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Introduction and OutlinE' 

The search for improved performancf' 
ha!' focused on using different forms of paral. 

lr.liBr11 1,0 achil've speed increases. 1 To this end. 
Cray Research. Inc. (CRI) introduc('d vector 
prof.essing and. most, recently, user-accessibl(, 
multi-tasking (Larson. 1984, Research. 
1985, Research, 1984). The Cray work on 
mult,i-tasking takes a "coarse grain" approach 
to parallelism in contrast to the "fine grain" 
parallelism of vect.or instruction sets or 
dataflow (Ol'llnis, 1979). Multi-tasking was 
not introduced without tradcoffs such as this. 

The issues raised with the introduction 
of multi-tasking and muit.iprocessing involv(' 
more t.han performance. Multi-t.ask program~ 
may require major changes in their algorithm~ 
storagl' management., and code. Toward thi' 
end. new or modified programming language, 
are needed 

Explicitly parallel languagl's must. handle 
problems beyond the SCOpf' of conventional 
programming languages. These issues includl' 
dat.a protection. non-det.erminism, procesl' 
management. (i.e., creation, scheduling, dell" 
tion), interprocess communication, synchroni· 
zation (i.e., deadlock and starvation), and 
error and exception handling (Denning, 1985). 

·These problems are well documented with the 
Carnegie-Mellon's multiproC'f'ssor research 
(.Jones, 1980). There arc few simple solu

tions,2 and tradf'offs must he madl'. Grit. and 
McGraw compare parallel appli('ation~ pro
gramming to operating sys\.ems programminl! 
in sheer difficulty (Grit. 1983) thus creating 
more trouble. 

System timing must receive careful con
sideration in multi-task codes to avoid incon
sistent results and deadloc k. A sequential 
code hacking !ltyle 15 dangerous m this 

IThe terminolog~' i~ varipo. colorful, and highly 
ronfuRillJ(. ArnonJ( oth('r phras!'s. WI' have: parall!'1 pro· 
ceRsing, multiprocessing. polyproceuing. distributed com· 
puLing, decenLralited compuLing. and 10 forth. Each 
phrast ha~ a slightly different meaning: enough to makt 
communications difficult. CRI makes the subtle distinc· 
tions that multlprogrllmmlng means multiple jobs working 
on a CPU le.g., time·sharingj, multiprorr.,ang means work 
done on multipl(' physical CPUR working multiple jobR 
li.p. .. without regard for job~l. and muUi·luking means 
multiple physical CPUs working cooperlltivelll on a .ingle 
problem. 

2JoneB and Gehringer specific .lIy classify diRtributed 
system iuues into problems of 1) consistency. 2) deadlock, 

1 

environment. Care is required when dividing 
a problem into multiple tasks to avoid incoIl
sist.ency. This division is called partitioning or 
decomposition as well a$ hy other t.erms. 

Severa'! part.itioninr schemes can execuk 
codes in parallel (.Jones. 1980). The most 
common are pipeiining, spatial partitioning (by 
problem space or machinl' sl.orage). or relaxa· 
tion that removes assumptions of data con
sistency. David Kuck is best known for his 
research on automat.ic partitioning (Kuck. 
1980). This paper covers the subjecl. of part.j. 
tioning an existing application program b) 
hand. 

The program "TWING" ill the vehicle 
that. we use to explor(' the i~sues surroundillr. 
multi-tasking. This report covers: 

Existing Languages: Issues and Problems 
The Cray Multi-tasking lmpll'mentation 

The TWING Program 
Modifications to TWING 

The 2-Processor V AX Version 
The 2-Processor Cray Version 

Debugging and Other Consequl'nces 
Performance Issu('~ 
Discussion and Conclusion 

Our programming st.yle is conservative lind 
defensive. We assume the multi-task program 
will not. execute thl' first t.ime. We chosl' II 

synchronous algorithlJl and sought results 
idl'ntical to results using uni-task TWINe:. 
This work st.resses t.hl' importance of careful 
analYSIS. design. and I.esting. 

Existing FOR.TRAN Drawbacks 

As background. it. is useful to understand 
the problems inherent with standard FOR
TRAN and multi-tasking. FORTRAN is not 
currently designed for or intended to run in a 
parallel environment. t-;ew problems arise in 
multi-tasking such as synchronization, com
munication, error handling. and deadlock. An 
excellent. survey of languagl' is~;ul's and variolls 
attempts at solving them appears in Comput
ing Surve yB (A ndre WI), 1985). 

First, the standard FORTRAN language 
lacks process-creation primit.ivt's and struc
tures. The SUBROUTINE is the closest 
FORTRAN object resembling a process or a 
T ASK. Second, the language lacks features 
for explicit synchronization and protection 

3) starvation, and 4) exception handling. 



such liS semaphores (Dijkstra, 1968) (i.e., 
ALGOL-68). monitors (Hoare, 1974) (i.e., con-

current. Pascal). or rendezvous (i.e., Ada!) 
(DO]). J980). Jt.. IIlso. lacks explicit commun
ication fcat.ures such as mailboxes. 

Each of the a,forementioned synchroniza
tion features ha$ assumptions of atomicity 
(uninterruptability) which is critical for main
t.aining a degree of consistency that standard 
FORTRAN cannot currently provide. Syn
chronizat.ion is a technique normally reserved 
for operating syst.em programming (usinr. 
libraries) since it. offers "hazardous" user facili

ties! 

Lastly, the soft.war!' engineering prob
lems associated with FORTRAN art' accen
tuated in a multi-tasking environment. Thes!' 
problems are documented elsewhere (Dijkstra. 
1968): th!'y include GO TOs and the lack of 
modern data structures. An examp!{' of these 
tradeofTs is thp inability for eray multi-t.asking 
FORTRAN to coherently perform multip!e 
RETURNs. 

It is not easy t.o add thesp features t.o thp 
FORTRAN language. Thpsp feat.ures conflict 
with existing language semantics. The pro
grammer must. locate and manage side effects 
op globally referenced memory (such as COM
MON variables), call-by-reference parameter 
passing, and manufacturer-dependent features. 
These sid!' effects also occur at. the lower 
vect.or-processing lev!'l: Cray users have modi
fied their programming style to accommodat.p 
them. We can similarly expect users to adopt 
a multi-tasking programming style. 

Cray Multi-tasking FORTRAN exten
siom; 

Thp existing Cray Research supprcom
puter line performs efficiently by using a vec
tor instruction set. Performance improvement 
is achieved hy using regular data-access pat.
teflls on arrays and their indices. Current.ly, 
multi-tasking seeks to achieve performancp 
improvement using multiple processing units. 

Cra}, Research has a set of primitive 
('xlpnsions to support. muJti .. ta.c;king in version 
1.13 of their CFT FORTH AN compiler 

3Ada is a trademark of tht' Ada Joint Project Office 
of the llS DOD. 

fThere exis\p the potential for user-induced system 
deadlock. 
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(Larson, 1984). Thesp extension~ currently 
allow severa) tlirtual CPUs to exec.ul,e simul
taneously on one to four physical. CPU5. 
These primitivel' are invoked using subrout.ilH' 
CALLs. They are useful for CTf'al.ing more c111-
borate synchronization mechanisms such as 
monitors (Hoare, 1974). 

The Cray primitives fall int.o three gen-
eral categories: 

TASK creation and control 
EVENT creation and synchronization 
LOCK creation and protection 

The primitives are controlled using three basi, 
dat.a structures: a T ASK control array 
(INTEGER type containing two or three elr
mcnts), EVENTs, and LOCKs (bo.th of t);pe 
INTEGER) all explicitly assigned (i.e., 
created ). 

An ext.remely important. semanticS differ
encr is t.hp handling of storage (primary 
memory) in this version of FORTRAN. LocaJ. 
storage in normal FORTRAN has a static 
allocation resulting in possible 3ide effects. 

Thp new multi-tasking CFT FORTRAN 
rpquires a dynamic or st.ack-based allo~ation of· 
storage more characteristic of ALGOL-like. 
languages such as Pascal or C. This is neces
sary for TASK creation and migratio~. Local 
st.orage (scalars or arrays) now has a finitE' life-. 
time and scope. A programmer cannot use a 
value left over from a previou;;-;;~L;()~tine 
CALL or assuJlle values are initialized t.o zero 
(0). This is a radical departurE' from standard· 
FORTRAI\. The npxl. four srctions cover 
these primitives and their effects in greater 
detail. 

TASK Control 

We begin with TASK creation. A user 
controls a concurrent object. called a TASK 
that is invoked like a SUBROUTINE. The 
TASK is drfinpd likr any ol.hrr SUBROU
TINE except that. its nallle must . explicitly 
appear in an EXTERNAL statement before' a 
CALL. and its st.oragp gets handleddif
ferently. The specific TASK syntax primitives 
are shown in figurr 1 where SUBNAME is the 
SUBROUTINE name, and ITCA IS an 
INTEGER TASK control array. Note, 

'We mention this because there are no FORTRAN 
keywords (i.e., syntax) associated with this problem; it's 
semantic. 



CALL TSKST A RT(ITCA,SUBNAME, larguments]) 
CALL TSKWAIT(ITCA) 

Figure 1. Cray TASK primitives. 

restrirt.ed, positional SUBROUTINE argu
ments are passabl~. 

A TASK control array is a simpl(' dal.a 
strudurc that holds TASK control data for a 
schl'duler that is loaded with the program on 
l'xerution. This scheduler is distinct from the 
operating system's scheduler in that it governs 
user defined TASKs rather than JOBs. 

The TASK is crellt.t'd using the 
TSKST ART call. TSKST ART is similar to a 
fork in languages like ALGOL-68 except. II 

separate address spac!' is creatrd. much likE' a 
separate space for a FORTRAN subroutine. 
The eITect is like a subroutine CALL with onE' 
major exception: subroutine CALLs are svn
chronous and con seq uently wait, uniik(' 
TSKSTART calls. 

The following program fragment (figur!' 
·2), listed in parallel, illustrat.!'s the creation of 

a TASK. Not.e that t,he subprogram a))ocatin~ 
the TASK control array must not lose thl' 
T ASK control arra~' storage! Sev;-r; problems 
will result! 

A "TSKW A IT" st.at.ement. could force 8. 

crude explicit synchronizat.ion on execution of 
a RETURN statement within task A. The 
section on Debugging will touch on the use
fulness of TSK WAIT. More refined 

PROGRAM 
INTEGER TA(2) 
EXTERNAL A 

synchronization is availabll' using EVENTs 
and LOCKs. Therl' art' also TSK calls 
covered in the Cray document.ation t.hat 
report T ASK information or statistic~ 
(Research,1985). 

Cray support. of mulLi-tasking includef' a 
simple deadlock-det.ect.ion m('chanisOi 
Deadlock occurs when all ust'r TASl\s arl' 
waiting for a condition t.hal nevl'r (lCCllr~. 

This goes for svnchronizal.ion II Sill g 
TSKW AlT. EVENTs.' or LOCKs. Car(' is 
requir('d, particularly. in using EVENTs 
because these functions are nol n!'cf'ssaril\ 
atomic (indivisible). IDeadlock is discussed 
further in the section on Debugging.] 

EVENTs and LOCKs 

Synchronization· and consistency protec
tion use combinations of EVENTs and 
LOCKs. Both lire useful for simple synchroni
zat.ion. The key difference bet,wt'en an 
EVENT and a LOCK is that a LOCK forcl's 
tash to run in a First-In, First.-Out, (FIFO) 
ordt'r. An EVENT is comparable t.o a "broad
cast." and many TASKs can run at oJlce. It 
is also import.ant to clear or reset a LOCK or 
EVENT at. appropriat(' times. 

CALL TSKST ART(T A,A,arguments) SUBROUTINE A(parameters) 

END END 

Figure 2. An illustration of simple TASK creation. 
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EVENT!! and LOCKs arE' created by 
usin!! !lubroutine CALLs which assign special 
prote('tion in the sallie ma.nnE'f in which 
TASKs af/~ erE'a.lrd. Basic arithmetic and log
ical operat.ions arE' disabled for these obje('t~ 

until they ar!' relE'ased. The spE'cific primit.ivE· 
SlJBlWlJTINE CALb arf" 

~V~NT Control 

EV ASGN(lEVAR) 
EVPOST(lEVAH) 
EVW AJT(lEV AU) 
EVCLEAH(IEV An) 
EVnEJ,(lEV An) 

LOCK Control 

LOCKASGNII,CK) 
LOCKON(l.CKI 
LOCK()li'}t'(LCK) 
LOCKRELILCK} 

in which lEV AR and LCK ar(' INTEGER!' 
assigned as EVENTs or LOCKs. The follow
ing is a simptl' two-TASK synchronization 
usil\!! EVENTs in t,W(} separatE' executing 
TASKs. ThE' scope is shown by the bounding 
boxes of figuf(' 3. If an EVENT or II. LOCK is 
CLEARed or RELeased while some TASK is 
waiting, tit(> consequences arE' nondeterministic 
and can be disastrous. 

)f combinations of EVENTs, I.OCKs, 
and COMMON memory are used. it is possiblE' 
to make mor(' elaboratl' synchronization 
lnE'chanisms such a.s semaphores and monitors. 
Sequential critical section/! of code and data 
hE'('d protection using thesE' synchronization 
primitivE'S. Problems of inconsistent synchron
ization arc covered in the nexi s('ction. 

Conlmunications 

Communication t,akes place though onE' 
of three mechanisms: 

CAU,-by-ReferencE' parameter passing 
Global COMMON memory 

TASK 2: 

TASK COMMON memory 

Data is passed using sharrd (e.g., COMMON) 
variables. This i~ thr principal means of rom
munieation and requirE'~ care ill use. 

A TASK-local COMMON le.g .. TASK 
COMMON) i~ availahl(' in version J.J4 of I.lw 
e .... r rornpilf'r. It. is similar In thf' lIIorl' ~I(lbal 

COMMON except that its data is accessibl(' 
only to objects (SUBROUTINEs} within a 
partie-ular TASK. MainLaini,,~ a wlIsistent. 
system stat(" is a chore left. t.o t.he us/'r, 

Consistency is threatenep by t,hree ba.sir 
hazard,. Suppose A and B are two TASKs 
running in parallel and sharing a variable V. 
The hazards are baseO on the order in whkh 
processes access \': It timing problem. Th(' 
first hazard is the read- write hazard - having 
one TASK prematurely reading a stale valu!' 
bt-fore the appropriatp wril.p. The next is t.h(' 
write-read hazard: having onf' TASK prema
turely "clobbering" a value before il. ('ollld hr 
read. The last hazard is thE' write-write 
hazard in which one TASK writes over values' 
that never get a chance to he read Iparticu
larlv difficult to detE'ct]f" The Cray is not 
res;onsible for these pdtential user errors of 
timing. 

St.orage and Subrout.int' Linkag(> 

'nil" actual handling of sl,oragr diffE'rs 
va:o;tl" from conventional static- FORTRAN, 
This 'has its greatest, effE'cl on SUBROUTINE 

'Tb~ m~lTlorv on th~ ))pn~knr IIpl.p.ogpn~ou. Prp
cesso. IIlEPi is an 'attempt to solvl' this problem. If vari. 
abln r~eive II; Ipecial deciMation, they are forced t6 a1t~r
natl' reads and writes using a unique.aemapbore memory 
Iystem. 

~
ASKl: 

CALL EVW AIT(READY) 
CALL EVPOST(ACK} 

L.:....: . 

CALL EVPOST(READY) 
CALL EVW AIT(ACK) 

Figure 3. Synchronization of two TASKs using EVENT flags, 
Boxes represent different address spaces. 



and FUNCTION linkages. The semantics of 
these new linkages prompt some users to nam(' 
this an entirely different. language (e.g., "not.
FORTRAN") Old 'memory-saving tricks such 
as st.atically defined and allocat.ed variable!: 
left. for a second subroutine CALL are now 
undefined and may cont.ain unreliabl" data. 
Users cannot assume values are initialized to 
zero (OJ. Expressions In parameter lists 
involve similar problems. 

Thos!' rea.ders fa.miliar wit.h dynamic 
storag(' management in sC(lp"d langllltge~ such 
as ALGOL. C. Pascal, or LISP should gra!:1' 
these concepts easily. FORTRAN simply d()e~ 
not. offer the protection mechanisms t.o ensur" 
('onsist.l"n('.y of dat.a in a multiprocess environ
m('nt. The user must. act.ively manage th .. 
dat.a consistency and program defensively. 

The Mathematical Basis for TWING 

TWING is a program thaI solves th(' 
conservat.iv!' full-pot.ential equation, using 11 

fully implicit. approximat.e-fact.orizat.ion algo
rithm. The program solves for stable state 
airflow over a wing flying lit. transonic velo
city. TWING is th(' developm('nt. of Ur. Terry 
Holst and Scot I. Thomas (Thomas. 1983) at· 
the Applied Comput.ational Aerodynamics 
Branch, NASA Ames Research Cent.er. 

Figure 4 is a schematic of the finite 
difference mesh over which the flow solver 
operates. From this representation in "physi
cal space", the problem is transformed into a 
"computational space" lfigure 51 which 
preserves the orthogonalit.y of th(' m('sh line!' 
throughout the computational domain. 

(pc})s). + (pc}),). + (pc}).). = 0 (La) 

A mat.hemat.ical representation of this 
flow solver is given in the derivation of equlI
tion I.c. The three-dimensional, full potent.ial 

. equation (in x,y.z coordinat.es) is present.t'd in 
equation I.a. Th" tra.n~formation int.o compu
tational coordinat.es (~,".( coordinates) yield~ 
equa.tion Lb. In t.hi~ equation. U. V, and ,\ 
a.rc t.erms com posed of c})., c}) v' and c}) z (,Olll

bincd with assorted mt'tric quantit.it's. .J 
represent!: the Jacobian of the transformation. 
Tht' finit.e-difference approximation of this 
t.ransformed equation (J.el employs hackward 
differeJl('(' operat.ors in the ~,", and ( dirf'r
tiolls. This yields the finite-difference approxi
mation ill equat.ion I.c. The special densit.y 
('oefficients il , ii, and p introduce an artificial 
visc()~it.y term into thl' calculat.ion. Th(' resi
dual term L (41) obtained from this equ ation iF 
u!led in the first step of the factorizat.ion 
scheme outlined below. 

An outlint' of tht' t.hree-st.ep 
approximate-fact.orizat.ioll scheme i~ shown in 
the derivation of equlltion 2.c. In st.ep onr 
(equation 2.a). an intermt'diate term G(i,j) i~ 
comput.ed for each point OJI a given "k-shell" 
of t.ht' ml'sh by solving a t.ridiagonal linellT sy~
tern along each " line (i.t'., ~ = a ('on stant.) 
extending from the symmetry plane out. t.o tht' 
freestrt'arn side ..... all. In step two (equation 
2.b), G(i,jl compul.es another intermediat(' 
term F(i,j,k) for each point in the "k-shell." 
This step requires the solution of a tridiagonal 
linear system along each e line (i.e., constant 
,,) ext.ending from t.he upper vort.ex shct't. 
around the leading edge t.o the lower vort.ex 
sheet (figure 6). Finally, when F(i,j.k} hll~ 

been computed for every point in the three
dimensional mesh, the correction fact.or 

The three-dimensional full pot.ential equation (x,y.z coordinates). 

(p U / J)e + (p l-' ! J)" + (p W / J)e = 0 (1.b ) 

The full potential equation in computational space (e, ", ~). 

6~(pU/J} .. I. 4l,,(p~·!J) .. I +6,(PW/J) .. I O(l.c) 
, +'2".1 ',I +'2" ',I.l +'2 

The resultant finite-difference approximation. 
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Figure 4. Sample finite difference mesh. 

OUTER BOUNDARY 

"FREESTREAM 
SIDEWALL BOUNDARY 

z 

~V 
Figure 5. Transformation to computational space. 
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SYMMETRY PLANE 
BOUNDARY 

~ LINE (11 = CONSTANT) 

("0 . UTaOAo 
<10") 

FREESTREAM 
SIDEWALL 
BOUNDARY 

Figure 6. Computation divided into two tasks. 

UTER BOUNDARY 

t LINE (~AND T/ = CONSTAINT) 
"PENCIL" 

FREESTREAM 
SIDEWALL 
BOUNDARY 

Figure 7. Computation done as a region of pencils. 
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St.ep 1: 

[ 0 -l 0. f3" I.~ I . h" 
, .J .k 

__ b77 A -;5 )gn .. 
J" • ,I 

Step 2: 

[Ak -l fJi ( - gn i.; (2.1» 

Step 3: Correction factor C. 

1(.1' -t l .) (' n .. L = f n .. L (2.c) 
\ C 1.1 .If. • ,I .'" 

Steps in the finite differencing scheme. 

Program VTWING 
Input. !lllbrolltine (INPUT) 

R.EAD m('sh 
R.EAD run-t.ime paramet.er~ 

Initializat.ion subroutine (IN IT) 
initialize the solution 
comput.e and store metrics 

Flow Solver: (SOLVE) 
for each iteration do 

for each k-shell in mesh do 
get. metric~ 
compute density and density coefficients 
compute residuals 

solve for 9 n i.; and f n t.i ,k 

end k-loop 
calculate and apply en i.f.k 

o.wL<l>ni.;,k -l o.A H d"i.i.l+1 (2.a) 

output maximum residual and correction for iteration 
check convergence 

end iteration loop 
output solution 

Figure 8. Sequential structure of the TWING Program: 

C(i,j,k) i1l computed in step three (equatioil 
2.('). This calculation proceeds from the outer 
boundary down to t.he wing surface, requiring 
the solution of a bidiagonal system for each \ 
line (i.e., t and 7] = constant.s, figure 7) of th(' 
mesh. This correction factor is then added to 
the solution from the pr('yious iteration, gen
erating a nl'W solution. Thi!< three-1lt.ep pro
cess is repeated it.eratively until convergence is 
achieved or a preset maximum iteration is 
reached. 

8 

An outline showing thE' code struct.urE' 
itself is presented in figurE' 8. The program 
first reads the physical coordinates of the fin
ite difference mesh and its run-t.ime paraJl1l'
ters. The program thl'n comput.es the metric 
quantities defining the transformation of thE' 
problem into "computat.ional spacE''' and 
write!' these to disk. 

At this point, the main iteration loop of 
the program begins. The program completes 
steps one and two (equations 2.a and 2.b) of 



Figure 9. Computation divided in two different regions. 
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thE' three-st.ep approximate-factorization 
scheme outlined above operating on successivt' 
"k-shelIs" in the mesh, beginnin~ at. the sur
face of the wing and progressing t.o the outer 
houndary. For each k-shell, the code: 

(1) fetches th(' appropriate subset of metrirs 
from the disk 

(2) computes the density at. each point. 

(3) generates the special density coefficients 

(4) computes the residual terms resultin!! 
from equation 1.c 

(5) solves for G(i,j) and F(i,j,k) 

Aft.er completing this "k-Ioop," the code com
pletes step three of the scheme by calculating 
the correction C(i,j,k) and applies ii. t.o each 
mesh point to generat.!' a n('w solution. A con
vergence check folIows: when sat.isfactory con
vergenc(' is achi('ved. t.ht' final solution is writ
ten t.o disk. 

TIl(' Modification of TWING 

TWING is writ.ten in portable FOR
TRAN 6(j and executes on Cray, CDC 760U. 
and V AX CPUs. The program was rewritten 
t.o be welI-structured. Its control flow is serial 
(i.e., few GO TOs jumping control around) . 

• Although it was possible t.o partition the com
putation along functional lines in a sort of 
high-level pipeline, this approach was not pur
sued because it needs either substantial addi
tional memory or elaborate internal buffering 
to store intermediate results. Pipelining may 
also hinder efficient execution-time load
balanr.ing with some stages of a pipeline exe
cuting longer than other stages of the pipe. 

This problem was exac:erbated In 

TWING by the ext.ensive use of 
EQUIV ALENCE statements in the original 
code. employed in an effort. t.o squeeze the 
laq~est. possible problems into the limited cor(' 
lJIemory of a CDC 7600 or a Cray IS. Since a 
functional partitioning of the problem seemed 
unsuit.ed t.o t.he limited shared memory avail
able, a st.atic spatial-partitioning scheme was 
employed. 

Our restructuring took advantage of 
existing codt' and attempted as little algorithm 
change as possible. I~ this scheme, each step 
in the algorithm was examined in an effort to 
determine if several port.ions of the mesh could 
be operated on simultaneously at that step. 
Execution profiling using the Cray FLOW-

10 

TRACE facilities showl'!d dominant, run times 
in three SUBROUTINE.s. Vectorized TWI~G 
executed thrE'(, t.imes fasl.er than scalar 
TWING with inpul,-output. overhead included. 
Since distinct. st·E-p~ in th(' al!!orithm tend t.o 
r.orresp~nd t.o s('parat,(' TrImlules in the finish('d 
code, this proc('ss r('s 11 Jt.('(1 in a body of roel(' 
that formed the skelet.on or the wncnrrent. 
processing portion of t.he modified TWING. 

The calculat.ions of thl' densit.y fsubrou
t.ine RO), the special density coefficients (~ub
routine ROCO), and the residuals (subrout.ine 
RESID) were all split along - the, fJ axis for 
each UK-shell" in the computational mesh 
(figures 6 and 7). This resulted in splitting 
loops (figure 10). One processor generated 
these results for points Olt or between the sym
metry plane boundary and the wingtip. The 
other processor handled poirit.s on' the, . wing 
extension. out to the frel.'streilm sidewall bOlln-' 
dary. This "in board-()~tboard" part.itio'ning 
sch('me was chosen bec811!'l' the' 'algorithm 
employed in each of these calculations is U~lI
ally constant for a: given t line - (71 = a con
stant.) but. varied with position along the 1] . 

axis. An inboard-outboard scheme was th('r!'
fore construct.ed uSing processor-dependent 
branche6 such as: 

c 
IF (TASKID .EQ. 2) GOTO 12 
DO io I = I,NIM 

10 CONTINUE 
C Thi6 continut: added for multi-tasking 

12 CONTINUE 

Mathematically, however, each point in th!' 
mesh was operated on independently during 
the~e preliminary calculations. We can 
replace the mesh with different divisions if 
there were reasons for favoring it. 

A more fundamental relationship 
between.the underlying mathematics' of the 
algorithni and the sp'atial d('c(HrlpositiOJi or t.he ' 
problem f<ir" Multiple-I~struction stream, 
Multiple-Data streani IMIMDi execution is 
illustrat.ed by the t.hree-step approximate
factorizadon schl'me outlined in a previous 
section. Recall t.hat in eqllati'on 2.a, the back
ward diffe~encing is performed only about 1], 

which geJ\erates tridiagonal linear systems 
along 71 lines (e= a constant). This makes the 
inboard~outboard partitioning scheme used 
above unworkable for this step. 



TablE' 1. EXE'cution Time Profiling 
Subrout.ine Vl'ctoriz('d TWINGt. Scalar TWING 

% Total Run Tillll' '1(. Total Hun Tilllr 
_. -- --- .------.- - --- . - -.------- .. --------no 15.9:1 14.92 
ROCO 13.45 15.91 
RESID 23.92 17.99 
Tot.al % 53.3 48.82 
tTo clarify: this is not % of vector execut.ion. 

C Variables declared as integer, TASKID obtained/rom TSKVALUE. 
IF (TASKID .EQ. 1) THEN 

ROJSTART = 2 
ROJSTOP = NJTM 

ELSEIF (T ASKID .EQ. 2) THEN 
ROJST ART = NJT 
ROJSTOP = NJM 

ENDIF 
C The values 01 NJTM. NJT, and NJM are preset parameters 
C in uJli-ta.ked TWING. 

C NOIlI, each proreu works on the j-line. delined by 
C tl,e initial auignment block. 
c 
• DO 20 J=ROJSTARTl.ROJSTOPJ 

C DO eo J= e.NJM -- old ,tatement 
DO 15 J=l,NIM 

15 CONTINUE 
20 CONTINUE 

Figure lO. Code illustrating the splitting of a loop. 

However, adjacent " lines are computa
tionally independent at this step, implying 
that the mesh could partition into "top" and 
"bott.om" IIE'ctioIlS, each handled by a separatE' 
processor (figurp 9). Similarly, in step two 
(equat.ion 2.b). the backward differences are 
taken about ~, generating tridiagonal linear 
system" along e lines (" = " constant). through 
the mesh. Here, each e line is computat.ion
ally independent, and the- resulting t.ridiagonal 
systems are solved concurrently by dividing 
the mesh int.o the inboard and r ~ooa.:,d sec
tions described in t.he last. paragraph (see fig
ure 6). 
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Finally. in sl.ep three (equation 2.c), 
bidiagonal syst.ems are general.ed along lines in 
the ( direction (! and " both = constants) 
(llee figurE' 9). Again, concurrent processing of 
multiplp ( "pencils" i!' 8 simple and powerful 
way to use an MIMI) machine at this st.ep. 

Note that truE' MIMD capacity was 
rt'quired t.o use such a spatial partitioning 
scheme. A vector architecture alone would 
not suffice because there was no guarantee 
that the instruction stream to be execut.E'd 
would be the same at different points in thl' 
mesh. Split difference schemes have sOllie
t.imes proved useful. The wing root could 



havE' u5E'd a more complex dilTerencing schemE' 
than employed near the outer boundary of 0 

HII'sh. It. is also possibl!' 1,llIIt, the va.lues of 
some progra~ parameters might also be posi
tion dependent .. 

Anot.her ("od(' s!'f{lienf!' fommonly 
enl'Oullt.er!'d in TWING wa.', the selectioJl of 
thl' maximum or minimum value in all array 
following an operation on the clements of the 
array. While this search has been conducted 
in a serial mode by t.he main program aft.er 
the subprocess('g return, this considerably 
degraded the resulting speedup. A bet.ter 
approach was t.o have each subprocess locat.!' 
tl)(· maximum or minimum element in its por
t,ion of t.he dat.a baSI'. and pass t.hE' indices of 
t.his vallll' back t.o t,11!' lIIain program. Th(' 
maill program neE'd('d only 10 compare the two 
passed element.s to obtai II a maximum or 
minimum ov('r t.h(' entin' dat.a bas('. An 
example of such a coding s('quenc(' i ... shown 
wit h in the next code section (figure J J) wher(' 
Jlumberl'd variables are TASK ·det.ermined aJld 
nann umbered variables are global shared vari
ables. 

V AX Modification 

Our first MIMD testbed used two V AX 
11/780 minicomputers linked to one MA780 
multi-ported, shared memory unit. Becaus(' 
the operation of the processors was 

IF (ABS(RMAX1) .GE. ABS(RMAX2)) THEN 
IF (ABS(RMAXt) .CT. ABS(RMAX)) THEN 

RMAX = RMAXJ 
IRMAX = IRMAXJ 
JRMAX = JRMAX t 
KRMAX = KRMAX] 

END IF 

asynchronous, each with its own copy of th(' 
operating system running on 0 loclli dock. t.h(' 
configuration was be.'!!. d(~sr.ribed liS /I "loO.'wly 
coupled" multiprocessor. Although each pro
fessor retained its large virtual address spafP 
a.s local memory, the -shar!'d memory ill t.h!' 
MA7RO was not virtually address""I!'. Elich 
MA 7RO unit couldaccomrnodat.c up t.o t.W{) 
megabyte!! of physical memory . Thr unit 
employed for thi~ study was equipped with 
256 kilohytes of physica.l memory. 

The operating sy~tern in U!lC ot. t.hr lim!' 
of the !!t,udy was V AX/VMS (VersioIl :1.1). 
V AX/VMS provides I,hre!' facilit.ies for inler
prOfess communication across the sharrd 
memory link: event. fla.gs, mailboxes, IIlId gl,,
bal dat,a secI.iom. 

Event flag!' are allocated in thirt.y~tw() 

bit clusters and -ar(' manipullll('d using a 
varirty of system-supplied rout.ines. A process 
could set or clear individulIl nags and COli Icl 
wait. for the logical AND or OB (If a mlllt.ipir 
flag mask. One drawback of VMS"event nag 
services for MIMD programming wa~ I.hat till' 
flag operations were not indivisible (atomic). 
Thi!l can cause difficulties when an MIMI) 
program uses shared memory. It required pro
tection from simultaneous access by more than 
one process, especially if the number of COJlJ

peting processes is great. In the pre!!ent. st.udy· 
this problem did not arise, both because, at 

ELSE IF (ABS(RMAX1} .LT. ABS(RMAX2)) THEN 
IF (ABS(RMAX21 .GT. ABS(RMAX)) THEN 

RMAX = HMAX2 
IRMAX = IRMAX2 
JRMAX = JRMAX2 
KRMAX = KRMAX2 

END IF 
END IF 

Figure II. Selecting a maximum value from two locally determined maxima. 
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most, two processes werp. adive simultane
ously and also because they generally operated 
on different parts of thp. statically partitioned 
dat.a base. 

The V AX IVMS system was not 
intp.ndp.d t.o bp. a multiprocessor operating sy!'
tern. Programming the sharp.d memory waf' 
clumsy. Since our shared memory was small. 
we reduced the resolution of t.he program to fil 
the space of the memory. This was a develop
ment measure that did not happen on our 
Cray. This paper does nol cover the V AX 
specific version in any ~reat.er detail. 

The other MIMD testbed consists of a 
Cray X-MP /22 running version 1.13 of thf' 
Cray Operating Syst.em (COS). The Cray. by 
way of contrast. is a "tightly coupl!'d," shared 
memory multiprocessor. This creat.es proh
lerns not faced on our \' AX testbed such a!' 
more memory cont.ention but simplifies prco
gramming. 

Cray Modifications 

The V AX version of TWING was a 
''!It.ripped-down'' version of the production 
Cray code designed t.o fit int.o the small shared 
memory system. We, therefore. did not count 
on thf' V AX version to reach convergence. 

• The mesh was too coarse, and we did not get 
a chance to truly debug the V AX version. 
The mathematical ba.c;is for partitioning the 
vector version of TWING (VTWING) was 
identical t.o the V AX-specific version. This 
time. we sought realistic convergence. Debug
ging wa!l a major problem not only for 
TWING, but also for the new STACK alloca
tion and multi-tasking of the CFT compiler we 
were testing. 

One important sidp. step, Wl\.!l a quick !let 
of checks regarding the new SUBROUTINE 
linkages. We should mention this was not· a 
problem for TWING. To do this, a user com
piled the complete, existing program using tItr 
ALLOC=ST ACK opt.ion on the new. GFT 
compiler. The program was then run using 
the associat.ed new loader given adequat.!' 
stack and heap sizes (see the manual) 
(Research, 1985). The results were compared 
to the original STATICally compiled run. A 
useful variation of this was to creat.e simple 
TASKs that START then immediately WAIT 
as a CALL to a SUBROUTW. would: 
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change from: 
CALL RO 

1.0: 
CALL TSKSTART(TA.RO) 
CALL TSKWAIT(TA) 

The t.iming differences bet.ween STATIC and 
STACK runs are included in the section on 
Performance. The compiler changes do 
effed program execution without. source code 
changes. 

The next stage entailed converting the 
existing code int.o a multi-taskin~ body of 
code. This was not as easily as it appeared as 
subt.le errors required detection and correct.ioll. 
It. is possible t.o do this at different. leveb or 
stages such as converting the entire program. 
converting su broutines, or converting blocks of 
rode. Converting a code in large sect.ions I~ 

likE' writing a large program and expecting it 
to run correctly the first time. 

It wa!l important t.o have good com
parison dat.a. since fast execution did not 
imply correct execution. A machine-readablE' 
out.put. was creat.ed from an unmodified. run
ning version of TWING. Once the codl' was 
running. We tested the out.put. of t.he mult.i· 
t.ask run with our uni-task output using a dif-

ferl'ntial file comparator (thl' UNIX7 dill pro
gram). This insured that our conversion was 
precise . 

Our third and last. att.empt. at. conversion 
was to break a subroutine int.o two smaller 
subroutines: a parallel portion and a serial 
portion. Since most of the data was stored in 
COMMON blocks, paramet.er passing was 
minimized to simplify these problems. Th!' 
parallel subroutines were run and synchronized 
before the serial portion as shown in Figure 
12. 

Portions of serial subroutine code (typi
cally loops) then migrated to the parallel sub
routines. This techniquE' successfully id!'nti
fi!'d subscripting oversights. branching proh
lems, and so on. It was painfully slow. but it 
was effectivl'. Initially, ta.~k synchronization 
wa$ performed using TSKST AHT and 
TSKW AlT. not the morl' complex EVENT 
flags. We used the "Make it. right before you 
make it. faster" philosophy from the The Ele
ments 01 Programming Style (Kernighan, 
1978). 

We stress the following point: make cer
tain that the existing code is bug-free. There 

'UNIX i. a trademark of AT&T Bell Laboratories. 



take: becomes: 
CALL S SUR S CALL PI 

CALL S2 

SUB SJa 

SUB 82 

Figure 12. Codl' migration from serial int.o 
parallel, where S is the subprogram. the num
bered portions refer to the halves (1 and 2) of 
S. PI represents the set of CALLs that are in
voked for parallel TASKs Sla and S1 h. 

is littlp sense trying to multi-ta..'1k bug ridden 
codf'. Multi-tasking the code made programs 
harder to debug. The programmer has to di!;
tinguish the original bugs from I.he newly 
introduced linkage and multi-task bug!!. 

Each SUBROUTINE was individually 
convert.ed to two parallel TASKs giving three 
versions of the program. The next step was to 
get. combinations of two different TASKs run
ning within a program. This was used t.o 
locate side effects between any two different 
TASKs. We still used the crude START and 
WAIT CALLs at this point. Finally. we had 
all three CALLs converted. 

Once all TASKs were operating using 
crude synchronization, it. was a simple matt.er 
to get. barrier synchronization using EVENTs. 
We moved one TASK at 8 time to EVENT 
s!.ruc\,ure1i. Aft.er EVENTs replaced the 
TSKSTART and TSKWAIT CALLs, we 
wrol.(' a simple user-level TASK scheduler (fig
urt' 13) that worked on simple message
passing. 

Our last act scaled the grid from V AX 
sharl'd memory-size to Cray memory, produc
tion size. During this final work, we corrected 
one V AX-scale dependency problem. This 
problem involved n partial correct.ness proof 
mentioned furt.her in the section on Debug
ging. 

Time and Effort 

This work took several months. We 
reported our many compiler problems t.o CR). 
Meanwhile, Cray Research migrated from 
CFT Release 1.13 to 1.14. solving many of our 
problems. 
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To reiteral.e tht' degree of change, 
TWING ac:tuallr consist.t'd of' two separat.t' 

programs~: a grid generator ane! thl' vectorized 
version of the TWING flow solver. ,The 
multi-tasking t.ook place only on the flow 
solver. 

We document. the GRIDGEN program 
here only for completeness. The GRIDGEN 
program consisted of 

2123 total lines of commented FORTR AN 
1195 executable lines of code in 
1031 executable statements 

An instrumented uni-task version of the 
TWING solver consisted of 

3926 lines of commented code 
3840 Iin~s without instrumentation 
2529 total executable lines 
1906 executable st.atements 

An instrumented multi-task versIOn of 
TWING came to 

4450 lines of commented code 
4399 lines without. instrumentation 
2870 lines total executable 
2188 executable statements 

Note that additions and modifications do not. 
sum to the totals becau1lf> therE' is overlap. 
Additions and rnodiricat.ion!'l t.(lok the rOrln (If 
replication and addition of statements to han
dle problems such as parameter passing. 

Our experiencE' with converting this and 
other NASA codes, ILES and ARC3DI 
currently 'has us modifying about ]0% of the 
code (if the grid generator is counted, slightly 
more if not). Most of these codes have fewer 

'The two programs are combined 'as one (or 
machines with large memory. 



MESG ~ 1 
CALL SCHEll 

SUBROUTINE SCHED SUBROUTINE PROCES 

CALL EVPOST(GO) CALL EVWAIT(GO) 
IF(MESG.EQ.l} THEN 

CALL EVW AIT(DONE) CALL HO 

CALL EVPOST(DONE) 
END 

END 
Figure 13. Structure of our simple scheduler. 

loop:: split arross processors compared t.o 
TWING. Wf!' split. II total of 19 loops in thre(' 
SUBROUTINEs. This includes new code for 
loop split.tin~, new per-process branchE's, 
T ASI{-EVENT creation and control code, and 
a small TASK scheduler. About 210 lines of 
control flow code were added (excluding com
ments). 70 more lines were replaced or modi-

-fied into 160 lines to handle problems of 
parameter passing, o~ changes to array indices. 

During the development of each TASK, 
good version control proved useful. A good 
tool requires parallel branching versions; linear 
version cont.rol such as UPDATE was not a.de
quat.e. Maintaining the successful, int.ermedi
ate stages of multi-task TWING made debug
ging and scale-up easier through the isolation 
of changes. It was always possible to easily 
fall back t.o SOUle parallel, executable code. 

Debugging 

Sequential debugging is generally 
regarded as a black art. Bugs occur during 
compill'-t.irne and run-t.ime: wit.h the latt.er, 
th(' non-faLal on('~ IIr(' th(' hardesL to find. 
Th(' basic- Lechniquf!'s for debugging are 
categorized int.o: 1) tra.ces, 2) snapshots or 3} 
dumps. These techniqu('s have problems in 
multiprocess environments lacking consistency 
or having deadlock. Multi-task debugging is 
plagued by a lack of reproducib;l: • .' synchron
ization, and good tools. T <! literature on 
run-time debugging in multiprocess environ
ments is scarce (Model, 1979) and more work 
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is needed in this area. 

Numerous users tell us 1.0 "force multi
task execution into a single stream of execu
tion9 " as if simple user-controlled reduction 
would solve hazard problems. 

This does not help! 

Normal debugging depends on a machinf' 
being in a reasonably consistenl. state. A 
multi-task program crash may not occur at 
the same location as with a uni-task program. 
This is true for uniprocessors executing mult.i
task code as well. 

Consider a simpll' example to illustralc 
the conceptual diflicultie~ of debugging using 
the CFT traccbac k facilit.y. A program 
creates a child TASK. When the child TASK 
dies, should the traceback trace through the 
point where t.hl' child process hegan. or should 
il. trace t.hrou~h thc synchronizat.ion rout.ines 
(if any): The tangled nondeterministir web 
makl's t.his decision difficult.. Therc are sit.ulI
tions where onl' tracc is preferable over the 
other. Onl' condition is when the child dies 
because of t.he actions of its parent or 8ibling 
processes Iside efferts]. So. traces are not sim
ple. What about. snapshots? 

'This is accomplished using the TSKTUNE call and 
letting the MAX CPU parameter to '},' 



Inserting WRITE st.atement.s int.o pro
grams might, not help, First. the execution 
ord!'r of these statements ma,y vary (e.g., non
determinism). Second. 110 is another shared 
resource. and the user must have LOCKs that. 
prot!'ct, that resourc!' like any other shared 
resource 

On!' surprising eff!'c!, of inserting 
WRITE stat.!'ment,s at. key points was the 
migration of bugs from one location to 
another! We solv!'d this debugging problem 
by modifying ollr I,!'chniqu!' of migrating cod!' 
between serial and parallel d!'velopment sub
routines. Our n!'w t!'chniqu!' was to remove 
data structures and code immediat.ely follow
ing the breakage point to isolal,e program and 
compiler bugs. This sometimes worked to 
locate bugs. The problem a1 this point 
becomes: is the program crashing because of 
the original bug or the bugs introduced by 
cutting code? 

]n the I/0 locking proc!'ss. it would help 
users debug codes if the system could hide I/O 
locking details from users. Better yet, a small 
library of simple routines would help. It 
should have traceable ERROR and ASSER
T]ON routines. If a user resorts to adding 
WRITE statements to follow the execution of 
a program, the user should have a similar 
trace of a serial code for advanced comparison. 
A simple filter could take a sourcf" program 
and' insert a WRITE with the su bprogram 's 
name. More elaborate and more powerful 
debugging tools would also help. 

Dumps, the m!'thod of last resort. are 
frequently less consistent than traces or break
points. We avoided dumps at all cost. 

One t,echnique tried in the latter stages 
of multi-task conversion was program proving. 
Toward completion of program scale-up, we 
had a tricky chang!' 1,0 a SUBROUTINE call. 
Precondition and post.condition assertions were 
compiled surrounding critical code changes. 
Proof techniques had limitations in a parallel 
environment, but, it was a useful technique for 
checking changes. Program proving was not 
regarded as a cure-all and was regarded as 
controversial. 

The last set, of problems involve syn
chronization and timing. A new diagnostic 
message for first-time multi-tasking program
mers is compressed from a real CRA Y job in 
figure 14. Race conditions occur whenever 
two or more TASKs or processors are sharing 
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data (or code). This is the time when 
deadlock can occur. There are no general solu
tions. but there ill a mountain of research 
literature. Multi-tasking CFT provides lim
ited deadlock detection and traceback. Keep
ing TASK scheduling and timing constraints 
simple is currently the best. way to avoid 
deadlock, The most. difficult deadlock prob
lems should occur when there are indirect 
deadlocks. 

Testing Multiprocessor Output.c; 

A running multi-task program was not 
enough; we sought numerical results identical 
to our uni-task TWING. There were many 
occasions where our pro~ram ran to comple
tion, but our number:; did not agree at. lesser 
digits of precision, A standard file comparator 
was used to test output bet.ween TWING 
runs. The importance of tools such as a good 
file comparator was not underestimated, A 
single. incorrect" boundary subscript could 
"poison" an entire array. Testing asynchro
nous methods le.g., chaotic relaxation] is more 
difficult. 

Fortunately. our program is completely 
synchronous. However, .nt-wer asynchronous, 
chaotic algorithms remov!' the consistency 
assumption and approximat.e a solution. If 
such asynchronous methods are used. file com
parator programs are completely inadequate. 
Better comparison tools are needed. Output 
testing tools must. approximate floating-point 
comparisons within a specified t.olerance. 

The Cray multi-task version of TWING 
had proved our concept by reaching conver
gence with results identical to a uni-task ver
sion of vectorized TWING. 

Other Generally Useful Tools 

While mentioning debugging tools, we 
should also mention other generally useful 
tools, Among thes!' we could include tools to 
search for STATIC allocation and dat.a depen
dence. Data dependence tools can also pro
vide help when recursion is added to FOR
TRAN. A good cross-referencing tool could 
aid this search process. Other tools could pos
sibly identify linkage problems. Such tools are 
useful in the analysis and compilation phases 
of development. All these programs should 
execute independently (i.e., from a compiler) 
in the style of other good software tools. 



USER UT024 - DEADLOCK - ALI, USER TASKS WAITING FOR LOCKS OR EVENTS 
USER THOO] - BFXaNNING OF TRACEBACK 
USER - $TRBK WAS CALLED BY UTERPo/i, AT 17]57318 
USEH - llTERP% WAS CALLED BY $SUSTSK% AT ]7056278 
USEn - $SUSTSK% WAS CALLED BY EVWAIT AT liOI5IH) 

USER TB002 - END OF TRACEBACl\ 

Figure 14. A frequent error message for new users of multitasking. 

Performance and Execution Behavior 

The measurement of parallel programs is 
conceptually complicated by several factors. 
The Cray measurement. facilities, if used. 
record the length of all parallel execution 
traces as if they were measured sequentially. 
F or instance, I·w() cycles run in parallel takt' 
one cycle t.o execute. but they are still counted 
as I.wo cyc les. The Cray documentation 
(Research. ]985) notes that, flow tracing facili· 
ties do nOl work properly with multi-tal.king 
environments. We resort to the direct. use of 
the system real-time clock and flow tracing of 
the uni-task version of TWING to give us 
run-time characteristics. 

Therr are no standard metrics for del,er· 
mining multiprocessor performance improve. 
ment. The most common in use is \simple; 
'peed up defined by: 

Serial executiofl time 
Simple 'peed - up = 

Parallel executiotl time 

The simple speed up of TWING is iilusl,rated 
in the next table. 

Another conceptual measurement prob· 
lem is where and how measurements are 
taken. We simply throw two CPUs at a prob
lem, so the maximum simple speed-up is one
half the total serial execution time. I/O wait. 
time is a significant. portion of the program 
that cannot multi-task. We recognize that. we 
don't use two CPUs for the entire time: we 
have serial code, and we have wait-time fqr 
T ASKs to finish and synchronize. Also, we 
need more cycles to cover overhead. 

Since we were able to multi-task only 
50% of the I.otal serial ' wcutlvn, the best 
improvement we could gam would be 25% of 
total execution. We might term this 
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performance fi~ure as proportional.. simple, 
speed-up. As we multi-task more code. this 
figure should slowly increase. 

Still another problem is I,hat. with t.wo or 
more CPlJs sharing common resource~ -
memory and 1/0 -- collisions become inl'vit
able. Processors arl' forced to wait. and thi~ 

expends more overhea.d cyc les. This contl'n
tion is visiblE' when running a uni·t,ask vE'rsion 
of the code in one processor. and running a 
sE'cond code ill another processor. By varying 
the work load in the second program between 
a CPU intensive versus memory intensivE' 
JOB, we can see t.he simple, but significant 
efft'cts of memory contention (See the Table 
bt'low). These are interference effects not 
found on uniprocessors. A problem arises in 
shared memory multiprocessors such as on our 
V AX and Cray that local memory multipro
cessors do not have. Memory contention sig
nificantly slows down memory performance. 
Designers of future multiprocessors must bal
anc(' processor. versus memory-performance 
rates. 

Another performance issue is the addi· 
tion of overhead cyc I('s requirrd t,o cont,rol 
TASKs. Figure 15 shows the cost in cycles 
versus t.hl' it,erations I.oward solut.ion for our 
V AX version. This cosl, occurs simila.rly 011 

the Gray. 

Load balancing is a significant problem 
since TASKs vary in work load, and we have 
seen that measurement of load has problems. 
The output from the Cray day files shows a 
considerable imbalance of work. Cray tools 
discovered that, TASK ] did more work (exe. 
cuted significantly longer) t.han TASK 2. The 
timing output of a single day-file illustrates 
the difference on our two CPU system: 
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18 

I 
80 100 



R~eal Iwalll time 
Total system time 
Input 

---r-

7.10 ! 10)(, 
I: _____ -+i __ ~.67 n/at 

1 0.0203 In/at 
0.211 In/at Init 

SolvE' 
no 
ROGO 
RESIlJ 

1 
I 
i 

-- -----4 
! 

I 
~ __________________ ~ ___ 9_._4_~ __ , ~_~~ 

1.2:{ 1 2o/t I , 

~not applicable: sequential FLODUMP 
I timings added only for completeness: 
, thf' difference in wall clock time versus 

0.886 I 10)'( I 
1.42 il 20'j(', J 

I wh,!:~ the operating system reports_. _____________________ ...J 

I- Table 3. Uni-task TWING Execution Times (in Seconds) 
---------1 

F -
I 
I 
L---

ReallWall! Time 
Total-System Time 
Subroutines: 
Inputt 
lnitt 
Solve 

I 

I 

Low Memory Contention 1 High Memory ContentiOll 
=-:oj 

STATIC compile STACK compile I STATIC compile STACK compile 
1 --

7.94 7.36 i 8.49 8.04 
7.35 6.76 I 8.03 7.35 

---
! 

0.0244 0.0255 i 0.0264 0.0276 
0.250 0.210 0.270 0.225 
7.08 6.52 7.73 7.09 -------

RO 1.26 
ROCO 0.995 
RESID 1.77 
~These SUBROUTINEs were not con-
verted to use multi-tasking. They are 
include{l here for control reasons to 
show the effect of changing to a 
STACK compilation. 

TASK CP TIME 
1 11.85 
2 4.83 

Thill is because the work areas were not parti
tioned evenly between the two l' A,SKs based 
on hand analysis of array pr( "rtiolls. Work 
was part.itioned based on eXisting, somewhat 
lopsided DO-loop parameters in three-

1.06 1.3!i 1.13 
0.893 1.07 0.970 
1.74 1.91 1.89 
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dimensional arrays. 

To change these parameters would 
require more computation and potentially 
further array-subscript, change. Additional 
algorithm modifications are required for boun
dary regions. Dynamic load balancing is 
harder still. 



Discussion 

Further Research 

This research has not. covered other 
forms of multiproces~ partitioning. Pipelines 
art' It common proposal: easily construct.ed and 
debugged. but. difficult to tune or load bal
ance. (See Scale-Up.) The program's author 
(Thomas) is considering this approach, but it 
requires exLensive rewriting. 

Micro-taaking ill another Cray-proposed 
multiprocessing construt't. (Booth, 1985). 
Micro-tasking involves a simpler, more restric
tive srt of control primitives. Another impor
tant issue is the area (If scale-up (See next set'
t.ion). 

Scall'-up 

Cerl.ain aspect.s of scaling up programs 
~re trivial. Increasing problem size is not typ
Ically a problem: our V AX cast' was not a 
necessary prerequisite to movt' the program to 
the Cray. Adding more processors. however, 
is not trivial. The work on the TWING codt' 
began before there was any t'onsiderat.ion of 
generalizing the program to use more than two 
processors. 

The current multi-task work on TWING 
will not generalize to an n -processor case. 
The code used to determine maxima is one 
problem that will not easily scale. If more 
than two processors are used, different parti
tioning schemes become preferable. 

Probably thl' key issu(' of multi-I.asking 
is whether th(' performancE' gained was worth 
the effort t'xpended. There is a conflicil. lor 
tradeoff) bet,ween the need to have large 
multi-task sect,ions for performance and small 
multi-Ll:'sk sections for ease of development 
and debugging. 

The multi-tasking programmer must also 
confront the need to ha.ve large prot.ected criti
cal sections and many allynchronous processes 
running. Ollr scale-up of the code uncovered 
many machine-dependent. assumption prob
lems. For the scale-up of code, the parallel
serial divide-and-conquer approach again 
worked. 

Open Issues 

The problems of automatic partitioning 
are not addressed in this study. Our future 
intent is to extend FORTRAN by using It 
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simple preprocessor to add support for simpler 
constructs (e.g., COBEGIN, COEND) like 
eray micro-ta.'1king. The preprocessor should 
ideally hide low-level details and machine 
dependent processing. II. is tempting for pro
grammers to be parochial about particular 
constructs, so we wish to avoid this by using 
preprocessors. Similar research is under study 
on different architectures at. other sites (e.g., 
LANL, ANL, Hell Labs, CMU, l,1. of III.). 

Thert' are dozens of issues left open: dif
ferent synchronous and asynchronous algo
rithms. translation into an inl,ermediat.e 
language for dataflow-style ex('cut,ion. mea!'
urement. and load balancing. Parallel proces!'
ing has many diffICult problems remaining 
which will take years to research. 

Conclusions 

The introduction of parallelism is as sig
nificant. a tool as either Cray multi-tasking or 
micro-tasking. The problems of parallelism 
are not new. They are typically thought to 
inhabit that realm called 8!111temll program
ming. {1l1erll int.cnding to add parallelism 1,0 

their t'ollection of tools are advised to learn 
from experience of others. 

Good software tools would help program
mers. These tools mUllt provide multiprocess
ing support.. Many programme'rs would prob
ably desire a standardization of multiprocess
ing syntax. but t.his is premature. 

Programmers should recognizt' that. with 
adding parallelism and achi('ving bl'tt.er perfor
mant'l', t.here will come some loss of t.he 
coherent. sequenct' that makes sequential pro
gramminr such a powerful tool. 

Programs designed to use parallelism 
from their incept. ion are more likelv to use 
parallelism efficiently. This wall d~arly the 
case with the introduction of vectorization 
i.e., vector-designt'd programs I,end to uSe vec~ 
tors more efficiently. We should soon see 
more multi-task programs, bul. it is an open 
question whether t.hes(' programs arc scale-able 
into the hundred- and thousand- (proposed) 
processors range. 
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