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Parallel Computation with
the Force®

Harry F Jordan
Department of Electrical and Computer 'ngineering
University of C'olorado

Abstract

A methodology, called the force, supports the constiuction of prograns to he
executed v parallel by a force of processes The number of processes 1 the
force 1s unspecified, but potentially very large 'The force idea 1s embodied
a set of macros which produce multiprocessor Fortran code and has been <tu-
died on two shared memory multiprocessors of faniy different character The
method has simphfied the writing of highly parallel programs within a himited
class of parallel algonthms and 1s bemg extended to cover a broader class
This paper deals with the individual parallel constructs which comprise the
force methodology  Of central concern are their semanties, implementation
on different architectures and performance impheations
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Conceptual Basis for the Force

The force [1] methodology for parallel programining arose i trymng to
produce high performance parallel programs in a shared-memory multiproces-
sor running up to 200 processes on the same user program [2] Multiprogram-
ming was not an 1ssue, and all emphasis was on single problem solution speed
Partly for performance measurement purposes and partly for program
manageability, a programming style emerged 1n which a single piece of code
was wiitten which could be executed by a force of processes 1n parallel The
number of processes constituting the force 1s constant during exccution but 1~
bound as late as the beginning of execution, and may be one

The force techmique nsulates the programmer fiom all process manage-
ment and leaves him the 1ssues involving process synchronization Since
processes ate estabhshed by a program mdependent driver at the beginning
of execution time, parallelism 1s mtioduced at the top of the procedure
hierarchy This has the effect of mnsulating the user from parallelism 1ssues
with results similar to those obtained by encapsulating parallehism below a
particular level m the procedure hierarchy The study of technmiques for using
the force i a program is essentially a study of synchronization mechanisms
which are independent of the number and 1dentities of the processes syn-
chronized

Several advantages arise out of independence from the number of
processes [t 15 not necessary to design algorithms with a detailed depen-
dence on the, potentially very large, number of processes executing them
The choice of the optimal number of processes can be made at run time on
the basis of system hardware configuration and load Since complete
imndependence from the number of processes implies correct execution with
only one process, the 1ssues of arithmetic correctness and multi-process syn-
chronization can be separated 1n the testing of a program

Statements wiitten 1 a force program are mmphecitly executed by all
processes in parallel Variables appearing in statements are divided into local
variables, having separate instances for each process, and global variables,
<hared among all processes of the force An assignment statement, for exam-
ple. may combine the values of global and local vartables to produce a local o1
global result If the result 1s local, no assignment conflict 1s possible If 1t 1s
global, then assignment conflict must be prevented, either by allocation of
disjomnt sections of a global data structure to multiple processes or by svn-
chronizing the assignment across processes, say by enclosing 1t 1 a critical
section or by using producer/consumer synchronization on the varable
assigned Library or user subroutines which are either free of side effects or
carefully synchronized can be invoked 1n parallel, one copy for each process

One wav 1in which disjoint sections of a global data structure, specifically
an arrav, may be allocated to multiple processes 1s to schedule distinct mdey
values mm a DOALL across processes Index values may either be assigned
statically to processes once the number of processes 1s known, in which case
we speak of a prescheduled DOALL, or processes mav dynamically schedule
themselves by obtaming distinet values of a global index variable as they
become available to execute the loop body, known as a self-scheduled



DOALL In either case, the hody of the DOALL i< executed once for each
index value by some one of the processes The choice of prescheduling or
self-scheduling may impact performance as a result of uneven workload divi-
sion or of conflict on access to the global index variable

The programming language associated with the force consists of some
simple extensions to the Fortran language, which are currently implemented
as macros which are expanded by a language independent preprocessor The
target Fortian system must, of course, include ways of creating multiple
processes and of supporting synchronized access to global variables A
currently operational set of macros produces Fortran for the HEP computer
[3]. built by Deneleor, Inc, and a set 15 being constructed for the Flex/32 [1],
built by Flexible Computer Corporation The macio~ interact through the
variables of a parallel environment, which contains some general information
such as the number of processes and some machine dependent items

Parallelismm Constructs of the Force

The macros currently constituting the force can be divided mmto several
classes, as shown 1 Iig 1 The first class deals with parallel program strue-
ture The macros Force and Forcesub respectively begin parallel mamn pro-
grams and parallel subrou.ines They make the paiallel environment vari-
ables available to the macros within that program module as well as making
the number of processes and a unique 1dentifier for the current process avail-
able to the user at run time An End Declarations macro matks the beginning
of executable code and provides target locations for declarations and start up
code which may be generated by the macros A Join macro termimnates the
parallel main program It 1s the last statement executed by all processes of
the force

Macros of the second class deal with variable declaration This class
currently imcludes only Global and Local macros Global variables are associ-
ated with Fortran common while local variables are ordinary Fortran vari-
ables local to a separately compiled program module Sharing of local vari-
ables among several program modules, but local to one process, can only be
accomplished by parameter passing  The static allocation flavor of Fortran
makes at dithicult to build a structure of common variables with one instance
for each process when the number of processes 1s not known until execution
time

Macros of another class distribute work across processes  The most fami-
har construct 1s the DOALL, which 1s employed when mstances of a loop
body for different index values are independent and can thus be executed n
any order Two versions are provided The Presched DO divides index values
among processes 1 a fixed manner which depends only on the index range
and the number of processes The Selfsched DO allows processes to schedule
themselves over index values by obtaining the next available value of a
shared index as they become f{ree to do work For situations i which 1t s
desirable to parallelize over both indices of a doubly nested loop. both
prescheduled, Pre2D0O, and self scheduled, Self2D0O, macros are available



Macros associated with program structure
Force <name> of <# procs> 1dent <proc #>
<declarations >
End declarations
<foree program>
Join

Forcesub <name> of <#procs> 1dent <proc #>
< declarations >

End header
<subroutine body>

RETURN
Forcecall <name>{(<parameters>)

Declaration macros
Global <variable names>
Local <Fortran declaration>

Macros specifying parallel execution
Pcase on <variable>
< code block >
Usect
< code block >

I’nd pcase

[Prefself]lsched DO <n> <var>= <i11>, <12>, <13>
<loop body >
<n> End [prepelf]sched DO

Synchronizing macros
Bairter
< code block>
End barrier

Critical S<yvariable>
< code block>

End ciitical

Produce <variable> = <expression> (producer)
= Use{<variable> (consumer)

Figure 1 Specific Mactos for a Force Program

Independence of the loop body instances over both indices 15, of course,
required for correct operation A similar construct 1s the parallel case, Pease,



which distributes different single stream code blocks over the processes of the
force Execution conditions can be associated with each block, and any
number of these conditions may be true sunultaneously No order of evalua-
tion of the conditions 15 specified, and each will be evaluated by one arbi-
tiarily selected process Thus conditions depending only on global variables
are most meaningful

At the heart of the force methodology are the synchronization macros
They characterize the approach to parallel programming and provide the
means for controlling the force so that coherent and deterministic computa-
tion can be performed Two subclasses of synchronization are control flow
ortented synchronizations and data oriented synchronizations The key con-
trol ortented synchronization i1s the barrier since 1t provides control of the
entire force Its semantics are that all processes must execute a Barrier
macro before one arbitrarily chosen process executes the code block between
Barrier and Fnd Barrier When the code block 1s complete, the entire force
begins evecution at the statement following the End Barrier Although all
but one process are temporarily suspended by a barrier, no process termina-
tion or creation takes place and all local process states are preseived across
the barrier Operations which depend on the past computation, or determine
the future progress, of the entire force are typically enclosed 1n a barrier

Another control based synchronization 1~ the critical section, famihar
from the  operating  systems literatuie Statements between
C'ritical <wvanable> and End Crnitical may only be executed by one process of
the force at a time This mutual exclusion extends to any other critical sec-
tion with the same associated variable Data onented synchronization s pro-
vided by the elementary producer-consumer mechanism, 1in which global van-
ables have a binary state, full or empty, as well as a value Execution by
some process of the macro, Produce <variable> = <erpression>, waits for
the vanable to be i the empty state, sets its value to that of the expression
and makes 1t full, all in a manner which 1s atomic with respect to the progress
of any other process Similarly, the macro, Use(< variable > ), appearing in an
expression teturns the value of the variable when it becomes full and sets 1t
empty Varnables m the wrong state may cause these macros to block the
progress of a process  Auxihary macros for full/empty variables are
Purge <variable >, which sets a variable empty regardless of 1its previous
state, and Copy(<variable> ). which waits for the variable to be full and
returns its value but does not empty 1t

A major weakness m the current set of force macros 1s that 1t does not
smoothly support decomposition of a program into parallel components on
the basis of functionality The Pcase macio offers the rudiments of this, but
only allows one process to execute each of the parallel functions What 1s
desired 1s a macro, Resolve, which will resolve the force into components eve-
cuting different parallel code sections The section of code for each com-
ponent would start with Component <name> strength <number>, which
would name the component and specify the fraction of the force to be
devoted to this component The component strengths would be estimated by
the programmer on the basis of any knowledge availlable about the



computational complexity of each component A macio, Unify, would reunite
the components 1nto a single force The implementation of Resolve 1s comph-
cated by the conflicting demands of generality and efficiency If the number
of components i1s larger than the number of processes m the force, then
imter-component synchronization may deadlock unless the components are
co-scheduled over the available processes An implementation which pro-
duces process rescheduling at every possible deadlock point and 1s still
efficient when the number of processes exceeds the number of components 15
under development

Incorporation of a Resolve macro would make 1t useful to extend the bar-
rier idea A barrier should be able to specify whether only the processes in
the current component are to be blocked or whether all processes 1 the
parent force are to participate In the case of recursively nested Resolve con-
structs, the barrier might specify a nesting level relative to the one in which
it appears

The Resolve 1dea promises a mechanism for functional decomposition of
programs mto parallel components, but there 1s one more capability of paral-
lel programming environments with explicit process management which 1s not
addressed by the force This 1s the ability to give away work to "available”
processes 1 a dynamic manner during execution This ability 1s most called
for by tree algorithmms and dynamic divide-and-conquer methods It would be
desirable for the force to contain a mechamism for efficiently handhing such
algorithms without making the user responsible for expheit process manage-
ment or losing the benefits of independence of the number of processes A
mechanism 1elated to resolve raight be applied at each tree node but could
lead to much process management overhead 1n cases where the correct thing
to do 1s metely to traverse a subtree with the one remaining process

Interrelationships Between the Primitives

The semantics of the parallelism constructs in the force imply certamn
restrictions on the way they are used together in a progiam Several of the
constructs restiict execution to a single stieam within some code block Bar-
rier and Pecase hmit exccution of enclosed blocks to a single process while c1it-
1cal section code 15 eventually executed by all processes, but only one at a
time Thus constiucts which depend on multiple, simultaneous execution,
such as DOAIL, Pecase or Barrier should not appear within such blocks A
critical section within a Barrier 1« meanimgless, but critical sections have
definite use within two ot more code blocks of a F’case construct  Nested crit-
1cal sections have meaning when the associated locking vanables are different
Data oriented synchronization primitives may occur within singly executed
code without restriction, other than the natural possibility of deadlock In
fact, imtialization of full/empty variables 1s usuall, done within a singly eve-
cuted block

Parallel loops do not restrict the execution of their bodies to a single pro-
cess, but they do himit execution of the body for each index valie to one pro-
cess  Thus constructs which depend on full parallel execution cannot appear



within DOALLs These include Barrier, Pcase and other DOALLs The
inconsistency i the parallehsm requirements of nested DOALLs 1s the reason
for supplying multiple index DOALLs for parallel execution of loop bodies
which are independent over the Cartesian product of two or more index sets
Critical sections, Produce and Use are quite useful within DOALLs and often
lead to programs in which the distributed natuie of synchronization reduces
its effect on program performance

Subroutine mvocation within a force program can be done either with a
Forcecall or an ordinary Fortran CALL Only the Forcecall makes the paral-
lel environment available to the subroutine called Since a force subroutine
invoked by Forcecall assumes that all processes of the force will enter i1t, a
Forcecall must not appear within a code body 1n which parallel execution has
been restricted Thus, Forcecalls are not meaningful within Barrier, Pcase,
Critical or DOALL constructs An ordinary CALL imphies execution of a sub-
routine in single stream on behalf of one or more processes Since any For-
tran based parallel system must support multiple independent execution of
subroutines, such as those in the mathematical hbrary, subroutines must
have separate local 1ariable states for all processes executing them An ordi-
nary Fortran subroutine or function call may thus appear within any code
section of a force program The subroutines or functions so imvoked contain
no parallel constructs and access by them to an) shared variables must be
controlled externally if 1t 1s desired

The FKesolve construct 1s intended to produce a new parallel execution
environment within each of its components, differing from the original only 1n
the number of processes Thus all of the parallehsm primitives have meaning
within a force component The implementations of the primitives must, of
course, refer to the parallel environment of the component rather than of the
ornigmal force The meaning of Bariier, as has been noted, can be extended to
refer to higher levels of a nested component stiuctuie, but 1t retains its origi-
nal meaning with respect to the immediate component with no modification
of 1its semantics Barrier, Pcase and the DOALLs have an action linmted to
the component in which they appear Critical sections and data oriented
synchronizations can synchronize operations within the current component
with operations 1n any other components which share the corresponding vari-
ables

Performance Issues

Various features of the force methodology aie related to the performance
of a parallel computer system An overall principle used 1 selection of primi-
tive operations for inclusion 1n the force was that the semantics of each prim-
itive should be simple enough to admit of an eflicient implementation across
the range of shared memory multiprocessors The simple process model, con-
sisting of program counter, local variables and unique 1dentifying index, also
contributes to low overhead 1mplementation on most shared memory
machmes Process priorities and parent-child relationships, for example, can
significantly complicate the implementation of a parallel programming



system on some multiprocessors which do not directly support such features

The primitive operations of the force define a viutual machme, and the
gencrahty of this machine yrelds independence from the details of the under-
lving hardware This benefit of machine independence and portability need
not, however, suppress all machine performance 1ssues at the level of force
programming Pratt [5] pomnts out that a virtual machine for parallel execu-
tion should make "visible,” as programming alternatives, distinctions which
may reflect major hardware performance differences The clearest example of

such alternatives within the force 1s the existence of both a prescheduled and
a self-scheduled DOALL

At the level of the abstract machine, the process interactions imphied by
pre- and self- scheduling are different Prescheduling simce 1t allocates index
values to processes 1n a fixed way as soon as the number of processes 1s deter-
mmed, will <plit the workload evenly across processes only if processors run
at smmlar speeds and the amount of computation speclied by the DOALL
body 1s mmdependent of index value Cn the other hand, no process interac-
tion 1s 1equited to allocate the index values, each process can determine its
own portion of the work independently In contrast, the self-scheduling tech-
nique allows processes to load balance at execution time by obtaining further
imdex values whenever they complete the work connected with previous
values This 1s done at the expense of a short critical section to obtam, incre-
ment and store a shared index variable

For a given undetlymg hardware. these distinctions at the abstiact
machine level can be translated into performance differences by using a few
general charactenisties of the hardware system  The most important parame-
ters for the pre- versus self- scheduling comparison are the size, in execution
time, of a mmimal critical section to access and update a shared index and
the number of processes competing for this access When combined with the
program dependent parameters of the mean and standard deviation of the
DOALL body size over the set of index valuces they allow a determination of
which type of scheduling will lead to better performance

Implementation Issues

Implementation 1ssues can be addressed on the basis of variations in the
two current implementations Several hardware differences between the HEP
and the Flex/32 multiprocessors influence implementation of the force mac-
ros A minor, but basic level, difference 1s that all memory 1in the HEP can be
shared by all processes so only Fortran variable scope 1ssues are mvolved 1n
implementing global variables In the Flex/32, only a restricted portion of
the address space 1s accessible by processes running on different processors so
shared variables must physically reside in these addresses as well as satisfying
Fortran conventions for name sharing by different modules The <haied
address space on the Flex/32 1s large enough and 1ts access time near enough
to that of local memory that this should not be an issue except for programs
with very large global data requirements



The basic synchronization mechanism in HEP 1s the locking full/empty
bit in each memory cell Locks in the Flex/32 are separate and, although
there are 8192 of them, they form a scarcer resource than HEP synchroniza-
tion elements Furthermore, since the HEP has hardware to support the tem-
porary suspension of processes, the user can do synchronizations directly
while the manipulation of locks 1n the Flex/32 must be done through the
operating system Figure 2 shows critical sections for both machines and
notes the user instruction versus system call distinctton The Flex/32 Con-
Current C system supports the association of a lock with any shared variable
to which synchronized access 1s made, so at this level the machine differences
are not major, as far as implementation of the force macros i1s concerned As
shown m Fig 2, the critical section macro has an associated variable to allow
for distinet sets of interacting critical sections In both implementations this
becomes a global variable which 1s locked (directly in the HEP and via system
call m the I'lex/32) on entry to and unlocked on exit from the critical section

The Produce and Use macros are quite different ¢n the two systems <im-
ply because they correspond directly to single memory access instructions on
the HEP and must involve the locks on the Flex/32 Implementation of

HEP
Critical lockl call awrite(lockl, true)
<code block> < code bloch>
End Critical call laread(lock1)
Flex/32

Critical lock1 call CClock(1, "lock1")

< code block> < code block >

End Critical call CCunlck(1, "lock1")

Single instruction HEP
Fortran intrinsics

Flevn/32 operating
system calls

awrite wait for empty,
write, set full

laread wait for full, read,
set empty (logical)

CClock walt for unlocked
and lock
CCunlck unlock

Figure 2 Implementation of Critical Sections



Produce and Use for fewer than 8192 variables might be done using the
hardware locks on the Flex/32, but full/cmpty access to individual elements
of a large airay requires a software supported association of variables with
full/empty bits Synchronized access to the bits and their associated vari-
ables needs to employ a combination of the locks and events supported by
the hardware

Implementation of the Barrier macro shows some clear differences
between the {wo systems In both cases, the semantics requiring all processes
to arrive before the code section 1s executed 15 supported by a shared counter
synchronized as in the critical section Two barrier mechanisms have been
used on the IIEP In systems small enough that menory contention 1s not a
problem, the last process to increment the shared counter executes the code
section and ! lls a memory locatio’. which the other processes are attempting
to read Pic resses must then count down the counter as they exit the bai-
rier, with thc last one resetting the lock If memory contention 1s a problem,
the ability to contiol processes at the user level aliows writing of a IHEP
assembly lan juage routie 1n which all but the last process to enter a barrier
terminate evccution to be recreated with their previous state by the last pro-
cess to enter the barrier In the Flex/32, process contiol 1s a system function
The system. however, supports the concept of shared events, connected to
processes 1 a broadcast configuration Here, processes entering the barrier
wait on the cvent, except for the last one, which executes the code block of
the barrier .ud then activates the event Verifying that each process con-
nected to the event has seen 1t 1s part of the operating system support, so no
exit code 1s required The first mechanism for the HEP 1s contrasted with the
Flex/32 imp! ‘mentation in Fig 3

Conclusions

The design of a parallel programming system 1nvolves a combination of
the 1ssues of utihity with those of implementation efficiency The utility
issues have been treated 1n previous papers [1] [6] while this work concen-
trates on the individual macro semantics and mmplementation 1ssues  The
force methodology supports efficient implementation by the simplieity of 1ts
process model and lack of complex semanties m mdinvidual parallel «on-
structs At least two multiprocessors with shared memory adnnt of straight-
forward implementations
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HEP
Barrier
< code block>
End Barrier
Flex/32

Barrier

< code ble k>

End Barrier

HEP <ing! : instruction intrinsies |

if (lwaitf(ilock)) continue
nloc = 1aread(nbar) + 1
call awrite{nbar, nloc)

if (nloc eq np) then

< code block>

call sete(1lock)

call awrite(olock, true)
endif
if (lwaitf(olock)) continue
nloc = 1aread(nbar) - 1
call iawrite(nbar, nloc)
if (nloc eq np) then

call sete(olock)

call awrite(ilock, true)

endif

call CClock(1, "nbar")
nloc = nbai +1

nbar = nloc
call CCunlck(1, "nbar")
if (nloc eq np) then

< code block>
call CCactev(l, 4, "bar")
else

call CCwev(1, 4, "bar")
endif

Flex/32 operating system calls

watf -\ att for full, read

aread - vwvait full, read, set empty
awrite - v ait empty, write, set full
sete - ~et empty

Figure 3 Imj lementation of Barriers

CClock - wait free, set lock
CCunlek - clear lock
CCactev - activate event
CCwev - walt for event
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