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INTRODUCTION

The ring systems of Jupiter and Saturn, and their interaction with the

magnetosphere, are the focus of our work on this grant. We still see

opportunities to improve our understanding of the sweeping effect of orbiting

material on trapped radiation, and to use this process to gain insight on both

the trapped radiation and the target material. Within the cosmogony of Hannes

Alfven, this mechanism is also the key to understanding the formation of many

of the features of the Saturnian rings. A better understanding off' the

sweeping effect would help to this process as well.

PROGRESS

Jupiter's Synchronous-Altitude "Gossamer" Ring

Recently, Showalter et al [1985] discovered a "gossamer" extension of

Jupiter's ring out to almost 3 RJ, with a slight but definite peak at

synchronous. altitude. We were able to contribute to an explanation for this

feature [Mendis et al, 1985). Mendis, Hill, and Northrop had already

discovered that charged dust grains undergo a radial "gyro-drift," associated

with a variation of the charge on the grain during the phases of the gyre

motion. Because the phase of the charge variations i!a determined by the

difference between the Replerian and corotating velocities, synchronous

altitude is a special location where the drift vanishes. From other

positions, the drift is directed toward synchronous altitude. This effect was

apparently unknown to Showalter before his discovery, although it would be

fair to say that Mendis's associates "predicted" a ring at synchronous

altitude. We believe the "gyro-drift" is the best explanation for this

feature. Incidentally, this mechanism also confirms the existence of charge on

the dust grains. A copy of the Mendis et al paper is appended to this report.

Showalter, M. R., J. A. Burns, J. N. Cuzzi, and J. B. Pollack, "The Discovery

of a Tenuous Jovian Ring," Ngturg, 1985.

Mendis, D. A., J. R. Hill, T. N. Northrop, and W. Fillius, "A Note on

Jupiter's 'Gossamer' Ring," submitted to Nature, 1985.
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High Energy Protons in the Vicinity of Saturn's G Ring

r,

During this past year we completed a joint project with Ted Northrop

at GSFC, Bernie Blake at Aeruspace Corporation, and Steve Margolis at St.

Louis University, which has now gotten two papers into press. 	 This project

started with the proposition of Fillius et al [1980] and Fillius and Mellwain

[19801 that the high energy prr-cons in Saturn's inner radiation belts

originated as the decay product:v of a neutron albedo created by cosmic rays

interacting with the rings. Blake and Margolis postulated that there might be

a belt of very high energy electrons as well, produced by cosmic ray;

interactions with the moons Mimas, Janus, and Epimetheus. 	 There had been a }

suggestion of such an electron belt in the UCSD data from the Pioneer 11

encounter, but there was a prcl'lem with distinguishing protons from electrons

in the data.	 Northrop developed an elegant technique for separating the
y

i

different species by using the angular distributions, and we applied this u	
f

technique to the data. 	 We were able to establish the intensities of >500 MeV

protons,	 >5 MeV electons, their radial profiles, and, 	 to first order, their

{	 angular distributions. 	 The result was disappointing to Blake and Margolis, as
{

}

the radial profile of the electrons conflicted with their expectations. 	 Most

likely the source is not moon albedo. 	 However, the project does improve our

knowledge of the trapped radiation levels and give us a better understanding

of the interactions between orbiting moterial and the trapped radiation. A

copy of the Northrop-Fillius paper is app9nded to this report.
fC

l

Northrop, Theodore G., and Walker Fillius, "Electrons and Cosmic Ray Produced

Protons in Saturn's Inner Magnetosphere," in. press, J, Ggopbvs. Res., 	 1985.
{

Northrop, Theodore G., "Relationships Among the Harmonic Coefficients of Scan

Plane Anisotropies," in press, J. Geoohys. Res., 	 1985.

Fillius, W., and C. Mellwain, "Very Energetic Protons in Saturn's Radiation

Belt," J.	 Geonhy.^.	 Res., _85,	 5803-5811,	 Nov.	 1,	 1980.
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Absorption of Trapped Particles by Orbiting Material

We have studied the expected effects of absorbing material on the

{	 trapped radiation to obtain the loss rate as a function of ring properties.

For the case of azimuthal symmetry and random probability of impact, we have

an analytical expression valid for all sizes of absorbers and all particle

gyroradii and pitch angles. For a 4cnown absorber, we can then calculate the

absorption probability. We are particularly concerned with the inverse

problem: given the loss rate, deduce the poperties of the ring.

Applying the loss probability to the particle diffusion equation

rounds out the theoretical end of the rang absorption problem. There are two

approaches, one quick and dirty and hard to justify, and the other slow,

dirty, and easy to justify. We wrote a paper using the first approach

[Fillius, W., M. F. Thomsen, J. A. Van Allen, W.-H. Ip, M. Acuna, and N. F.

Ness, "Trapped Radiation Absorption at the Ring of Ju piter"3, but held up

publication because of the critical nature of the results. We want to do a

more thorough analysis, developing both approaches in a way that illuminates

the relationship between their results, before we announce our conclusions.

In collaboration with Bernie Blake at Aerospace Corporation, we have

used our experience with the satellite sweeping problem to comment on a search

for a satellite imbedded in Saturn's G ring [Blake, J. B., and W. Fillius, "On

the Maximum Size of a Satellite at Saturn's G-Ring," paper read at the 1984

meeting of the Division of Planetary Sciences of the American Astronimical

Society]. Our conclusion was that any satellite would be too small to detect

from earth. The abstract of this paper is appended to this report.

Scientific Value of High Energy Particle Measurements on a Jupiter Polar

Orbiter

A the request of George Siscoe and Tom Krimigis, we contributed a

section on energetic charged particle measurements to a report on prospects

for a future Jupiter Orbiter Mission. There is a lot of good science that can
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be dolna ilrom the any of the proposed orbits, and the mission j 	 ,ds very

interesting. The section on high energy particle measurements is appended to

this report.

POSSIBILITIES FOR FUTURE tWOSEARCH

The spatial profile of the absorbing ring material is also immersed in

the trapped radiation data as a deconvolution of the absorption profile with

the magnetic field line spread function. Although we have line spread

functions, we have found that the location of the absorbers can be inferred

accurately only by doing a numerical integration of the particle diffusion

equation, using a model for the particle latitude distribution. Such models

have been unsatisfactory to date, but we believe that angular distribution

data will give us enough of a handle to make this procedure tractable. The

result matters in the case of the Jupiter ring, because neither the visible

ring of micron-sized particles nor the shepherding moons appear to be

responsible for all of thA trapped radiation absorption. Thus we are inferring

the location of an invisible component, which is probably also the parent

material, or "mooms," for the dust ring.

We would also like to solve the problem encountered with the Jovian

electrons, where there are synchrotron losses in addition to the ring

absorption. This will require a numerical approach, which we are developing

anyway. Our hypothesis, which we hope to substantiate, is that this accounts

for an apparent difference between the amount -f ring material encountered by

the electrons and by the protons.

Finally, we note that the principles and techniques developed here °or

the Jovian ring are applicable to Saturn and Uranus as well. Going further,

Hannes Alfven explicitly cites the spatial profile of Saturn's A, B, and C

rings as evidence that these sweeping mechanisms took place four billion years

ago during the formation of the solar system. The work is difficult, but

worthwhile.
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THE SCIENTIFIC VALUE OF HIGH ENERGY PARTICLE
MEASUREMENTS ON A JUPITER POLAR ORBITER

HIGH ENERGY PARTICLES

The inner magnetosphere of ,Jupiter contains the highest energy,
locally-accelerated particles in the solar system, and the greatest variety of
energetic particle source, acceleration, transport, and loss mechanisms within
reach of in situ measurements. lo interacts strongly with the energetic
particles, and leaves its signature on the population in many ways. Including
the Io-related processes, many of phenomena can only be studied from a
olose-in Jovian orbit. Other processes, which occur at earth and/or other
planets, must also be studied here in order to develop a general theory of
magnetospheres which can be extrapolated to the larger scales of astrophysics,

R3

Sources	 ' T

'S

Energetic particle sources include the solar wind, the upper planetary
atmosphere, and the decay of cosmic ray albed- products, as at earth, plus the	 ?,
unique Io torus. The magnetospheric plasma at Jupiter contains the
composition signatures of both the Iogenic source (0, S, K, Na) and the
apparent source in the upper ionosphere (H2+, H3+), Becauso of these . "tracer"
elements, it is possible to perform unique studies on acceleration and 	 f

diffusion processes. For example, one would expect that torus ions would 	 {
diffuse inward, as well as outward, and that it would be possible to separate 	 F

clearly at L < 6 the contribution to the inner radiation belt of diffusing
ions from Io, compared to that from other sources.

I"
Acceleration

Similarly, measurements of the variation of composition and angular
distributions with latitude will provide an exceptional tool in studying
acceleration processes taking place in the vicinity of Io's flux tube from
those operating at high latitude, above Jupiter's auroral region.

The Voyagers found that the equivalent temperatures of particles (> 10
keV) were in the range of -20-30 keV Pt large (,20 Rj) L values, and various
models have dealt with the heating and acceleration mechanism. If such	 r

temperatures Persist closer in to the planet, and at high latitudes, our
current understanding of the heating mechanism would have to be drastically
modified. Therefore it is essential to measure angular distributions of all
energetic ions as a function of both latitude and radial distance.

The highest energy particles in the Jovian magnetospheres gain their
energy by conserving their first two adiabatic invariants while violating the
third and moving inwards. It is well established that this is a diffusive
process, which in many ways resembles earth's. However, unlike earth, the
diffusion well within Io's orbit is apparently driven by electric fields
caused by upper atmospheric tides' crossing magnetic field lines. The

j,
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determination of the diffusion coefficient and its radial dependence are
important objectives, both for confirming the driving mechanism, and for
characterizing the inner radiation belt and its power input. Furthermore,
centrifugally driven interchanges and/or large scale convection are thought to
occur near and outside Io's orbit. It is also important to explore the
possible role of these processes within the inner radiation belts.

The existence of 1-10 MeV electrons in the outer Jovian magnetosphere
is paradoxical to this model, because their energy far exceeds that of
particles on the diffusion track. Nypotheses have been proposed for
acceleration mechanisms, such as recirculation, direct acceleration by
parallel electric fields, and magnetic pumping; but there is no consensus, and
not enough evidence to support one idea or another. As a spacecraft in an
inclined orbit crosses the outer magnetospheric field lines at low altitudes,
one can seek evidence here, such as field-aligned particle beams, which would
reveal where these particles come from.

The results of such a search could lead to an estimate of the lifetime
of these electrons, and this, in turn, could lay to rest the question of
whether the outer magnetosphere pulses like a clock, as suggested by the
Chicago group, or behaves more stably like a wobbly disk,

Precipitation, Aurora, and the Stably Trapped Limit

In addition to radial diffusion, which accelerates particles, pitch
angle diffusion is another mechanism which deserves study. Pitch angle
diffusion is caused by the growth of waves which resonate with the trapped
particles, perturbing their pitch angles, and the consequences are radio
waves, particle precipitation, and aurora. Besides producing provocative
visual	 and UV displays, aurora can inject significant amounts of energy to
the upper ionosphere and atmosphere, affecting ionospheric conductivity and
atmospheric circulation. We know very little about aurora on Jupiter.
Although Galileo will probably see visual displays and add vastly to our
knowledge in that arena, the actual particle precipitation is better studied
from high latitudes and power altitudes where the loss cone is large enough to
sample. Thus it is likely that Galileo will increase our appetite for direct
measurements of the precipitating particles from a polar orbiting spacecraft.
These measurements should include complete pitch angle distributions and
identification of ion species as well as electrons.

If the flux of a trapped species gets high enough, it becomes unstable
to the growth of waves which cause pitch angle scattering and precipitation,
which relieve the instability. Both ions and electrons are thought to press
this limit between L"5 and 15 Rj. The existence of an electron limit at this
position is thought to explain the constancy of the decimetrie radiation,
because the inwardly diffusing electrons which eventually produce the
synchrotron radiation must pass through the equivalent of a regulator before
they get to the site of the radiation. These ideas received some support, from
previous flyby's, but would be greatly enhanced by a more complete survey of
electron fluxes in the inner Jovian magnetosphere. The prin ,;tiple of a
constant flux valve is a powerful one for simplifying complex dynamical
systems, and one which could have applications elsewhere in the cosmos.
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Satellite Sweeping Signatures

The isolated satellite sweeping signatures obtained by past flybys
have served as valuable diagnostics of diffusive particle behavior, and
obtaining multiple orbital crossings would allow refinement of this very
fruitful method, With repeated crossings of the appropriate L-shells,
satellite sweeping signatures from the ring, Metis, Adrastea, Amalthea, Thebe,
Io, Europa, Ganymede, and possibly Callisto can be investigated as a function
of longitude. This would allow a better understanding of mierosignatures, and
their evolution into azimuthally averaged macrosignatures.

Also to be gained from these sweeping signatures would be information
about the gross characteristics of the satellites themselves: eg., their,
magnetic field and conductivity. In prior sweeping studies, satellites have
always been considered as non-magnetic, pure insulators, exercising a wholly
passive role as absorbers of trapped radiation, However, especially in the
case of Io, there is ample evidenco of more active interactions. Besides the
direct manifestations of activity, the absorption cross-section depends upon
the satellite gross characteristics.

Io and its Torus

The energetic ion population above 10 keV/nuc i q known to dominate the
plasma stress throughout the regions of the magnetosphere so far studied,
except for the central regions of the Io torus itself. Measurements of
energetic ion stresses parallel and perpendicular to the magnetic field are
essential to understanding the overall stress balance and configuration of the
magnetosphere. Furthermore, energetic ion stresses and their gradients are
important for magnetohydrodynamic instabilities such as 4,he interchange and
ballooning instabilities. Centrifugally-driven interchanges in particular are
believed to be the dominant mechanism for transporting sulfur and oxygen ions
out of the Io torus.

A low periapsis orbit would permit exploration of the Ids L- :hells at
lower altitudes. It would even be possible to stay on the same L-shell for an
extended length of time and perform detailed energy and angular distributions,
including their altitude dependences. Either orbit could be used to
investigate azimuthal dependences as they relate to distance from Io, and to
the tilted and eccentric planetary magnetic field.

Encounters with the Io flux tube itself, and with its Alfven wings,
will be possible and should be designed into the mission. This would tell a
lot about particle acceleration, decametric emissions, field-aligned currents,
double layers, etc. Pioneer 11 had a near encounter with the Io flux tube at
a high southern latitude, with results which were quite different from the
Voyager I encounter very near Io itself. Repeated encounters at all altitudes
would be very desirable for determing the linkage between Io and the planetary
atmosphere.
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Inner Zone

With the low periap3is orbit, the motion of the argument of perigee
causes the orbit to intersect the equator at all altitudes from perijove to
apojove, and also to oros3 the L<6 lines of force at progressively higher
latitudes, It would not take an unreasonable spacecraft lifetime to obtain a
complete radial and latitude mapping of particle fluxes and I>ehavior. This is
the region of the highest energy, locally-accelerated part^.cle3 in the solar
system, and it is a unique one for trapped radiation studies, because here
synchrotron losses from the energetic electrons enter into the energy balance
and particle transport equations. Investigating this region has astrophysical.
applications, because of radio galaxies and supernova remnants that emit
synchrotron radiation. It woul d be a concrete backbone to many an ethereal
theory if we understood in detail the only case which is accessible to in situ
measurements, All of the mechanisms. discussed in this section that pertain to
particle acoeleration, losses, transport, collective behavior, and
electromagnetic emissions can conceivably be found in other worlds.
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ABSTRACT

The newly discovered "gossamer" ring of Jupiter, composed largely of

micron-sized grains, exhibits a significant peak very near the synchronous

radius. The discoverers believe that this peak may be associated with an un-

observed source consisting of large bodies that straddle the synchronous

orbit. Here we offer an alternative evolutionary mechanism, namely the "gyro-

phafQ" drift towards the synchronous orbit, of fine grains, which necessarily

are electrostatically charged wi4hin the Jovian magnetosphere.
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From a re-examination of a Voyager 2 photograph in forward scatterer

light, Showalter et a1 1 ^ 2 report the discovery of a very tenuous ring of

Jupiter, lar gely composed of micron-sized grains, extending outward from the

brighter thin inner ring to a radial distance of about 210,000 km. The exis-

tence of this ring, which they have named the "gossamer" ring, was also hinted

at in the earlier Pioneer 10 data 3 as these authors state.

While -its brightness in forward-scattered light seems to decrease roughly

linearly with radius (with a mean value of only about 5% that of the inner

ring), the authors note the significant (at the 4u level) brightening at a

radial distance of 160,0002000 km (see their Figure 2), very close to the

synchronous orbit (which is about 160,200 km). This short note addresses the

possible origin oT this peak near the. synchronous orbit:

Showalter et a1 2 believe that plasma drag is the dominant evolutionary

pro • :r . ihich transports the Jovian ring material 4 . Since the plasma drag

moves material away from the location of the synchronous orbit in both

directions (with a time scale they estimate to be N 10 311 yr for micron-sized

grains), they suggest a population of larger bodies ("moons") straddlying the

synchronous orbit as the source for these small grains that form the peak,

They also point out that the gossamer ring might be brighter at the

G	 synchronous distance because it has less vertical extent there, which, givenr

the shallow viewing angle of Voyager 2, would lead to a brightness

enhancement.

Here we propose an alternative origin. While one cannot exclude either

possibility, there is no physical reason for natural satellites to be at the
F

synchronous, orbit except by pure chance. There is, however, an electodynamic

E

process that causes micron-sized grains to rapidly migrate towards the syn-

chronous orbit of Jupiter from both sides if they carry a negative electrical
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charge, as has been pointed out earlier 5" 7 . This is the radial "gyro-phase"

drift of negatively charged grains in the Jovian magnetosphere. Hill and

Mendis 516 showed that fragile interplanetary micrometeoroids, on penetrating

i;he Jovian plasmapause (30-35 R J ), become rapidly charged to high

electrostatic potentials (N -100 V)# These grains, or their electrostatic

disruption products, have their initial, purely gravitational orbits modified

by the electromagnetic forces within the magnetosphere. The grain surface

potential is affected by the relative speed between the grain and the plasma,

and this speed varies at the gyrofrequency. The small but finite capacitance

of tho grain leads to finite times of charging and discharging, and introduces

into 'Lhe potential a lag with respect to the gyrophase. Because of this lag,

the maximum and minimum potentials are not exactly at perijove and apojove,

but are displaced slightly from them. The consequence is that these grains

gradually drift towards the synchronous orbit, where the velocity of a

particle through the plasma is almost constant, and the radial speed slows

greatly.

This radial drift, dubbed the "gyro-phase' drift, has been subsequently

studied analytically in the adiabatic approximation by Northrop and Hill

(1983). All	 guiding center drifts	 (E x B,	 grad B, curvature B, etc.) occur

because the curvature of the charged particle's trajectory oscillates at the

gryo-frequency. All the above drifts are azimuthal when E is radial	 and B is

axisymmetric. But for charged grains the drift is not exactly azimuthal 	 due

to the gyrophase lag associated with their finite capacitance, discussed

above. Also, since the main modulator of the grain potential	 is the ion

I
current which is largely determined by the relative speed between the grain

and the plasma,	 a negatively charged grain is least negatively charged when,

in its gyrophase,	 it is approximately farthest from the synchronous distance,
WI
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this bbing true whether the grain is outside or inside the synchronous

orbit. As a result this radial drift of negatively charged grains is always

towards the synchronous radius in the Jovian magnetosphere. Northrop and

Hili 7 also showed that this drift continues as long as the magnetic moment of

the grain is non -zero. However, the gyro -radius and therefore the magt,E.Lic

moment of the grain decreases towards zero as it drifts towards the synchro-

nous radius. The magnetic moment mays vanish and the orbit may become circular

around Jupiter somewhat before the grain reaches the synchronous distance. On

the other hand, the orbit may happen to circularize (magnetic moment may

vanish) jus at synchronous radius, or the particle's guiding center may even

arrive at synchronous radius with non-zero magnetic moment. What happens

Oepends on the location and velocity with which the particle is launched. In

any case, one expects a maximum in the concentration of fine dust at the

synchronous orbit regardless of the sources and their locations. We agree

with Showalter et al t that grains can remain in stable orbits at the

synchronous distance, whether they are charged or not, since the plasma drag

there is zero, on all grains. However, only grains that are electrically

charged can be transported toward the synchronous distance, wherever they

happen to originate. Thus our mechanism makes no particular demands on the

location of the source or sources and in particular does not require them to

be at synchronous radius.

This process proceeds with a timescale of only a few years for micron-

sized grains 6,7 and is thus much faster than any disruptive process (e.g.,

sputtering by energetic particles) for the grains or the systematic drift

(away from synchronous orbit) caused by plasma drag. Even if the gyro-phase

drift proceeds 1-2 orders of magnitude slower, due to the possible

overestimation of the highly uncertain plasma temperature and density near the

1^1^
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ring plane, this process is still the fastest evolutionary one. In fact, Hill

and Mendis 6 earlier suggested just this process for the formation of the inner

ring. However, the fact that it was substantially inside the synchronous

orbit, as well as its proximity to the newly discovered small satellites Metis

and Adrastea, made this an unlikely explanation. We too believe that these

satellites represent a secondar y source for the inner ring, on being bombarded

by incoming micrometeoroids.

Using the optical depth of 10
-7 

and vertical extent of 2000 km (which is

a factor of 2 smaller than the upper limit given by Showalter et a1 2 , we find

that the intergrain separation (-5m) is significantly larger than the Debye

length (N lm) for reasonable values of the rather uncertain plasma parameters

0	 near the ring. Consequently, collective effects that tend to decrease the

grain charge 8,9 do not complicate the "isolated particle" approach used by

these authors5"7.

In their study of the -664*re►o v̂k motion of charged dust grains, Northrop

and Hil l also obtained an "energy-like" exact constant of motion which is

valid eve- . though the grain charge varies arbitrarily with time. The use of

this constant enables us to calculate directly the "circularization radius" of

a grain, given its initial position, velocity and charge-to-mass ratio. For

example, a grain with large charge-to-mass ratio launched at the Kepler
ANA167-- 3 0--,k

velocity from Thebe (3.11 R d ) circularizes at Q62- Rd , while a 0.5µm grain

2.757
charged to -10 V circularizes at 4M Rd .	 On the other hand, the initial

azimuthal velocity needed for the circularization radius to be the synchronous

radius is independent of charge to mass,	

/
-a;z--s	 fim,. We have	 calculatd-the initial projection

velocities of grains (assumed ejected in the azimuthal direction) needed to

just circularize at synchronous radius. For instance, a grain emitted from
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Thebe (3.11 Rd ) circularizes at synchronous	 (2.24 RJ )	 if it is ejected at

velocities, with respect; to the moon, of either 32.2 km s -1	 (direct) or

1.9 k	 -1 	 Grains that are emitted with larger speeds m s	 (r etrograde).in9	 P	 (

t	 either direction) will	 also reach the synchronous radius, 	 but with finite

magnetic moment, so that they would not be circularized there.	 nevertheless,

their radial	 motion would be greatly reduced. 	 The corresponding velocities

for grains ejected from Amalthea 	 (2.54 Rd ) are, respectively, 	 11.5 km s-1
i

(direct) and 0.8 km s -1	 (retrograde), while those for 	 grains ejected from

"mooms" at the outer edge (1.81 R J ) and the inner edge 	 (1.72 Rd ) of the bright

ring,	 inside the synchronous orbit, 	 are, respectively, 	 1.5 km s -1	 (direct)
k

12.5 km s -1	 (retrograde);	 1.9 km 
s-1	

(direct)	 and 9.1 km s -1	 (retrograde).

While these larger speeds of projection required from the moons 	 (direct	 4?

outside synchronous and retrograde inside) appear to be excessive, considering

the large yields expected at hyper-velocity impacts 4 , the smaller speeds of 1-	 1"?

6

2 km s -1	 (retrograde outside synchronous and direct inside) are reasonable
js

values for the ejects resulting from the bombardment of these small moons by

incoming interplanetary micrometeoroids.

A more refined calculation should take into account the finite inclina-

tion of the magnetic axis of the p lanet to the sin axis, which would make the9	 P	 P	 • ^,

grain also perform an oscillation about a plane intermediate to the magnetic

and geographical equators. 	 Radial gradiants in the plasma temperature and

density (which were ignored in the aforementioned calculation) could also

change the picture somewhat, and in particular change the evolutionary

timescale, because under certain circumstances they could conspire to cause a

secular increase in the magnetic moment of the charged grain 10.

Unfortunately, the plasma parameters near the Jovian ring plane are too

uncertain at the present time to merit the study of such second-order , effects.
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We'acknowledge these uncertainties and recognize the need for more

detailed ca)culations in the future, taking these processes, as well as the

 effects of plasma drag and radiation pressure, into consideration. The main
Kt	Fr	

purpose of this short note, however, is to emphasize the existence of an
F

	1	 evolutionary process (namely the gyro-phase drift) which can cause radial

transport of fine dust grains (which are necessarily electrically charged

within the Jovian plasmasphere) towards the synchronous distance from both

sides. We believe this to be the process responsible for the peak in the

"gossamer" ring near the synchronous radius. Conversely, we find the peak at

the synchronous radius to be persuasive evidence that the grains are elec-

trically charged to some negative potential with respect to the ambient

F^
plasma.
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ELECTRONS AND COSMIC RAY PRODUCED PROTONS IN SATURN'S INNER MAGNETOSPHERE
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An ST RACT

The University of California Cerenkov detector on Pioneer 11

previous'._y observed Crand protons above 600 MeV in Saturn's inner

magnetosphere, mixed with a poorly understood background of energetic

electrons [Fillius and Mcllwain, 19801. Here we separate the electron from

the proton counts and establish the first -order angular distributions for each

species. To do this we use the theoretical relationships among the harmonic

coefficients of the count rate as a function ..f spacecraft roll angle derived

by Northrop [ 1985]. The majority of the counts were electrons with energy

above several MeV; ie, with drift periods shorter than the satellite orbital

resonance. The ,electrons have isotropic pitch angle distributions, and the

protons pancake over most of the region between Mimas and the rings, although

there is a small region of dumbbell proton distributions in the vicinity of

Janus and Epimetheus.
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INTRODUCTION

''here was an internal inconsistency in the data taken at Saturn by the

Univers., v of California, San Diego Cerenkov detector on Pioneer 11.

East-west anisotropies observed between the outer edge of the A ring at 2.28

Rs and Mimas at 3.09 R s apparently belonged to protons below the known

response range of the detector. In the original analysis, Fillius and

McIlwain deduced the gyroradius by using Liouville's theorem to interpret the

radial displacement necessary to align the measured eastbound and westbound

fluxes. The discrepancy was tentatively attributed to the presence of

background electrons, but there was no method to quantify the contribution of

these particles. Here we use the theory developed by Northrop in the

accompanying paper to decompose the Cerenkov detector output into two

components, belonging to high-rigidity protons and low-rigidity electrons.

With this analytical tool we can give estimates of the proton and electron

fluxes and, to a limited extent, their angular distributions. The results

revise the high end of the energy spectrum of trapped protons created by the

Crand mechanism, and reveal the existence of energetic electrons whose spatial

distribution is unlike that of the lower energy electrons.

To show the instrumental dilemma we first present an essential

description of the detector and relevant calibrations. From the proton

response we conclude that the east-west anisotropy was produced by protons o

energy "600 MeV. Because the energy spectrum of the electron background is

not well determined, we also include a description of the electron response in

order to evaluate two different possibilities. Then we review the

observations briefly, and show how we apply Northrop's method to separate the

particle species.
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PROTON RESPONSE OF THE CERENKOV DETECTOR

The UCSD Cerenkov detector on Pioneers 10 and 11 has a radiator ofx

60/40 methanol/water with index of refraction of 4/3. The liquid is held in a
E

14 X 75 mm bottle of ultra-pure fused silica the front end of which is

occupied by an expansion bellows for thermal compensation between the liquid

and the bottle. The radiator is viewed at one end by a photomultiplier tube

and associated electronics which count pulses above three discrimination

levels (labeled C1, C2, and C3). No coincidence detectors are used because

the high fluxes of Jupiter's radiation belts would have paralyzed the

necessary circuitry. Instead, directionality is achieved by internal

reflection of light emitted toward the photomultiplier~ and absorption of

light traveling in the other direction on the bellows and blackened inner

walls of the radiator housing. The discrimination levels are set so that the

lowest channel (Cl) can be triggered by a particle whose pathlength in the

radiator is not much more than a diameter, but the highest channel (C3)

requires a pathlength comparable to the length of the radiator. Thus the

channels have different angular responses, from C1 with significant side

sensitivity, to C3 with a pencil lobe in the forward direction only.

The angular response of the Cerenkov detector was demonstrated with an

identical unit in the proton beam of the NASA Space Radiation Effects

Laboratory (SREL) synchrocyclotron. The detector was rotated and its

effective cross-sectional area was normalized to that of a monitor detector.

Figure 1 shows the effective area vs angle from the detector look axis for

channel C3.

When operating in a space radiation environment, the detector is

irradiated simultaneously from all angles, and here the most useful

calibration is the integral of the effective area over solid angle, called the

geometric factor,
f	 G(E) R ! Aeff(E) d0

i	 Figure 2 shows the geometric factor as a function of energy for several

discrimination levels. Because the principal effect of varying the

discrimination level is to vary the pathlength needed to yield enough light,

the principal difference between channels is in the width of their angular
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responses, and so, in the magnitude of their geometric factors. The energy

threshold is a second-order effect because all protons near the threshold

easily have enough range to penetrate the entire detector and thus to ,produce

the same pathlength. The channel to channol differences in energy threshold

are primarily dve to the fact that the lower channels are able to reLpond to

Cerenkov light produced in the bottle walls and faceplate. For the index of

fused silica, 3/2, the critical proton energy is 320 MeV. This accounts for

the incipient response evident in channels C1 and C2 in Figure 2, but it is

not a major factor because, with ona y a small amount of fused silica, it

	

'	 requires exceptionally favorable particle trajectories.

i
6

The peak energy of the SREL synchrocyclotron was not high enough to

complete the response curve of the detector. To calibrate the asymptotic

high-energy response, we used cosmic ray muon counting rates observed in our

	

y^	

laboratory, corrected for theeffect of the muon angular distribution over the

.5f ^ de tector.	 ,( geometrica.

	

Ew{!	 an^'u1Flt IGap^]naG VL 4«. y lG dGLGt: i.Qr. These asymptot ic 	 fac to rs are

	V	 plotted on the right-hand axis of Figure 2.

The channels labeled C1, C2, and C3 in Figure 2 were matched to the

prelaunch discrimination levels of the Pioneer 10 and 11 Cerenkov detectors.

Both of these detectors underwent subsequent gain changes because of the high

level radiation during the Jovian encounter. The effect on the Pioneer 11

Cerenkov detector was to increase the photomultiplier tube gain, which is

equivalent to lowering the discrimination levels. The channel in Figure 2

marked C3' is interpolated from C2 and C3 to the level of Pioneer 11 channel

C3 during the Saturn encounter. In this section and in the following one on

the electron response of the Cerenkov Detector, we use the labels C1, C2, and

C3, without a prime, to refer to the discriminators at their calibrated

prelaunch levels, and we add a prime (e.g.: C3') to distinguish the levels

realized at encounter. In our discussions of flight data, we use actual

readings -- at the discrimination levels as they occurred. We drop the prime

then, as the distinction is superfluous, and when we discuss our observations

and conclusions, an unprimed label refers to the changed discriminator at the

time off encounter.

The small bump at "100 MeV is caused by scintillation of protons that

r
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atop in the optical materials. As mentioned by Fillius and Mcilwain 119801,

this represents an omnidirectional, geometric factor of < .002 cm  for

protons between 65 and 140 Me V. By comparison, the UCSD solid state detector

on Pioneer 11 has a geometric factor of .012 cm2 over a larger energy window

between 80 and several hundred MeV. Then by comparing the counting rates of

these two sensors, we can conclude that no more than about 12X, of the C3

response is caused by proton scintiXlation.

ELECTRON RESPONSE OF THE CERENKOV DErECrOR

The Cerenkov detector is also sensitive to electrons. (Its primary

mission was to measure the intensities of high energy electrons in the Jovian

environment.) Figures 3 and 4 show the measured electron response. For

electrons, unlike protons, penetration range is an 'Important factor in
 -  	 the detector 	 he Gl ... a. important thresh 	 .1 a .Mhounderstanding the 	 response. llltt L1,,Zi3L iWpVL4Lilltr 1. ► 1+LGDIt{old is the

energy ("0.7 MeV) required for an electron to penetrate the detector housing.

Since electrons are relativistic at this energy, the next criterion is the

length of their track in the radiator, which determines their Cerenkov light

output. As with protons, the particle trajectory must point toward the

back end of the radiator in order to direct the Cerenkov beam to the cathode.

The electrons' propensity to undergo high-angle scattering collisions has two

effects. One is that the range tends to be overstated by tables which list

"end-point values," or the range of a scatterfree particle, and the other is

that the angular responses tend to be smeared.

Figure 3 demonstrates the net result for channel C3. Full response

occurs at high energy where the particles' range exceeds the length of the

radiator and the relativistic mass gain redc,ces their tendency to scatter.

The biteout along the axis has two causes. One is that the asymptotic

Cerenkov emission angle equals the critical reflection angle, so that light

starts to be lost. The other is that there is more passive shielding at the

front end of the housing than on the sides. As the electron energy decreases,

the dominant response occurs on the side, where the radiator has a larger

cross-sectional area, but smaller depth: Ultimately, as the electron energy

decreases, the pulse height falls below the discrimination level. Then the
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electrons can only trigger the detector if several arrive simultaneously so

that their pulses add in height, In this mode the response is peaked to the
side where the cross-sectional area is largest. Channels C1 and C2 operated

in this mode during the most intense segment of the Saturn flyby.

Figure 4 shows the geometric factor for single-particle events,
4

plotted as a function of energy, This represents the detector's response to a
delta function energy spectrum. It is convenient to represent this profile as

a step function, so that we can quote the flux above some threshold. We

previously used van Allen's "bow-tie method" to obtain such a representation

applicable to the Jovian radiation environment [Fill.ius and Mcllwain, 19741,

However, at Saturn, the electrons causing the pileup on. channels C1 and C2

have an extremely soft spectrum, outside the range of anything encountered

previously. As the bowtie method showed, the same threshold value is not

applicable for all spectra. Therefore, we have listed in Table I threshold

energies applicable to a range of power law energy enec.tra j of the form;

;aN/dS	
K g-n

This table. should help in interpreting the detector's response to very soft

electron spectra.

Table I

Threshold energies for channel C3

effective for different power law energy spectra

with a geometric factor of 0.5 cm2-sr

n	 gth

i 14

2.5 14

4 12

6.3 10

10 8.5
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OBSERVATIONS

The channel. C3 counting rate reached a maximum in the vicinity of 2.7

Its (IRO
 w 64,000 km) and fell off to zero and near -zero values at the outer

edge of the A ring (2.28 Re) and the orbit of himas ( 3.09 Rs). The east-wrest

anisotropies that we are investigating are associated with the gradients on

either side of the peak. Using a least-squares fitting procedure, Fillius and

Mcllwain (1980) represented the angular distribution of the counting uate by a

truncated Fourier expansion of the form C - CO + C 1st ( X) + C2cos(2X) +

r,7^Ln(3X) + ..., X being the angle between the look direction of the

detector and the magnetic field, which happened to lie in the scan plane.

Terms were chosen fpr symmetry and economy: omitted terms would violate mirror

symmetry, and coefficients above 3X w6ee so heavily convolved by the width

of the sampling interval that they could not be evaluated with our limited

amount of data. In this representation the cgefficient C O is the

spin-averaged count rate; the omnidirectiona l r-aunt rate is C0 - w 2/3 -

C4 /15. The coefficient C 2 reflects whether the peak of the distribution is

perpendicular to the magnetic field (C 2 < 0) or parallel to it (C 2 > 0). The

former case is called a pancake distribution and the latter, a dumbbell. The

east-west anisotropy appears in the odd harmonics C 1 and C3.

The coefficients derived from the data are shown in Figures 5 and 6

for the inbound and outbound radial cuts of PiontAer 11. The smooth curves

were merely drawn by eye through the points. Nate that outbound C 0 and C2

have quite similar shapes, and inbound they are similar, too, although the

peaks are not quite coincident. In Figure 6 there was a data gap between 2.38

Its and 2.49 Rs . This has been filled in by interpolation so as to be able to

carry out integrals over the entire range. Results inside 2.49 R s outbound are

therefore not to be trusted and will not be given in later figures.

SEPARATION OF PROTON FROM ELECTRON COUNTS

The observed coefficients are assumed to be sums of proton and

plectron components. Thus C 0 s COp + COe , and similarly for the higher

t

tl
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harmonic coefficients. 	 We assume that there is no pile-up in this channel and
F

no counts lost to dead time. 	 In the preceding paper Northrop [19851 derived

relationships among the harmonic coefficients of the proton and electron

count rate as a function of roll angle. 	 Because the electrons have very small

*} gyroradius, their odd harmonica vanish, and the odd harmonics observed are

attributed entirely to protons.	 The even proton coefficients are given by

equations (14) and (15) of that paper:

a,

r13	 r	 C3p(Y)	 r	 C4p(Y)

C 2p (r)	 C 4p(r) + 2r6 _-_--------	 ^dy ------ •h	 9	 fdy ^----- (1)

pp(r1 )core	 I r
r

yg	 y7

1	 1

4 C4p(r)	 r13

r
r	 C 1p (Y)-C3p (Y)	 r	 C3p(Y)

CO
(r) _ ------+ _------___- dy --------•----- + 2r 6 	dy ------Op

2	 p (r 1J core
p r	 3	 9

rY	 Y
i 1	 1

r	 C^Fp (y)	 3r6

+ 6	 fdy -._____	 ___ -1	 (2)

r	 y	
Y6

f

where r 1 is some point at which the count rate vanishes (say the outer edge of
the A ring), and pp(r 1 ) is the proton gyroradAus at r 1 .	 Based on the

detector calibrations (See Figures 1 and 2), we used a proton energy of 600

MeV to calculate the gyroradius. 	 The integrals were performed by Simpson's

^f
rule upon the smooth curves.	 This is a bit subjective, but, unlike

j; differentiation, integration tends to even out random errors in the input.

F ; Once Cap and C2p are known, COe and C2e are given by COe ^ CO - C Op and C2e =^

C2 "C2p.

i

.^	 r.



9

Coefficient C4 is absent from Figures 5 and 6 because there were not

enough data to determine it directly as a function of r. We have assumed that

C4 has the same shape as the other even coefficients and determined the ratio

b ^ C4/CO from the integral conditions (16) and (17) of the preceding paper.

The conditions use the fact that the fluxes vanish at both boundaries of the

region of interest. This method gives two values for b, one from each

equation, and unless they agree, there is a dilemma. We find that inbound b

0.0915 and 0.0881 from (16) and (17) respectively. This minor discrepancy is

handled by using 0.0915 in (1) and 0.0881 in (2) -- that is, by using b in the

equation from which it was determined. One may prove that the value of (1) or

(2) is independent of whether one integrates from r2 inward, or from r 

outward to the r of interest, provided that the b used in the equation was

determined from it. Outbound the two values of b determined from (1) and

(2)disagree: (1) gives b - 0.00467 and (2) gives b x -0.0130. In this case we

have again used the b in the equation from which it came. The disagreement

may be a consequence of the data gap.

Figures 7 and 8 give the omnidirectional count rates for protons and

electrons, and Figures 9 and 10 are the pitch angle distributions to

lowest order in gyroradius. (The f0 from equation 3 of the preceding paper.)

We immediately see that the proton count rate was only 20% of the electron

rate. The proton angular distribution is found to be pancake (except in the

vicinity of Janus and Epimetheus where they are dumbbell) and the electrons

are isotropic. Both angular distributions agree with what one expects from

cosmic rays as the source, striking ring material in the case of the protons,

or tte moons Mimas, Janus, Epimetheus, and rings for electrons [Blake et al.,

1983]. However according to Blake [1985] the flux of electrons produced by

cosmic rays, although approximately isotropic, would be much smaller than in

Figures 7 and 8. Another source, such as diffusion past Mimas from outside,

is required, and it would have to be verifed that such a source should give an

isotropic flux. That cosmic rays produce protons by the :Grand process in the

inner region of Saturn's magnetosphere was first suggested by Filli.us et al.

[1980] and also by Cooper and S4.mpson [1980], Van Allen et al. [1980], and

McDonald et al. [1980]. Van Allen found that his protons < 80 MeV) were

pancake in this inner magnetosphere. Other papers have subsequently studied

the pitch angle distribution. If that distribution is modeled by sin n(b), a

A
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i
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value of nr6 at 3.5 Rs has been reported by Vogt et al, [1982]. Krimigis and

Armstrong [1982] find n-5. Schardt and McDonald [1983] find that for 48-160

MeV protons n increases from "1 at 2.7 R s to nearly 5 at 2.85 Rs.

DISCUSSION: INBOUND DATA

The peak of the proton omnidirectional flux occurs at larger radial

distance than the electron peak. (There is no theoretical reason for the

peaks to coincide.) That there should be a proton peak is to be expected:

Crand is a distributed source of protons, and the A ring, Janus-Epimetheus,

and Rimas are sinks for the protons, which diffuse both ways from the interior

of the region under study. Cooper [1983] has solved the problem of the Crand

source plus diffusion to absorbing edges and fit the University of Chicago

data from Pioneer 11. From Figure 7 the peak for 600 MeV protons is at 2.72

Rs , and there is a minimum at 2.52 Rs at the radius of Janus and Epimetheus,

leaving a secondary peak at 2.4 Rs that is about 1/3 the height of the main

peak. The position of the main peak and the factor of 1/3 both coincide with

the profiles determined by Van Allen et al [1980] and Fillius and Mcllwain

[1980] for energies > 80 MeV. There is no discernible absorption by the

G-ring at these >600 MeV energies, in contrast to lower energies where all

experiments see an effect (See, for example, Van Allen [1983]).

The proton angular distributions (Figure 9) are pancake outside

Janus-Epimetheus and are dumbbell in the minimum. The upswing at low count

rates of these angular distributions is probably not real, nor are negative

values. There is much scatter in these deduced distributions, which is not

surprising considering the long train of analysis. The proton distribution

goes approximately as sin 5(6) at the peak (2.T2 Rs), but we cannot determine

any trend at larger radii, although theory predicts more isotropy [Cooper,

19831.

In contrast to protons, there is no significant volume source of

electrons of the proper energy within the region. Two different sources of

electrons are possible. High energy electrons are produced by cosmic rays at

the rings and at M..imas, [Blake et al., 1983] and diffuse toward the center of
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the region from these sources at the two edges. The energy of these electrons

is tens of MeV, and so they are well up on the plateau of the detector

response ( See Figure 4). This source is too weak, as mentioned earlier, and

there should not be a peak at 2.62 Rs , given the location of the sources.

F41

	

	 Secondly, electrons from other sources, outside Mimas, may be diffusing

inward. The spectrum of these electrons is soft, because the preferred energy

for electrons to escape absorption by Mimas is just 1 MeV, and by 7 MeV the

relative drift time has fallen from infinity to <5 hours. As compiled by

Chenette and Stone [ 1983]., the electron spectrum at Mimas falls by 4 orders of

magnitude between 5 MeV and 11 MeV. Magnetic -moment-conserving diffusion of

relativistic electrons from Mimas to the electron peak at 2.62 R s increases

the energy of electrons with 90 0 pitch angle by a factor of 1.5. With the

steeply falling energy spectrum, this energization would increase the number

of electrons above the energy threshold by a factor of 18. The count rates at

Mimas were small, at most a few per second, so it seems that a peak of 315 per
»i

second is too large to be accounted for completely in this way. If the

} spectrum at Mimas were actually steeper than the best estimate by Chenete and

}	 Stone, then radial diffusion could fit the observations. The spectrum would

have to fall 7 orders of magnitude rather than 4, and this conceivably could

be the case [Chenette, 1985]. This, plus some absorbtion by Janus and

Epimetheus might explain the electron curve in Figures 7 and 8.

An alternative would be to invoke episodes of strong diffusion,

followed by quiescent periods during which wipeout continues. This has been

analyzed by McKibben and Simpson [1980] and qualitatively can explain how

there might occur an increasing inward phase space density at constant

magnetic moment even in the absence of an interior particle source.

OUTBOUND DATA

The electron peak is comparable in height with the inbound electron

xI	 peak but is at a larger radius than inbound. As inbound, the electron angular

distributions are quite isotropic. The radial profile of the electrons is
I

different from that observed at lower energies, in that it is peaked, and

'	
1

]



vanishes at the orbits of Mimas and at the Fenergies (-1 Me'V) ring. At lower ener g 	 g

the electrons do not exhibit clear channels at the orbits of these moons,

;.t
which is consistent with their resonant energy to avoid sweeping.

'

	

	 The peak in proton flux in Figure 8 is at the same radius (2.72 R s ) as

inbound and is at just about the same height. As at lower energies (e.g.,

s'	 above 80 MeV (Van Allen et. al, 180; Fillius and McIlwain, 19801) there

appears to be azimuthal symmetry about Saturn. Although we have no data

inside 2.49 R s , there is no evidence in Figure 8 of an incipient upturn of the

curve inward of 2.5 Rs . Van Allen does see wings of a secondary peak outbound

that he estim „,, .,2s would have been lower than inbound by a factor of 2 to 30

FThe inbound-outbound asymmetry of Crand protons at the radius of Janus and

Lpimetheus may in some way be produced by these moons, but not by a simple

- 	 wipeout mechanism. The Grand source is so weak that the protons from it must
4i

have lifetimes of years to produce the observed fluxes. Such a long lifetime
', s
ii	 implies too slow radial diffusion for these moons to produce azimuthal

j,	 asymmetry. The protons would not diffuse rapidly enough to fill in behind the

moons and thereby produce visible asymmetry.

i

The proton angular distributions are pancake except near Janus and

Fpimetheus where they are dumbbell -- just as was the case inbound. The

pancake distributions are less well organized than inbound. We do not know

whether this is real or merely represents the noise in the analysis, which is

not completely satisfying because of the determination of C4 and the data

gap. Nevertheless, the results of the analysis agree remarkably well with the

inbound pass, and with observations at lower energies (>80 MeV).

CONCLUSIONS

y

	

	
1. We have employed the method developed by Northrop in the

accompanying paper [1985], for deducing the omnidirectional intensity and
f

first-order angular distributions of high-rigidity particles in the presence

4 {	 of a background of low-rigidity particles. The method is applied by
1

Yf	

performing appropriate integrals over the observed angular distributions, and

ii
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can be thought of as an integration of the radial gradient deduced from

the east-west anisotropy of the high-rigidity particles.

2. We have evaluated the number of 600 MeV protons necessary to

produce the east-west anisotropy observed by the UCSD Cerenkov detector on

Pioneer 11 between 2.3 and 3.1 s. This is a significant downward revision of

the estimate made by Fillius and Mcllwain (1980]', but nevertheless still

consistent with other data at lower energies. Crand is the most likely source

for these particles, as concluded by Fillius and Mcllwain [1980]4

3. There exists a high energy component of the electron spectrum

which has a spatial profile with low values at Mimas and Janus-Epimetheus and

a maximum in between. This profile indicates that sweeping takes place at

these moons, which is to be expected for electrons of several MeV or more.

The source and spectrum of these electrons remains uncertain.

4. We have determined the pitch angle distributions of these

particles to first order in gyroradius. The electrons are almost isotropic,

but the protons exhibit a combination of pancakes and dumbbells, with the

latter near Janus and Epimetheus.

ACKNOWLEDGEMENTS

We thank J. A. Van Allen for supplying us with details of his Pioneer

11 observations in the inner magnetosphere, and S. H. Margolis for several

discussion. J. B. Blake has made several cogent points in connection with our

work, i-n particular the fact that satellite wipeout cannot produce azimuthal

asymmetry of Crand protons. This work was supported in part by NASA Grants

NAG W-•336 and NAG W-652.

1	 4:

i
i

`F

;i

irr

k^

f ft

^F

i 'J



14

REFERENCES

Blake, J. B., H. H. Hilton, and S. H. Margolis, "On the Injection of Cosmic

Ray Secondaries Into the Inner Saturnian Magnetosphere: 1. Protons From the

Czand Process," J. Geophys. Res.,88, 803, 1983.

Blake, J. B., Private communication 1985.

Chenette, D. L., and E. C. Stone, "The Mimas Ghost Revisited: An Analysis of

the Electron Flux and Electron Microsignatures Observed in the Vicinity of

Mimas at Saturn," J. Geophys. Res., 88, 8755, 1983.

Chenette, D. L., Private communication, 1985.

Cooper, J. F,, and J. A. Simpson, "Sources of High—Energy Protons in Saturn's

Magnetosphere," J. Geophys. Res., 85, 5793, 1980.

Cooper, J. F., "Nuclear Cascades in Saturn 's Rings: Cosmic Ray Albedo Neutron

Decay and Origins of Trapped Protons in the Inner Magnetosphere , " J. Geophys.

Res., 88, 3945, 1983.

Fillius, W., W.-H. Ip, and C. E. Mcllwain, "Trapped Radiation Belts of Saturn:

First Look," Science, 207, 425, 1980.

Fillius, W., and C. E. Mcllwain, "Very Energetic Protons in Saturn ' s Radiation

Belt," J. Geophys. Res., 85, 5803, 1980.

Krimigis, S. M., and T. P. Armstrong, "Two Component Proton Spectra in the

Inner Saturnian Magnetosphere," Geophys. Res. Lett., 9, 1143, 1982.

McDonald, F. B., A. W. Schardt, and J. H. Trainor, "If "You've Seen One

Magnetosphere, You Haven 't Seen Them All: Energetic Particle Observations in

the Saturn Magnetosphere," J. Geophys. Res., 85, 5813, 1980.

e.

1

P

a

P f c
t^

i

T
!F

F	 '

,C

j

i,



a

1
15

Northrop, T. G., "Relationships Among the Harmonic Coefficients of Scan Plane

Anisotropies," accompanying paper submitted to J. Ge_phys. Res., 1985.

Van Allen, J. A., B. A. Randall, and M. F. Thomsen, "Sources and Sinks of

Energetic Electrons and Protons in Saturn's Magnetosphere," J. Geophys, Res.,

85, 5679, 1980.

Vogt, R. E., D. L. Chenette, A. C. Cummings, T. L. O'rrard, E. C. Stone, A. W.

Schardt, J. H. Trainor, N. Lal, and F. B. McDonald, "Energetic Charged

Particles in Saturn's Magnetosphere: Voyager 2 Results," Science, 215, 5770

1982.

,r
Y

^F

A^ <

I



16

FIGURE CAPTIONS

Figure 1

Effective Area of Cerenkov detector, channel C3 as a function of angle

to the detector axis for protons of energy 66, 98, 137, 446, 497, 521, and 560

MeV. The proton energy is given at the right hand edge of each curve.

Because of experimental difficulties there is significant scatter and

statistical error, and this is illustrated for 560 MeV (circles) and 98 MeV

(crosses). These data were taken at the NASA Space Radiation Effects

Laboratory (SREL).

Figure 2

Response vs energy for several pulse height channels of the UCSD

Cerenkov detector, (For identification of the channels, see the text.) The

proton response was obtained at SREL up to its peak energy of 560 MeV, and

ground level, cosmic ray muons were used to calibrate the asymptotic response

of the detector to particles with unit charge.

Figure 3

Effective area vs angle for electrons of the indicated evergies..

These data were obtained on the electron linac operated by Intelcom Radtek

Corporation in San Diego.

Figure 4

Response vs energy for channels Cl, C2, and C3 of the UCSD Cerenkov

detector. To represent these profiles as ideal step functions, one must allow

the value of the threshold energy to depend upon the energy spectrum of the

incident radiation. (See Table I and text.)

Figure 5

Harmonic coefficients of the count rate as a function of the

spacecraft roll angle, plotted vs. radial distance to Saturn during the

inbound pass.

(a) Even harmonics, inbound.

(b) Odd harmonics, inbound.
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Figure 6

Harmonic coefficients of t:A count rate as a function of the

spacecraft roll angle, plotted vs. radial distance to Saturn during the

outbound pass.

(a) Even harmonics, outbound.

(b) Odd harmonics, inbound.

Figure 7

Derived omnidirectional count rates for protons and electrons on the

inbound pass.

Figure 8

Derived omnidirectional count rates for protons and electrons on the

outbound pass.

Figure 9

Derived angular distributions for protons and electrons on the inbound

pass.

Figure 10

Derived angular distributions for protons and electrons on the

outbound pass .
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