in the other hemisphere intensified.
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Fig. 25a-b. Illustrating how tropical cyclone ( Angele) in the Southern
Hemisphere intensified to a hurricane when a 200 mb
anticyclone over the Northern Hemisphere intensified and
moved north of it. From 16 to 18 Decembcr Angele increased
its intensity from a tropical depression to a hurricane (T5
90 kts).
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anticyclone in the N.H. was over the North Indian Ocean ( Fig. 25a).

This anticyclorw then built to a poaitior. over North Africa. It was

then in a favorable longitudinal proximity with Tropical Cyclone Angelo.

This movement caused the development of strong 200 ab cross-equator flow

and the establishment of Angela's equatorward outflow channel. Angelo

was then located over the Mozambique Channel (Fig. 25b). From 16 to 18

December Angelo increased its intensity from a tropical depression to a

cyclone of Dvorak T •-no. S ( SA kta).

b) Middle-Latitude or TUTT and Cyclone Interaction Influences

When a mid-latitude long -wave trough, moving eastward, approaches

close enough to a tropical cyclone, conditions became favorable for the

establishment or the strengthenivy. of a puleward outflow channel.

On 19 December, 1976, a tropical cyclone was present east of the

Diego Garcia Island in the South Indian Ocean. A trough moving from

west to east underwent strong deepening over the ocean east of

Madagascar on 20 December (Fig. 26). This strengthened the puleward

outflow channel o f the tropical cyclone in front of the trough. From 20

to 21 December the tropical cyclone increased from a depression to a

tropical storm.

These types of the middle latitude trough influences on tropical

cyclone intensification are the feature most responsible for tropical

cyclone intensification in the S.H.

Another model of a long -wave trough influence on intensification is

the nituation whea a tropical cyclone becomes located at the tip of, or

slightly to the rear of an upper level trough or TUTT. In contrast to

the previous case this acts to enhance the tropical cyclone's equatorial

outflow. This causes northern flow Lo prevail above the tropical I

f^
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Fig. 26. Illustration of how a 200 mb poleward outflow channel 13
enhanced by a long wave trough west of the tropical cyclone.
From 20 tc 21 Deceal,er th e tropical cyclone increased from a
tropical deprebalon to tropical atom rtrength.
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Fig. 27. Illustration of how a 200 mb eyuatorward outflow channel is
enhanced by an upper level lc _6 wave trough or shear zone to
the east of the tropical cyclone. From 15 to 16 September the
maximum sustained wind of this cyclone ; Mac) increased from 20
to 65 kts.
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cyclone with an upper level anticyclone to the west of the storm. the

long-wave trcugh (c.^ TUTT shear line) sots to enhance an equatorial

rather than the normally expected poleward outflow. This flow

arrangement can also ooistribute to the intensification of a tropical

cyclene.

Figure 27 shows the 1rtens.lf'ying process of Typhoon Mac. A strong

large-scAle trough or shear line developed over the aid-Pacific. Mao

was looatee in the area alightl y to Lhe rear cf the trough, with

prevailing not • thly flow and an equatorw and outflow channel. From 13-16

September, the maximum sustained wind speed of Mac inoresaed from 20 kta

to 65 kLs. Many other cases like this occur in the nor Unrest Pacific

during the summer season.

This type of outflow conforms with the SEe pattern. In mid-summer

(July-Auguit), the development of a tropical cyclone over the northwest

Pacific is frequently associated with such SEe upper level patterns.

The 5 E equatorward outflow channel can thus be brough'. about by eithar

the rear effects of such a 200 mb TUTT type of trough or by the effects

of a S.H. equatorial anticyclone.

c) CombiEred Infl uenc6

A tropical cyclone's intensification also can be positively

influenced by the combined interaction of both the N. H, and S. H. flow

patterns. Such a interaction can frequently have a powerful influence

on very rapid tropical cyclone development and intensification.

When a mid-latitudes long-wave trough and an equatorial upper level

anticyclone of the opposite hemisphere approach to the north or south of

a tropical cyclone from different directions, strong double outflow

channels (D pattern) can be developed.
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Typhoon Owen over the nurthwesL Pacific had no obvious outflow

channel before 24 Septmber (Fig. 28). Two days let%..- when a middle

latitude trou,,h and an opposite hemisphere anticyclone approached Owen

simultaneously tliei r oombi ned influence was felt ( Fig. 28b). These

comblood influences helped establish simultaneous double outf:ow

..
	 channels. Owen's Intensity increased rapidly. From 24-26 September,

Owen's maximum sustained wind speed increased rapidly from 45 kt3 to 110

kta.

A seoor,d model shows how cyclone intensification can alao be

int'luenced by the combined effect or an equatorial anticyclone of the

opposite hemisphere and that of the Up (or rear) of % TUTT. These

combined influences can similarly lead to powerful euhanoer; nt of Lhe

equatorial outflow of the tropical cyclone and its rapid

intenaltication.

Typhoon Hc.c,r over the North Pacific was in a depression phase on 28

July. During 27-29 Jily, an equatorial anticyclone of the Southern

Hemisphere moved westward and intenaifiso at the same time that a long--

wave trough east of Hope deepened (Fig. 29). The 2ombined effect of

these two processes brought about a large enhancement of Hope's

equatorial outflow channel. From 29-30 July, Hope's maximum sustained

wir:d speed increased from 40 kta to 90 kta.

On 30 July, Hope was at the Up of the western extended trough over

the mid--Pacific. Two streams of outflow were formed--a southwestward

stream and a southeaatwar .j one (Fig. 29b). Satellite imagery also

showed southwestward and southeastward cloud outflows -- both were

equatorw ard. From 30-31 July, the maximum wind speed near the center of

Hope increased from 90 kta to 130 kta.
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tb)

26 SEPTEMBER OOZ

Fig: 28a-b. Illustration of how 200 mb double outflow channel. iai
enhanced by the combined influence of a trough Nest ^f the
cyclone and an anticyclone over the opposite hemisphere. 	 J

From 24 to 26 September the maximum sustained wind of this 	 J
Typhoon Owen, increased from AS to 110 kts.
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Fig. 29a-b. Illustration of how a 200 mb outflow towards the eyuatc,• is
enhanced by the combined in!.'luEnce of a trough east• cf tale
cyclone and an anticyclone over the other hemisphere. From
29 to 30 July 1979, the maximum sustained wind of this
cyclone, Hope, increased from 40 to 90 kts. From LO to 31
July, the maximum sustained wind of Typhoon Hope increaed
from 90 to 130 kts.
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a also can produce a combined outflow

ane Henri over the Atlantic was located vest

T-

of an anticyclone between two Aid-latitude troughs. The western trough

helped enhanced poleward outflow, and the eastern trough helped to

enhance equatorward outflow. This tropical cyclone established double-

channel outflows and rapidly developed. From 15-17 September, the

maxim" wind speed near Honri'a center increased from 2^ kta to 75 kts

(Fig. 30).

(2) Model Synthesis of Various Types of Interaction

We '-relieve that these examples show how the positioning of a

cyclone in conjunction with its upper tropospheric environment can have

a very important influence on a tropical cyclone ' s intensification.

We have isolated six basic types of cyclone and environment 200 mb

wind field interactio :i which occurred during the FGGE year and for which

we have also observed to take place in other years. These are:

I1 Equator ial anticyclone of the opposite hemisphere enhancing a

single equatorward outflow channel (Se).

I2 Lorg-wave middle latitude trough moving eastward to the

poleward and west side of the cyclone :o as to enhance a single poleward

outflow channel ( S a ) .

13 Tropical cyclone is located at the tip of or in the rear of a

transverse long- -wave trough ( or TUTT). This arrangement acts to bring

about the enhancement of a single equatorward outflow channel (Sp),

I4 Ric-latitude long-wave trough (or TUTT) and equatorial

anticyclone of the opposite hemisphere approach a Lropical cyclone from

. I
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Fig. 30. Illustration. of how 200 mb double outflow cnannels are
enhanced by the combined influences of two large-scale
troughs. From 15 to 17 September the mEximum sustained wind
of this hurricane, Henry, increased from 25 to 75 kts.

different directions and contribute to the establishment of double

outflow channels (D) in both poleward and equatorial directions.

I5 Combined effect of an equatorial anticyclone of the opposite

hemisphere and the tip of a transverse upper shear line over the mid-

ocean enhancing a single equatorial outflow chann oil (Se ) .

I6 Tropical cyclone flanked by western and eastern shear lines.

This situation eontrlbutes to the establishaent of double outflow

channels (D).

Figure 31 shows a plan view of these six typical interaction types.

Some of these interaction models are more prevalent than other.

Table 1 gives a statistical breakdown of the frequency of these various

interaction models by class for the FGGE year. It is seen that 89% of

the systems with poleward outflow channels (S P pattern) are associated

with the approach of a mid-latitude long-wave trough or a TUTT. Only
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Fig. .31. Six types of interactions between a tropical cyclone and its
surrounding.

TABLE 1

Frequency of interaction types in diffe,•ent outflow patterns during the
FGGE year. X means that no interacting outf.l-,w cloud channels were
detected with this flow configuration.

^attevna	 SP SE D N

fnterac	 12

ty Pe
X I 1 Is 13 X I4 I6 X I	 I1

lumber 25 3 i8 9 2 3 S 1 9 S

rotal 28 32 6 14 Total
8o
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three cases have polew and outflow channels associated with other flow

arrangements. Eighty -four percent of equatorward outflow channels are

associated with favorable positioning of low latitude anticyclones of

the opposite hemisphere. Thirty-four percent of equatorial outflows are

associated with the tip or rear effects of a 200 mb trough or TUTT shear

line. ( Some equatorward channels are associated with both shear lines

and anticyclones. )

Double channels occur with the lowest frequency. All but one

double channel outflow were associated with the combined effects of an

equatorial anticyclone of the opposite hemisphere and a mid-latitude

long-wave trough of some configuration. This table also shows that of

the 80 tropical cyclones occurring during the FGGE year which underwent

intensification or development, 59 or 741 were observed to possess some

type of d13ti.nct 200 mb outflow channel or channels. Upper tropospheric

tropical cyclone and surrounding environmental interaction is thus a

very common feature of tropical cyclone intensification.

These modelz of upper-level. cyclone-environment interaction also

possess seasonal and regional relationships. FGGE year data shows that

in mid--summer in the northern hemisphere, intensification of tropical

cyclones in the ?acific is frequen,.ly associated with the effect of an

upper level an;.ieyclone of the opposite hemisphere. On the other hand,

the influence of a mid-latitude long-wave trough to the northwest of the

cyclone (excluding tip and rear effects of upper shear line or TUTT

t.roc:gn over the mid-ocean), is primarily a feature of the autumn and

winter.
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All tip or rear of trough effects of a transverse shear line over

the mid-ocean. (models I 3 , Is, and 16 ) occurred in the summer --

especially over the northwestern Pacific.

These outflow models also vary in the different ocean basins. The

ocean basin moat influenced by equatorial anticyclones of the opposite

hemisphere is the northeastern Pacific (92%) and the northwestern

Pacific (32%) basins. This is opposite to the situation in the S.H.

Only 9% of S.N. FGGE year tropical cyclones were influenced by an

equatorial anticyclone of the Northern Hemisphere. Moat of the tropical

cyclones which intensified in the S.H. (821 in the South Indian Ocean,

and 63% in the Southern Pacific) are associated with a mid-latitude

long--wave trough to their weat (I2 pattern that is inverted).

Poleward outflow patterns are also prevalent for tropical cyclones

over the North Indian Ocean. These cyclones occur only in late spring

and autumn. This is tho time when middle latitude westerly waves are

gust able to pass to the south of the Tibetan plateu and draw in

poleward directed outflow from the tropical cyclone.

Over the central Atlantic in summer, a quasi-stationary transverse

shear line or rJTT typically exists. Tropical cyclones which

intensified over the North Indian Ocean or the North Atlantic are thus

most'.y associated with the effects of middle latitude troughs and/or

upper level shear lines (67%).

.

a



U'

'I

3. Regional and Seasonal Outflow Differences as a Response to
Background 200 mb Clim..tol ogy

These characteristic differences in outflow channel patterns are

regionally and seasonaly well related to the background 200 mb

climatology. These outflow patterns are better understood when this

background climatology is studied region by region.

a. The Northwest Pacific and the North Indian Ocean

Although tropical cyclones may occur in all seasons over the

northwest Pacific, July ti.rough September is the main part of the

season. Table 2 ::howe that the S P outflow pattern prevails during the

summer. The poleward outflow channel (S P ) occurs mainly during non-

summer months. Outflcw charnel patterns are closely 'Linked with uhe

seasonal variation of the upper level circulation.

The position of the ,)et stream axis of the upper westerlies over

the northwest Pacific possesses a distinct seasonal shift. As indicated

in Fig. 32, the het stream axis reaches its northern limit (43 0 N) in

July and August, and its southern limit (320N) ir. January. In winter,

the westerly stream may reach to a latitude as low as 100N. Winter

cyclone3 are almost always located to the west of the 200 mb

climatological equatorial ridge (Fig. 33). Since wjnter tropical

cyclonez ^re always near the westerlies, the cyclone's outflow is almost

always poleward, with very little possibility of its becoming

equator-ward. This is also true of cyclone In the late fall and early

spring.

Following, ;,he ncrthward shift of the ,)et stream, a strong

anticyclone in formed i!! South Asia during July and Ausust. A semi-
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Fig. 32. The monthly variation of the 200 mb jet stream in the
northwest Pacific basin (140 0 E)- (adopted from Sadler 1975).

stationary trough lieu over the central Pacifi(:. The tropical cyclone

is usually at the western end of the ahear line and under the influence

of the northeastern flow of the eastern part of the South Asian

anticyclone. There is thus a great difference in the 24C mb west

Pacific flow patterns in July as compared with January. The mean

climatological flow near the center of the summer cyclones has changed
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fr•ce southwest to northeast ( compare Fig. 34 with Fig. 33) . These

climatological flow patterns establish the background potential for the

type of outflow uhannela and interaotion that the cyclone is going to

have w' • a, its environment. In old-rummer, the equatorial ridge of the

S.H. winter is closer to tho equator. Its intensification and movement

can thus exert more influence on N.H. :yclonos. Note also that the

location of summer tropical cyclones are a considerable distance from

t
the position of the e.Limatologieal westerlies. This makes it difficult

F	 for summer cyclones to establish poleward outflow channels.

The two easel watt, double outflow channels occurred in the autumn

season. This is typical. In the fall (Fig. 36), the het atresm axis of

the westerlies advances markedly southward, and the south Asian

anticyclone shrinks into a narrow weac-east cell. The easterliea and

westerlies on either side of the 200 mb anticyclone become considerably

r
closer (Figs. 35 and 36) together. This provides a very favorable

circulation background for the establishment of double outflow channels.

Tropical cyclones wAthout outflow channels occur meatly at very low

latitudes in miu-fall Rnd winter (Table 2) when the South Asian

anticyclone has retreated over the tropical 2scific and the southern • Y

part of the anticyclone is under flat easterlies. It is then more

difficult to generate a poleward outflow at vary low latitudes. Also,

the equatorial ridge of the S.H. has moved further southward and away

from the equator. It thus has less influence on tropical cyclones of

the N.H. Therefore, conditions become more favorable in the late season

and in winter for the occurrence of non-channel tropical cyclones.

b	 '
r,
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K. comea formed over the northcru part oi' the Indo- r,hina F^ninsula. The

reulatlos, condltion y that woua.d normally generate equatorward outflow

anrAls become well establi:4hed over the North Indian Gcoan ;Fig. 38).
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TABLE 2

Monthly frequency of the upper level outflow pattern of northwest
Pgcit*lv RXE year tropical -ycloneb.

Dec Jan Feb Mar Apr May Jun Jul .S Sept Oct Now Total

S

3Pw

SPc

1 2 2

1 1 2

He 1 1

SSe 1
rs

4 3 2 is

D
Dc ( 1

1

1

1De

N

Nv ^-

1

i

1 1
Na

r_.

No

I _

1	 !

1
—_^.

2

1

4

2	 -

Ne

As indicatod in Table 3 most of the tropical cyclones in the FGGE

year over the North Indian Ocean have poleward outflow channels. Tl-.iL

is because tropical cyclones over this basin occur primarily in late

spring s::d fall. During these two seasons, the general circulation

undergoes major changes. During April anu May and after SeptemUer, 200

mb southwesterlies prevail over the basin of the North lixian Ocean

poleward of 10-15 0N, (Fig. 37) . This type of circulat ,n is favorable

for geiie.rating poleward outflow channels. After May, dramatic changes

of circulations occur as the very intense South Asian anticyclone
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TABLE 3

Monthly frequercy of the upper level outflow patterns during the FGGE

year, over the North Indian Ocean.

D*o-Apr May Jun Jul-Aug Sept Oct Nov Total

SPw

SPe

1 1 1
on

3

1 1

3
SEc

See

1 1_

1

However, tropical cyc.Lores typically do not form over this basin in

mid-.rummer. Therefore, the frequency of poleward outflow channels with

North Indian Oc	 yelones is higher than one might expect from a

general consideratio p of the summer climatology.

b. '.fie northwest Atlantic and the Northeast Pacific

Tropical cyclones3 over the Northwest Atlantic occur at a relatively

high latitude and maarly in August to October. Their frequency is only

30 percent of the northwest Pacific. They can readily generate double

outflow channels, however. Table 4 shows that durirg the FGGE year the

D type. double outflow patterns in the Atlantic occurred 4 out of 9 tines

or in 44% of the cases. By ^ontra6t, over the northwest Pacific, only

69L of the cyclones experienced double outflow p-itterns.

The winter to summer shift of the 200 mb jet stream axis over the

northwest Atlantic is not :a: distinct a. that of the northwest Pacific.

G permanent quasi-stationary 200 mb TUTT, much stronger than that. over

the Pacific, extends from the middle to the south western part of the

Atlantic (Fig. 39). Phis results in southwest flows reaching low

latitudes. In addition, the equatorial anticyclonic east-west ridge is

QI
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TABLE 4

Monthly frequency of the upper level outflow patterns over the Northwest,
Atlanc_e during the FLOE year.

Dec-May Jun Jul Aug Sept Oat-Nov Total
AN

S^ 1 1 2
_

SEr 1 1

w 1 1 2

--

—4

D i 1 2

V

N

_---

1

— — - -

1

-- --

N e 1 1

narrow with prevailing easterly winds on its southern side. These

circulation conditions are favorable for generating double outflow

channels. Tropical cycloc,e:i over the northeast Pacific occur mainly in

June--October (Table S.) The FSOE year was no exception. The upper level

flow patterns of northeast Pacific tropical cyclones are subject to the

influences cf' this strong climatologically positioned anticyclone. Most

tropical cyclone: form under Uie 200 mb nor heaAt flow to the east of

this upper level anticyclone (Fig. 39). It is riot surprising then that

equatorial outflow channels prevail over this ocean basin.

The frequency of equatorward outflow channels is very nigh for

northeast Pacific tropical cyclones (see Table S). Two-thirds (8 of 12)

of these storms had equatorward outflow channels, only one had a

poleward outflow channel and this occurred in November when 200 mb

westerlies have ,just appeared. Two cyclones did not display outflow

channels.

^I

1,i

j-'- 1.1
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1'AbLE S

Monthly frequency of the upper level outflow patterns over the Northeast
Pacific during the FGGE year.

DoJ--May Jun Jul Aug Sept Oct Nov Total

s^

S SPO

^i

1 1 1 3

s
Ea

N 1 1 2

N c
1 1

Before Apri. , the whole northeast Pacific cyclone basin is

controlled by 200 mb westerly winds. An anticyclone begins to develop

to May. It remains stationary around 110 0W (except In Outuber when it

retreats to about 95 OW). After generation .+.n May, the 200 mb

anticyclone advances nort,,wdrd, -d reaches its highest latitude in July

and August (Fig. 40). In November-, it retreats to lower latitude and

disappears.

c. The Southwest Pacific and the South Indian Ucean

Tropical cyrnones in the Southern Hemisphere (S.F.) occur mainly

during December-April. Because the S.H. has a much la. •ger area of

oceans, winter to simmer north-south shifts of the jet stream belt and

tha equatorial anticyclone arc considerably less in the N,.rther•n

Hemisphere. Even in m+.d-summer (Jan.-Feb.), westerlies may still reach

15 05. Thus, poleward outflow channels are much more prevalent in the

S. H. During the FGGE year polewaro outflow channels occur with 64% of

the cyclones in the South Pacifi, and with 82% of the cyclones in the

South Indian Ocean (Tables 6-7).
1
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Fig. 40. Seasonal variation of the position of the center of an

anticyclone at 200 mb over the east Pacifi., (between 100° -
140°W).

During January and February, the peak storm months in the S.H., the

climatological position of the east-west ridge aA13 is between 10-1S''

latitude (Fig. 41). Easterly flow prevails between the equator and 8°S.

This allows for the occurrence of equatorward oriented outflow channels.

During the FGGE year 36% of the cyclones in the South Pacific and 9% in

the South Indian Ocean, cyclones developed equatorial outflow channels.

When S.H. tropical cyclones occur at low latitudes and are located to

the east of the climatological position of the 200 mb equatorial

anticyclone (Fig. 43). then conditions are favorabl , for the formation

of equatorward outflow channels.

f -- --
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Monthly frequency of Lhe upper level outflow patterns over the Southwebt
Pacific during the EDGE ,year.

Duo Jan Feb Mar Apr May - Nov Total

SPw

SP`

2
—1	

-

1

3

—

1

I

IT

1

1 6-

1

--1--
3SE

TABLE; 7

Monthly frequency of the upper level outflow patterns over the South
Indian Ocean during the FGGE year.

Dec Jan Feb Mar Apr May-Nov Total

5

S 1 S	 2
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A few S.H. tropical cyclones occur in a weals easterly sector to the

oq uatorward side of the 200 nb anticyclone where wind conditions are not

strong enough to favor the devel . pment of outflow channels.

d. Channel Discussio.i

Tables 8 and 9 show how frequently the vario6a outflow channel

patterns occur in the Northern and Southern Hemispheres, respeotively.

These results show that in thr Northern Hemisphere, equatorward outflow

channels occurred much more frequently than poleward outflow channels.

Equatorial outflow patterns are twice as prevalent as equatorial outflow

patterns. This situation is reversed in the S.N. where poleward outflow

channels are much more frequent than tq uatorward outflow channels by a

ratio of three to one. Global statistieb stow that poleward outflow

channels and equatnrward outflow channels occur with about the same

frequency. During the 1'GGE year global tropical cyclone activity showed

that single -channel outflows were three times as frequent as double or

no- channel outflow.

..^.^.....:.^.,.^:.....,mil.



different tropical cyclone baaina of the
ng the F'OOE year with the percentages of each
th *"* .

90

TABLE 8

39 D N

--

Total

16(12) 2(7) x(26)

^^
31(100)

2(33) 6(100)

1(11) 4(4!) 2(22) 9(100)

8(67) 3(25) 12(100)

27(47) 6(10) 13(22) 38(300)

TABLE 9

V

'&me as Table 8 but for the Southern Hemisphere.

,)Utflow
Patterns

3P SE D N Total

SW Pacific 7(64) 4(36) 11(100)

S.	 Indian Ocean 9(82) 1 ( 9) 1(9) 11(100)

Southern
Hemisphere Total

16(73) 3(23) 1(5) 22(100)
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t	 6. Outflow Channel Changes Associated with Tropical Cyclone Weakening

^	 t

:t is well known that when a tropical storm or hurricane passes

over land over a cold so& surface, or encounters strong vertical v,.nd

'	 shear regions, its central intensity will decrease. Such inner-core

cyclone intensity decrease can also occur over warm seas and away from

barooi • nic zones when the upper level outflow channels of the cyclone

become cut-off. Cyclone intensity decrease is associated with a

decrease in cyclone inner- core deep convection. As will be discussed

later, cyclone outflow charnel strength appears to be related to the

strength of the inner - core deep convection.

Our case study analysis of FGGE year cyclones at,ows that prior to

and during the wea l.erLtng of a tropical cyelcne over tropical waters that

the upper level outflow and cloud outflow channel features often undergo

marked e~angea. These changes are outlined in the following three

models.

a. Cut -off of the Upper Level Cloud Outflow Channel

Super Typhoon Judy over the northwest Pacific had a strong

equatorward outflow channel for 6 days up until 23 August ( Fig. 42r).

This outflow channel was associated with the approach to and the

enhancement of an egvatorial anticyclone in the Southern Hemisphere (see

previous Fig. 20). This outflow channel was Man suddenly cut .;ff (Fig.

42b) and Judy rapidly filled. Aline from J to L of tbia figure shows

the cut-off part of the cloud outflow (21 0
N). The maximum sustained

wind speed of Judy was 80 kta ,just before this cut--off occurred. After

this cut-off, Judy weakened to only 30 kts maximum sustained speed on 25

August. This cyclone then disappeared on 26th of August.

_kf	 .	 ^Y



(o)

(b)

24 AUGUST 0612Z

1
i

ORIt,. aL ! Af it- t:,
92	 Of POOR QUALITY

23 AUGUST 0613Z

Fig. 42. Illustrating the equatorial outflow channel cut-off which

occurred with Pacific Typhoon J.idy between 23 and 24 August,
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By comparing Fig. 43a and 43b one can see that this outflow channel

cut-off appears related to the eastward mcveaent and weakening of the

S.H. equatorial anticyclone (caused by the intense development of a

long-wave trough off the east Australian coast). In addition, the

typhoon moved northward and entered into a trough region between two

highs...

Outflow channel cut-off can also occur when a tropical cyclone

moves out of a large-scale onvironment which is conductive to outflow

channel maintenance.

The depression out of Which Typhoon Lola grew in the northwest

Pacific was formed on I September; no outflow chaa,iel wes present before

4 September. On the Sth an equatorward outflow channel was formed (Fig.

44a). From the 5th to the 6th, the maximum sustained wind speed

increased from 75 kts to 90 kta. As Lola moved further westward the

next day this outflow channel became cut off and disappeared on the 6th

(Fig. 44b). Lola then rapidly weakened. From the 6th to the 7th, the

maximum sustained wind speed cropped from 90 kts to 45 kts.
a

b. Merging of a tropical cyclone's poleward cloud outflow with a cloud
band in the westerlies

It has been shown that when a longwave middle latitude baroclinic

trough with a cloud band approaches a tropical cyclone. there is

typically an intensification of the tropical cyclone. But, if the

trough is strong and more closely approaches to the cyclone, the cyclone

will quickly fill and occasionally disappear altogether due to the

increase of the vertical wind shear over the system. When this happens

it is frequently said that the cyclone has been "sheared". What is

e	 this critical distance for cyclone weakening? It depends upon such

a
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Fig. 43. Typhc^n Ju dy's outflow channel was cut when the anticyclone
over th( 'outhern Hemisphere moved away from the storm. From
24-25 August Judy ' s maximum sustained wind decreased from 80
to 30 kts.
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(a)

Fig. 44a-b. Illustration of Typhoon Lola's cloud outflow being cut off
and this cyclone being to fill between the 5th (Diagram a)
and the 6th (Diagram b next page) of September.
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Fig. 44 b. Continued.
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factors as the typhoon's intensity, its size, and the intensity of cloud

band and the baroelir.ic westerly winds. It is complicated. The

satellite imagery, however, may provide some reference measure for how

close the baroclinic region must come before cyclone weakening occurs.

When the cloud band of westerlies links up with the poleward cloud

outfloy channel or with the central convection of the cyclone, the

cyclone will typically undergo P rapid weakening.

Figure 45a shows future Typhoon Bess with a long poleward outflow

channel. During the proce.,s of the typho w)n's approach to the baroclir,ic

westerlies, the maximum sustained wind speeds increased from 50 '..ts on

27 March to 90 kts on 23 March. The distance between Bess and cloud

band 'E' of the westerlies was about 15 degrees at the time of thin

increase.

The next day as cloud band 'B' approached more closely to Bess, its

cloud region linked up with the cyclone's long poleward cloud outflow

channel (Fig. 46b). The two cloud bands merged on 24 Match. From 24 to

25 March, the maximum sustained wind speed of Bess dropped from 93 Kta

to 25 kts, and the entire system dissipated.

Another Typhoon, Cecil, had similar featur9s. Its depression was

generated on 9 April. It developed rapidly dur'.ng the 1Sth to 14th. It

then made landfall in the Philippine.-3 on the 15th and recurved out to

sea on the 17th. It then developed a poleward outflow channel

(designated 'A' in Fig. 46). On the 18th this poleward outflow channel

was about 15 degrees latitude f. •om a cloud band 'b' of the westerlies

designated 'B'. The two cloud bands linked together on the 19th, and

merged on the 20th. From the 19th to the 20th, the maximum sustained

' YI
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Fig. 45a. DMSP visual picture of Pacific Typhoon Bess on 22 March 1979
at 1600Z.

wind speed of Cecil decreased from 50 kta to 20 kta, and it disappeared

over the sea (Fig. 47).

C . Entrance of a Tropical Cyclone Into an Upper Level Trough

A tropical cyclone also will be weakened when it encounters a

baroclinic trough without a cloud bsnd.

Figure 48a shows the situation one day before Hurricane Gloria

weakened when an intensifying upper level trough and the anticyclone

above Hurricane Gloria approach each other. The anticyclone in front of
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Fig. 43b. Linking up a poleward ! . loud outflow A and cloud band B of the
westerlies. DMSP display of Typhoon Bes-T on 23 March 1979 -
1600 Z.

the trough was weakened by the strong trough which Gloria moved under

(Fig. 49b). Gloria rapidly weakened. From 14 to 33 September, the

maximum sustained wind speed of Gloria dropped 80 kta to less than 30

kts and the storm soon dissipated.

There are thus three primary types of synoptic processes that cause

tropical storm weakening: c;lo;:J outflow towards the equator which is

out off ( WI); the cyclone's polar outflow channel clouds merge with a

westerly wind cloud band (N2); and the case when the tropical cyclone

encounters an upper level trough (W3). Twenty-three weakening cases

were analyzed during this FGGE year period (Table 10). Statistics show

j^i

it
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Fig. 46. DNSP display 1600L 18 April 1979.

Fig. 47. DMSP display 160OZ 20 April. 1979.
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Fig. 48a-b. Tropical cyclone was covered by an upper level trough. a)
13 September 1979; and b) 14 September 1979.
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TABLE 10

Frequency of weakening cases for d.fferent types of synoptic processes.

Neaxening Type M1 M2 M3 Others

Number i	 % I	 Number % Number % Number	 %

Frequency 626 10 44 4 17 3	 13

Season June-Sept Oct-Apr

that 20 or 87% of these cases belonged to these three types of

weakening (26% of Ml, 44% to M2, and 17% cc M3).

The remaining 13% weaken from other , processes. The M1 type of

weakening tends to occur more in the summer half of the year and M2

more in the winter half of the year.

There is no doubt in our mind but that the upper tropospheric

environment around the tropical cyclonm can exert a very powerful

influence on the intensity and the intensity change of the inner-core

of the tropical cyclone.

. i
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7	 How UppAr Level Outflow Chan ng l :^ May Be Related to Cyclone
Intensification

What physical processes are responsible for this apparent

association of outflow channel concentration and inner storm

intensification? We cannot yet answer this question with much

certainty. We do, however, have preliminary suggestions based on recent

research at CSU by Merrill ( 1983), Edson ( 1985), Holland and Merrill

(1984), Holland ( 1983), and Schubert and Hack ( 1982).

Cyclone intensification is primarily related to the processes which

bring about changes in the concentration of the tropical cyclone's inner

core mean in-up-and-out mass circulation. Only positive increases in

the cyclone's , -ier core transverse circulation can enhance the inner,

region convection, mechanically spin-up the storm's core momentum field,

and cause a strong dynamically forced eye or center, region subsidence.

There is now general agreement that tropical cyotone intensity and

intensity change is not well related to the overall amount of deed,

cumulus oonve.:tion and w6 an, vertical motion occurring throughout the

tropiea) cyclone as a whole (Arnold, :977). Many tropical cyclones

Intensify with only a moderate amount of deep convection while other

cyclones with massive amounts of deep convection over large areas fail

to intensify or fill. It is not the magnitude of the overall mean

vertical circulation within the total cyclone syst.en. which is the most

important factor in its intensification, but rather the concentration of

the deep convection near the cyclone's center.

The observations of this paper indicate that when a tropical

cyclone's outer radius (-5-15 0 ) 200 mb outflow is concentrated in narrow

1
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and strong channels ( as opposed to broader and more uniform and weaker
outflow channels) that favorable conditions for inner cyclone

coi,..antration of deep-convection are somehow met.. When the tropical

cyclone's upper level outflow is not concentrated in strong and narrow

outflow channels, . jowever, then the conditions necessary to concentrate

inner-core deep convection are, in general, less favorable. Thus, the

200 mb mass outflow configuration as shown in the left diagram of Fig.

49 is more conducive to cyclone intensification than the outflow

cot_. iguration of the right diagram.

a.	 How a Cyclone's Upper Tropospheric Environment may be Linked to
the Inner Core Deep Convection

Although still speculative, the following ideas concerning inertial

stability appear to offer some emplanation as to why the tropical

cyclone's upper tropospheric environmental processes can best explain

the physical linkage to the cyclone's inner core circulation than do the

low levels and why an association between concentrated outflow channels

and cyclone inner-core convection exists. These ideas have beer,

developed at CSU primarily by Holland and Merrill (1984) , Holland

(1983), Merrill (1984, 1985), and Schubert and Hack (1982).

The argument rests with the concepts of inertial stability (I2

x x '.) where I2 stands for inertial stability, Xa absolute vorticity

2Ŷ
and E	 f + r where f is tha Coriolis parameter, V0 is the tangential

wind, and r is radius. The mechanism for inertial stability can t.

viewed as the restoring ability between the pressure gradient, Coriolis,

and centrifugal forces when a particle is offset in the radial distance

from a balanced flow. Air particles can more easily move longer radial

distances if their inertial stability is small (more anticyclonic). The

j`
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200 mb
net 6 0 radius outflow

10 units

lass link to
cyclone center

200 mb
net 6° radius outflow

10 units

Fig. 49. Contrast of 200 mb cyclone outflow patternk with ooneentrated
channels (left diagram) vs. a cyclone with uniform outflow and
no concentrated outflow channels.

smaller I2 is the less resistent are air particles to radial

d;' splaeement. The I2 in the anticyclonic shear of these upper level

outflow channels is considerably lower , than that which would exist in a

more uniform symmetric cyclonic flow pattern at lower tropospheric

levels. There can thus be a greater radial link between the inner coee

and its environment through these channels. It is the high inertial

stability at low levels which insulates the cyclone's core circulation

from its environment. This may explain why low level circulation

features cannot be as well related to inner cyclone intensity change.

Waical Processes Occyrring at jr--r Core Durina Cyclone

Intensification. Observational evidence w...hin the inner Bore of the

tropical cyclone from aircraft reconnaissance and eye dropsondes

indicates that tropical cyclone intensity and intensity change is, in

i'
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general, proportional to the magnitude of the dynamically forced

subsidence warming within the cyclone eye (or central region if no eye

should be present). The .s trength of this central core subsidence

appears, to a large extent, to be directly relatad to the intensity of

eye-wall deep convection and inver9ely to the radius of the eye. For

F.	 equal intensity eye-wall convection, the smaller the rediva or maximum

convection, the smaller the eye and in general the more intense is the

subsidence warming and the lower the pressure drop. Thus, in order to

observe an increase in tropical cyclone intensity one must also observe

an increase in eye--wall (or central cyclone) deep convection an 1 a

consequent increased forced subsidence as idealized in Fig. 50.

Arnold's (1977) Colorado State University composite satellite study

gives evidence of systematic inns!—core deep convection increases during

the progressive developmental stages of a cloud cluster to super typhoon

stale as does Dvorak's (1975, 1984) intensification technique. This

inner core convective concentration goes on irrespective of the overall

amount of deep convection within the entire tropical cyclone cloud

region.

The mode of evolution of the cyclone's inner region deep corvection

is important in determining how the cyclone's inner deep convection can

be maintained however. In general, deep Cb convection acts to warn; and

to stabilize the upper troposphere. All tropical cloud clusters with

deep convection have warm upper tropcspheric layers. Such upper level

convective stabilization if ocntinued in the central area of the

tropical cyclone for very long would be expected to stabilize and

'i
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Fig. 50. Idealized portrayal of the mean flow conditions in the
hurricane's inner core region. The horizontal and vertical
arrows represent the radial and vertical velocities,
respectively. !loan D-value (or pressure-heigh t curve) and

temperature profiles are as indicated.
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reduce future deep convection. If such stabilization were to occur

within the cyclone eyewall, convection would eventually weaken and eye

subsidence for intensification would become leas. A general cyclone

filling would occur. Previous CSU research (Gray and Shea, 1973)

indicates that the eye of the tropical cyclone is dynamic in fact it

ventilates itself every 4-8 hours or so. Intensity is reduced in

cyclones which cannot maintain continual eye subsidence and ventilation

since intensity change requires an increase in eye subsidence.

To maximize a cyclone's central pressure drop and to minimize the

buoyant stabilization aloft of the central area of deep convection it is

important that the convectively induced core region warming outside the

subsidence eye region occur as high as possible in the troposphere. In

other words, the requirement for lowest surface pressure and highest

cyclone intensity is that the cyclone's eye be as warm as possible but

that the upper troposphere of the eye wall cloud (or the core convection

region if there is no eye) be as cool and thus as unstable for deep

convection as possible.

The lower the cyclone pressure the warmer (hydrostatic) the eye or

central warming must become. The warder the eye the stronger must be

the dynamically forced subsidence and the eye-wall or core deep

convection which is necessary to drive it. The higher this warming

occurs the less buoyant stabilization of the upper and middle levels of

150-400 mb and the greater pressure thickness change which can occur for

a given amount of warming.(1)

(1) For s-milar amounts of temperature (AT) increase between equal
pressure layers (AP), larger thickness are obtained if such warm-
ing occurs at higher than at lower levels.

y
4
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One of the distinctive features of the tropical cyclone's inner

core region is the intense horizontal temperature gradient at the eye-

wall. Approximately half the temperature increase from the storm'b

outer environment to the center of the eye occurs within the eye-wall

cloud (see Fig. 50). Thus, the colder the upper levels of the eye-wall

and outwards are in compar:.2on !ith the eye's center, the more intense

can be the eye-wall -cnvection and the greater the dynamically forced

subsidence inside the eye.

The larger a cyclone's inner core upper-tropospheric cyclonic

tangential circulation becomes, the greater will be its eye-wall

pressure drop (for a given amount of warming) and the less will be the

stabilization at upper middle levels. Future deep convection will be

less inhibited.

It should be realized that the well developed tropical cyclone has

cyclonic flow at all levels in its inner core. Figure 51 illustrates a

typical 200 mb pattern with anticyclonic flow at outer radii and the

usual cyclonic flow at inner radii.

New wind compositing research at CSU (Edson, 1985; Merrill, 1985)

is shoving that intensifying tropical cyclones are beat distinguished 	
1y Y

from non-intensifying (or less intensifying) cyclones by their

increasing tangential wind velocity in the upper troposphere at inner

radii of 1-3 0 and less - See Fig. 52. In this case, cylindrical thermal

wind balance considerations would dictate that upper tropospheric

warming would be also higher up and buoyant stability near the cyclone's

core (but not in the eye) be reduced when the upper tangential winds are

more like curve (a) than curve (b) in Fig. 53. Thermal wind

requirements would also dictate that there be much more warming outside

ru...
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Fig. 51. Typical 200 mb circulation around the center of a hurricane.
The shaded region shows the area of cyclonic circulation.

the eye between the levels of 400-150 mb to balance the vertical wind

profile of curve (b) than that of curve (a).

Any process (either external or internal) which leads to inner

cyclone upper tropospheric tangential wind increase will (other

influences remaining constant) allow for surface pressure decrease in

the eye and less upper level stabilization for a specified amount of

tropospheric warming near the convective eye wall. An outward sloping

eye with heiet would also be beneficial to maintaining convection

buoyancy. For instance, our project's composite rawinsonde observations

of intensifying versus non-intensifying tropical cyclones (Merrill,

1985; Edson, 1985) show distinct differences in the initial upper

tropospheric temperature. Intensifying cyclones of similar central

pressure in comparison with non-intensifying cyclones are distinctly

cooler at levels from 125-400 mb by amounts of about 1-4 0C. This allows
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Fig. 52. Changes in tangential wind velocity in 24 ):ours for western
North Pacific tropical cyclones undergoing moderate rates of
intensity change of > 18 mb/24 hrs (from Edson, 1985).
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Fig. 53. Favorable vertical tangential wind profile near the convective cloud
center of a tropical cyclone to allow maximum surface pressure
drop and minimum lapse rate stability (curve a) versus a tangential
wind profile which would cause less surface pressure and graater
lapse rate stability in the upper tropospher (curve b).
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the convective heating for the intensifying case to have a leas

stabilizing effect.

The larger part of the upper tropospheric tangential wind increase

at the eye-wall as a cyclone develops is due to convective momentum

import from lower levels. It is likely, however, that an important

extra source of tangential momentum to these upper layers also come from

horizontal tangential momentum imports into the eye-wall region from the

outer cyclone environment due to inward horizontal eddy fluxes (Merrill,

1985). If this contention is correct and 200 mb outflow channels were

to act to enhance 200 mb inner core cyclonic wind increase, then a

direct physical association between these outflow channels and cyclone

central core intensification could be made.

Environmental Linkages to the Inner Core. The observations and

hypothesis of Merrill ( 1985) and the observational results of this paper

imply that tropical cyclones with strong outflow channels likely have a

greater upper level eddy import of tangential momentum to the region of

central convection than do tropical cyclones without such concentrated

outflow channels. The physical link between tropical cyclone eye-wall

convection enhancement and outflow channels is thus believed to take

place through the association cf such outflow channels with enhanced

inward tangential eddy momentum flux to the cyclone's central region of

maximum convection.

M"ien outflow is concentrated in strong anticyclonically curved

outflow channels as shown by the left diagram in Fig. 49, mass

V I

. n

requirements dictate that there also be a degree of compensating inflow.

t^-

This upper level inflow may move towards the center with a tangential

momentum larger than the outflowing air at the same radius. This may

FW
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result in an inward eddy momantum flux which would not be possible were

the outflow more ne f.rly symmetric as shown by the right diagram of Fig.

49.

This is an overly simplified view. The actual dynamics of this

Inward eddy momentum flux appear to be very complicated. Merril (1983)

has presented evidence and has hypothesized that this needed upper level

inwa; d momentum flux may occur , due to standing wave (Wave No. l or 2)

momentum fluxes. These waves are developed through upper level

barotropic instability pr43ess at radii between about 2-5 0 or so. When

such an intermediate radiuo harotropic wave becomes azimuthally

superimposed upon an environmental wave or special flow pattern on the

tropical cyclone's flank at radius of 10-15 0 , an important outer to

inner core upper level momentum transport may result. The reader should

refer to Merrill's study for a more detailed discussion of this

hypothesis. Although Merrill's intensification ideas have been

developed for hurricanes undergoing intensification change in the

Atlantic basin it is believed that the general physical processes as he

has advanced them likely apply in a similar fashion in the other

tropical cyclo[,e basins. The hypothesized physical linkages might be

summarized in the following flow diagram of Fig. 54.
	 . 

v^

These upper tropospheric linkages between the tropical cyclone and

its environment need much more research. Although not well understood

at this time, the observations of this paper and the majority of the

experienced tropical cyclone forecasters indicate that such upper, level

linkages are typically present with cyclone intensification cases.

V
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FAVORABLE POSITIONING

OF 200 MB FLOW FIELDS

AROUND HURRICANE TO

PRODUCE STRONG OUTFLOW

CHANNELS.

LAPSE-RATE STABILITY

MAINTAINED AT EYE-WALL

AND SURFACE PRESSURE

AT EYE-WALL DECREASED.

6
2

200 MB INWARD : DDY

MOMENTUM FLUX TO REGION

OF CENTRAL CONVECTION.

3
INCREASE IN 200 MB

CYCLONIC CIRCULATION

IN CENTRAL REGION OF

CONVECTION.

4
THERMAL WIND ADJUSTMENT

TO TANGENTIAL WIND

INCREASE.

0e OF BOUNDARY LAYER

INCREASED AND MORE

LOW-LEVEL MASS INFLUX

TO EYE-WALL.

7
EYE-WALL CONVECTION

INCREASED.

8
DYNAAICALLY FORCED

SUBSIDENCE IN THE

EYE INCREASED.

9
EYE SURFACE PRESSURE

DECREASED.

^Y.

Fig. 34. Idealized view of how favorable environmental conditions at 200
mb might lead to an ircrease in tropical cyclone inner-core
Intensity change.
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A.	 Concludli.g Discussion

Tropical cyclone upper level outflow patterns vary in the different

ocean basins. Certfir outflow patterns occur only in specific ocean

basins and in certain seasons of the year. The type of outflow patterns

which occur in each ocean basin and season are largely dependent upon

the background general circulation climatology of that particular

region.

The prediction of tropical cyclone intensity change remains a

complicated subject. ;chile many associations of 200 mb outflow with

tropical cyclone intensity change have been demonstrated here, other

factors such as sea-surface temperature (SST), moisture content, lower

tropospheric circulation conditions, etc. can also influence a tropical

cyclone's potential for intensity change. Sometimes tropical cyclone

intensity change will not occur despite the presence of highly favorable

outflow conditions. Other times when outflow conditions are only

marginally satisfactory, a tropical cyclone may intensify anyway because

these other factors are very favorable. Nevertheless, the outflow

channel and intensity change relationships shown here appear to be

associated with a substantial fraction of the intensity change which

typically occurs. Outflow characteristics should be utilized as much as

possible when making intensity changes predictions. The reader should

consult the new CSU study by Merrill (1983) for an extensive discussion

of the interplay of b. cyclone's outflow, SST, and other factors on its

intensity and intensity change. Even though Merrill has treated only

Atlantic hurricanes anti tropical cyclones, we believe his findings

should, in a general senbe, be applicable to the other glotil storm

brain s .
a
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It is hoped that this atudy of cyclone outflow channels will

provide the tropical cyclone forecaster and researcher with a little

better background for assessing cyclone intensity change.

The global satellite observations in this paper, by ne , aalty, have

largely been taken from the polar orbs` ng US military DMSP system.

Geoatationary Meteorological Satellite (GMS) derived cyclone outflow

channel wind information would have likely given a much superior

measurement and better space and time resolution to our outflow channel

assessments. Unfortunately GMS cyclone outflow winds were not available

for moat of these FGGE year cyclone cases. It is hoped that more

research studies of these outflow and core intensity relationships will

be made In the tropical cyclone basins where GM.S, outflow wind

information are now available and, in time, in the other ocean basins

when geoatational satellite data becomes available. Merrill (op.cit)

study of west Atlantic tropical rsyclonea has abown how a much superior

assessment of cyclone intensity change potential can be made through a

painstakingly combination of GMS satellite, aircraft and rawinacnde

winds.

How are the results of this paper related to the very excellent

research of V. Dvorak (1973, 1984) on determining tropical cyclone

intensity directly from an inspection of satellite images? We believe

this research is auxillary to Dvorak's intensity determination method

and that these results might be used at times as a supplementary aid to

the Dvorak scheme. The outflow information of this paper will hopefully

give the forecaster a little better understanding of the importance of

assessing tropical cyclone 200 mb outflow patterns on a larger space and

time scale than the Dvorak scheme is able to do from satellite images

Moor-
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alone. While thin study uses both satellite pictures and the available

upper level synoptic data. Dvorak uses only satellite imagery. Dvorak

concentrates primarily on the cyclone's inner 5-6 0 radius cloud

charaeteribties and banding feacurea and how these are related to

current cyclone intensity. By contrast this study deals primarily with

the environmental wind and outflow channels of the cyclone at radii >

30 . We also have not attempted a current cyclone intensity estimate as

Dvorak does but only to identify the enviroamentai patterns which are

most eonducJve to cyclone intensity change.

It is hoped that some of the tropical cyclone outflow information

of this paper might be used as a modest supplement to the Dvorak scheme.
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