
, ,

NASA Technical Memorandum 88200

NASA-TM-88200 19860004447

Experiences with Cray Multi­
tasking
E.N. Miya

November 1985

NI\S/\
National Aeronautics and
Space Administration

I I~ r \f:\ r '~S'\

, 'iC.J, VIRGil!':,

1111111111111 1111 1111111111111111111111111111
NF01661

NASA Technical Memorandum 88200

Experiences with Cray Multi­
tasking
E. N. Mlya, Ames Research Center, Moffett Field, California

November 1985

NI\S/\
National Aeronautics (',ld
Space Administration

Ames Research Center
Moffett Field, California 94035

Introduction and OutlinE'

The search for improved performancf'
ha!' focused on using different forms of paral.

lr.liBr11 1,0 achil've speed increases. 1 To this end.
Cray Research. Inc. (CRI) introduc('d vector
prof.essing and. most, recently, user-accessibl(,
multi-tasking (Larson. 1984, Research.
1985, Research, 1984). The Cray work on
mult,i-tasking takes a "coarse grain" approach
to parallelism in contrast to the "fine grain"
parallelism of vect.or instruction sets or
dataflow (Ol'llnis, 1979). Multi-tasking was
not introduced without tradcoffs such as this.

The issues raised with the introduction
of multi-tasking and muit.iprocessing involv('
more t.han performance. Multi-t.ask program~
may require major changes in their algorithm~
storagl' management., and code. Toward thi'
end. new or modified programming language,
are needed

Explicitly parallel languagl's must. handle
problems beyond the SCOpf' of conventional
programming languages. These issues includl'
dat.a protection. non-det.erminism, procesl'
management. (i.e., creation, scheduling, dell"
tion), interprocess communication, synchroni·
zation (i.e., deadlock and starvation), and
error and exception handling (Denning, 1985).

·These problems are well documented with the
Carnegie-Mellon's multiproC'f'ssor research
(.Jones, 1980). There arc few simple solu­

tions,2 and tradf'offs must he madl'. Grit. and
McGraw compare parallel appli('ation~ pro­
gramming to operating sys\.ems programminl!
in sheer difficulty (Grit. 1983) thus creating
more trouble.

System timing must receive careful con­
sideration in multi-task codes to avoid incon­
sistent results and deadloc k. A sequential
code hacking !ltyle 15 dangerous m this

IThe terminolog~' i~ varipo. colorful, and highly
ronfuRillJ(. ArnonJ(oth('r phras!'s. WI' have: parall!'1 pro·
ceRsing, multiprocessing. polyproceuing. distributed com·
puLing, decenLralited compuLing. and 10 forth. Each
phrast ha~ a slightly different meaning: enough to makt
communications difficult. CRI makes the subtle distinc·
tions that multlprogrllmmlng means multiple jobs working
on a CPU le.g., time·sharingj, multiprorr.,ang means work
done on multipl(' physical CPUR working multiple jobR
li.p. .. without regard for job~l. and muUi·luking means
multiple physical CPUs working cooperlltivelll on a .ingle
problem.

2JoneB and Gehringer specific .lIy classify diRtributed
system iuues into problems of 1) consistency. 2) deadlock,

1

environment. Care is required when dividing
a problem into multiple tasks to avoid incoIl­
sist.ency. This division is called partitioning or
decomposition as well a$ hy other t.erms.

Severa'! part.itioninr schemes can execuk
codes in parallel (.Jones. 1980). The most
common are pipeiining, spatial partitioning (by
problem space or machinl' sl.orage). or relaxa·
tion that removes assumptions of data con­
sistency. David Kuck is best known for his
research on automat.ic partitioning (Kuck.
1980). This paper covers the subjecl. of part.j.
tioning an existing application program b)
hand.

The program "TWING" ill the vehicle
that. we use to explor(' the i~sues surroundillr.
multi-tasking. This report covers:

Existing Languages: Issues and Problems
The Cray Multi-tasking lmpll'mentation

The TWING Program
Modifications to TWING

The 2-Processor V AX Version
The 2-Processor Cray Version

Debugging and Other Consequl'nces
Performance Issu('~
Discussion and Conclusion

Our programming st.yle is conservative lind
defensive. We assume the multi-task program
will not. execute thl' first t.ime. We chosl' II

synchronous algorithlJl and sought results
idl'ntical to results using uni-task TWINe:.
This work st.resses t.hl' importance of careful
analYSIS. design. and I.esting.

Existing FOR.TRAN Drawbacks

As background. it. is useful to understand
the problems inherent with standard FOR­
TRAN and multi-tasking. FORTRAN is not
currently designed for or intended to run in a
parallel environment. t-;ew problems arise in
multi-tasking such as synchronization, com­
munication, error handling. and deadlock. An
excellent. survey of languagl' is~;ul's and variolls
attempts at solving them appears in Comput­
ing Surve yB (A ndre WI), 1985).

First, the standard FORTRAN language
lacks process-creation primit.ivt's and struc­
tures. The SUBROUTINE is the closest
FORTRAN object resembling a process or a
T ASK. Second, the language lacks features
for explicit synchronization and protection

3) starvation, and 4) exception handling.

such liS semaphores (Dijkstra, 1968) (i.e.,
ALGOL-68). monitors (Hoare, 1974) (i.e., con-

current. Pascal). or rendezvous (i.e., Ada!)
(DO]). J980). Jt.. IIlso. lacks explicit commun­
ication fcat.ures such as mailboxes.

Each of the a,forementioned synchroniza­
tion features ha$ assumptions of atomicity
(uninterruptability) which is critical for main­
t.aining a degree of consistency that standard
FORTRAN cannot currently provide. Syn­
chronizat.ion is a technique normally reserved
for operating syst.em programming (usinr.
libraries) since it. offers "hazardous" user facili­

ties!

Lastly, the soft.war!' engineering prob­
lems associated with FORTRAN art' accen­
tuated in a multi-tasking environment. Thes!'
problems are documented elsewhere (Dijkstra.
1968): th!'y include GO TOs and the lack of
modern data structures. An examp!{' of these
tradeofTs is thp inability for eray multi-t.asking
FORTRAN to coherently perform multip!e
RETURNs.

It is not easy t.o add thesp features t.o thp
FORTRAN language. Thpsp feat.ures conflict
with existing language semantics. The pro­
grammer must. locate and manage side effects
op globally referenced memory (such as COM­
MON variables), call-by-reference parameter
passing, and manufacturer-dependent features.
These sid!' effects also occur at. the lower
vect.or-processing lev!'l: Cray users have modi­
fied their programming style to accommodat.p
them. We can similarly expect users to adopt
a multi-tasking programming style.

Cray Multi-tasking FORTRAN exten­
siom;

Thp existing Cray Research supprcom­
puter line performs efficiently by using a vec­
tor instruction set. Performance improvement
is achieved hy using regular data-access pat.­
teflls on arrays and their indices. Current.ly,
multi-tasking seeks to achieve performancp
improvement using multiple processing units.

Cra}, Research has a set of primitive
('xlpnsions to support. muJti .. ta.c;king in version
1.13 of their CFT FORTH AN compiler

3Ada is a trademark of tht' Ada Joint Project Office
of the llS DOD.

fThere exis\p the potential for user-induced system
deadlock.

2

(Larson, 1984). Thesp extension~ currently
allow severa) tlirtual CPUs to exec.ul,e simul­
taneously on one to four physical. CPU5.
These primitivel' are invoked using subrout.ilH'
CALLs. They are useful for CTf'al.ing more c111-
borate synchronization mechanisms such as
monitors (Hoare, 1974).

The Cray primitives fall int.o three gen-
eral categories:

TASK creation and control
EVENT creation and synchronization
LOCK creation and protection

The primitives are controlled using three basi,
dat.a structures: a T ASK control array
(INTEGER type containing two or three elr­
mcnts), EVENTs, and LOCKs (bo.th of t);pe
INTEGER) all explicitly assigned (i.e.,
created).

An ext.remely important. semanticS differ­
encr is t.hp handling of storage (primary
memory) in this version of FORTRAN. LocaJ.
storage in normal FORTRAN has a static
allocation resulting in possible 3ide effects.

Thp new multi-tasking CFT FORTRAN
rpquires a dynamic or st.ack-based allo~ation of·
storage more characteristic of ALGOL-like.
languages such as Pascal or C. This is neces­
sary for TASK creation and migratio~. Local
st.orage (scalars or arrays) now has a finitE' life-.
time and scope. A programmer cannot use a
value left over from a previou;;-;;~L;()~tine
CALL or assuJlle values are initialized t.o zero
(0). This is a radical departurE' from standard·
FORTRAI\. The npxl. four srctions cover
these primitives and their effects in greater
detail.

TASK Control

We begin with TASK creation. A user
controls a concurrent object. called a TASK
that is invoked like a SUBROUTINE. The
TASK is drfinpd likr any ol.hrr SUBROU­
TINE except that. its nallle must . explicitly
appear in an EXTERNAL statement before' a
CALL. and its st.oragp gets handleddif­
ferently. The specific TASK syntax primitives
are shown in figurr 1 where SUBNAME is the
SUBROUTINE name, and ITCA IS an
INTEGER TASK control array. Note,

'We mention this because there are no FORTRAN
keywords (i.e., syntax) associated with this problem; it's
semantic.

CALL TSKST A RT(ITCA,SUBNAME, larguments])
CALL TSKWAIT(ITCA)

Figure 1. Cray TASK primitives.

restrirt.ed, positional SUBROUTINE argu­
ments are passabl~.

A TASK control array is a simpl(' dal.a
strudurc that holds TASK control data for a
schl'duler that is loaded with the program on
l'xerution. This scheduler is distinct from the
operating system's scheduler in that it governs
user defined TASKs rather than JOBs.

The TASK is crellt.t'd using the
TSKST ART call. TSKST ART is similar to a
fork in languages like ALGOL-68 except. II

separate address spac!' is creatrd. much likE' a
separate space for a FORTRAN subroutine.
The eITect is like a subroutine CALL with onE'
major exception: subroutine CALLs are svn­
chronous and con seq uently wait, uniik('
TSKSTART calls.

The following program fragment (figur!'
·2), listed in parallel, illustrat.!'s the creation of

a TASK. Not.e that t,he subprogram a))ocatin~
the TASK control array must not lose thl'
T ASK control arra~' storage! Sev;-r; problems
will result!

A "TSKW A IT" st.at.ement. could force 8.

crude explicit synchronizat.ion on execution of
a RETURN statement within task A. The
section on Debugging will touch on the use­
fulness of TSK WAIT. More refined

PROGRAM
INTEGER TA(2)
EXTERNAL A

synchronization is availabll' using EVENTs
and LOCKs. Therl' art' also TSK calls
covered in the Cray document.ation t.hat
report T ASK information or statistic~
(Research,1985).

Cray support. of mulLi-tasking includef' a
simple deadlock-det.ect.ion m('chanisOi
Deadlock occurs when all ust'r TASl\s arl'
waiting for a condition t.hal nevl'r (lCCllr~.

This goes for svnchronizal.ion II Sill g
TSKW AlT. EVENTs.' or LOCKs. Car(' is
requir('d, particularly. in using EVENTs
because these functions are nol n!'cf'ssaril\
atomic (indivisible). IDeadlock is discussed
further in the section on Debugging.]

EVENTs and LOCKs

Synchronization· and consistency protec­
tion use combinations of EVENTs and
LOCKs. Both lire useful for simple synchroni­
zat.ion. The key difference bet,wt'en an
EVENT and a LOCK is that a LOCK forcl's
tash to run in a First-In, First.-Out, (FIFO)
ordt'r. An EVENT is comparable t.o a "broad­
cast." and many TASKs can run at oJlce. It
is also import.ant to clear or reset a LOCK or
EVENT at. appropriat(' times.

CALL TSKST ART(T A,A,arguments) SUBROUTINE A(parameters)

END END

Figure 2. An illustration of simple TASK creation.

3

EVENT!! and LOCKs arE' created by
usin!! !lubroutine CALLs which assign special
prote('tion in the sallie ma.nnE'f in which
TASKs af/~ erE'a.lrd. Basic arithmetic and log­
ical operat.ions arE' disabled for these obje('t~

until they ar!' relE'ased. The spE'cific primit.ivE·
SlJBlWlJTINE CALb arf"

~V~NT Control

EV ASGN(lEVAR)
EVPOST(lEVAH)
EVW AJT(lEV AU)
EVCLEAH(IEV An)
EVnEJ,(lEV An)

LOCK Control

LOCKASGNII,CK)
LOCKON(l.CKI
LOCK()li'}t'(LCK)
LOCKRELILCK}

in which lEV AR and LCK ar(' INTEGER!'
assigned as EVENTs or LOCKs. The follow­
ing is a simptl' two-TASK synchronization
usil\!! EVENTs in t,W(} separatE' executing
TASKs. ThE' scope is shown by the bounding
boxes of figuf(' 3. If an EVENT or II. LOCK is
CLEARed or RELeased while some TASK is
waiting, tit(> consequences arE' nondeterministic
and can be disastrous.

)f combinations of EVENTs, I.OCKs,
and COMMON memory are used. it is possiblE'
to make mor(' elaboratl' synchronization
lnE'chanisms such a.s semaphores and monitors.
Sequential critical section/! of code and data
hE'('d protection using thesE' synchronization
primitivE'S. Problems of inconsistent synchron­
ization arc covered in the nexi s('ction.

Conlmunications

Communication t,akes place though onE'
of three mechanisms:

CAU,-by-ReferencE' parameter passing
Global COMMON memory

TASK 2:

TASK COMMON memory

Data is passed using sharrd (e.g., COMMON)
variables. This i~ thr principal means of rom­
munieation and requirE'~ care ill use.

A TASK-local COMMON le.g .. TASK
COMMON) i~ availahl(' in version J.J4 of I.lw
e r rornpilf'r. It. is similar In thf' lIIorl' ~I(lbal

COMMON except that its data is accessibl('
only to objects (SUBROUTINEs} within a
partie-ular TASK. MainLaini,,~ a wlIsistent.
system stat(" is a chore left. t.o t.he us/'r,

Consistency is threatenep by t,hree ba.sir
hazard,. Suppose A and B are two TASKs
running in parallel and sharing a variable V.
The hazards are baseO on the order in whkh
processes access \': It timing problem. Th('
first hazard is the read- write hazard - having
one TASK prematurely reading a stale valu!'
bt-fore the appropriatp wril.p. The next is t.h('
write-read hazard: having onf' TASK prema­
turely "clobbering" a value before il. ('ollld hr
read. The last hazard is thE' write-write
hazard in which one TASK writes over values'
that never get a chance to he read Iparticu­
larlv difficult to detE'ct]f" The Cray is not
res;onsible for these pdtential user errors of
timing.

St.orage and Subrout.int' Linkag(>

'nil" actual handling of sl,oragr diffE'rs
va:o;tl" from conventional static- FORTRAN,
This 'has its greatest, effE'cl on SUBROUTINE

'Tb~ m~lTlorv on th~))pn~knr IIpl.p.ogpn~ou. Prp­
cesso. IIlEPi is an 'attempt to solvl' this problem. If vari.
abln r~eive II; Ipecial deciMation, they are forced t6 a1t~r­
natl' reads and writes using a unique.aemapbore memory
Iystem.

~
ASKl:

CALL EVW AIT(READY)
CALL EVPOST(ACK}

L.:....: .

CALL EVPOST(READY)
CALL EVW AIT(ACK)

Figure 3. Synchronization of two TASKs using EVENT flags,
Boxes represent different address spaces.

and FUNCTION linkages. The semantics of
these new linkages prompt some users to nam('
this an entirely different. language (e.g., "not.­
FORTRAN") Old 'memory-saving tricks such
as st.atically defined and allocat.ed variable!:
left. for a second subroutine CALL are now
undefined and may cont.ain unreliabl" data.
Users cannot assume values are initialized to
zero (OJ. Expressions In parameter lists
involve similar problems.

Thos!' rea.ders fa.miliar wit.h dynamic
storag(' management in sC(lp"d langllltge~ such
as ALGOL. C. Pascal, or LISP should gra!:1'
these concepts easily. FORTRAN simply d()e~
not. offer the protection mechanisms t.o ensur"
('onsist.l"n('.y of dat.a in a multiprocess environ­
m('nt. The user must. act.ively manage th ..
dat.a consistency and program defensively.

The Mathematical Basis for TWING

TWING is a program thaI solves th('
conservat.iv!' full-pot.ential equation, using 11

fully implicit. approximat.e-fact.orizat.ion algo­
rithm. The program solves for stable state
airflow over a wing flying lit. transonic velo­
city. TWING is th(' developm('nt. of Ur. Terry
Holst and Scot I. Thomas (Thomas. 1983) at·
the Applied Comput.ational Aerodynamics
Branch, NASA Ames Research Cent.er.

Figure 4 is a schematic of the finite
difference mesh over which the flow solver
operates. From this representation in "physi­
cal space", the problem is transformed into a
"computational space" lfigure 51 which
preserves the orthogonalit.y of th(' m('sh line!'
throughout the computational domain.

(pc})s). + (pc}),). + (pc}).). = 0 (La)

A mat.hemat.ical representation of this
flow solver is given in the derivation of equlI­
tion I.c. The three-dimensional, full potent.ial

. equation (in x,y.z coordinat.es) is present.t'd in
equation I.a. Th" tra.n~formation int.o compu­
tational coordinat.es (~,".(coordinates) yield~
equa.tion Lb. In t.hi~ equation. U. V, and ,\
a.rc t.erms com posed of c})., c}) v' and c}) z (,Olll­

bincd with assorted mt'tric quantit.it's. .J
represent!: the Jacobian of the transformation.
Tht' finit.e-difference approximation of this
t.ransformed equation (J.el employs hackward
differeJl('(' operat.ors in the ~,", and (dirf'r­
tiolls. This yields the finite-difference approxi­
mation ill equat.ion I.c. The special densit.y
('oefficients il , ii, and p introduce an artificial
visc()~it.y term into thl' calculat.ion. Th(' resi­
dual term L (41) obtained from this equ ation iF
u!led in the first step of the factorizat.ion
scheme outlined below.

An outlint' of tht' t.hree-st.ep
approximate-fact.orizat.ioll scheme i~ shown in
the derivation of equlltion 2.c. In st.ep onr
(equation 2.a). an intermt'diate term G(i,j) i~
comput.ed for each point OJI a given "k-shell"
of t.ht' ml'sh by solving a t.ridiagonal linellT sy~­
tern along each " line (i.t'., ~ = a ('on stant.)
extending from the symmetry plane out. t.o tht'
freestrt'arn side all. In step two (equation
2.b), G(i,jl compul.es another intermediat('
term F(i,j,k) for each point in the "k-shell."
This step requires the solution of a tridiagonal
linear system along each e line (i.e., constant
,,) ext.ending from t.he upper vort.ex shct't.
around the leading edge t.o the lower vort.ex
sheet (figure 6). Finally, when F(i,j.k} hll~

been computed for every point in the three­
dimensional mesh, the correction fact.or

The three-dimensional full pot.ential equation (x,y.z coordinates).

(p U / J)e + (p l-' ! J)" + (p W / J)e = 0 (1.b)

The full potential equation in computational space (e, ", ~).

6~(pU/J} .. I. 4l,,(p~·!J) .. I +6,(PW/J) .. I O(l.c)
, +'2".1 ',I +'2" ',I.l +'2

The resultant finite-difference approximation.

5

Figure 4. Sample finite difference mesh.

OUTER BOUNDARY

"FREESTREAM
SIDEWALL BOUNDARY

z

~V
Figure 5. Transformation to computational space.

6

SYMMETRY PLANE
BOUNDARY

~ LINE (11 = CONSTANT)

("0 . UTaOAo
<10")

FREESTREAM
SIDEWALL
BOUNDARY

Figure 6. Computation divided into two tasks.

UTER BOUNDARY

t LINE (~AND T/ = CONSTAINT)
"PENCIL"

FREESTREAM
SIDEWALL
BOUNDARY

Figure 7. Computation done as a region of pencils.

7

St.ep 1:

[0 -l 0. f3" I.~ I . h"
, .J .k

__ b77 A -;5)gn ..
J" • ,I

Step 2:

[Ak -l fJi (- gn i.; (2.1»

Step 3: Correction factor C.

1(.1' -t l .) (' n .. L = f n .. L (2.c)
\ C 1.1 .If. • ,I .'"

Steps in the finite differencing scheme.

Program VTWING
Input. !lllbrolltine (INPUT)

R.EAD m('sh
R.EAD run-t.ime paramet.er~

Initializat.ion subroutine (IN IT)
initialize the solution
comput.e and store metrics

Flow Solver: (SOLVE)
for each iteration do

for each k-shell in mesh do
get. metric~
compute density and density coefficients
compute residuals

solve for 9 n i.; and f n t.i ,k

end k-loop
calculate and apply en i.f.k

o.wL<l>ni.;,k -l o.A H d"i.i.l+1 (2.a)

output maximum residual and correction for iteration
check convergence

end iteration loop
output solution

Figure 8. Sequential structure of the TWING Program:

C(i,j,k) i1l computed in step three (equatioil
2.('). This calculation proceeds from the outer
boundary down to t.he wing surface, requiring
the solution of a bidiagonal system for each \
line (i.e., t and 7] = constant.s, figure 7) of th('
mesh. This correction factor is then added to
the solution from the pr('yious iteration, gen­
erating a nl'W solution. Thi!< three-1lt.ep pro­
cess is repeated it.eratively until convergence is
achieved or a preset maximum iteration is
reached.

8

An outline showing thE' code struct.urE'
itself is presented in figurE' 8. The program
first reads the physical coordinates of the fin­
ite difference mesh and its run-t.ime paraJl1l'­
ters. The program thl'n comput.es the metric
quantities defining the transformation of thE'
problem into "computat.ional spacE''' and
write!' these to disk.

At this point, the main iteration loop of
the program begins. The program completes
steps one and two (equations 2.a and 2.b) of

Figure 9. Computation divided in two different regions.

9

thE' three-st.ep approximate-factorization
scheme outlined above operating on successivt'
"k-shelIs" in the mesh, beginnin~ at. the sur­
face of the wing and progressing t.o the outer
houndary. For each k-shell, the code:

(1) fetches th(' appropriate subset of metrirs
from the disk

(2) computes the density at. each point.

(3) generates the special density coefficients

(4) computes the residual terms resultin!!
from equation 1.c

(5) solves for G(i,j) and F(i,j,k)

Aft.er completing this "k-Ioop," the code com­
pletes step three of the scheme by calculating
the correction C(i,j,k) and applies ii. t.o each
mesh point to generat.!' a n('w solution. A con­
vergence check folIows: when sat.isfactory con­
vergenc(' is achi('ved. t.ht' final solution is writ­
ten t.o disk.

TIl(' Modification of TWING

TWING is writ.ten in portable FOR­
TRAN 6(j and executes on Cray, CDC 760U.
and V AX CPUs. The program was rewritten
t.o be welI-structured. Its control flow is serial
(i.e., few GO TOs jumping control around) .

• Although it was possible t.o partition the com­
putation along functional lines in a sort of
high-level pipeline, this approach was not pur­
sued because it needs either substantial addi­
tional memory or elaborate internal buffering
to store intermediate results. Pipelining may
also hinder efficient execution-time load­
balanr.ing with some stages of a pipeline exe­
cuting longer than other stages of the pipe.

This problem was exac:erbated In

TWING by the ext.ensive use of
EQUIV ALENCE statements in the original
code. employed in an effort. t.o squeeze the
laq~est. possible problems into the limited cor('
lJIemory of a CDC 7600 or a Cray IS. Since a
functional partitioning of the problem seemed
unsuit.ed t.o t.he limited shared memory avail­
able, a st.atic spatial-partitioning scheme was
employed.

Our restructuring took advantage of
existing codt' and attempted as little algorithm
change as possible. I~ this scheme, each step
in the algorithm was examined in an effort to
determine if several port.ions of the mesh could
be operated on simultaneously at that step.
Execution profiling using the Cray FLOW-

10

TRACE facilities showl'!d dominant, run times
in three SUBROUTINE.s. Vectorized TWI~G
executed thrE'(, t.imes fasl.er than scalar
TWING with inpul,-output. overhead included.
Since distinct. st·E-p~ in th(' al!!orithm tend t.o
r.orresp~nd t.o s('parat,(' TrImlules in the finish('d
code, this proc('ss r('s 11 Jt.('(1 in a body of roel('
that formed the skelet.on or the wncnrrent.
processing portion of t.he modified TWING.

The calculat.ions of thl' densit.y fsubrou­
t.ine RO), the special density coefficients (~ub­
routine ROCO), and the residuals (subrout.ine
RESID) were all split along - the, fJ axis for
each UK-shell" in the computational mesh
(figures 6 and 7). This resulted in splitting
loops (figure 10). One processor generated
these results for points Olt or between the sym­
metry plane boundary and the wingtip. The
other processor handled poirit.s on' the, . wing
extension. out to the frel.'streilm sidewall bOlln-'
dary. This "in board-()~tboard" part.itio'ning
sch('me was chosen bec811!'l' the' 'algorithm
employed in each of these calculations is U~lI­
ally constant for a: given t line - (71 = a con­
stant.) but. varied with position along the 1] .

axis. An inboard-outboard scheme was th('r!'­
fore construct.ed uSing processor-dependent
branche6 such as:

c
IF (TASKID .EQ. 2) GOTO 12
DO io I = I,NIM

10 CONTINUE
C Thi6 continut: added for multi-tasking

12 CONTINUE

Mathematically, however, each point in th!'
mesh was operated on independently during
the~e preliminary calculations. We can
replace the mesh with different divisions if
there were reasons for favoring it.

A more fundamental relationship
between.the underlying mathematics' of the
algorithni and the sp'atial d('c(HrlpositiOJi or t.he '
problem f<ir" Multiple-I~struction stream,
Multiple-Data streani IMIMDi execution is
illustrat.ed by the t.hree-step approximate­
factorizadon schl'me outlined in a previous
section. Recall t.hat in eqllati'on 2.a, the back­
ward diffe~encing is performed only about 1],

which geJ\erates tridiagonal linear systems
along 71 lines (e= a constant). This makes the
inboard~outboard partitioning scheme used
above unworkable for this step.

TablE' 1. EXE'cution Time Profiling
Subrout.ine Vl'ctoriz('d TWINGt. Scalar TWING

% Total Run Tillll' '1(. Total Hun Tilllr
_. -- --- .------.- - --- . - -.------- .. --------no 15.9:1 14.92
ROCO 13.45 15.91
RESID 23.92 17.99
Tot.al % 53.3 48.82
tTo clarify: this is not % of vector execut.ion.

C Variables declared as integer, TASKID obtained/rom TSKVALUE.
IF (TASKID .EQ. 1) THEN

ROJSTART = 2
ROJSTOP = NJTM

ELSEIF (T ASKID .EQ. 2) THEN
ROJST ART = NJT
ROJSTOP = NJM

ENDIF
C The values 01 NJTM. NJT, and NJM are preset parameters
C in uJli-ta.ked TWING.

C NOIlI, each proreu works on the j-line. delined by
C tl,e initial auignment block.
c
• DO 20 J=ROJSTARTl.ROJSTOPJ

C DO eo J= e.NJM -- old ,tatement
DO 15 J=l,NIM

15 CONTINUE
20 CONTINUE

Figure lO. Code illustrating the splitting of a loop.

However, adjacent " lines are computa­
tionally independent at this step, implying
that the mesh could partition into "top" and
"bott.om" IIE'ctioIlS, each handled by a separatE'
processor (figurp 9). Similarly, in step two
(equat.ion 2.b). the backward differences are
taken about ~, generating tridiagonal linear
system" along e lines (" = " constant). through
the mesh. Here, each e line is computat.ion­
ally independent, and the- resulting t.ridiagonal
systems are solved concurrently by dividing
the mesh int.o the inboard and r ~ooa.:,d sec­
tions described in t.he last. paragraph (see fig­
ure 6).

11

Finally. in sl.ep three (equation 2.c),
bidiagonal syst.ems are general.ed along lines in
the (direction (! and " both = constants)
(llee figurE' 9). Again, concurrent processing of
multiplp ("pencils" i!' 8 simple and powerful
way to use an MIMI) machine at this st.ep.

Note that truE' MIMD capacity was
rt'quired t.o use such a spatial partitioning
scheme. A vector architecture alone would
not suffice because there was no guarantee
that the instruction stream to be execut.E'd
would be the same at different points in thl'
mesh. Split difference schemes have sOllie­
t.imes proved useful. The wing root could

havE' u5E'd a more complex dilTerencing schemE'
than employed near the outer boundary of 0

HII'sh. It. is also possibl!' 1,llIIt, the va.lues of
some progra~ parameters might also be posi­
tion dependent ..

Anot.her ("od(' s!'f{lienf!' fommonly
enl'Oullt.er!'d in TWING wa.', the selectioJl of
thl' maximum or minimum value in all array
following an operation on the clements of the
array. While this search has been conducted
in a serial mode by t.he main program aft.er
the subprocess('g return, this considerably
degraded the resulting speedup. A bet.ter
approach was t.o have each subprocess locat.!'
tl)(· maximum or minimum element in its por­
t,ion of t.he dat.a baSI'. and pass t.hE' indices of
t.his vallll' back t.o t,11!' lIIain program. Th('
maill program neE'd('d only 10 compare the two
passed element.s to obtai II a maximum or
minimum ov('r t.h(' entin' dat.a bas('. An
example of such a coding s('quenc(' i ... shown
wit h in the next code section (figure J J) wher('
Jlumberl'd variables are TASK ·det.ermined aJld
nann umbered variables are global shared vari­
ables.

V AX Modification

Our first MIMD testbed used two V AX
11/780 minicomputers linked to one MA780
multi-ported, shared memory unit. Becaus('
the operation of the processors was

IF (ABS(RMAX1) .GE. ABS(RMAX2)) THEN
IF (ABS(RMAXt) .CT. ABS(RMAX)) THEN

RMAX = RMAXJ
IRMAX = IRMAXJ
JRMAX = JRMAX t
KRMAX = KRMAX]

END IF

asynchronous, each with its own copy of th('
operating system running on 0 loclli dock. t.h('
configuration was be.'!!. d(~sr.ribed liS /I "loO.'wly
coupled" multiprocessor. Although each pro­
fessor retained its large virtual address spafP
a.s local memory, the -shar!'d memory ill t.h!'
MA7RO was not virtually address""I!'. Elich
MA 7RO unit couldaccomrnodat.c up t.o t.W{)
megabyte!! of physical memory . Thr unit
employed for thi~ study was equipped with
256 kilohytes of physica.l memory.

The operating sy~tern in U!lC ot. t.hr lim!'
of the !!t,udy was V AX/VMS (VersioIl :1.1).
V AX/VMS provides I,hre!' facilit.ies for inler­
prOfess communication across the sharrd
memory link: event. fla.gs, mailboxes, IIlId gl,,­
bal dat,a secI.iom.

Event flag!' are allocated in thirt.y~tw()

bit clusters and -ar(' manipullll('d using a
varirty of system-supplied rout.ines. A process
could set or clear individulIl nags and COli Icl
wait. for the logical AND or OB (If a mlllt.ipir
flag mask. One drawback of VMS"event nag
services for MIMD programming wa~ I.hat till'
flag operations were not indivisible (atomic).
Thi!l can cause difficulties when an MIMI)
program uses shared memory. It required pro­
tection from simultaneous access by more than
one process, especially if the number of COJlJ­

peting processes is great. In the pre!!ent. st.udy·
this problem did not arise, both because, at

ELSE IF (ABS(RMAX1} .LT. ABS(RMAX2)) THEN
IF (ABS(RMAX21 .GT. ABS(RMAX)) THEN

RMAX = HMAX2
IRMAX = IRMAX2
JRMAX = JRMAX2
KRMAX = KRMAX2

END IF
END IF

Figure II. Selecting a maximum value from two locally determined maxima.

12

most, two processes werp. adive simultane­
ously and also because they generally operated
on different parts of thp. statically partitioned
dat.a base.

The V AX IVMS system was not
intp.ndp.d t.o bp. a multiprocessor operating sy!'­
tern. Programming the sharp.d memory waf'
clumsy. Since our shared memory was small.
we reduced the resolution of t.he program to fil
the space of the memory. This was a develop­
ment measure that did not happen on our
Cray. This paper does nol cover the V AX
specific version in any ~reat.er detail.

The other MIMD testbed consists of a
Cray X-MP /22 running version 1.13 of thf'
Cray Operating Syst.em (COS). The Cray. by
way of contrast. is a "tightly coupl!'d," shared
memory multiprocessor. This creat.es proh­
lerns not faced on our \' AX testbed such a!'
more memory cont.ention but simplifies prco­
gramming.

Cray Modifications

The V AX version of TWING was a
''!It.ripped-down'' version of the production
Cray code designed t.o fit int.o the small shared
memory system. We, therefore. did not count
on thf' V AX version to reach convergence.

• The mesh was too coarse, and we did not get
a chance to truly debug the V AX version.
The mathematical ba.c;is for partitioning the
vector version of TWING (VTWING) was
identical t.o the V AX-specific version. This
time. we sought realistic convergence. Debug­
ging wa!l a major problem not only for
TWING, but also for the new STACK alloca­
tion and multi-tasking of the CFT compiler we
were testing.

One important sidp. step, Wl\.!l a quick !let
of checks regarding the new SUBROUTINE
linkages. We should mention this was not· a
problem for TWING. To do this, a user com­
piled the complete, existing program using tItr
ALLOC=ST ACK opt.ion on the new. GFT
compiler. The program was then run using
the associat.ed new loader given adequat.!'
stack and heap sizes (see the manual)
(Research, 1985). The results were compared
to the original STATICally compiled run. A
useful variation of this was to creat.e simple
TASKs that START then immediately WAIT
as a CALL to a SUBROUTW. would:

13

change from:
CALL RO

1.0:
CALL TSKSTART(TA.RO)
CALL TSKWAIT(TA)

The t.iming differences bet.ween STATIC and
STACK runs are included in the section on
Performance. The compiler changes do
effed program execution without. source code
changes.

The next stage entailed converting the
existing code int.o a multi-taskin~ body of
code. This was not as easily as it appeared as
subt.le errors required detection and correct.ioll.
It. is possible t.o do this at different. leveb or
stages such as converting the entire program.
converting su broutines, or converting blocks of
rode. Converting a code in large sect.ions I~

likE' writing a large program and expecting it
to run correctly the first time.

It wa!l important t.o have good com­
parison dat.a. since fast execution did not
imply correct execution. A machine-readablE'
out.put. was creat.ed from an unmodified. run­
ning version of TWING. Once the codl' was
running. We tested the out.put. of t.he mult.i·
t.ask run with our uni-task output using a dif-

ferl'ntial file comparator (thl' UNIX7 dill pro­
gram). This insured that our conversion was
precise .

Our third and last. att.empt. at. conversion
was to break a subroutine int.o two smaller
subroutines: a parallel portion and a serial
portion. Since most of the data was stored in
COMMON blocks, paramet.er passing was
minimized to simplify these problems. Th!'
parallel subroutines were run and synchronized
before the serial portion as shown in Figure
12.

Portions of serial subroutine code (typi­
cally loops) then migrated to the parallel sub­
routines. This techniquE' successfully id!'nti­
fi!'d subscripting oversights. branching proh­
lems, and so on. It was painfully slow. but it
was effectivl'. Initially, ta.~k synchronization
wa$ performed using TSKST AHT and
TSKW AlT. not the morl' complex EVENT
flags. We used the "Make it. right before you
make it. faster" philosophy from the The Ele­
ments 01 Programming Style (Kernighan,
1978).

We stress the following point: make cer­
tain that the existing code is bug-free. There

'UNIX i. a trademark of AT&T Bell Laboratories.

take: becomes:
CALL S SUR S CALL PI

CALL S2

SUB SJa

SUB 82

Figure 12. Codl' migration from serial int.o
parallel, where S is the subprogram. the num­
bered portions refer to the halves (1 and 2) of
S. PI represents the set of CALLs that are in­
voked for parallel TASKs Sla and S1 h.

is littlp sense trying to multi-ta..'1k bug ridden
codf'. Multi-tasking the code made programs
harder to debug. The programmer has to di!;­
tinguish the original bugs from I.he newly
introduced linkage and multi-task bug!!.

Each SUBROUTINE was individually
convert.ed to two parallel TASKs giving three
versions of the program. The next step was to
get. combinations of two different TASKs run­
ning within a program. This was used t.o
locate side effects between any two different
TASKs. We still used the crude START and
WAIT CALLs at this point. Finally. we had
all three CALLs converted.

Once all TASKs were operating using
crude synchronization, it. was a simple matt.er
to get. barrier synchronization using EVENTs.
We moved one TASK at 8 time to EVENT
s!.ruc\,ure1i. Aft.er EVENTs replaced the
TSKSTART and TSKWAIT CALLs, we
wrol.(' a simple user-level TASK scheduler (fig­
urt' 13) that worked on simple message­
passing.

Our last act scaled the grid from V AX
sharl'd memory-size to Cray memory, produc­
tion size. During this final work, we corrected
one V AX-scale dependency problem. This
problem involved n partial correct.ness proof
mentioned furt.her in the section on Debug­
ging.

Time and Effort

This work took several months. We
reported our many compiler problems t.o CR).
Meanwhile, Cray Research migrated from
CFT Release 1.13 to 1.14. solving many of our
problems.

14

To reiteral.e tht' degree of change,
TWING ac:tuallr consist.t'd of' two separat.t'

programs~: a grid generator ane! thl' vectorized
version of the TWING flow solver. ,The
multi-tasking t.ook place only on the flow
solver.

We document. the GRIDGEN program
here only for completeness. The GRIDGEN
program consisted of

2123 total lines of commented FORTR AN
1195 executable lines of code in
1031 executable statements

An instrumented uni-task version of the
TWING solver consisted of

3926 lines of commented code
3840 Iin~s without instrumentation
2529 total executable lines
1906 executable st.atements

An instrumented multi-task versIOn of
TWING came to

4450 lines of commented code
4399 lines without. instrumentation
2870 lines total executable
2188 executable statements

Note that additions and modifications do not.
sum to the totals becau1lf> therE' is overlap.
Additions and rnodiricat.ion!'l t.(lok the rOrln (If
replication and addition of statements to han­
dle problems such as parameter passing.

Our experiencE' with converting this and
other NASA codes, ILES and ARC3DI
currently 'has us modifying about]0% of the
code (if the grid generator is counted, slightly
more if not). Most of these codes have fewer

'The two programs are combined 'as one (or
machines with large memory.

MESG ~ 1
CALL SCHEll

SUBROUTINE SCHED SUBROUTINE PROCES

CALL EVPOST(GO) CALL EVWAIT(GO)
IF(MESG.EQ.l} THEN

CALL EVW AIT(DONE) CALL HO

CALL EVPOST(DONE)
END

END
Figure 13. Structure of our simple scheduler.

loop:: split arross processors compared t.o
TWING. Wf!' split. II total of 19 loops in thre('
SUBROUTINEs. This includes new code for
loop split.tin~, new per-process branchE's,
T ASI{-EVENT creation and control code, and
a small TASK scheduler. About 210 lines of
control flow code were added (excluding com­
ments). 70 more lines were replaced or modi-

-fied into 160 lines to handle problems of
parameter passing, o~ changes to array indices.

During the development of each TASK,
good version control proved useful. A good
tool requires parallel branching versions; linear
version cont.rol such as UPDATE was not a.de­
quat.e. Maintaining the successful, int.ermedi­
ate stages of multi-task TWING made debug­
ging and scale-up easier through the isolation
of changes. It was always possible to easily
fall back t.o SOUle parallel, executable code.

Debugging

Sequential debugging is generally
regarded as a black art. Bugs occur during
compill'-t.irne and run-t.ime: wit.h the latt.er,
th(' non-faLal on('~ IIr(' th(' hardesL to find.
Th(' basic- Lechniquf!'s for debugging are
categorized int.o: 1) tra.ces, 2) snapshots or 3}
dumps. These techniqu('s have problems in
multiprocess environments lacking consistency
or having deadlock. Multi-task debugging is
plagued by a lack of reproducib;l: • .' synchron­
ization, and good tools. T <! literature on
run-time debugging in multiprocess environ­
ments is scarce (Model, 1979) and more work

15

is needed in this area.

Numerous users tell us 1.0 "force multi­
task execution into a single stream of execu­
tion9 " as if simple user-controlled reduction
would solve hazard problems.

This does not help!

Normal debugging depends on a machinf'
being in a reasonably consistenl. state. A
multi-task program crash may not occur at
the same location as with a uni-task program.
This is true for uniprocessors executing mult.i­
task code as well.

Consider a simpll' example to illustralc
the conceptual diflicultie~ of debugging using
the CFT traccbac k facilit.y. A program
creates a child TASK. When the child TASK
dies, should the traceback trace through the
point where t.hl' child process hegan. or should
il. trace t.hrou~h thc synchronizat.ion rout.ines
(if any): The tangled nondeterministir web
makl's t.his decision difficult.. Therc are sit.ulI­
tions where onl' tracc is preferable over the
other. Onl' condition is when the child dies
because of t.he actions of its parent or 8ibling
processes Iside efferts]. So. traces are not sim­
ple. What about. snapshots?

'This is accomplished using the TSKTUNE call and
letting the MAX CPU parameter to '},'

Inserting WRITE st.atement.s int.o pro­
grams might, not help, First. the execution
ord!'r of these statements ma,y vary (e.g., non­
determinism). Second. 110 is another shared
resource. and the user must have LOCKs that.
prot!'ct, that resourc!' like any other shared
resource

On!' surprising eff!'c!, of inserting
WRITE stat.!'ment,s at. key points was the
migration of bugs from one location to
another! We solv!'d this debugging problem
by modifying ollr I,!'chniqu!' of migrating cod!'
between serial and parallel d!'velopment sub­
routines. Our n!'w t!'chniqu!' was to remove
data structures and code immediat.ely follow­
ing the breakage point to isolal,e program and
compiler bugs. This sometimes worked to
locate bugs. The problem a1 this point
becomes: is the program crashing because of
the original bug or the bugs introduced by
cutting code?

]n the I/0 locking proc!'ss. it would help
users debug codes if the system could hide I/O
locking details from users. Better yet, a small
library of simple routines would help. It
should have traceable ERROR and ASSER­
T]ON routines. If a user resorts to adding
WRITE statements to follow the execution of
a program, the user should have a similar
trace of a serial code for advanced comparison.
A simple filter could take a sourcf" program
and' insert a WRITE with the su bprogram 's
name. More elaborate and more powerful
debugging tools would also help.

Dumps, the m!'thod of last resort. are
frequently less consistent than traces or break­
points. We avoided dumps at all cost.

One t,echnique tried in the latter stages
of multi-task conversion was program proving.
Toward completion of program scale-up, we
had a tricky chang!' 1,0 a SUBROUTINE call.
Precondition and post.condition assertions were
compiled surrounding critical code changes.
Proof techniques had limitations in a parallel
environment, but, it was a useful technique for
checking changes. Program proving was not
regarded as a cure-all and was regarded as
controversial.

The last set, of problems involve syn­
chronization and timing. A new diagnostic
message for first-time multi-tasking program­
mers is compressed from a real CRA Y job in
figure 14. Race conditions occur whenever
two or more TASKs or processors are sharing

16

data (or code). This is the time when
deadlock can occur. There are no general solu­
tions. but there ill a mountain of research
literature. Multi-tasking CFT provides lim­
ited deadlock detection and traceback. Keep­
ing TASK scheduling and timing constraints
simple is currently the best. way to avoid
deadlock, The most. difficult deadlock prob­
lems should occur when there are indirect
deadlocks.

Testing Multiprocessor Output.c;

A running multi-task program was not
enough; we sought numerical results identical
to our uni-task TWING. There were many
occasions where our pro~ram ran to comple­
tion, but our number:; did not agree at. lesser
digits of precision, A standard file comparator
was used to test output bet.ween TWING
runs. The importance of tools such as a good
file comparator was not underestimated, A
single. incorrect" boundary subscript could
"poison" an entire array. Testing asynchro­
nous methods le.g., chaotic relaxation] is more
difficult.

Fortunately. our program is completely
synchronous. However, .nt-wer asynchronous,
chaotic algorithms remov!' the consistency
assumption and approximat.e a solution. If
such asynchronous methods are used. file com­
parator programs are completely inadequate.
Better comparison tools are needed. Output
testing tools must. approximate floating-point
comparisons within a specified t.olerance.

The Cray multi-task version of TWING
had proved our concept by reaching conver­
gence with results identical to a uni-task ver­
sion of vectorized TWING.

Other Generally Useful Tools

While mentioning debugging tools, we
should also mention other generally useful
tools, Among thes!' we could include tools to
search for STATIC allocation and dat.a depen­
dence. Data dependence tools can also pro­
vide help when recursion is added to FOR­
TRAN. A good cross-referencing tool could
aid this search process. Other tools could pos­
sibly identify linkage problems. Such tools are
useful in the analysis and compilation phases
of development. All these programs should
execute independently (i.e., from a compiler)
in the style of other good software tools.

USER UT024 - DEADLOCK - ALI, USER TASKS WAITING FOR LOCKS OR EVENTS
USER THOO] - BFXaNNING OF TRACEBACK
USER - $TRBK WAS CALLED BY UTERPo/i, AT 17]57318
USEH - llTERP% WAS CALLED BY $SUSTSK% AT]7056278
USEn - $SUSTSK% WAS CALLED BY EVWAIT AT liOI5IH)

USER TB002 - END OF TRACEBACl\

Figure 14. A frequent error message for new users of multitasking.

Performance and Execution Behavior

The measurement of parallel programs is
conceptually complicated by several factors.
The Cray measurement. facilities, if used.
record the length of all parallel execution
traces as if they were measured sequentially.
F or instance, I·w() cycles run in parallel takt'
one cycle t.o execute. but they are still counted
as I.wo cyc les. The Cray documentation
(Research.]985) notes that, flow tracing facili·
ties do nOl work properly with multi-tal.king
environments. We resort to the direct. use of
the system real-time clock and flow tracing of
the uni-task version of TWING to give us
run-time characteristics.

Therr are no standard metrics for del,er·
mining multiprocessor performance improve.
ment. The most common in use is \simple;
'peed up defined by:

Serial executiofl time
Simple 'peed - up =

Parallel executiotl time

The simple speed up of TWING is iilusl,rated
in the next table.

Another conceptual measurement prob·
lem is where and how measurements are
taken. We simply throw two CPUs at a prob­
lem, so the maximum simple speed-up is one­
half the total serial execution time. I/O wait.
time is a significant. portion of the program
that cannot multi-task. We recognize that. we
don't use two CPUs for the entire time: we
have serial code, and we have wait-time fqr
T ASKs to finish and synchronize. Also, we
need more cycles to cover overhead.

Since we were able to multi-task only
50% of the I.otal serial ' wcutlvn, the best
improvement we could gam would be 25% of
total execution. We might term this

17

performance fi~ure as proportional.. simple,
speed-up. As we multi-task more code. this
figure should slowly increase.

Still another problem is I,hat. with t.wo or
more CPlJs sharing common resource~ -
memory and 1/0 -- collisions become inl'vit­
able. Processors arl' forced to wait. and thi~

expends more overhea.d cyc les. This contl'n­
tion is visiblE' when running a uni·t,ask vE'rsion
of the code in one processor. and running a
sE'cond code ill another processor. By varying
the work load in the second program between
a CPU intensive versus memory intensivE'
JOB, we can see t.he simple, but significant
efft'cts of memory contention (See the Table
bt'low). These are interference effects not
found on uniprocessors. A problem arises in
shared memory multiprocessors such as on our
V AX and Cray that local memory multipro­
cessors do not have. Memory contention sig­
nificantly slows down memory performance.
Designers of future multiprocessors must bal­
anc(' processor. versus memory-performance
rates.

Another performance issue is the addi·
tion of overhead cyc I('s requirrd t,o cont,rol
TASKs. Figure 15 shows the cost in cycles
versus t.hl' it,erations I.oward solut.ion for our
V AX version. This cosl, occurs simila.rly 011

the Gray.

Load balancing is a significant problem
since TASKs vary in work load, and we have
seen that measurement of load has problems.
The output from the Cray day files shows a
considerable imbalance of work. Cray tools
discovered that, TASK] did more work (exe.
cuted significantly longer) t.han TASK 2. The
timing output of a single day-file illustrates
the difference on our two CPU system:

TWING Performance versus Iterations. solid==scalar. dash==MIMD

50000

40000 f-

C 30000 f­

Y
c
I
e
5

20000 f--

10000 t--

o
o

I I I
20 40 60

TWING Ileralions

Figure 15. Graph showing the additional overhead (near linear)

between sequential versus parallel code versions.

18

I
80 100

R~eal Iwalll time
Total system time
Input

---r-

7.10 ! 10)(,
I: _____ -+i __ ~.67 n/at

1 0.0203 In/at
0.211 In/at Init

SolvE'
no
ROGO
RESIlJ

1
I
i

-- -----4
!

I
~ __________________ ~ ___ 9_._4_~ __ , ~_~~

1.2:{ 1 2o/t I ,

~not applicable: sequential FLODUMP
I timings added only for completeness:
, thf' difference in wall clock time versus

0.886 I 10)'(I
1.42 il 20'j(', J

I wh,!:~ the operating system reports_. _____________________ ...J

I- Table 3. Uni-task TWING Execution Times (in Seconds)
---------1

F -
I
I
L---

ReallWall! Time
Total-System Time
Subroutines:
Inputt
lnitt
Solve

I

I

Low Memory Contention 1 High Memory ContentiOll
=-:oj

STATIC compile STACK compile I STATIC compile STACK compile
1 --

7.94 7.36 i 8.49 8.04
7.35 6.76 I 8.03 7.35

!

0.0244 0.0255 i 0.0264 0.0276
0.250 0.210 0.270 0.225
7.08 6.52 7.73 7.09 -------

RO 1.26
ROCO 0.995
RESID 1.77
~These SUBROUTINEs were not con-
verted to use multi-tasking. They are
include{l here for control reasons to
show the effect of changing to a
STACK compilation.

TASK CP TIME
1 11.85
2 4.83

Thill is because the work areas were not parti­
tioned evenly between the two l' A,SKs based
on hand analysis of array pr("rtiolls. Work
was part.itioned based on eXisting, somewhat
lopsided DO-loop parameters in three-

1.06 1.3!i 1.13
0.893 1.07 0.970
1.74 1.91 1.89

19

dimensional arrays.

To change these parameters would
require more computation and potentially
further array-subscript, change. Additional
algorithm modifications are required for boun­
dary regions. Dynamic load balancing is
harder still.

Discussion

Further Research

This research has not. covered other
forms of multiproces~ partitioning. Pipelines
art' It common proposal: easily construct.ed and
debugged. but. difficult to tune or load bal­
ance. (See Scale-Up.) The program's author
(Thomas) is considering this approach, but it
requires exLensive rewriting.

Micro-taaking ill another Cray-proposed
multiprocessing construt't. (Booth, 1985).
Micro-tasking involves a simpler, more restric­
tive srt of control primitives. Another impor­
tant issue is the area (If scale-up (See next set'­
t.ion).

Scall'-up

Cerl.ain aspect.s of scaling up programs
~re trivial. Increasing problem size is not typ­
Ically a problem: our V AX cast' was not a
necessary prerequisite to movt' the program to
the Cray. Adding more processors. however,
is not trivial. The work on the TWING codt'
began before there was any t'onsiderat.ion of
generalizing the program to use more than two
processors.

The current multi-task work on TWING
will not generalize to an n -processor case.
The code used to determine maxima is one
problem that will not easily scale. If more
than two processors are used, different parti­
tioning schemes become preferable.

Probably thl' key issu(' of multi-I.asking
is whether th(' performancE' gained was worth
the effort t'xpended. There is a conflicil. lor
tradeoff) bet,ween the need to have large
multi-task sect,ions for performance and small
multi-Ll:'sk sections for ease of development
and debugging.

The multi-tasking programmer must also
confront the need to ha.ve large prot.ected criti­
cal sections and many allynchronous processes
running. Ollr scale-up of the code uncovered
many machine-dependent. assumption prob­
lems. For the scale-up of code, the parallel­
serial divide-and-conquer approach again
worked.

Open Issues

The problems of automatic partitioning
are not addressed in this study. Our future
intent is to extend FORTRAN by using It

20

simple preprocessor to add support for simpler
constructs (e.g., COBEGIN, COEND) like
eray micro-ta.'1king. The preprocessor should
ideally hide low-level details and machine
dependent processing. II. is tempting for pro­
grammers to be parochial about particular
constructs, so we wish to avoid this by using
preprocessors. Similar research is under study
on different architectures at. other sites (e.g.,
LANL, ANL, Hell Labs, CMU, l,1. of III.).

Thert' are dozens of issues left open: dif­
ferent synchronous and asynchronous algo­
rithms. translation into an inl,ermediat.e
language for dataflow-style ex('cut,ion. mea!'­
urement. and load balancing. Parallel proces!'­
ing has many diffICult problems remaining
which will take years to research.

Conclusions

The introduction of parallelism is as sig­
nificant. a tool as either Cray multi-tasking or
micro-tasking. The problems of parallelism
are not new. They are typically thought to
inhabit that realm called 8!111temll program­
ming. {1l1erll int.cnding to add parallelism 1,0

their t'ollection of tools are advised to learn
from experience of others.

Good software tools would help program­
mers. These tools mUllt provide multiprocess­
ing support.. Many programme'rs would prob­
ably desire a standardization of multiprocess­
ing syntax. but t.his is premature.

Programmers should recognizt' that. with
adding parallelism and achi('ving bl'tt.er perfor­
mant'l', t.here will come some loss of t.he
coherent. sequenct' that makes sequential pro­
gramminr such a powerful tool.

Programs designed to use parallelism
from their incept. ion are more likelv to use
parallelism efficiently. This wall d~arly the
case with the introduction of vectorization
i.e., vector-designt'd programs I,end to uSe vec~
tors more efficiently. We should soon see
more multi-task programs, bul. it is an open
question whether t.hes(' programs arc scale-able
into the hundred- and thousand- (proposed)
processors range.

Acknowledgements

Michael Johnson deserves special rt'cog­
nition for doing the preliminary V AX work
(Johnson, 1983). Scott. Thomas and Alan
Fernquist provided valuable assistance with

uni-task TWING. Ken Stt"vens, Erk Barszcz,
and Cathy Schulbach assist.ed with debugging.
Dave Robert.son of Zero-One relayed our lIIany
CFT problems back t.o Gray Research.

RefereJl~Cf;

I Larson, 1984 i
John L. Lar:;;on, "Mult.it.asking on thr
CRA Y X-MP-2 Multiprocessor." Com·
puter 17(7), pp. 62-69 IEEE, (July
1984).

I Research , 1985]
Cray Research, Inc.,
User's Guide." Technical
Rev. A (January 1985).

I Researc h. 1984 i

"Multitasking
Note SN-0222,

Cray Hesearrh, Inc., "Multitasking and
thr X-MP." Technical Note (January
1984\.

IDennis. 1979j
.h.ck D. Dennis, "The Varieties of Data­
Flow Machines," lit International
Conference on Diltributed Computing
Systemfi. , pp. 430-439 IEEE, (October
1979).

IDenning. 1985)
Peter J. Denning, "The Science of Com­
puting: Parallel Computing," American
Scientut 73(4), pp. 322-323 (July­
August 1985).

IJones,)980]
Anit.a K. Jones and Edward F. Gehr­
inger, eds., "Th.. Cm* Multiproces~()r

Project: A Research Review," CMU-CS·
80-) 3). Carnegie-Mellon University,
Pittsburgh, PA (July 1980).

IGrit, 19831
Dalr H. Grit and James R. McGraw,
"Programming Divide and Conquer on a
l\lultiprocessnr." UCRL-8871O,
Lawrenct' Livt"rmore National Labora­
tory. Livermore. CA (May 1983).

IJones, 19801
Anita K. Jones and Pet.er Schwarz,
"Experience using multiprocessor sys­
tems - a status report," Computing Sur­
lIe!ls 12(2), pp. 121-165 (June 1980).

IKuck, 19801
David J. Kuck, Robert H. Kuhn, Bruce
Leasure, and Michael W .• e, .. ;he Struc­
turt' of an Advanced Vectorizer for Pipt'­
lined Processors," Computer Software

21

and Applications Conferenee (COMP.
SAC80j, ,pp. 7(19~715 IEEE, (Octoher
1980).

I Andrews, 1983 i
Gregory R. Andrt'ws and Fred B.
Schneider, "Conrcpl.s and Nol.a.t.iolls for
Concurrent Programming," Computing
Surveys 15lJ), pp. 3-43 (March 1983).

I Uijkstra.] 9()1'.
K Dijkstra. Multiprogramming Sy~­

tem ltll "The StructurE' of the "TilE"
Multiprogramming System." Communi.
cations of the ACM 11(5), pp. 341-346
(May 1968).

IHoare, 1974;
C. A. R. Hoare. "Monitorg: All Operate
ing System Structuring Concept." Com.
munications 0/ the ACM 17(10), pp.
549-557 (October 1974).

IDOD, 1980]
DOD, Rt.ferenr.e Manual for the Ada
Programming Language, U.S. Depart­
ment of Defense (July 1980).

IDijkstra. 19681
E. Dijkstra. "Go To Considered Harm­
ful," Communications of the ACM
11(3), pp. 147-148 (March 1968).

Wong, 1984]
Kirby Fong, Personal Communication,
LLNL. Magnetic Fusion Energy Com­
puter Center (1984).

IThoma.c;, 1983]
Scott D. Thomas and Terry L. lIolst.,
"Numerical Computation of Transonic
Flow About Wing-FuselagE' Configura­
tions on a Vector Computer." AIAA
f!18t AerospaCf. Sciences Meeting, (Janu­
ary 1983).

IKernighan,]978)
Brian W. Kernighan and P. J. I'lauger,
The Elements of Programming St!lle. 2nd
edition, McGraw-Hili, New York,
NY (1978).

IModel. 1979]
Mitchell L. Model, "Monitoring System
Behavior in A Complex Computationa.i
Environment," CSL-79-1, Xerox Palo
Alto Research Center, Palo Alto, CA
94306 (January 1979).

IBooth. 1985]
Mike Booth. "Microtasking Presenta­
tion," Internal Report, Cray Research

_-"-_c...L.-_~-'-__ c~""~" _______ " _" _""" _ "

Inc.,
Dallas. TX (1985).

IJohnson, 19831
Michael S .. 10hn!lon. "Modification of th('
TWING Full Pot.ent.ial Code for Exe~u­
tion on an MIMD Computer." Tech.
Memo., NASA Ames Research Center,
Moffett Field. CA (l983).

22

1. Report No. I 2. Government Accession No. 3. Recipient's Catalog No.

NASA TM-88200
4. Title and Subtitle 5. Report Date

EXPERIENCES WITH CRAY MULTI-TASKING November 1985
6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

E. N. Miya A-85424
10. Work Unit No.

9. Performing Organization Name and Address

Ames Research Center 11. Contract or Grant No.

Moffett Field, CA 94035
13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Memorandum
National Aeronautics and Space Administration 14. Sponsoring Agency Code

Washington, DC 20546 505-37-01
15. Supplementary Notes

Point of Contact: E. N. Miya, Ames Research Center, MS 233-14,
Moffett Field, CA 94035 (415)694-6453 or FTS 464-6453

16. Abstract
This paper covers the issues involved in modifying an existing code for

multi-tasking. These include Cray extensions to FORTRAN, an examination of
the application code under study, designing workable modifications, specific
code modifications to the VAX and Cray versions, performance, and efficiency
results. The finished product is a faster, fully synchronous, parallel ver-
sion of the original program.

A "production" program is partitioned by hand to run on two CPUs. Loop
splitting (performed manually) multi-tasks three key subroutines.

Simply dividing subroutine data and control structure down the middle of
a subroutine is not safe. Simple division produces results that are incon-
sistent with uniprocessor runs. The safest way to partition the code is to
transfer one block of loops at a time and check the results of each on a test
case. Other issues include debugging and performance. Task startup and
maintenance (e.g., synchronization) are potentially expensive.

Future research considerations involve the development and integration
of a FORTRAN preprocessor for higher-level, explicit control of multi-
tasking. Despite these problems, the partitioning of certain pre-existing
programs looks promising.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Parallel processing Unlimited
Program decomposition
Software engineering
Algorithms

Subject category - 61
19. Security Cassif. (of this report) i 20. Security Classif. (of this page) 21. No. of Pages 22. Price"

Unclassified Unclassified 24 AD2

"For sale by the National Technical Information Service, Springfield, Virginia 22161

End of Document

