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ABSTRACT

The flow field is simu1éted on the surface of a given delta wing
(Butler wing) at zero incident in a uniform stream. The simulation is done
by integrating a set of flow field equations. This set of equations governs
the unsteady, viscous, compressibie, heat conducting flow of an ideal gas.
The equations are written in curvilinear coordinates so that the wing
surface is represented accurately. These eguations are solved by the finite
difference method, and results obtained for high-speed freestréam conditions
are compared with theoretical and experimeﬁta] results.

In the present study, the Ravier-Stokes equations are solved numerical-

ly. These equations are unsteady, compressible, viscous, and three-dimen-

.sional without neglecting any terms. The time dependency of the governing

equations allows the solution to progress naturally for an arbitrary initial
guess to an asymptotic steady state, if one exists. The equations dare
transformed from physical coordinates to the computational coordinates,
allowing the solution of the governing equations in a rectangular parailele-
piped domain. The equations are solived by the MacCormack time-split tech-
nique which is vectorized and programmed to run on the CDC VPS 32 computer.
The codes are written in 32-bit (half word) FORTRAN, which provide: an ap-
proximate factor of two decrease in computational time and doubles the

memory size compared to the 64-bit word size.
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NUMERICAL SOLUTIONS OF HAVIER-STOKES EQUATIONS
FOR A BUTLER WING
By
J. S. Abolhassanil! and S. N. Tiwari?

1. INTROQUCTION

The Butier wing is a delta wing which was proposed by D. S. Butler
(Ref. 4). Tnhe planform of the hody is an isosceles triangle, and the lead-
ing edges of the wing are laid along the Mach lines of the undisturbed
stream. For the first 20% of the length, the body is a right circular cone.
The remainder of the body has elliptic sections which become more eccentric
as the sharp trailing edges are approached. |

~D. S. Butler has compared experimental resuits for surface pressure

with theoretical values obtained by using a characteristic method to inte-

" grate an appreximate form of the inviscid equations of motion (Re¥. 4).

Butler used the hypersonic slender body thecry approximation to simplify the
full equations of motions. MWalkden and Caine estimated the pressure on the
surface of a Butler wing at zero incident in a steady uniform stfemn by
numerically intégrating the two semi-characteristic forms of equations which
govern the inviscid supersonic flow of an ideal gas with constant spécific
heat (Ref. 5). Squire obtained experimental results for a Butler wing at
different Mach numbers and different angles of attach (Ref. 6,7). All
previcus numerical investigations have used inviscid equations and have
excluded the wake region., In contrasf, this study investigates the wake
region as well as the effect of viscosity on the flow. fhe results of this

study are compared with availeble experimental and aunerical results.

1Graduate Research -Assistant, Department of Mechanicit Engineering and
Mechanics, 0ld Dominion University, Norfaolk, Virginia 23508.

2Eminent Professor, Oepartment of Mechanical Engineering and Mechanics, 01d
Dominien University, Norfolk, Virginia 23508,
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In order to study the flow around a Butler wing, the Navier-Stokes
equations are solved numerically. These equations are unsfeady, compréss—
ible, viscous, and three-dimensional without neglecting any terms. The time
dependency of the governing equations allows the solution to progress natur-
ally from an arbitrary initial guess to an asymptotic steédy state, if one
exists. The equations‘are transformed from the physical coordinates to the
cbmputational coordinates, allowing the solution of the governing equations
in a rectangufar para]]eiepiped domain. The equations are solved by the
McCormack time-split technique which is vectorized and programmed to run on
the CDC VPS 32 (CYBER 205) computer. The codes were written in the 32-bit
(half-word) FORTRAN which provides an approximate factor of two, decrease in

computer time, and doubles thé memory compared to the 64-bit word si;e.
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%3 : 2. GOVERNING EQUATIONS

; The governing equations for a thermal fluid system are the conservacion
] of mass, moinentum, and energy. These equations are developed for an arbi-
1f trary region assuming the system is in continuum. Equations of motion for
N viscous, compressible, unsteady, heat conducting flow can be written as:

5 L. 30 -

: Continuity: —t+ 7 o (pu) = 0, : (2.1)

3 : at

9 . 3(9—3 e lemE ) = 2.9

: Momentum: - * v ¢ (puu - ) = 0, (2.2)

Energy: +9. (Eu+g§-uert)=0, {2.3)

@
ot

2
where E 1is the total energy per unit volume given by E = p (e + Xu +

L0 R et 4

potential energy + ...) and e is the internal energy per unit volume.

e

Equations 2.3 can be simplified by assuming that the stress at a point is
lingarly dependent on the rate of strain (deformation) of the fluid {New~

tonian fluid),

: du, 3u auk .
: Tys = =P8ty (e v = ) ¥ 6t e ] (2.4a)
: J I axj 3X; W 3%y

whete Gij is the Kronecker delta’function, and u' 1is the second coeffi-
cient of viscosity. The two coefficients are related to the coefficient of
bulk viscosity (k) by the expression k = 2u/3+p'. The contribution of k

can be neglected if the pressure in a fluid is not changed abruptly during

o
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its expansion or contractiors. Under this assumption, the stress tensor can

be related to the pressure and velocity components as:

u

aui 3u5 . K ]
ija. 4
J Bxk

T,: = - Pd‘.j [ _J.) -

LR
axj axi

6 (2.4b)

wins

This equation is valid for continuum flows. For an isotropic system, the
heat flux in Eq. (2.3) can be expressed in terms of temperature gradient

(Fourier's law of heat conduction) as:

q=-K9vT (2.5)

3 where K is the coefficient of thermal conductivity. A common approxima-
% tion used for viscosity is basec on the kinetic theory of gases using an
s idealized intermolecular-forces potential., The refation is:
.
"
] 2 To, S o

oo Iyt rt o (2.6)

: +
Hp = T s,
where S0 = 198.6° R
3 v, = 0.1716 np
4 coefficients of thermal conductivity K can be determined from Prandt}
nunber
yuC
K=_.Y (2.7)
Pr

3
,
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o
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where Cv is the specific heat at constént volume and vy 1is the ratio of
specific neats,

It is necessary to have a supplementary relation ts close the system of
equations (Eq. (2.1) - (2.3)). By neglectingbinterm01ecu1ar forces (a ther-

mally perfect system), thermodynamic properties can be related as:
P = pRT (2.8)
where R is the gas constant. Thermally perfect gas assumption allows

expression of the internal energy (e) as a function of T only [e = e(T)].

In addition, assumption of calorically perfect gas [e(0) = 0} allows the

following relation:

e =(T. (2.9)

A combination of Egqs. {2.8) and (2.9) results in
P=ce (v-1). , (2.10)

These équations (Egs. (2.1) - (2.3)) are in conservative form. For sim-

plicity, these equaticns can be expressed into ¢ compact vector form as:

,?_Q,J,. E.E.+?.G_+ 311: 0, ‘ (2.11)

3t ax Ay oz

where




b' i
é} A o ] pu
3 puU puu - T, + P
é‘ ' U= pv |, F = puv - Txy .
g pw -
: pUW - T A
3 E +q - +
: i ] Eu a, ¢x Pu
- i 7 [ ]
1 pv pw
i puv - 7 w - T
¥X ou ZX
% G = PYV = T+ P H = pYW - T
3 ‘ yy ’ z
pvw - T Ww > T__ o+
yz PWW 72 P
Ev + q, - 6 + Pv v e -6+
Ay ¢y Ew+q, - o, + P
b - e -

For the sake of generality, we can transform these equations from a physical

domain to a computational domain as

RIS o L S b i

§ [Ex [
. 3y 3F 3 3 3 3 3
: ....+‘gy (...,..Q,Ji) +{ n, (_.f.,..g.,_.ﬂ) {2.12)

: at 3 3f 3 Y{\an  an  an,

EZ- n,
g C)(
N » + L E..F_ QE—G— v aH):‘" O .
5 Y [\t s/

.

-

The transformation coefficients can be computed from a functional re-

lation between the computational coordinates and the physical courdinates.

x = x(E,n,5), y = y(E,;n,z), and 2z = z{£,n,3). {(2.13)
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g = E(X:Y,Z)» n = ﬁ(X,y,I), and § o= C(KQY!Z)' (2-14)

If Eq. (2.14) is known, the traasformation coefficients can be computed by

direct differentiation. If the former relation is not known, after some

algebraic manipulation, the transformation coefficients ean be computed by:

-~ - "i--l

% 3 2 x ax ax)

ax dy oz ' 35 &n 3z

- n A dn )= | o2 ¥y (2.15)

IX 3y 3z et  2n  3r

L 3L 8L %z 3z 3z

Ix 9y 3z 14 an 3z
L N . y

where [0] and |3-'| are defined as {see Appendix A)

”(ay 3z dy ezy _(3x 3z _ 3x 3z (3x 3y 3¢ 3y
on L  3r on an L 3L an an 3¢ 3L 3n
(] = 2 [(3 22 _3y3n  2x3z dx2z  dx 3y dx 3y (2.15)
lo-1)| %€ & 3x 8¢ 3¢ 3r 3¢ 3g 95 ag A
(¥ 32 _2ydzy  _(3x3z_3x2z  (axdy _ @x 3y
9 3dn  an 3L € 3dn  an 3E 9 an  on 3E
[ox ax ax ]
3% an 3z
g1 =1 ¥ 3y By
3 an ag
2 9z a2z
3¢ an 3z
hee -
;
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In the present case, the planes of

24
3an
(2
ag

32
ag
3z

an

_3y 32.‘) -

3z 9n

an 3

thus allowing us to write:

ax

dy 9z 3y 3z

P — i

an

3t 3¢ 3 3k

grid are perpendiculat to the x-direction

b1

x{€) (2.17)

y(n,z) (2.18)
z2(n,z). (2.19)

This reduces the metric coefficient firom nine to five non-zero elements.
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3. METHOD GF SOLUTION
A time marching method is used to compute the solution. This allows us
to capture the possible  transient feature. This method is an explicit
second-order accurate time-split predictor-corrector algorithm '[3J. The
governing equations (Eq. (2.12)) are discretized in computational direc-

tions. In a compact form, they can be expressed as

nt+l

TSI (S N (MO [ MECR) F (MO NIV RO CRY

where

and Ln’ and Lc ‘are the operators in £, n, and ¢ directions,

LE'
respectively, A time step is completed in this algorithm with the appli-
cation of each -operator applied symmetrically about the middie operator.

For example, operator L, can be defined as

£
. out
Lelaty) = Uy 5 (3.2a)
where
Predictor step:
; At .
) AL .k o AL i i, i
ik T Vg T [(Fi Fiod oot G- B o0 (3.2b)

£,
* (Hy - Hy ) B
Z i,k

(¥ el
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Corrector step:

. ' At
out 1 in E 3L
out L M LT L e e (Fiy - Fi) 2 : 3.2¢
U\,J,k 2 J1,J,K .U1,3,k AE. [( i+l i) 5% ( )

6.) 3E 2
+ G4y - G;) oy i+ (H1'+1 - H3) = 1])
:

This method has a time step stability limit, but there is no rigorous sta-

bility analysis available for this. A conservative time step that is com-

monly used is

’ ‘ -1
At < min lﬂl.+ l!l.+ lﬁl +cC _l; + ,l” + “1‘] (3.3)
Ax Ay &z tx2 Ayt 822 '

where c. is the local speed of sound.

In the supersonic regfon, there exists a large gradient which requires
a very fine mesh to resolve it. If tney are not resolved, they produce a
large osci\]ation which eventually blows up the <clution. These oscil-
1afions of "low frequency" can be suppressed by adding a fourth order d amp-
ening. A common dampening used is the pressure dampening. This can be

expressed in physical coordinates as

_ v, v 3
T ,0t,83 2 2 U 5 =1,2,3 (3.4)

£ 3 2
862 _ ap 3 61 362

where 6 | = E, 63 =n, and (3 = 5.
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4. INITIAL AND BOUNDARY CONDITIONS

In computational fluid dynamics the initial conditions usuaily corre-

spond to a real initial situation for a transient problem, or a rough guess

for a steady state problem. In practice, initial conditions afe obtained
from experiments, empirical relations, approximation theories, or previous
computatioral results. An inappropriate initial guess may resuit in gener-
ating unphysically strong transient waves which propagate through the compu-
tational region dominating the flow field and eventually lead to a sclution
failure., In general, there are two important requirements that should be
considered in the choice of initial conditions. First, they should be com-
patible with the fixed upstream boundary conditions. Secondly, the initial
cohditions should be as physically ciose as possible to the actual nature of
the flow field in the region under study. The former will minimize the
nunber of iteraticns required for convergence. An attractive approach is to
initialize the entire flow field (including the upstream boundary and the
body surface) with a crude and simple guess {e.g., free stream condition).
Then, during the course of the computation, both body and upstream boundary
conditions are changed in a gradual manner to their final values over a
prescribed number of iterations. Tne former approach is applied in only one
step which is equivaient to impulsive initial conditions,

It is equally important to implement a realistic, accurate, and stable
method to determine boundary conditions. The appitcation of certain condi=
tions may cause numerical instability even though tne flow is physically
stable, There are neither mathematical nor physical justifications to im-
plement a realistic boundary condition. Most of the boundary conditions
currently implemented are drawn mainly upon intuition, wind tunnel experi-

ence, and computational experimentation., There are three general types of

11
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boundary condition:, T|¢y are Dirichlet cenditions {specified function
value), Rewrand condrticus {specific.d normal gradient), and Robin condi-
tions (a comtination of both). Four important facters shou'd be considered
in toe <2lection of boaurdary conditions. They are convergence, stability,
computer time, and above all the physical justification.

For ihis proolem there are five different boundary conditions. They

are upsiream, downstream, lateral, top, and solid boundary. The upstream

boundary conditions are the undisturbed free stream conditions and are lo-

cated at a grid space away from the leading edge, i.e.,

Ul =u (4.1

-3

upstream

A zero gradient in y-direction (parallel to the:primary direction of flow)

is assumed for tne downstream boundary, i.e.,

301 <o (42

3y downstream

The Yateral boundarics are located far encugh to avoid any influence on the
interaction region. A boundary-layer profile can be prescribed on the lat-
eral boundaries. These profiles can be obtained from their corresponding
points of a flow over a flat pate. Presently, a zerc gradient in z-direc-

tion is assumed for these boundaries, i.e.,

v

e

4

= 0 ' (4.3)
lateral

12
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The wall s assumed impermeable and no-slip boundary conditions are
applied, therefore, all. velocity components are assumed to be zero. The
wall is also assumed to have a constant temperature Tw. A zero normal

pressure gradient .is assumed for the solid surface, i.e.,

331 =0 . (4.4)
3 Iso1id

This evaluation may appear to be based on the boundary-layer approximation
(zero necrmal pressure gradient)., In fact, it is & much milder apbroxima-
tion, since constant pressure is not app]ied-through the toundary layer but
over one grid line in the boundary layer. This approximation hasvyjelded
stable computations for both non-separated and separated boundary layers

[2]. From Eq. (A,25b), Eq. (4.4) can be expressed as

+ 12 4+ n2 4 n2
% n nz

Pp 0 , (4.5)

13

v v 5 A AR 7 M § st A e eer 1 e e e



it
-

-

o BRI T

5. APPLICATION TG A BUTLER WING
As mentioned in the Introduction, the Butler Wing is a deita wing which
was proposed by D. S. Butler [Ref. 4]. The planform of the body (Fig. la)
is an isosceles triangle, and leading edges of the wing are 1aid-a10ng the
Mach lines of the undisturbed stream. For the first 20% of the length, the
body is a right circular core. The remainder of the body has elliptic sec-
tions which become more eccentric as the sharp trailing édges are approached

(Fig. 1b). The semi major and minor axes are given by:

Major axis (semi-cpan) = X 0<xclL (5.1a)
8 .
X
Minor axis (thickness on = —— .
) centerline) g 0<x<0.,2L (5.1b)
SR R LIRS N B RN
8 0.8l

where g2 = Mﬁ -1

The wing is symmetric about (XZ) and (XY) planes. This permits us

to use only one quarter of the entire physical domain (Fig, 1C) which is
extremely advantageous from computational viewpoint. However, if the angle

of attack is greater than zerc then half of the physical domain should be

considered.

Some specific flowfield results nave been cobtained for the Butler wing

and these are discussed in the next section,

14
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§. RESULTS AND DISCUSSION

Grid generation is the very first-step which should. be considered in
obtaining flowfield solution over any configuraticn., Due to the data base
management of our program, it is necessary to map the entire physical domain
into a parallelepiped. Among the grid types, selection cf an O-type grid
would produce a point singularity at the tip and 2 line singularity.élong
the trailing edge. Neverthe]ess,_this maps the solid ooundary'onto an
entire face of the parallelepiped. A C-type grid is used in the present
work. However, the solid boundary is not mapped onto an entire face of the
computational box. This creates a potential proolem in updating the bound-
ary conditions.

In this study, a two boundary grid generation (TBGG) technique develop~
ed by R. E. Smith [1] is used. The method is essentially an algebraic

method. The application of the TBGG method requires that the entire body be

.sliced intavdifferent cross-sections (Fig. 2a-b). The cross-sections of

wing are obtained in the stream-wise direction by analytical descriptions of
the wing surface (Eq. 5.1). The TBGG method ther is used to generate the
grid for each station. There are fifty-five stations in the streamn-wise
direction, and eaéh station has 64 x 36 grid points (Figs. 2C-2i). There is
a total of 126,720 grid points which take 2.8 million 32-bit words of pri-
mary memory (16 variables). The computaticnal time required is 1.9 x 10-3
sec/grid point/ iteration (2.5 sec/iteration). This is a typical require-
ment for the CYBER 205 with two pipes.

Resulis are obtained for a Butler wing at M_ = 3.5, Re_ =2 x 108/ft,
T_ = 390°R, Tw = 1092°R, L= 0.8 ft, and zero angale of attack. The com-
puted pressures are b]otted in Fig. 3. The pressure coefficient along the

center line is shown in Fig. 3a. The results are cospared with available

15
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experimental and numerical results (Refs. 4,6,7). Tne resalts_are in excelf
lent agreement with the experimental results of Ref. 4. Moreover, they aré
closer to the experimental reSuits than previosus nunerical results (Refs.
4,6,7). Pressure ratios are plotted at constant chordwise pcsip{an against

the conical spanwise coordinates (41.66% and 68.33%).. These are scen to be

in good agreement with experimental and nunerical results (Fig. 3b-c).

There are, however, some discrepancies in the results between 30° and 60°.

Thic might be due to the fact that grids are not orthogonal near those

regions.,

In the near future, extensive results will be obtained for different

freestrean conditions. These will be reported on in a future progress

report.
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7. CONCLUDING REMARKS

General formylations are presented to investigate the flowfield over
complex configurations for high-speed freestrear conditions. An advanced
algebraic method is used to generate grids around Lhese configurafions. The
computational procedure developed is applied to investigate the flowfiald
over a Butler wing. Illustrative results obtained for specified freestrean
conditions compare very well with available gxperimental and numerical
results. Further studies, however, are needed to establish the validity and
versatility of the present code. After such model valtidations, it is anti-
cipated to use the coce to investigate flowfield over complex configurations
such as closed-bluff bodies (i.e., circular and e Tiptical cylinders on a

flat plate, etc.).
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APPENDIX A
MATHEMATICAL DETAILS FOR.THE GOVERNING EQUATIONS

A.1 Curvilinear Coordinates
In covariant coordinates system (xi), the position vector of a point

from the origin is expressed as
Y=gy Xy = el X1 tezxztoesxs (A.1)

where e, is the covariant base vector.
In the present study, covariant coordinates are labeled x vy, and 1z,
and contravariant coordinates are labeled £, n and ¢. The cu iant hase

vectors are defined as

_ 3
=TT
ax’
or
™M ‘ X Yr le !? T\
- - T -r
€, =i Xn Yn Ini{j} = {J-1] J i (A.2)
e3 ‘ i Xz i ZC_] K k ]

where J is the Jacobian of transformation. Magnitude of Jacobian (}3])
is the local value of the ratio of an elemental volune in the physicat
(usually distorted) cell to the corresponding elenental volume in the mapped
{cubic) cell,

The contravariant base vectors are defined as



p 2l

B s |

A

1

P

A O U

n e

e AT anm .

el = ar.
3%,
or
2 g & f2 T i
ey = | ny ‘ny n, FREEER ) J (A.3)
e, Ly cy g, X N
-l

Position vector can be expressed explicitly in terms of contravariant

i NP — )
vector {x ); however the infinitesimal vector dr can pe expressed 4s

i i
dr = 2L dx = oey dx (A.4)
ax'
also the magnitude of arclength {ds) can be expressed as
(d5)2 =dr dres , dx dx’ (A.5)
o T k& ’

where GPL is the kronecker delta,
Gki = 1» if K = 2

= i F
6k1 0 if kK ¢+ L.

i

Substitution of Eq. A.4 into Eq. ALG witl result in



2210 ! = ! {
ds (Li. ej)dxidxj gijaxidxj (A.6)

where gij s called covariant fundamental metric coéfficients.

These coefficients can be defined as

. k k . ‘
9y = [-11 7 Qo1 = 2L ax] | (A.7)
axi axj
They are defined as
= y2 2 .
91 =g+ yE o+ 2 (A.82)
92 = 21 2 xe x) ty, y 2z, | (A.8b)
913 % 931 % xe x4y, Ve bz, _ (A.8c)
922 = X0+ 7L+ 22 | o (A.8d)
933 = xg + yi + zg (A.8f)
Similarly, covariant fundamental metric Coefficients are defined 3s
‘. ax X,
A S L (A.9)
3X ax
or
11 4 2 2 42 7)
gl vl g2 (A.10a)
21 = gl2 = + r +
9 9 Ey ™y sy My T E, n, (A.10b)
13 - 31 - v
g g9 £y Lt c) Ly T &, <, (A.10c)
92‘. = n‘z L n; + nz (An)GQ)




B ek a2 |

@ =g 2=, g, + Tyt T, (A.10e)
933 = sz + Ci’ 4 c2l ) (A.].Of)

Furthermore, there exists a unique relationship between contravariant

and covariant fundamental metric coefficients,

9. 9y -9, 9 G:s
g s s T e s L iy | (A.11)
951 19451
i where
G =g g .¢ (A.12a)

11 22 33 23

G =6 =g g -9 g (A.12b)
12 21 13 23 12 33

G =6 =g g -9 g (A.12¢)
13 1 12 23 13 22

6 =g g -¢ (A.12d)
22 11 23 13
G a2 3 = q g - g g (A.lZe) ’ )

23 32 12 13 23 33

G =g g =~-g° (A.12f)
33 11 22 12 .

There is also a relationship between covariant and contravariant base

vector

SR TS SR I O, R s T A AN
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%
wnere [giji = |32
i.e.
AR ) . .
ol = (Voze=¥ 2,0 1= (x 2 xc;n) Xy -x v, )
fa-1
or
1 . - - - ]
e 1 (v, %.2) - z.-%.2.) (% Y =%, ¥y
B e o - { - B - - A.l4
¢ 1] (gzp-¥pzg) gz %) (xgYp=x e ) (.14)
3 - - - : -
e (xEy“ Xnyi) (szn xan) (xEyn xnyﬁ)_
i
where J=e
There is aléo- a relationship between contravariant and covariant base’
vectors
e x e
£ ° T
la ™71
ij
where |g | = [Jd]? (A.15)
i.e.,
" ey ) i (n t.,~nt 3 (n & -r.t. ) (n,&,-n t 1
& WMys =Nl yd BAEAE SiF 38 x"y"y x)
1 ' .
= - P T : - - -r {0 3
& I (e o, g B0 (g8} | {A.l6a)
& i .L(lsynz-azny)_ “(En-E ) (Ezny-ﬁyﬁx)
- or
38
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(3-17 = [ey & €3]T

(nygz~nzcy) - (Eycz-zzzy) (Eynz-ezny)
=l-(ng k) (€8, £,8,) (50,78 .0,) (A.16Db)
(neng)  -(Eg-€r) (€080

The relationship between vector bases can be obtained also by matrix alge-
bra. From basic matrix identity, it can be written as
* T .
Transpose of cofactor [d-1] _ [[J-1]] (A.17)
E NER

(9] = (3] =

A AR o

Equation (A.17) is the same as Eq.(A.14).

There exists an inverse relation for Eq. (A.17).

A.2 Vector Representation in Curvilinear Coordinates
A vector F(Fx i, ij, FZ k) can be expressed in a qontravarient co-

ordinates as

’ 172 ¢
F. = (gii) X | (A.18)

i
where
. i i i
1 IxX ax !
=

Ix
F S F 4+ e F o+ F (A.19)
X x 3y Y oaz 4

Equation (A.19) can be expanded as
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o+t

r‘ iz] [ -
Fer (9] & &y, E [ Fy Fy
172
o (90 e ny o [ R gl (A.20)
F/( )1/2 F'
c g, J, ¢, cy czj , Fz
where 935 is defined in £q. (A.8).
The inverse relation to Eq. (A.20) is
- 172
F F./ (9 ) : :
X 3 11, ,, .
F = [0-11§ F/ (g ) - (A.21)
Fy v FP’ ( 221/2)
.2 ¢ 933

For example, velocity vector in covariant coordinates can ne written

as
u l U/ (ayy 1/2) ]
v 1= [9]7! v/ (922 1/2)
| oo |

Also, velocity vector in contravariant coordinates can be expressed as

[ v (ay) 22 u
V/ (g32) 272 (= [J]¢v
W (gy,) 172 R

Where u and U are velocities in covariant and contravariant coordinates

system,
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A.3 Normal Qerivative in Curvilinear Coordinates

A normal derivative of a scalaer variable cer be camputed as

i

(fﬁi> = n ; v A
an

where
; e
na 3 . 1
{vs] ley]
VA = Ax i+ Ay J+ Az K
or

A
X T £
Ay ] = [J] AL
Az k A:
Equation (A.23a) can be written as
T
3A | A [Wx Wy wZ] [J]
2 442 4 g2)172
an (wx + &y + gé)

coastant ¢

For constant - €, Eq. (A.24b) can be written as

> X

WAL i

(A.23a)

(A.23b)

(A.23c)

(A.243)

(A.24h)




A =
an . 11)1/2
(g

11 12 Tl 3~
9t A+ it A+ g T A

2

For constant - n. Eq. (A.24b) can ve written as

3A

n

21 22 23
_9T A r g A T A

" | (gzz) 1/2

For constant - ¢z , Eq. (A.24b) can be written as

-

31 32 33
_B_A_ i g AE + g An +g AC
an ( 33)1/2
9
<
also,
i 3
{A); &o.va=t_ g (e'sed) Ag
i iy 3=
fe'] je'] J
s g g\ 3A
R YZ: j=1 uﬁ}
(‘%‘i) ' ax
\
e#gl
£ 1 11 12 13
(A)n = —"i—l- {g AE + g Aﬂ +q A‘:j
9

A.4 Miscellaneous Relations

Angle between two grid lines is given oy

o ey R

(A.25ar o~

{A.25h)
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therefore for orthogonal grid, the following shouid be true,
945 % g for i # ]

Arclength is defined as

3 3 . .
(ds)2 = izl jxl 94 dx' dxJ.

Arclength along xi coordinate is defined as

i , 172 i
(dS) 2 \9”) dx‘.

. . i, . .
The area of an elensnt on which the x is constant is defined as

(e = e axlng ax |- (g a0
J

drs = | e dn xe3d& | =Gy dneg
dar' = Gy dE dc

(r.28)

(A.29)

{A.302)

(A.300)

(4.31)

(A.32a)
(A.32h)
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dr® =633 d € d .
Vo)ume of an element is defined as

gy = Sxy,z)

= [3-1] dg dn dr
d(E,a,z)

1/2
= ley (eyxey)| dE dn dg = (Igij') dg dn dg

A.22¢ ,‘

(A.33}
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