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Introduction and Outline

The search for improved performance
has focused on using different forms of paral-

lelism to achieve speed increases.! To this end.
Cray Rescarch, Inc. (CRI) introduced vector
processing and, most recently, user-accessible
multi-tasking (Larson. 1984, Research,
1985, Research, 1984). The Cray work on

multi-tasking takes a “‘coarse grain’’ approach

to parallelism in contrast to the ‘“fine grain”
parallelism of vector instruction sets or
dataflow (Dennis, 1979). Multi-tasking was
not introduced without tradeoffs such as this.

The issues raised with the introduction
of multi-tasking and multiprocessing involve
more than performmance. Multi-task programs
may require major changes in their aigorithms
storage management, and code. Toward this
end. new or modified programming languages
are needed

Explicitly paralle] languages must handle
problems beyond the scope of conventional
programming languages. These issues include
data protection. non-determinism, process
management (i.e., creation, scheduling, dele-
tion), interprocess communication, synchroni-
zation (i.e., deadlock and starvation), and
error and exception handling (Denning, 1985).
“These problems are well documented with the
Carnegie-Mellon’s  multiprocessor  research
(Jones, 1980). There arc few simple solu-
tions,? and tradeoffs must be made. Grit and
McGraw compare parallel applications pro-
gramming to operating systems programming
in sheer difficulty (Grit, 1983) thus creating
more trouble.

System timing must receive careful con-
sideration in multi-task codes to avoid incon-
sistent results and deadlock. A sequential
code hacking style is dangerous in this

"The terminology s varied, colorful, and highly
confuring. Among other phrases, we have: parallel pro-
cessing, multiprocessing. polyprocessing, distributed com-
puting, decentralized compuling, and so forth. Each
phrase has a slightly different meaning: enough to make
communications difficult. CRI makes the subtle distinc-
tions thal mulliprogremming means multiple jobs working
on a CPU le.g., time-sharing|, multiprocessing means work
done on multiple physical CPUs working multiple jobs
li.e.. without regard for jobs|. and multi-tesking means
multiple physical CPUs working cooperatively on a single
problem.

3Jones and Gehringer specific .ily classify distributed
system issues into problems of 1) consistency, 2) deadlock,

environment. Care is required when dividing
a problem into multiple tasks to avoid incon-
sistency. This division is called partitioning or
decomposition as well as by other terms.

Several partitioning schemes can execute
codes in parallel (Jones. 1980). The most
common are pipelining, spattal partitioning (by
problem space or machine storage). or relaza-
tion that removes assumptions of daia con-
sistency. David Kuck is best known for his
research on automatic partitioning (Kuck.
1980). This paper covers the subject of parti-
tioning an existing application program by

hand.

The program “TWING™ is the vehicle
that we use to explore the issues surrounding
multi-tasking. This report covers:

Existing Languages: Issues and Problems
The Cray Multi-tasking Implementation
The TWING Program
Modifications to TWING
The 2-Processor VAX Version
The 2-Processor Cray Version
Debugging and Other Consequences
Performance lssues
Discussion and Conclusion

Our programming style is conservative and
defensive. We assume the multi-task program
will not execute the first time. We chose a
svnchronous algorithm  and sought results
identical to results using uni-task TWING.
This work stresses the importance of careful
analysis, design. and testing.

Existing FORTRAN Drawbacks

As background. it is useful to understand
the problems inherent with standard FOR-
TRAN and multi-tasking. FORTRAN is not
currently designed for or intended to run in a
parallel environment. New problems arise in
multi-tasking such as synchronization, com-
munication, error handling. and deadlock. An
excellent survey of language issues and various
attempts at solving them appears in Comput-
tng Surveys (Andrews, 1989).

First, the standard FORTRAN language
lacks process-creation primitives and struc-
tures. The SUBROUTINE is the closest
FORTRAN object resembling a process or a
TASK. Second, the language lacks features
for explicit synchronization and protection

3) starvation, and 4) exception handling.




such as semaphores (Dijkstra, 1968) (i.e.,
ALGOL-68). monitors (Hoare, 1974) (i.e., con-

current. Pascal). or rendezvous f(i.e., Ada®)
(DOD, 1980). It. also. lacks explicit commun-
ication features such as mailboxes.

Each of the aforementioned synchroniza-
tion features has assumptions of atomicity
(uninterruptability) which is critical for main-
taining a degree of consistency that standard
FORTRAN cannot currently provide. Syn-
chronization is a technique normally reserved
for operating system programming (using
libraries) since it offers ‘*hazardous™ user facili-
ties.!

Lastly, the software engineering prob-
lems associated with FORTRAN are accen-
tuated in a multi-tasking environment. These
problems are documented elsewhere (Dijkstra.
1968): they include GO TOs and the lack of
modern data structures. An example of these
tradeoffs is the inability for Cray multi-tasking
FORTRAN to coherently perform multiple
RETURN:s.

It is not easy to add these features to the
FORTRAN language. These features conflict
with existing language semantics. The pro-
grammer must locate and manage stde effects
on globally referenced memory (such as COM-
MON variables), call-by-reference parameter
passing, and manufacturer-dependent features.
These side effects also occur at the lower
vector-processing level: Cray users have modi-
fied their programming style to accommodate
them. We can similarly expect users to adopt
a multi-tasking programming style.

Cray Multi-tasking FORTRAN exten-
sions

The existing Cray Research supercom-
puter line performs efficiently by using a vec-
tor instruction set. Performance improvement
is achieved hy using regular data-access pat-
terns on arrays and their indices. Currently,
multi-tasking seeks to achieve performance
improvement using multiple processing units.

Cray Research has a set of primitive
extensions to support multi-tasking in version

1.12 of their CFT FORTRAN compiler

3Ada is a trademark of the Ada Joint Project Office
of the US DOD.

‘There exists the potential for user-induced system
deadlock.

(Larson, 1984). These extensions currently
allow several virtual CPUs to execute simul-
taneously on one to four physical CPUs.
These primitives are invoked using subroutine
CALLs. They are useful for creating more ela-
borate synchronization mechanisms such as
monitors (Hoare, 1974).

The Cray primitives fall into three gen-
eral categories: :

TASK creation and control
EVENT creation and synchronization
LOCK creation and protection

The primitives are controlled using three basic
data structures: a TASK control array
(INTEGER type containing two or three ele-
ments), EVENTs, and LOCKs (both of type -
INTEGER) all explicitly assigned (i.e.,
created). ' :

An extremely important semantic® differ-
ence is the handling of storage (primary
memory) in this version of FORTRAN. Local.
storage in normal FORTRAN has a static
allocation resulting in possible side effects.

The new multi-tasking CFT FORTRAN
requires a dvnamic or stack-based allocation of .
storage more characteristic of ALGOL-like.
languages such as Pascal or C. This is neces-
sary for TASK creation and migration. Local
storage (scalars or arrays) now has a finite life-
time and scope. A programmer cannot use a
value left over from a previous subroutine
CALL or assume values. are initialized to zero
(0). This is a radical departure from standard -
FORTRAN. The next four sections cover
these primitives and their effecis in greater
detail. h

TASK Control

We begin with TASK creation. A user
controls a concurrent object called a TASK
that is invoked like a SUBROUTINE. ' The
TASK is defined like any other SUBROU-
TINL except that its name must explicitly -
appear in an EXTERNAL statement before a
CALL. and its storage gets handled -dif-
ferently. The specific TASK syntax primitives
are shown in figure 1 where SUBNAME is the
SUBROUTINE name, and ITCA is an
INTEGER TASK control array. Nole,

5We mention this because there are no FORTRAN
keywords (i.e., syntax) associated with this problem: it’s
semantic.




CALL TSKSTART(ITCA,SUBNAME,|arguments])

CALL TSKWAIT(ITCA)

Figure 1. Cray TASK primitives.

restricted, positional SUBROUTINE argu-

ments arc passable.

A TASK control array is a simple data
structure that holds TASK control data for a
scheduler that is loaded with the program on
execution. This scheduler is distinct from the
operating system’s scheduler in that it governs
user defined TASKs rather than JOBs.

The TASK is created wusing the
TSKSTART call. TSKSTART is similar to a
fork in languages like ALGOL-68 except a
separate address space is created. much like a
scparate space for a FORTRAN subroutine.
The effect is like a subroutine CALL with one
major exception: subroutine CALLs are syn-
chronous and consequently wait, unlike
TSKSTART calis.

The following program fragment (figure
*2), listed in parallel, illustrates the creation of
a TASK. Note that the subprogram allocating
the TASK control array must not lose the
TASK control array storage! Severe problems
will result!

A “TSKWAIT” statement. could force a
crude explicit synchronization on execution of
a RETURN statement within task A. The
section on Debugging will touch on the use-
fulness of TSKWAIT. More  refined

PROGRAM

INTEGER TA(2)

EXTERNAL A

CALL TSKSTART(TA,A,arguments)

END

Figure 2. An illustration of simple TASK creation.

END

synchronization is available using EVENTSs
and LOCKs. There are also TSK calls
covered in the Cray documentation that
report TASK information or statistics
(Research, 1985).

Cray support of multi-tasking includes a
simple deadlock-detection mechanism.
Deadlock occurs when all user TASKs arc
waiting for a condition that never occurs.
This  goes for  synchronization  using
TSKWAIT, EVENTs. or LOCKs. Care is
required, particularly. in using EVENTs
because these functions are not necessarily
atomic (indivisible). |Deadlock is discussed
further in the section on Debugging.|

EVENTs and LOCKs

Synchronization- and consistency protec-
tion use combinations of EVENTs and
LOCKs. Both are useful for simple synchroni-
zation. The key difference between an
EVENT and a LOCK is that a LOCK forces
tasks to run in a First-In, First-Out (FIFO)
order. An EVENT is comparable to a ‘““broad-
cast.” and many TASKs can run at once. It
is also important to clear or resel a LOCK or
EVENT at appropriate times.

SUBROUTINE A(parameters}




EVENTs and LOCKs are created by
using subroutine CALLs which assign special
protection in the same manner in which
TASKs are created. Basic arithmetic and Jog-
ical operations are disabled for these abjects
until they are released. The specific primitive

SUBROUTINE CALLs are
EVENT Control LOCK Control

EVASGN(IEVAR)  LOCKASGN(LCK)
EVPOST(IEVAR)  LOCKON{LCK)
EVWAIT(IEVAR)  LOCKOFF(LCK}
EVCLEAR(IEVAR) LOCKREL(LCK)
EVREL({IEVAR)

in which 1IEVAR and LCK are INTEGERs
assigned as EVENTs or LOCKs. The follow-
ing is a simple two-TASK synchronization
using EVENTs in two separate executing
TASKs. The scope is shown by the bounding
boxes of figure 3. If an EVENT or a LOCK is
CLEARed or RELeased while some TASK is
waiting, the consequences are nondeterministic
and can be disastrous.

i combinations of EVENTs, ILQCKs,
and COMMON memory are used, it is passible
to make more elaborate synehronization
mechanisms such as semaphores and monitors.
Sequential eritical sections of code and data
heed protection using these synchronization
primitives. Problems of inconsistent synchron-
ization are covered in the next section.

Communications

Communication takes place though one
of three mechanisms:

CALL-by-Reference parameter passing
Global COMMON memory

TASK COMMON memory

Data is passed using shared (e.g., COMMON)
variables. This is the principal means of com- -
munication and requires care in use.

A TASK-lecal COMMON f{e.g.. TASK
COMMON) is available in version 1.14 of the
CI'F compiler. It is similar to the more global
COMMON except that its data is accessible
only to objects (SUBROUTINEs} within a
particular TASK. Maintaining a consistent
system state is a chore left 10 the user.

Consistency is threatened by three basic
hazards. Suppose A and B are two TASKs
running in parallcl and sharing a variable V.
The hazards are based on the order in which
processes access Y: a timing problem. The
first hazard is the read-write hazard - having -
one TASK prematurely reading a stale value
before the appropriate write. The next is the
write-read hazard: having one TASK prema-
turely ‘‘clobbering” a value before it could be
read. The last hazard is the write-write
hazard in which one TASK writes over values’
that never get a chance to be read |particu- '
larly difficult to detect]®. The Cray is not
responsible for these potential user errors of
timing.

Storage and Subroutine Linkage

The actual handling of sterage differs
vastly from conventional static FORTRAN.
This has its greatest effect on SUBROUTINE ;

¢The memory on the Denelcor Heterogeneous Pro~
eessor |HEP] is an attempt to solve this problem. I vari-
ables receive a special declaration, they are forced to alter-
nate reads and writes using a unique semaphore memory
system. :

TASK 1: TASK 2:

CALL EVWAIT(READY)
CALL EVPOST({ACK}

CALL EVPOST(READY)
CALL EVWAIT(ACK)

Figure 3. Synchronization of two TASKs using EVENT flags.

Boxes represent different address spaces.
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and FUNCTION linkages. The semantics of
these new linkages prompt some users to name
this an entirely different language (e.g., *“‘not-
FORTRAN”) Old memory-saving tricks such
as statically defined and allocated variables
left for a second subroutine CALL are now
undefined and may contain unreliable data.
Users cannot assume values are initialized to
zero (0]. [Expressions in parameter lists
involve similar problems.

Those readers familiar with dynamic
storage management in scoped languages such
as ALGOL, C, Pascal, or LISP should grasp
these concepts easily. FORTRAN simply does
not offer the protection mechanisms to ensure
consistency of data in a multiprocess environ-
ment. The user must -actively manage the
data consistency and program defensively.

The Mathematical Basis for TWING

TWING is a program that solves the
conservative full-potential equation, using &
fully implicit, approximate-factorization algo-
rithm. The program solves for stable state
airflow over a wing flying at transonic velo-
city. TWING is the development of Dr. Terry
Holst and Scott Thomas (Thomas, 1983) at
the Applied Computational Aerodynamics
Branch, NASA Ames Research Center.

Figure 4 is a schematic of the finite
difference mesh over which the flow solver
operates. From this representation in ‘‘physi-
cal space”, the problem is transformed into a
“computational space” |figure 5| which
preserves the orthogonality of the mesh lines
throughout the computational domain.

(p®:): + (p2y), + (pP.). =0 (L)

A mathematical representation of this
flow solver is given in the derivation of equa-
tion l.c. The three-dimensional, full potential

" equation (in x,y.z coordinates) is presented in

equation l.a. The transformation into compu-
tational coordinates (&, ,¢ coordinates) yields
equation 1.b. In this equation, U. V, and W
are terms composed of ®,, & , and &, com-
bined with assorted metric quantities. J
represents the Jacobian of the transformation.
The finite-difference approximation of this
transformed equation (l.c) employs backward
difference operators in the £,n, and ¢ direc-
tions. This yields the finite-difference approxi-
mation in equation l.c. The special density
coefficients p , p, and p introduce an artificial
viscosity term into the calculation. The resi-
dual term L{9} obtained from this equation is
used in the first step of the factorization
scheme outlined below.

An outline of  the three-step
approximate-factorization scheme is shown in
the derivation of equation 2.c. In step one
(equation 2.a). an intermediate term Gi{i,)) is
computed for each point on a given “k-shell”
of the mesh by solving a tridiagonal linear sys-
tem along each 5 line (i.e., £ = a constant)
extending from the symmetry plane out to the
freestreamn sidewall. In step two (equation
2.b), G(i,j) computes another intermediate
term F(i,j,k) for each point in the “k-shell.”
This step requires the solution of a tridiagonal
linear system along each £ line (i.e., constant
n) extending from the upper vortex sheet
around the leading edge to the lower vortex
sheet (figure 6). Finally, when F(i,jk} hasx
been computed for every point in the three-
dimensional mesh, the correction factor

The three-dimensional full potential equation (x,y,z coordinates).

(PU/J)e+(pV/J)y + (pW/J) =0(Lb)

The full potential equation in computational space (&, 7, ¢).

4 3,,‘5&'/ J), :

o +'z-|t

Sefou J)

.
i +—,5 .k
2!

The resultant finite-difference approximation.

193]

T |sw =
+ 6,(pu / J).,',_'H% = 0(1c)




Figure 4. Sample finite difference mesh.

OUTER BOUNDARY

VORTEX SHEET

'FREESTREAM
SIDEWALL BOUNDARY

WING EXTENSION

SYMMETRY PLANE
BOUNDARY

Figure 5. Transformation to computational space.
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SYMMETRY PLANE
BOUNDARY

£ LINE (n = CONSTANT)

FREESTREAM
SIDEWALL
BOUNDARY

Figure 6. Computation divided into two tasks.

OUTER BOUNDARY

§ LINE (£ AND n = CONSTAINT)
"PENCIL"

FREESTREAM
SIDEWALL
BOUNDARY

Figure 7. Computation done as a region of pencils.
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Step 1:

Step 3: Correction factor C.
((l + 3(}("."',"* = f ""’,'.k (2C)

Steps in the finite differencing scheme.

’ " . -
o afy|— 6,,—-;%———-67)/1,.5', o
* r,5.k k
Step 2:
. P .
Ay 4 Beb e~ '{Tf’g/‘.‘ﬁe T hin = 9% (2b)

Program VITWING
Input subroutine (INPUT)
READ mesh
READ run-time parameters
Initialization subroutine (INIT)
initialize the solution
compute and store metrics
Flow Solver: (SOLVE)
for each iteration do
for each k-shell in mesh do
get metrics
compute density and density coefficients
compute residuals i
solve for g¢"; ; and f ", ;4
end k-loop
calculate and apply C", ;i

awl ", ;i 4 aAyaf i (22)

output maximum residual and correction for iteration

check convergence
end iteration loop
output solution

Figure 8. Sequential structure of the TWING Program:

C(i,j,k) is computed in step three (equation
2.c). This calculation proceeds from the outer
boundary down to the wing surface, requiring
the solution of a bidiagonal system for each ¢
line (i.e., £ and 5 = constants, figure 7) of the
mesh. This correction factor is then added to
the solution from the previous iteration, gen-
erating a new solution. This three-step pro-
cess is repeated iteratively until convergence is
achieved or a preset maximum iteration is
reached.

An outline showing the code structure
itself is presented in figure 8. The program
first reads the physical coordinates of the fin-
ite difference mesh and its run-time parame-
ters. The program then computes the metric
quantities defining the transformation of the
problem into ‘‘computational space’’ and
writes these to disk.

At this point, the main iteration loop of
the program begins. The program completes
steps one and two (equations 2.a and 2.b) of




I
TASK 1 DOES
“TOP* MESH

TASK 2 DOES
"BOTTOM” MESH

Figure 9. Computation divided in two different regions.




the three-step approximate-factorization
scheme outlined above operating on successive
“k-shells’™ in the mesh, beginning at the sur-
face of the wing and progressing to the outer
boundary. For each k-shell, the code:

(1) fetches the appropriate subset of metrics
from the disk

(2) computes the density at each point

(3) generates the special density coefficients

{4) computes the residual terms resulting
from equation l.c

(5) solves for G(i,j) and F(i,j,k)

After completing this ‘‘k-loop,” the code com-
p

pletes step three of the scheme by calculating -

the correction C(i,j,k) and applies it to each
mesh point to generate a new solution. A con-
vergence check follows: when satisfactory con-
vergence is achieved. the final solution is writ-
ten to disk.

The Modification of TWING

TWING is written in portable FOR-
TRAN 66 and executes on Cray, CDC 7600.
and VAX CPUs. The program was rewritten
to be well-structured. lts control flow is serial
(i.e., few GO TOs jumping control around).
.Although it was possible to partition the com-
putation along functional lines in a sort of
high-level pipeline, this approach was not pur-
sued because it needs either substantial addi-
tional memory or elaborate internal buffering
to store intermediate results. Pipelining may
also hinder efficient execution-time load-
balancing with some stages of a pipeline exe-
cuting longer than other stages of the pipe.

This problem was exacerbated in
TWING by the extensive use of
EQUIVALENCE statements in the original
code, employed in an effort to squeeze the
largest possible problems into the limited core
memory of a CDDC 7600 or a Cray 1S. Since a
functional partitioning of the problem seemed
unsuited to the hmited shared memory avail-
able, a static spatial-partitioning scheme was
employed.

Our restructuring took advantage of
existing code and attempted as little algorithm
change as possible. In this scheme, each step
in the algorithm was examined in an effort to

determine if several portions of the mesh could .

be operated on simultaneously at that step.
Execution profiling using the Cray FLOW-

10

executed

TRACE facilities showed dominant run times
in three SUBROUTINEs. Vectorized TWING
three times faster than scalar
TWING with input-output overhead included.
Since distinct steps in the algorithm tend to
correspond to separate modules in the finished
code, this process resulted in a body of code
that formed the skeleton of the concurrent
processing portion of the modified TWING.

The calculations of the density (subrou-
tine RO), the special density coefficients (sub-
routine ROCO), and the residuals (subroutine
RESID} were all split along-the-n axis for
each ‘“K-shell” in the computational mesh
{figures 6 and 7). This resulted in splitting
loops (figure 10). One processor generated
these results for points on or between the sym-’
metry plane boundary and the wingtip. The
other processor handled poirits on’ the wing
extension, out to the freestream sidewall boun- -~
dary. This “inboard-outboard” partitioning
scheme was chosen because the -algorithm
employed in each of these calculations is usu-
ally constant for a given £ line” (7= a “con-
stant) but varied with position along the n "
axis. An inboard-outboard scheme was there-
fore constructed -using processor-dependent -
branches such as: ‘

c
IF (TAQKID EQ 2) GOTO 12
DO 101 = 1,NIM :

10 CONTINUE
This continue added for multz-taskmg
12 CONTINUE

Mathematically, however, each point in the
mesh was operated on independently during
these preliminary calculations. We can
replace the mesh with different divisions i
there were reasons for favoring it.

A more fundamental  relationship
between the underlying mathematics of the
algorithm and thé spatial decomposition of the”

c

.problem for’ Multxple-ln%ructmn stream,
Multiple-Data stream |MIMDi execution is
illustrated by the three-step approximate-

factorization scheme outlined in a previous
section. Recall that in equation 2.a, the back-:
ward differencing is performed only about 5,
which gelerates tridiagonal linear systems
along n lines (é= a constant]. This makes the
inboard-outboard partitioning scheme used
above unworkable for this step.




Table 1. Execution Time Profiling

Subroutine  Vectorized TWINGH. Scalar TWING
% Total Run Time % Total Run Time

RO T 15.03 14.92

ROCO 13.45 15.91

RESID 23.92 17.99

Total % 53.3 48.82

tTo clarify: this is not % of vector execution.

C Variables declared as integer, TASKID obtained from TSKVALUE.

IF (TASKID .EQ. 1) THEN
ROJSTART = 2
ROJSTOP = NJTM

ELSEIF (TASKID .EQ. 2) THEN
ROJSTART = NIT
ROJSTOP = NJM

ENDIF

c

C in uni-tasked TWING.

The values of NJTM, NJT, and NJM are preset parameters

C Now, each process works on the j-lines defined by

c
C

the initial assignment block.

DO 20 J=ROJSTARTI1,ROJSTOPI1
DO 20 J=2.NJM -- old statement
DO 15 1=1,NIM

C

15 CONTINUE
20 CONTINUE

Figure 10. Code illustrating the splitting of a loop.

However, adjacent 5 lines are computa-
tionally independent at this step, implying
that the mesh could partition into *“top’’ and
“bottom” sections, each handled by a separate
processor {figure 9). Similarly, in step two
{equation 2.b). the backward differences are
taken about ¢, generating tridiagonal linear
systems along £ lines (7 = a constant) through
the mesh. Here, each £ line is computation-
ally independent, and the resulting tridiagonal
systems are solved concurrently by dividing
the mesh into the inboard and r :iboard sec-
tions described in the last paragraph (see fig-
ure 6).

11

Finally, in step three (equation 2.c},
bidiagonal systems are generated-along lines in
the ¢ direction (¢ and n both = constants)
(see figure 9). Again, concurrent processing of
multiple ¢ *pencils’” is a simple and powerful
way to use an MIMD machine at this step.

Note that true MIMD capacity was
required to use such a spatial partitioning
scheme. A vector architecture alone would
not suffice because there was no guarantee
that the instruction stream to be executed
would be the same at different points in the
mesh. Split difference schemes have some-
times proved useful. The wing root could




have used a more complex differencing scheme
than employed near the outer boundary of a
mesh. It js also possible that the values of
some program parameters might also be posi-
tion dependent.

Another code  sequence commonly
encountered in TWING was the selection of
the maximum or minimum value in an array
following an operation on the elements of the
array. While this search has been conducted
in a serial mode by the main program after
the subprocesses return, this considerably
degraded the resulting speedup. A better
approach was to have each subprocess locate
the maximum or minimum element in its por-
tion of the data base. and pass the indices of
this value back to the uain program. The
main program needed only to compare the two
passed elements to obtain a maximum or
minimum over the entire data base. An
example of such a coding sequence is shown
with in the next code section (figure 11) where
numbered variables are TASK .determined and
nonnumbered variables are global shared vari-
ables.

VAX Modification

Our first MIMD testbed used two VAX

11/780 minicomputers linked to one MAT80
multi-ported, shared memory unit. Because
the operation of the processors was

IF (ABS(RMAX1) .GE. ABS(RMAX2)) THEN
IF (ABS(RMAX1) .GT. ABS(RMAX)) THEN

RMAX = RMAXI]

IRMAX = IRMAX]

JRMAX = JRMAX]

KRMAX = KRMAX1
END IF

asynchronous, each with its own copy of the

operating system running on a local clock, the

configuration was best. described as a “looscly
coupled’” multiprocessor. Although each pro-
cessor retained its large virtual address space
as local memory, the shared memory in the
MA780 was not virtually addressable. llach
MA780 unit could accommodate up to two
megabytes of physical memory. The unil
employed for this study was equipped with
256 kilobytes of physical memory.

The operating system 1n usc at the time
of the study was VAX/VMS (Version 3.1).
VAX/VMS provides three facilities for inter-
process communication across the shared
memory link: event flags, mailboxes, and glo-
bal data sections. '

Event flags are allocated in thirty-two -
bit clusters and arc manipulated using a.
variety of system-supplied routines. A process
could set or clear individual flags and could
wait for the logical AND or OR of a multiple
flag mask. One drawback of VMS:event flag
services for MIMD programming was that the
flag operations were not indivisible (atomic).
This can cause difficulties when an MIMD
program uses shared memory. It required pro-
tection from simultancous access by more than
one process, especially if the number of com-
peting processes is great. In the present study’
this problem did not arise, both because, at

ELSE IF (ABS(RMAXI1) .LT. ABS(RMAX2)} THEN

IF (ABS(RMAX2) .GT. ABS(RMAX)) THEN

RMAX = RMAX2
IRMAX = IRMAX2
JRMAX = JRMAX2
KRMAX = KRMAX2
END IF
END IF

Figure 11. Selecting a maximum vealue from two locally determined maxima.

12




most, two processes were active simultane-
ously and also because they generally operated
on different parts of the statically partitioned
data base.

The VAX/VMS system not
intended to be a multiprocessor operating sys-
tem. Programming the shared memory was
clumsy. Since our shared memory was small.
we reduced the resolution of the program to fil
the space of the memory. This was a develop-
ment measure that did not happen on our
Cray. This paper does not cover the VAX
specific version in any greater detail.

The other MIMD testbed consists of a
Cray X-MP/2Z running version 1.13 of the
Cray Operating System {(COS). The Cray. by
way of contrast, is a ‘“‘tightly coupled,” shared
memory multiprocessor. This creates prob-
lems not faced on our VAX testbed such as
more memory contention but simplifies pro-
gramming.

was

Cray Modifications -

The VAX version of TWING was a
“stripped-down” version of the production
Cray code designed to fit into the small shared
memory system. We, therefore. did not count
on the VAX version to reach convergence.
® The mesh was too coarse, and we did not get
a chance to truly debug the VAX version.
The mathematical basis for partitioning the
vector version of TWING (VTWING) was
identical to the VAX-specific version. This
time, we sought realistic convergence. Debug-
ging was a major probiemm not only for
TWING, but also for the new STACK alloca-
tion and multi-tasking of the CFT compiler we
were (esting.

One important side step, was a quick set
of checks regarding the new SUBROUTINE
linkages. We should mention this was not a
problem for TWING. To do this, a user com-
piled the complete, existing program using the
ALLOC=STACK option on the mnew. CFT
compiler. The program was then run using
the associated new loader given adequate
stack and heap sizes (see the manual)
(Research, 1985). The results were compared
to the original STATICally compiled run. A
useful variation of this was to create simple
TASKs that START then immediately WAIT
as a CALL to a SUBROUTIN .. wouid:
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to:
CALL TSKSTART(TA,RO)
CALL TSKWAIT(TA)

The timing differences between STATIC and
STACK runs are included in the section on
Performance. The compiler changes do
effect program execution without source code
changes.

change from:
CALL RO

The next stage entailed converting the
existing code into a multi-tasking body of
code. This was not as easily as it appeared as
subtle errors required detection and correction.
It is possible to do this at different levels or
stages such as converting the entire program,
converting subroutines, or converting blocks of
code. Converting a code in large sections is
like writing a large program and expecting it
to run correctly the first time.

It was important to have good com-
parison data. since fast execution did not
imply correct execution. A machine-readable
output. was created from an unmodified, run-
ning version of TWING. Once the code was
running, we tested the output of the mult-
task run with our uni-task output using a dif-

ferential file comparator (the UNIX" diff pro-
gram). This insured that our conversion was
precise.

Our third and last attempt at conversion
was to break a subroutine into two smaller
subroutines: a parallel portion and a serial
portion. Since most of the data was stored in
COMMON blocks, parameter passing was
minimized to simplify these problems. The
parallel subroutines were run and synchronized
before the serial portion as shown in Figure
12.

Portions of serial subroutine code {typi-
cally loops) then migrated to the parallel sub-
routines. This technique successfully identi-
fied subscripting oversights, branching prob-
lems, and so on. It was painfully slow, but it
was effective. Initially, task synchronization
was performed wusing TSKSTART and
TSKWAIT, not the more complex EVENT
flags. We used the ‘“Make it right before you
make it faster” philosophy from the The Ele-
ments of Programming Style (Kernighan,
1978).

We stress the following point: make cer-
tain that the existing code is bug-free. There

TUNIX is a trademark of AT&T Bell Laboratories.




take: becomes:
CALL S | SUBS CALL P1 | SUB Sta | SUB S1b
CALL S2 | SUBS2 |
Figure 12. Code migration from serial into

paralle]. where S is the subprogram. the numi-
bered portions refer to the halves (1 and 2) of
S. P1 represents the set of CALLs that are in-
voked for parallel TASKs S1a and Si1b.

is little sense trying to multi-task bug ridden
Multi-tasking the code made programs
harder to debug. The programmer has to dis-
tinguish the original bugs from the newly
introduced inkage and multi-task bugs.

Each SUBROUTINE was individually
converted to two parallel TASKs giving three
versions of the program. The next step was to
get combinations of two different TASKs run-
ning within a program. This was used to
locate side effects between any two different
TASKs. We still used the crude START and
WAIT CALLs at this point. Finally, we had
all three CALLs converted. '

Once all TASKs were operating using
crude synchronization, it was a simple matter
to get barrier synchronization using EVENTsS.
We moved one TASK at a time to EVENT
structures.  After EVENTs replaced the
TSKSTART and TSKWAIT CALLs, we
wrote a simple user-level TASK scheduler {fig-
ure 13) that worked on simple message-
passing.

Our last act scaled the grid from VAX
shared memory-size to Cray memory, produc-
tion size. During this final work, we corrected
one VAX-scale dependency problem. This
problem involved a partial correctness proof

code.

mentioned further in the section on Debug-

ging.

Time and Effort

This work took several months. We
reported our many compiler problems to CRI
Meanwhile, Cray Research migrated from
CFT Release 1.13 to 1.14, solving many of our
problems.
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To reiterate the degree of change,
TWING actually consisted of two separate
programs®: a grid generator and the vectorized
version of the TWING flow solver. .The
multi-tasking took place only on the flow
solver.

We document the GRIDGEN program
here only for completeness. The GRIDGEN

program consisted of

2123 total lines of commented FORTRAN
1195 executable lines of code in
1031 executable statements

An instrumented uni-task version of
TWING solver consisted of

3926 lines of commented code
3840 lines without instrumentation
2529 total executable lines

1906 executable statements

the

An instrumented multi-task version of

TWING came to

4450 lines of commented code
4399 lines without instrumentation
2870 lines total executable

2188 executable statements

Note that additions and modifications do not
sum to the totals because there is overlap.
Additions and modifications took the form of
replication and addition of statements to han-
dle problems such as parameter passing.

Our experience with converting this and
other NASA codes. |LES and ARC3D]
currently has us modifying about 10% of the
code (if the grid generator is counted, slightly
more if not}. Most of these codes have fewer

%The two programs are combined 'as one for
machines with Jarge memory.




MESG — 1
CALL SCHED

SUBROUTINE SCHED
CALL EVPOST(GO)

CALL EVWAIT(DONE) CALL RO

CALL EVWAIT(GO)
IF (MESG.EQ.1) THEN

SUBROUTINE PROCES

CALL EVPOST(DONE)

END .
END

Figurc 13. Structure of our simple scheduler.

loops sphit across processors compared to
TWING. We split a total of 19 loops in three
SUBROUTINEs. This includes new code for
loop splitting, new per-process branches,
TASK-EVENT creation and control code, and
a small TASK scheduler. About 210 lines of
control flow code were added (excluding com-
ments). 70 more lines were replaced or modi-
-fied into 160 lines to handle problems of
parameter passing, or changes to array indices.

During the development of each TASK,
good version control proved useful. A good
tool requires parallel branching versions; linear
version control such as UPDATE was not ade-
quate. Maintaining the successful, intermedi-
ate stages of multi-task TWING made debug-
ging and scale-up easier through the isolation
of changes. It was always possible to easily
fall back to some parallel, executable code.

Debugging

Sequential debugging is generally
regarded as a black art. Bugs occur during
compile-time and run-time: with the latter,
the non-fatal ones are the hardest to find.
The basic techniques for debugging are
categorized into: 1) traces, 2) snapshots or 3)
dumps. These techniques have problems in
multiprocess environments lacking consistency
or having deadlock. Multi-task debugging is
plagued by a lack of reproducibi'** - synchron-
ization, and good tools. T ¢ literature on
run-time debugging in multiprocess environ-
ments is scarce (Model, 1979} and more work
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is needed in this area.
Numerous users tell us to “force multi-
task execution into a single stream of execu-

tion®” as if simple user-controlled reduction
would solve hazard problems.

This does not help!

Normal debugging depends on a machine
being in a reasonably consistent state. A
multi-task program crash may not occur at
the same location as with a uni-task program.
This is true for uniprocessors executing multi-
task code as well.

Consider a simple example to illustrate
the conceptual difficulties of debugging using
the CFT traceback facility. A program
creates a child TASK. When the child TASK
dies, should the traceback trace through the
point where the child process began. or should
it trace through the synchronization routines
(if any}” The tangled nondeterministic web
makes this decision difficult. There are situa-
tions where one trace is preferable over the
other. One condition is when the child dies
because of the actions of its parent or sibling
processes |[side effects]. So. traces are not sim-
ple. What about snapshots?

*This is accomplished using the TSKTUNE call and
setting the MAXCPU parameter to ‘1.




Inserting WRITE statements into pro-
grams might not help. First, the execution
order of these statements may vary {e.g., non-
determinism). Second, 1/0 is another shared
resource. and the user must have LOCKs that
protect that resource like any other shared
resource :

One surprising effect of inserting
WRITE statements at key points was the
migration of bugs from one location to
another! We solved this debugging problem
by modifying our technique of migrating code
between serial and parallel development sub-
routines. Our new technique was to remove
data structures and code immediately follow-
ing the breakage point to isolate program and
compiler bugs. This sometimes worked to
locate bugs. The problem at this point
becomes: is the program crashing because of
the original bug or the bugs introduced by
cutting code?

In the 1/0 locking process, it would help
users debug codes if the system could hide 1/0
locking details from users. Better yet, a small
library of simple routines would help. It
should have traceable ERROR and ASSER-
TION routines. lf a user resorts to adding
WRITE statements to follow the execution of
a program, the user should have a similar
trace of a serial code for advanced comparison.
A simple filter could take a source program
and insert a WRITE with the subprogram’s
name. More elaborate and more powerful
debugging tools would also help.

Dumps. the method of last resort. are
frequently less consistent than traces or break-
points. We avoided dumps at all cost.

One technique tried in the latter stages
of multi-task conversion was program proving.
Toward completion of program scale-up, we
had a tricky change to a SUBROUTINE call.
Precondition and postcondition assertions were
compiled surrounding critical code changes.
Proof techniques had limitations in a parallel
environment, but it was a useful technique for
checking changes. Program proving was not
regarded as a cure-all and was regarded as
controversial.

The last set of problems involve syn-
chronization and timing. A new diagnostic
message for first-time multi-tasking program-
mers is compressed from a real CRAY job in
figure 14. Race conditions occur whenever
two or more TASKs or processors are sharing
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data (or code). This is the time when
deadlock can occur. There are no general solu-
tions. but there is a mountain of research
literature. Multi-tasking CFT provides lim-
ited deadlock detection and traceback. Keep-
ing TASK scheduling and timing constraints
simple is currently the best way to avoid
deadlock. The most difficult deadlock prob-
lems should occur when there are indirect
deadlocks.

Testing Multiprocessor Outputs

A running multi-task program was not
enough; we sought numerical results identical
to our uni-task TWING. There were many
occasions where our program ran to comple-
tion, bui our numbers did not agree at lesser
digits of precision. A standard file comparator
was used to test output between TWING
runs. The importance of tools such as a good
file comparator was not underestimated. A
single, incorrect, boundary subscript could
“poison’” an entire array. Testing asynchro-
nous methods |e.g., chaotic relaxation; is more

difficult.

Fortunately. our program is completely
synchronous. However, newer asynchronous,
chaotic algorithms remove the consistency
assumption and approximate a solution. If
such asynchronous methods are used, file com-
parator programs are completely inadequate.
Better comparison tools are needed. Output
testing tools must approximate floating-point
comparisons within a specified tolerance.

The Cray multi-task version of TWING
had proved our concept by reaching conver-

gence with results identical to a uni-task ver-
sion of vectorized TWING.

Other Generally Useful Tools

While mentioning debugging tools, we
should also mention other gencrally useful
tools. Among these we could include tools to
search for STATIC allocation and data depen-
dence. Data dependence tools can also pro-
vide help when recursion is added to FOR-
TRAN. A good cross-referencing tool could
aid this search process. Other tools could pos-
sibly identify linkage problems. Such tools are
useful in the analysis and compilation phases
of development. All these programs should
execute independently .(i.e., from a compiler)
in the style of other good software tools.




USER UT024 - DEADLOCK - ALL USER TASKS WAITING FOR LOCKS OR EVENTS
USER TB001 - BEGINNING OF TRACEBACK

AT 1715731a

USER -$TRBK WAS CALLED BY UTERP%
USER - UTERP% WAS CALLED BY $SUSTSK% AT 17056272
USER - $SUSTSK% WAS CALLED BY EVWAIT AT 1701511b

USER TB002 - END OF TRACEBACK

Figure 14. A frequent error message for new users of multitasking.

Performance and Execution Behavior

The measurement of parallel programs is
conceptually complicated by several factors.
The Cray measurement facilities, if used.
record the length of all parallel execution
traces as if they were measured sequentially.
For instance, two cycles run in parallel take
one cycle Lo execute. but they are still counted
as two cycles. The Cray documentation
{Research. 1985) notes that flow tracing facili-
ties do not work properly with multi-tasking
environments. We resort to the direct use of
the system real-time clock and flow tracing of
the uni-task version of TWING to give us
run-time characteristics.

There are no standard metrics for deter-
mining multiprocessor performance improve-
ment. The most common in use is [simple;
speed up defined by:

Serial ezecution time

Simple speed —up =
tmple _speed = up Parallel ezecution time
The simple speed up of TWING is illustrated
in the next table.

Another conceptual measurement prob-
lem is where and how measurements are
taken. We simply throw two CPUs at a prob-
lem, so the maximum simple speed-up is one-
half the total serial execution time. 1/0 wait
time is a significant portion of the program
that cannot multi-task. We recognize that we
don’t use two CPUs for the entire time: we
have serial code, and we have wait-timne for
TASKs to finish and synchronize. . Also, we
need more cycles to cover overhead.

Since we were able to multi-task only
50% of the total serial ¢+ _cutiun, the best
improvement we could gain would be 25% of
total execution. We might term this
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performance figure as proportional, simple,
speed-up. As we multi-task more code. this
figure should slowly increasc.

Still another problem is that with two or
more CPUs sharing common resources -
memory and 1/0 - collisions become inevit-
able. Processors are forced to wait. and this
expends more overhead cycles. This conten-
tion is visible when running a uni-task version
of the code in one processor. and running a
second code in another processor. By varying
the work load in the second program between
a CPU intensive versus memory intensive
JOB, we can see the simple, but significant
effects of memory contention (See the Table
below). These are interference effects not
found on uniprocessors. A problem arises in
shared memory multiprocessors such as on our
VAX and Cray that local memory multipro-
cessors do not have. Memory contention sig-
nificantly slows down memory performance.
Designers of future multiprocessors must bal-
ance processor- versus memory-performance
raves.

Another performance issue is the addi-
tion of overhead cycles required to control
TASKs. Figure 15 shows the cost in cycles
versus the iterations toward solution for our
VAX version. This cost occurs similarly on
the Cray.

Load balancing is a significant problem
since TASKs vary in work load, and we have
seen that measurement of load has problems.
The output from the Cray day files shows a
considerable imbalance of work. Cray tools
discovered that TASK 1 did more work (exe-
cuted significantly longer) than TASK 2. The
timing output of a single day-file illustrates
the difference on our two CPU system:
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Table 2. TWING Execution time

T

| the difference in wall clock time versus
| what the operating system reports.

I STATIC Compile  STACK Cor_n—;-)iie—[mii-EEKGd Speedup

CPUs used : one one ' twe *a
Real [walll time 7.76 7.17 10 105
Total system time . 7.36 6.7¢ 9.67 n/af
Input i 0.0244 0.0255 0.0263 n/a}
Init ; 0.250 0.210 0.211 n/a}
Solve ; 7.08 6.52 9.43 n/a}
RO i 1.25 1.06 1.23 2%
ROCO ! 0.985 0.891 0.886 10%
RESID i 1.75 1.73 1.42 20%
inot applicable: sequential FLODUMP

timings added only for completeness:

B Table 3. Uni-task TWING Execution Times (in Seconds) |
T T Low Memory Contention i High Memory Contention -
. STATIC compile STACK compile | STATIC compile STACK compile i
Real [Walll Time 7.94 7.36 8.49 8.04
Total-System Time 7.35 6.76 8.03 7.35
Subroutines: _
Inputi 0.0244 0.0255 0.0264 0.0276
Init} 0.250 0.210 0.270 0.225
Solve 7.08 6.52 7.73 7.09
RO 1.26 1.06 1.35 1.13
ROCO 0.995 0.893 1.07 0.970
RESID 1.77 1.74 1.91 1.89
$These SUBROUTINEs were not con-
verted to use multi-tasking. They are
included here for control reasons to
show the effect of changing to a
STACK compilation.
TASK CP TIME dimensional arrays.
1 11.85 To change these parameters would
2 4.85 require more computation and potentially
This is because the work areas were not parti- further array-subscript change. Additional

tioned evenly between the two TASKs based
on hand analysis of array pr« ortions. Work
was partitioned based on existing, somewhat
lopsided DO-loop parameters in three-

algorithm modifications are required for boun-
dary regions. Dynamic load balancing is
harder still.
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Discussion

Further Research

This research has not covered  other
forms of multiprocess partitioning. Pipelines
are a common proposal: easily constructed and
debugged. but difficult to tune or load bal-
ance. (See Scale-Up.) The program's author
{Thomas} is considering this approach, but it
requires extensive rewriting.

Micro-tasking is another Cray-proposed
multiprocessing  construct  (Booth, 1985).
Micro-tasking involves a simpler, more restric-
tive set of control primitives. Another impor-
tant issue is the area of scale-up (See next sec-
tion}.

Scale-up

Certain aspects of scaling up programs
are trivial. Increasing problem size is not typ-
ically a problem: our VAX case was not a
necessary prerequisite to move the program to
the Cray. Adding more processors, however,
is not trivial. The work on the TWING code
began before there was any consideration of
generalizing the program to use more than two
processors.

The current multi-task work on TWING
will not generalize to an n-processor case.
The code used to determine maxima is one
problem that will not easily scale. If more
than two processors are used, different parti-
tioning schemes become preferable.

Probably the key issue of multi-tasking
is whether the performance gained was worth
the effort expended. There is a conflicit (or
tradeoff) between the need to have large
multi-task sections for performance and small
multi-tesk sections for ease of development
and debugging.

The multi-tasking programmer must also
confront the need to have large protected criti-
cal sections and many asynchronous processes
running. Our scale-up of the code uncovered
many machine-dependent assumption prob-

lems. For the scale-up of code, the parallel-
serial divide-and-conquer approach again
worked.

Open Issues

The problems of automatic partitioning
are not addressed in this study. Our future
intent is to extend FORTRAN by using a
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simple preprocessor to add support for simpler
constructs (e.p., COBEGIN, COEND) Iike
Cray micro-tasking. The preprocessor should
ideally hide low-level details and machine
dependent processing. It is tempting for pro-
grammers to be parochial about particular
constructs, so we wish to avoid this by using
preprocessors. Similar research is under study
on different architectures at other sites (e.g.,
LANL, ANL, Bell Labs, CMU, U. of 1li.).

There are dozens of issucs left open: dif-
ferent synchronous and asynchronous algo-
rithms, translation into an intermediate
language for dataflow-style execution, rneas-
urement and load balancing. Parallel process-
ing has many difficult problems remaining
which will take years to research.

Conclusions

The introduction of paralleliém is as sig-
nificant a tool as either Cray multi-tasking or
micro-tasking. The problems of parallelism
are not new, They are typically thought to
inhabit that realm called systems progrem-
ming. Users intending to add parallelism to
their collection of tools are advised to learn
from experience of others.

Good software tools would help program-
mers. These tools must provide multiprocess-
ing support. Many programmers would prob-
ably desire a standardization of multiprocess-
ing syntax. but this is premature.

Programmers should recognize that with
adding parallelisin and achieving better perfor-
mance, there will come some loss of the
coherent sequence that makes sequential pro-
gramming such a powerful tool.

Programs designed to use parallelis;m
from their inception are more likely to use
parallelism efficiently. This was clearly the
case with the introduction of vectorization,
i.e., vector-designed programs tend to use vec-
tors more efficiently. We should soon see
more multi-task programs, but it is an open
question whether these programs are scale-able
into the hundred- and thousand- (proposed)
processors range.
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