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total harmonic distortion voltage ratio 
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minimum mean square error 
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SUMMARY 

This paper examines the ultimate modulating linearity attainable with a phase 
modulation technique based on the linear addition of quadrature phase carrier sig­
nals which have been mUltiplied by precisely defined nonlinear transformations of the 
modulating signal. This technique, sometimes described as complex phasor phase 
modulation, is a logical extension of the Armstrong method and can provide exception­
ally good linearity for phase deviations as large as 5 radians. For example, it is 
shown that a total harmonic distortion ratio of -55 dB at a peak sinusoidal phase 
deviation of 5 radians is theoretically possible by using a relatively simple fifth­
order nonlinear processor. 

INTRODUCTION 

In the early 1970's, a landing-guidance system under development required a 
phase modulator having good modulating linearity for phase deviations exceeding ~ 
radians without resorting to frequency multiplication. Several methods for accom­
plishing this objective were examined, and the one ultimately chosen is the subject 
of this paper. 

The complex phasor phase modulation technique is an extension of the Armstrong 
method (ref. 1, pp. 603 to 605) and follows logically from an expansion of the ideal 
phase modulation waveform given by equation (1) 

into quadrature phase components. Equation (1) can be rewritten as either 

e(t) = Ao cos wt cos ~ - Ao sin wt sin ~ (2) 

or 

e(t) = Ao (1 - ~2 + ~4 _ ••• ) cos wt _ Ao (~ _ ~3 + ~5 _ .•• ) sin wt (3) 
2! 4! 3! 5! 

The functional configuration shown in figure 1 can be designed to perform the 
operations indicated by equations (2) and (3). Implementation of equation (2) re­
quires nonlinear processors to transform ~ to sin ~ and cos~. Although sine 
and cosine nonlinear function modules are available, they are two-quadrant devices, 
and their applicability is therefore limited to phase deviations not exceeding TI/2 
radians. 

In lieu of direct sine/cosine transformation, the synthesis of sine/cosine 
functions from infinite power series of ~ is theoretically possible. This alterna­
tive is not appealing; however, it does suggest a third possibility: the approxima­
tion of the infinite series with a practically finite number of nonlinear terms. If 



the nonlinear processors in figure 1 can generate powers of ~ through the fifth, 
the first-zone output signal (around w) can be expressed as 

vet) ( 4) 

(5) 

and 

<P (~) 
o (6) 

This paper shows that remarkedly good linearity between ~o and ~ in 
equation (6) can be obtained if the coefficients are optimized. These "optimum"· 
coefficients differ significantly from those in equation (3). This paper addresses 
the following questions: 

(1) What optimization criteria should be used? 

(2) What are the "optimum" coefficients in equation (6), based on the criteria 
established in (1) above? 

(3) What total harmonic distortion performance can be expected when the optimum 
coefficients are used? 

Since the initial work on this project was done over a decade ago (ref. 2), 
significant improvements in the components needed to implement the radio-frequency 
and nonlinear processors shown in figure 1 have occurred (ref. 3 and ref. 4, p. 13), 
and further improvements are likely. Therefore, this study is limited to defining 
the ultimate performance capabilities of the technique without regard to hardware 
imperfections. Circuit orders of 2 through 5 will be considered, where order denotes 
the highest power of ~ having a nonzero coefficient in equation (6). 

The fact that the envelope of the synthesized approximation to e(t) is not 
constant but is a function of ~ as given by equation (5) is largely ignored, and ib 
is assumed throughout most of the paper that hard limiting can satisfactorily remove 
all amplitude fluctuations. A final section describes the incidental envelope varia­
tions that inevitably accompany this phase modulation technique for the purpose of 
facilitating the design of a suitable limiter. 

ANALYSIS 

Phase Function Optimization 

The approach employed here was to postulate reasonable and practically 
applicable optimization criteria, determine the optimum Ki set based on each of 
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these criteria, and determine the linearity bet,'leen CPo and 'I' for each Ki set on 
a common basis. The optimization criteria utilized here fall into the general cate­
gories of minimum mean square error (MMSE) and minimum total harmonic distortion 
(MTHD) for '1', a sinusoidal signal. The final choice between the various approxima­
tions was based on total harmonic distortion (THD) performance. That is, for ~(t) 

= ~~ sin at, the Fourier coefficients of ¢o(t) were computed as a function of 
~~ for each Ki set. It should be emphasized that THD minimization to determine 
the optimum Ki set and the THD comparison between the various approximations (Ki 
sets) are quite different operations. In the first case, ~~ is fixed at ~~D and 
the THD is minimized with respect to the Ki values, whereas in the second case, the 
Ki values are fixed and ~~ is the independent variable. 

The mean-square-error (MSE) function is defined as 

2 
£ 

1 
2~D 

(7) 

where Co~ is the desired linear relationship between CPo and ~. In general, the 
mean-square-error function is minimized with respect to the Ki values; however, 
other.constraints or conditions may be imposed. An initial optimization approach, 
designated (MMSE)l' set KQ and Kl in equation (6) equal to unity, and the coef­
ficient Co in equation (7) was made equal to the first derivative of CPo(~) in 
equation (6) evaluated at 0, or unity. Thus, for an nth-order circuit, the procedure 
determines the' n - 2 remaining coefficients. Computer programs were developed which 
minimized the integral expression in equation (7) by a numerical procedure related 
to the Newton-Raphson method (ref. 5, p. 221) generalized to an arbitrary number of 
independent variables. The integrals were evaluated numerically by means of 
Simpson's rule. In figures 2 through 5 the optimum (MMSE) 1 coefficients for circuit 
orders 2 through 5 are plotted as a function of 'I'D' the design-maximum phase 
deviation. 

The normalized root mean square error, or RMSE, provides a physically meaningful 
measure of the deviation of cP ('I') from the desired linear relationship Co~. o 
Normalized RMSE is defined as 

~ 
Normalized RMSE 

and is plotted versus ~D in figure 6 for the purpose of indicating the circuit 
order required to achieve a specified value of normalized RMSEfor values of ~D 
up to 5 radians. 

Total harmonic distortion ratio, a widely accepted measure of system 
nonlinearity, is defined as 

D 
Total harmonic distortion "power" 

Fundamental "power" 

(8) 

(9) 
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when the excitation is sinusoidal, that is, when ~(t) = ~~ sin at. The THD ratio 
may be expressed in terms of the mean square value of ¢o and Cl , the fundamental­
frequency Fourier coefficient, as 

~ _ C 2 
o 1 

C 2 
1 

If ~(t) is sinusoidal with period 2~/a, 

possesses both odd and half-wave symmetry. 

and the fundamental-frequency "power" is 

[ - J 7T
/

a 
C 2 =..iL ¢ (t) 

1 41T 0 

-7T/a 
sin at dtf 

(10) 

~o(t) also has a period of 2~/a and 
The total "power" in ~ (t) is 

o 

(11) 

(12) 

An integral expression for 02(~~) is obtained upon cOmbining equations (6), 
(10), (11), and (12), and letting ~(t) = ~~ sin at. This expression was evaluated 
numerically by using the (MMSE) 1 optimum Ki sets corresponding to selected values 
of ~O. The results are plotted in figures 7 through 10 for circuit orders of 2 
through 5. The THD performance of the Armstrong (linear) approach is shown as a 
dashed line for comparison purposes. The THO was plotted up to values of ~~ 

numerically equal to the ~O values producing approximately 1 percent normalized 
MSE in figure 6. The following observations can be made about these curves: 

(1) The THO performance is much improved relative to the Armstrong method. 

(2) In all cases, THO increases very rapidly when ~~ exceeds ~O. 

(3) As ~~ becomes less than ~O' THO fluctuates generally downward; however, 
THO is always less than the value corresponding to ~~ ~O. 

(4) When ~~« ~O' THO decreases monotonically with ~~. 

(5) Values of THO as low as -55 dB can be obtained with a fifth-order circuit 
for a peak sinusoidal phase deviation of 5 radians, as shown in figure 10. 

In addition to (MMSE) 1 minimization, several other optimization criteria were 
postulated and evaluated but were rejected in favor of (MMSE)1. Additional MMSE 
constraints were imposed in an attempt to further reduce the normalized MSE. In 
(MMSE) 2 minimization, Kl in equation (6) was made an additional independent varia­
ble and equation (7) was minimized, with Co = 1. For (MMSE) 3 minimization, Co in 
equation (7) was made the additional independent variable and equation (7) was mini­
mized, with Kl = 1. In both cases, the reduction in normalized RMSE was trivial; 
however, the THO behavior was considerably different from that of (MMSE)l' as 
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discussed shortly. In THO minimization, the integral expression for 02(~~0,Ki)' 
obtained by combining equations (10), (11), and (12), was minimized with respect 
to the Ki values, with ~~O being a parameter. Thus, 0 2 was minimized for 
~(t) = ~~O sin at. Upon obtaining the optimum Ki set for each value of ~~O' 
02(~~) was computed as in the (MMSE) 1 case. 

The salient results of comparing 02(~~) for all four optimization criteria 
can be summarized as follows (refer to fig. 11): 

(1) For ~~« ~~O (or ~O)' (MMSE) 1 is slightly superior to the other three 
cases. 

(2) For intermediate values of ~~, say ~~ = 1/2~~0' (MMSE)2' (MMSE)3' and 
MTHO all exhibit an undesirable characteristic - THO increases considerably 
relative to the THO value corresponding to ~~ = ~O (or ~~O). 

(3) For values of ~~ approaching ~~O' MTHO always gives the lowest THO, 
as it should; however, the improvement is small - typically less than 5 dB. 

Figure 11 illustrates these effects and is representative of the behavior 
observed with other circuit orders and values of ~~ and ~O. Thus, the small re­
duction in THO at values of ~~ approaching ~O «MMSE)2 and (MMSE)3) and ~~O 
(MTHO) was more than offset by the undesirable behavior at intermediate values of 
~~ and the larger THO at small values of ~~. Therefore, (MMSE)1, the simplest 
both conceptually and computationally, was judged to be the best choice for 
calculating the weighting coefficients in equation (4). 

Concomitant Envelope Variation 

The envelope function of equation (5) was totally disregarded in linearizing 
the phase function of equation (6). Thus, it should not be surprising to find that 
appreciable envelope variation accompanies this phase modulation method. Well­
designed hard limiting, as indicated in figure 1, can greatly reduce residual enve­
lope variations; however, AM to PM conversion in the limiter (ref. 6, p. 51) should 
be strictly avoided. 

The degree of envelope variation to be encountered with this PM method is 
therefore of interest. This information is contained in figure 12, which shows 
A(~)/A(O) (see eq. (5» as a function of the independent variable ~ for various 
circuit orders and values of ~O' It is seen that A(~) is a monotonically increas­
ing function of ~ over the range of variables considered, and that higher circuit 
orders always result in less envelope variation. 

EXPERIMENTAL RESULTS 

As noted in the Introduction, this phase modulation technique was applied to a 
practical situation. A fifth-order circuit for ~O = 5 radians was built, evaluat­
ed, and successfully used in the intended application. Unfortunately, the apparatus 
available for evaluating the modulating linearity of the experimental phase modula­
tor did not possess adequate linearity to make a definitive measurement. The theory 
predicted that the experimental model should exhibit THO not exceeding -55 dB (see 
fig. 10); however, measurements made with the test apparatus available resulted in 

5 



THD values of -40 dB. This discrepancy is at least partially, and perhaps largely, 
the result of distortion generated within the phase demodulator used to evaluate the 
experimental phase modulator. Thus, the extent to which a practical 'circuit matches 
the ideal remains undefined and may well be better than the measured value of 
1 percent, or -40 dB. Even if the -40-dB value is correct, it is the opinion of the 
author that the hardware improvements mentioned in the Introduction would result in 
better THD performance. 

CONCLUDING REMARKS 

This paper has shown that the complex phasor phase modulation technique is 
capable of exceptionally good modulation linearity for phase deviations as large as 
5 radians. A simple procedure was developed to determine the optimum weighting 
or gain coefficients in the nonlinear processors required to implement the technique. 
These optimum coefficients are shown graphically for circuit orders up to 5 and phase 
deviations up to 5 radians. The total harmonic distortion performance for a complex 
phasor modulator using the optimum coefficients is defined. Finally, the unavoidable 
amplitude modulation accompanying the technique is quantified. 

Although this paper is basically theoretical in nature, the ideas cont~ined 
herein were applied, and practical circuits were constructed. For those f~iliar 
with analog and radio-frequency signal-processing components, it will be apparent 
that the critical items in this concept are (1) the analog multipliers needed to 
implement the nonlinear processors and (2) the balanced modulators (also analog 
multipliers) used to perform the carrier modulation operations. Since the other 
hardware items needed to implement the concept can be considered to be essentially 
perfect for this application, the ultimate performance will be dependent on the 
analog modulators. 

NASA Langley Research Center 
Hampton, VA 23665-5225 
June 24, 1985 
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