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FOREWORD

This document presents the results of work performed by the Computa-

tional Mechanics Section of the Lockheed Missiles 6 Space Company, Inc.,

Huntsville Engineering Center, for NASA-Marshall Space Flight Center,

Huntsville, Alabama.

The contents of this document represent partial fulfillment of the

requirements of Contract NAS8-34970. The Contracting Officer's Represent-

ative for this study was Dr. Terry F. Greenwood, ED33.
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1. INTRODUCTION

The Space Shuttle has become an accomplished spacecraft and space car-

rier of varied payloads. As this new era of space usage evolved, it became

necessary to develop a set of plume/plume impingement computer codes for

high altitude or vacuum applications. The flowfield codes developed for low

altitude plume calculations were used as a basis to accomplish the high

altitude computations.

The basic plume/plume impingement codes are: (1) Method-of-

Characteristics (HOC); (2) Reacting and Multiphase (RAMM); (3) Source Flow

Plume; (4) Plume Impingement (PLIMP); (5) Radial Lookup; and (6) Contour

Plot. An outline of the application and capabilities of these codes is

shown in Table 1. The sequencing and communication of the several auxiliary

programs with the main flowfield prediction code (RAMP2F) are shown in Fig.

1.

A systematic approach to plume/ plume impingement calculations was

developed. The procedure starts with the assignment of a rocket motor, pro-

pellant, and its envelope of operation. Propellant properties are required

to input the thermochemical program, TRAN72 ( Ref. 1). Sources for these

properties are found in the TRAN72 documentation and in the JANNAF Propel-

lant Handbook ( Ref. 2).

The choice of flow calculation program required to calculate a rocket

motor plume is dictated by the type of motor and the desired results.

Motors with solid particles need the capabilities of the RAMP2F code. The

HOC program can treat discrete shocks exactly. Far-field plumes may require

the use of the Source Flow Plume Program for economy or accuracy reasons.
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With tha RAMP2F and MOC programs the flow inside the nozzle can be cal-

culated. The procedure for transforming either tabulated nozzle coordinates

or nozzle drawings to radius of curvatures or smoothly joining line segments

is detailed in the RAMP2F input guide (Ref. 3). The steps outlined in Ref.

3 will ensure that each portion of the nozzle geometry is input as a contin-

uous surface without breaks unless a particular break (sharp change in

slope) is desired.

For trend studies during the design phases, the description of the flow

through the nozzle is not required. In these situations either the RAMP2F

and MOC program can be used to start the calculation at the exit plane area

ratio. The flow up to that point is treated as a one-dimensional expansion.

Evaluations of different propellants and chamber operating conditions can be

made quickly even before nozzle geometries have been defined.

The Radial Lookup and Contour Plot programs are used to organize and

present the plume properties. The contour plot program is useful in de-

scribing plume structure such as the plume boundary, expansion, and shock

flow regions. Constant value lines of specified physical parameters such as

temperature or pressure further describe the plume structure. The Radial

Lookup program gives detailed profiles for various physical parameters

across the plume at prescribed axial stations.

The Plume Impingement (PLIMP) program uses the calculate,! plume as

Cinput and determines the impingement forces, moments and heating on a sur-

face immersed in the plume. PLIMP can use a flow field calculated by

RAMP, MOC or the Source Flow Program as an input plume. The flexibility

of the PLIMP program provides the capability for the calculation of high

altitude applications such as space stations.
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2.	 HIGH ATTITUDE PLUME CALCULATIONS

To checkout the calculation procedure and to determine that all the

necessary programs were operational in the high altitude regime, a sample

case was executed.	 A case of interest was the Space Shuttle Reaction Con-

trol System (RCS) motor operating at near vacuum conditions.	 This motor is

representative of those used in high altitude applications on space ve-

r^

hicles, satellites, or space stations.	 The RCS motor is a bipropellant

L.: motor and has the following characteristics:

Throat Radius 0.08508333 ft
Area Ratio (Unecarfed) 22.1

Chamber Pressure 153.0 psis
Chamber Temperature 5467 RC Chamber Molecular Weight 20.199

Chamber Specific Heat Ratio 1.1613
Fuel Monomethylhydrazine (MMH)

Oxidizer Nitrogen Tetroxide (N204)
Oxidizer-to-Fuel Ratio 1.63

l	
Additionally experimental values for the pitot total pressure radial

distributions are available from Ref. 4 for this motor at a position of 3.75

j	 f t from the exit plane. A schematic of the RCS motor is shown in Fig. 2.
ll
	 The RCS nozzle coordinates are presented in Fig. 3. The tabulated nozzle

coordinates were prepared for input to the RAMP2F program using the

i	 smoothing procedure described by Smith in Ref. 3. The resultant RCS

boundary values are shown in Table 2.

l:
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Axial Distance
from Throat, (in.)

x

Radius
(in.)

Y

0.0 1.021
0.135 1.059
0.241 1.126
0.374 1.210
0.506 1.294
0.615 1.365
0.755 1.455
0.874 1.530
1.000 1.609
1.135 1.693
1.243 1.760
1.359 1.830
1.500 1.913
2.000 2.201
3.000

I
2.720

4.000 3.166
5.000 3.560
6.000 3.909
7.000 4.211
8.000 4.489
9.000 4.729
9.300 4.799

Fig. 3 Space Shuttle Reaction Control Nozzle Contour
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Table 2 SPACE SHUTTLE REACTION CONTROL SYSTEM
MOTOR SMOOTHED WALL CONTOUR

Axial Distance
From Throat

(ft)

Radial Position
(ft)

Wall Inclination
(deg)

-.137719 0.155417 0.0
-.134747 0.155365 -2.0
-.131778 0.1552092 -4.0
-.128817 0.154950 -6.0
-.125866 0.154588 -8.0
-.120012 0.153556 -12.0
-.114244 0.152117 -16.0
-.111401 0.151248 -18.0
-.105815 0.149215 -22.0
-.100385 0.146797 -26.0
-.095219 0.144006 -30.0
-.082975 0.135491 -40.0
-.072478 0.124994 -50.0
- .06872 0.120181 -54.106921
-.064986 0.115387 -50.0
-.059986 0.109930 -45.0
-.054530 0.104931 -40.0
-.042417 0.096449 -30.0
-.037189 0.093669 -26.0
-.031179 0.091261 -22.0
-.026215 0.089235 -18.0
-.020523 0.087603 -14.0
-.017638 0.086937 -12.0
-9014731 0.086372 -10.0
-.011807 0.085909 - 8.0
-.008868 0.085548 - 6.0
-.005918 0.085290 - 4.0
-.002961 0.085135 - 2.0

.000000 .085083 .00000

.000833 .085100 2.292400

.001667 .085150 4.588590

.003333 .085350 9.206860

.005000 .085692 13.886780

.006667 .086175 18.663000
0.008333 0.086825 23.578300
0.0091667 0.087208 26.10388
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Table 2 (Concluded)

Axial Distance
From Throat

(ft)
Radial Position

(ft)
Wall Inclination

(deg)

0.010000 0.087642 28.685000
0.0104180 0.087875 30.00230
0.011250 0.088383 30.327800
0.0200830 0.093833 31.90230
0.031200 0.100833 32.28
0.042200 0.107833 32.70
0.051300 0.113750 33.01
0.062900 0.121250 32.58
0.072800 0.127500 32.13
0.083300 0.134083 31.98
0.094600 0.141083 31.86
0.103600 0.146670 31.45
0.113300 0.152500 30.77
0.125000 0.159417 30.20
0.166700 0.183417 28.52
0.250000 0.226667 25.88
0.333300 0.263833 22.87
0.416700 0.296667 20.23
0.500000 0.325750 17.97
0.583300 0.350917 16.22
0.666700 0.374083 14.22
0.750000 0.394083 13.15
0.775000 0.399917 13.12
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The RCS nozzle and plume flow fields were calculated using the HOC and

the RAMP2F codes. Several cases were executed to ensure operation of the
	 .i

various options of the program.

Both MOC and RAMP were run using equilibrium chemistry through the

nozzle and rerun using an equilibrium /sudden freeze criteria for the nozzle

flow. A comparison of the difference in Mach number radial distribution at

the exit plane caused by the chemistry assumptions for each code is shown in

Fig. 4. The difference in the radial temperature profile at the nozzle exit

caused by starting the solution at the throat for RAMP2F and MOC or using

the RAMP2F transonic portion of the code to generate a start line is shown

in Fig. S. The inclusion of boundary layer effects has a dramatic impact on

the plume boundary location for near vacuum plumes. This is demonstrated by

the comparison of RAMP plume boundaries with and without the boundary

layer calculated ( Fig. 6).

Calculations were also made of the radial Mach number distributions

throughout the RCS plume at several axial locations. The Mach number

profiles shown in Fig. 7 demonstrate the smoothing of the gradients across

the plume as the flow travels farther from the nozzle. Comparison of sev-

eral of the plume calculation results with experimental pitot total preasurf:

data (Ref. 4) is made in Fig. 8. The ideal gas computations gave close

agreement with the data but the results were considered from past experience

to be fortuitous. The two constant 0/F cases gave pitot total pressures

that were higher than the experimental data. The beat match of data was for

the equilibrium / frozen, variable 0/F representation of the plume.

The 0/F distribution developed by Smith (Ref. 3) was used to perform

the variable 0/F analysis. The rationale used for obtaining the

distribution is repeated here from Ref 3.

LOCKHEED-HUNTSVILLE ENGINEERING CENTER
	

OU



LMSC-HEC rR F042501

Moro 11111=
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GRASP 17/17/84 12:46:26

Fig. 4 Reaction Control System Motor Exit Plane Mach
Number Distribution
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Fig. 5 Reaction Control System Motor Exit Plane Temperature Distribution
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Fig. 6 Space Shuttle Reaction Control System Motor Exhaust Plume Boundary
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Fig. 7 Reaction Control System Plume Mach Number Distribution
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_	 Equilibrium/Frozen (0/F = 1.6)

Equilibrium/Frozen (Variable 0/F)

--^ Ideal Gas (Exit Plane Start)

Ideal Gas (Throat Start)

—^	 Equilibrium (Constant 0/F, Throat)

Fig. S Comparison of Reaction Control System Motor Plume
Calculation with Pitot Pressure Survey
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The variable 0/F calculation was made with 0/F ratios ranging from 0.8

on the wall to 2.2 on the nozzle axis. The 0/F distribution used at the

entrance to the contraction upstream of the throat is shown in Fig. 9. The

results of Ref. 5 were used to infer this 0/F distribution for the RCS

motor. The RCS motor is film-cooled so that the 0/F ratio near the wall at

the injector is on the order of 0.1 to 0.2. The 0/F ratio on the centerline

is approximately 2.2. Reference 5 shows that the wall film does not hold

the same 0/F ratio through the transonic region. An estimate of U.8 was

selected. Using 0.8 at the wall and 2.2 on the axis a parabolic

distribution of 0/F was assumed and then slightly modified so that the	 -

integrated (over the inlet area) 0/F ratio matched the overall 0/F ratio

(1.63) for the motor. This 0/F distribution was then imposed on the

transonic solution.

From this comparison and past experience, it has been found that

more accurate plume distribution calculations are obtained with the treat-

ment of the variable 0/F gradients within rocket motors.

z
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