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Summary
Formal optimization methods and eigenvalue gra-

dient information are used to develop a stabiliz-
ing control law for a closed-loop linear system that
is initially unstable. The method was originally
formulated by using direct, constrained optimiza- No /

tion methods with the constraints being the real !
parts of the eigenvalues. However, because of prob- !
lems in trying to achieve stabilizing control laws, I Find stabilizing
the problem was reformulated to be solved differ- I control law
ently. The method described in this paper uses the
Davidon-Fletcher-Powell minimization technique to \ cnntrnl i_w ]_
solve an indirect, constrained minimization problem
in which the performance index is the Kreisselmeier-

Steinhauser function of the real parts of all the Optimal
eigenvalues. The method is applied successfully to control-law
solve two different problems: the determination of a synthesis
fourth-order control law that stabilizes a single-input techniques
single-output active flutter suppression system and
the determination of a second-order control law for

a multi-input multi-output lateral-directional flight
control system. Various sets of design variables and
initial starting points were chosen to show the ro-
bustness of the method. Sketch A

Introduction ues. However, because of difficulties in achieving con-
vergence, the method was reformulated as an indi-

Many optimal control-law synthesis techniques rect, constrained optimization problem with the per-
require, as a starting point, a control law that results formance index being the Kreisselmeier-Steinhauser
in a stable closed-loop system. Throughout this (KS) function of the real parts of the eigenvalues.
paper, such a control law will be referred to as Analytical expressions for the gradients of the eigen-
a "stabilizing control law." Sketch A illustrates values were derived and implemented.
the relationship and sequence of the majpr steps to

The method is applied to solve two example prob-
obtain optimal control laws. lems. The first obtains a fourth-order stabilizing con-

The methods that are presently used to find trol law for a single-input single-output flutter sup-
stabilizing control laws (located in the loop in the pression system. The second determines a second-
sketch) are largely trial and error and therefore can order control law for a multi-input multi-output
be time consuming, especially for unstable open-loop lateral-directional control system. Different choices
systems (refs. 1 and 2). An automated method using of both the design variables and their initial values
Bass' algorithm (ref. 3) can determine a stabilizing were used to illustrate the robustness of the method.
control law when the structure of the control law

is full-state feedback. However, this method is not Symbols
applicable for reduced-order control laws of arbitrary
structure.

The purpose of this paper is to present an au- A controller dynamics matrix (M x M)

tomated method for obtaining stabilizing reduced- B controller input matrix (M × No)
order control laws of arbitrary structure. In devel-
oping this method, an important goal was that these bi, ci type 2 design variables

control laws be obtained with a minimum amount of C controller output matrix (Nc × M)
trial and error by the control-law designer. There-
fore, the method uses formal optimization methods c local chord of wing

and eigenvalue gradient information to obtain stabi- di type 1 design variables (coefficients of
lizing control laws. The method was originally for- denominator polynomial)
mulated as a constrained optimization problem with
the constraints being the real parts of the eigenval- F plant dynamics matrix (Ns × Ns)



F a augmented dynamics matrix (Ns + vi normalized left eigenvector corre-
M) x (Ns + M) sponding to Ai, (Ns + M) × 1

Gu plant input matrix (Ns x Nc) X vector of design variables

gi inequality constraints Xj jth element of vector X

H sensor output matrix (No x Ns) Xa augmented state vector of order
I identity matrix (Ns + M) x 1

J performance index Xc controller state vector of order (M x 1)

J = _ xs plant state vector of order (Ns x 1)

K matrix equal to real part of [viuT], y measurement output vector of order
(Ns + M) x (Ns + M) (No x 1)

Kll (Ns x Ns) matrix formed from ai, _i, % type 1 design variables
partitioning matrix K

5ij Kronecker delta
K12 (Ns x M) matrix formed from parti-

tioning matrix K Ai ith eigenvalue

K21 (M x Ns) matrix formed from parti- ,,_iR real part of ith eigenvalue

tioning matrix K Subscripts:

K22 (M × M) matrix formed from parti- I imaginary
tioning matrix K

R real
k feedback gain

knom nominal gain Superscript:

M order of controller T transpose

Nc number of control inputs Matrix notation:

No number of outputs or sensors tr[ ] trace of matrix

N_ number of plant states [ ] matrix

ni type 1 design variables (coefficients of { } vector
numerator polynomial)

LJ row vector
P matrix defined in equation (15a),

(Nc + M) x (No + M) [ ]T vector or matrix transpose

Pjk element of matrix P [ ]-1 inverse of square matrix

R key state selection matrix (M x Ns) Dots over symbols denote differentiation with

r drawdown factor respect to time.

s Laplaceoperator Equationsof Motion in State-Space Form

T(s) transfer function matrix (Nc x No) The specific applications of the method described
U matrix consisting of all right eigenvec- in this paper are airplane control systems. This

tors, (Ns + M) x (Ns + M) method is, however, applicable to any linear system
as long as the equations of motion can be written in

u control input vector (Nc x 1) the following state space form (ref. 2):
u i normalized right eigenvector corre-

sponding to Ai, (Ns + M) x 1

V matrix consisting of all left eigenvec- Xs = Fxs + Guu (1)
tors, (N8 + M) × (Ns + M) y = Hxs (2)



These equations are combined with the following Langley Research Center. From now on, this method
equations describing a control system with output will be referred to as the "design algorithm." This
feedback (ref. 2): section of the paper presents a general description of

the design algorithm, shown in flow chart form in fig-
_c -- Axc + By (3) ure 2. (This flow chart will be referred to frequently

in this section of the paper.) The purpose of the de-
u -- CXc (4) sign algorithm is to produce a stabilizing control law,

indicated by the ellipse on the right side of figure 2.The block diagram in figure 1 illustrates the con-
trol scheme that is modeled in equations (1) to (4). The design algorithm employs optimization to
The dashed lines in figure 1 indicate the three corn- achieve its purpose. Necessary elements of the op-

timization routine are the design variables, a per-ponents of the control scheme: the plant, the mea-
surement, and the control law. Using equations (3) formance index J, and, in the present problem, the
and (4), the control law may be expressed in the form gradients of the closed-loop eigenvalues with respect

to the design variables. Beginning at the top of the

u = C[sI - A]-IBy (5) flow chart, the first step in the design algorithm is
to choose the design variables and their initial val-

where the matrix product C[sI-A]-IB is the trans- ues, thereby initializing the A, B, and C matrices
fer function matrix T(s). and establishing the initial control law. Next, the

Equations (1) to (4) can be combined into a set eigenvalues of the augmented system matrix (closed-
of augmented state equations by first defining an loop eigenvalues) are computed, after which a deci-
augmented state vector as sion point is reached. If all the eigenvalues have neg-

ative real parts (that is, are stable), then this initial

xs ] control law is a stabilizing control law and the designXa = _ (6) algorithm is terminated. If one or more eigenvaluesXc
have nonnegative real parts (that is, are neutrally

Next, substituting equation (4) into (1) and equa- stable or unstable), then the remainder of the design
tion (2) into (3) yields, after rearrangement, algorithm is exercised. The stability of the system

is checked each time that the eigenvalues are calcu-

{ } [F H G_C]{ } laVed. If the system is still unstable, the number of±s = xs (7) iterations is checked to make sure that an arbitraryxe Xc

upper limit is not exceeded. This is done to prevent

Defining the augmented system matrix as the design algorithm from continuing indefinitely if
the solution is having difficulty converging.

Fa = [BFH GuC] In the event that the rest of the design algorithmA (8) will be exercised, a performance index is formulated.
Gradients of the eigenvalues and the performance in-

allows equation (7) to be rewritten as dex are calculated. New values of the design vari-
ables are chosen by the optimization algorithm and

:Xa : Faxa (9) the control law is updated. Iteration then continues
as already described.

Referring back to sketch A in the "Introduc-
tion," the initial control law is completely defined
by matrices A, B, and C in equations (5) and (7). Choice of Design Variables

Closed-loop stability is determined by evaluating the This section of the paper deals with choosing de-
eigenvalues of the augmented system matrix of equa- sign variables as indicated by the top box of the flow
tion (8). The stabilizing control law is completely chart in figure 2. The design variables are associated
defined by matrices A, B, and C when all the eigen- with the A, B, and C matrices within the control
values of equation (8) have negative real parts. The law. The total number of the elements within the

method presented in this paper is an automated A, B, and C matrices is M(M + No + Nc). Of this
method to select the elements of the A, B, and C total, M(No + Nc) are independent (ref. 4) and can
matrices to provide a stable closed-loop system, therefore be chosen as design variables for the de-

sign algorithm. The design algorithm accepts design
General Description of Design Algorithm variables in either of two different forms. The first

The method has been automated and imple- (referred to a "type 1")is conveniently understood
mented on the CDC CYBER computer system at the and interpreted by use of a transfer function matrix



and concepts from classical control theory; the sec- These design variables are analogous to elements of
ond (type 2) is similar to a linear quadratic Gaussian the gain matrices obtained from the LQG solution.
(LQG) formulation. Both types of design variables Recalling that the control laws in this paper are
result in reduced-order control laws. of reduced order, a key state selection matrix R

is employed for retaining, deleting, and combining

Type 1 design variables. Type 1 design variables plant states. With the B and C matrices given in
are chosen to be specific elements of the A, B, and equations (12a) and (12b), respectively, the A matrix
C matrices. Any specific transfer function can be is a function of the B and C matrices and is given
realized into state space A, B, C form in a variety by (ref. 2)
of ways. For the sake of illustration, let us assume
a fourth-order control law (M = 4) for a single- A = RFR T- BHRT+ RGuC (13)
input (Nc = 1) single-output (No = 1) system. The
number of available design variables for the design

algorithm is M(No + Nc) = 8, and the transfer Eigenvalues of Augmented System Matrix
function matrix reduces to a single transfer function
that may be written as Once the control law has been initialized, the aug-

mented system matrix is calculated. The eigenvalues

T(s) = C[sI - A]-IB = k(n3s3 +n282+nls +no) (10) of this matrix are calculated by subroutine EIGEN
84+ d383+ d2s2 + dla + do in ORACLS (ref. 5). The stability of the system is

checked; if all the real parts of the eigenvalues are
A state space representation of the control law shown negative, then the program is terminated. If not, an-
in equation (10) is given as follows: other decision must be made. If a maximum limit on

the number of iterations is reached the algorithm is

i 0 0 -do terminated. If not, the rest of the design algorithm

A = 0 0 -dl (lla) is executed.1 0 -d2

0 1 -d3 Eigenvalue Gradients

In°/B = nl (llb) The eigenvalue gradients are needed for the de-
n2 sign algorithm. Analytical expressions for the eigen-
n3 value gradients are derived and depend on the choice

C = [0 0 0 k] (llc) of the design variables. Although the complete
derivation of the expressions is given in appendix A,
a general definition of the gradients of the eigenvaluesWithin the right side of equation (10), the nine quan-

tities (k(Gain); no, hi, n2, and n3 (coefficients of the is given by
numerator polynomial); and do, dl, d2, and d3 (co-

tT T tT
efficients of the denominator polynomial)) are read- OAi [G viu i H ] (14)
ily identified as elements of the A, B, and C matri- -_ =
ces and are therefore candidates for design variables.
From these nine quantities, the control-law designer where
chooses up to eight.

P= B (Nc+M)x(No+M)
Type 2 design variables. Assuming again a

fourth-order control law for a single-input single- Matrices G' and H' are defined, respectively, by

output system, there are again eight available design G' [G0u 0] (15b)variables. The type 2 design variables are the four = I (Ns+M)×(Nc+M)
elements of the B matrix and the four elements of

the C matrix where H' [H 0] (15e)
= L0 Ia (No+M)×(No+M)

bl (12a) where I is an (M x M) identity matrix.
B = b2 As seen in equation (14),both the left and right

b3 eigenveetors (vi and ui, respectively) are needed
C= [co el c2 c3] (12b) to calculate the eigenvalue gradients. The right

4



eigenvectors were calculated by solving the following type 2 design variables are
eigenvalue problem:

dAiR - [K21]H T - [K22]RH T (20a)Aui = Aiu i (16) dB

There are two ways of calculating the left eigen- dAiR
vector. The first method is to solve the eigenvalue dC -GT[K12] + GTRT[K22] (20b)
problem shown in equation (16) again but substi-
tuting A T in place of A. The second method is to

calculate the left eigenvector directly from the right Optimization Formulation
eigenvector. This method is derived from the relation

Direct constrained approach. A stabilizing con-
vTuj = 5ij (17) trol law requires that the real parts of all closed-loop

where 5ij is the Kronecker delta that equals 1 when eigenvalues be negative. During the early develop-
i = j and equals 0 when i _ j. For a given eigenvalue ment of the design algorithm, it seemed appropri-
with its corresponding normalized eigenvectors, the ate to meet this requirement directly by the use of
inner product of the left and right eigenvectors is constrained optimization. Therefore, inequality con-straints of the form
unity. For normalized eigenvectors corresponding to
different eigenvalues, this inner product is 0.

The second method mentioned previously can be gi < 0 (i = 1, ..., n) (21)
implemented in different ways. One way is to invert
the complex matrix formed by all the right eigen- were specified where gi are the real parts of the
vectors. To reduce the computation time, another eigenvalues.
method was developed. In this method, the left For any optimization problem, an objective func-
eigenvectors were calculated directly from the right tion to be minimized must be specified. Notice that
eigenvectors without using complex matrix opera- the purpose of the design algorithm will have been
tions. A derivation of the method is given in ap- met when all the constraints are satisfied. There-
pendix B. fore, the selection of the objective function for this

The expressions for the eigenvalue gradients de- formulation is only of secondary importance and it
pend on the choice of the design variables. For type 1 was arbitrarily chosen to be one-half the sum of the
design variables, the expressions for the gradients are squares of the elements of the row vector C:
given by

= ¼CC T (22)J
OAiR
OA -[K22] (18a)

The CONMIN program (ref. 6), employing the
0/_iR method of feasible directions (ref. 7), was chosen for
0B - [K21]HT (18b) incorporation in the design algorithm.

O,_iR An insurmountable numerical problem occurred
- GT[K12] (18c) within the design algorithm that resulted in the aban-donment of the direct optimization approach. The

where [K221, [K21], and [K12] are partitioned matri- subroutine that calculates the eigenvalues sorts themin order of increasing magnitude. During the opti-
ces from the real part of viu T given as mization process, the eigenvalues do not remain in

the same order but they may switch places. Unsta-

Real (viuy)= [ [Kll] [K12]] ble eigenvalues may switch places with stable ones,[K21] [K22] (Ns+M)×(Ns+M) thus making it very difficult to keep track of unstable
(19) eigenvalues. Because gradients of the violated con-

For type 2 design variables, the additional relation- straints (unstable eigenvalues) are needed during the
ship given by equation (13) must be satisfied. Be- optimization process, and since it is difficult to track
cause of this interdependence, the gradients of the the eigenvalues, it appears to the optimization rou-
eigenvalues with respect to the type 2 design vari- tine that the gradients of the unstable eigenvalues are
ables have an additional term. The expressions for discontinuous. Therefore, as stated previously, this
the gradients of the eigenvalues with respect to the formulation was abandoned.



Indirect constrained approach. The problem was if one just increases the maximum number of itera-
reformulated by using indirect constrained optimiza- tions or restarts the design algorithm at the final con-
tion methods. The performance index was chosen trol law of the previous optimization process. If, in
to be the Kreisselmeier-Steinhauser (KS) function the attempt to minimize the performance index, the
(ref. 8). The KS function, which is a penalty func- magnitude of the positive real part of the unstable
tion that takes into account the real parts of all of eigenvalues continues to decrease, but the number of
the eigenvalues (stable and unstable), is given as unstable eigenvalues starts to increase_ then a solu-

tion may not be achievable. In this case, the only

[/=_1 ] option is to choose another initial starting point.
KS = _1 In exp(rAiR ) (23)

r Unsuccessful termination. The third reason oc-
curs when a local minimum of the performance index

The function is dominated by the unstable eigenval- is found before the closed-loop system is stabilized.
ues (those with positive real parts). The contribu- In this case it was postulated that convergence could
tion of the stable eigenvalues to the" KS function is be reached .if the design algorithm started with thisrelatively small because of the behavior of the ex-
ponential function. The quantity r is a drawdown control law for the next iteration but with an in-
factor that (for values of r greater than unity) serves creased value of the drawdown factor r. An option
to increase the relative contribution of the unstable to restart the optimization process with an increased

value of r was implemented in the design algorithm;
eigenvalues to the performance index. Figure 3 shows but after exercising the algorithm with several dif-
the exponential function and its relation to some rep- ferent starting points, it was determined that if the
resentative eigenvalues, algorithm did not converge with the initial value of

The gradients of the performance index with re-
spect to the design variables were derived analyti- r, it would not converge with an increased value of

r. Therefore, the option was eliminated. The default
cally. The equations for the gradients are value of r used in alI cases was chosen as unity. How-

n ever, this value is checked initially to make sure that

exp(rAin)OAiR/OXj the magnitude of r multiplied by the value of the real0KS i=1
- n (24) part of the most unstable eigenvalue did not exceed

OXj _ exp(rAin ) a maximum value. This maximum value is defined
i=1 by the computer and represents an upper limit for

which the exponential function can be evaluated. In
Expressions for the partial derivatives OAiR/OXj a few test cases run from different starting points, a
within the numerator of equation (24) are given in local minimum was found before a feasible solution
equations (18) and (20). was found.

To perform the indirect optimization, the Auto-
mated Design Synthesis (ADS) package of programs Numerical Examples

(ref. 9) was used. Within ADS, a variable met- The design algorithm described in this paper is
ric method, the Davidon-Fletcher-Powell algorithm applied to solve two different problems. The first ap-
(ref. 10), was chosen because of its known rapid rate plication determines a fourth-order control law that
of convergence for this type of problem, stabilizes a single-input single-output unstable open-

loop system for active flutter suppression. The sec-
Termination ond application determines a second-order control
The design algorithm may terminate for the fol- law for a multi-input multi-output, open-loop unsta-

lowing three different reasons, as indicated in fig- ble lateral-directional control system. Within each
ure 2. application several examples will be given to illus-

trate the effectiveness of the method.

Successful termination. The first reason is the
successful termination that occurs when a stabilizing First Application
control law is found. The configuration used for the flutter suppression

problem is an aeroelastic wind-tunnel model of the
Maximum iterations exceeded. The second rea- DAST ARW-1 (Drones for Aerodynamic and Struc-

son occurs when the maximum number of iterations tural Testing--Aeroelastic Research Wing 1) shown
is exceeded. Depending on how the optimization pro- in figure 4. The plant model is a single-input single-
cess is proceeding, a feasible solution may be reached output system of 25th order. The locations of the
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sensor and the control surface are shown in the fig- figure 10. At the starting point, there were a com-
ure. The sensor measures the vertical acceleration plex conjugate pair of unstable eigenvalues and a real
that is fed back through the control system, which unstable eigenvalue. During the first iteration the
in turn determines control deflections needed to sup- real eigenvalue became more unstable. During the
press flutter, second iteration it combined with a real stable eigen-

value and formed a complex conjugate pair of unsta-

Case 1. The first example involves only one de- ble eigenvatues. The design algorithm then stabilized
sign variable: the gain of a given fourth-order control this and the other unstable pair of eigenvalues.
law. An unstable starting point was derived from a
known stabilizing control law, given by equation (30) Case 3. The method was also verified by using
in reference 2, and is repeated here as type 2 design variables. The order of the control

law was chosen again to be four, resulting in eight
design variables (four elements each of the B and C

k(s + 24.74)(s 2 + 87.63s + 13806) matrices). To generate the A matrix of the control
T(s) = (s + 3.864)(s + 3270)(s 2 + 20.97s + 1423) law, four states needed to be chosen. The key states

(25) chosen were the displacements and velocities of the
When the gain k is the nominal value of gain in first wing bending and first wing torsion modes.
reference 2 (knom), this control law results in a stable An arbitrary starting point was chosen in which
closed-loop system. A value of gain (k -- 10knom) all the design variables were set to unity. However,
was chosen to provide an unstable closed-loop system for this starting point, the design algorithm did not
as a starting point. Using the design algorithm, a converge to a stabilizing control law because a local
stable closed-loop system was found, minimum was found without obtaining a stabilizing

The history of the normalized performance index control law. A new starting point was arbitrarily
is given in figure 5. The solution converged to chosen by setting the elements of the C matrix to
a stabilizing control law during the fifth iteration. 0.1 (an effect which is equivalent to decreasing the
The final value of the normalized performance index gain of the control law by a factor of 10). From this
was -0.044. The actual value is not important starting point, the design algorithm converged to a
and can be positive, negative, or zero. For this stabilizing control law in 14 iterations. A history
particular example with only one design variable, the of the normalized performance index is shown in
optimization algorithm corresponded to a simple one- figure 11. Histories of the design variables are shown
dimensional search. Figure 6 shows a history of the in figure 12. All the values of the design variables
gain during the iteration process. The final value of changed during the optimization process. A history
gain is 2.08knom. Figure 7 shows a his.tory of some of some of the eigenvalues is shown in figure 13.
of the eigenvalues. At the starting point, there was At the starting point, there were a pair of complex
one complex conjugate pair of unstable eigenvalues conjugate unstable eigenvalues and two real unstable
indicated by the open-circle symbol in the right half- eigenvalues.
plane. Three observations about the behavior of the

eigenvalues can be made from figure 13. The first

Case 2. The second example uses the same form is that during the attempt to stabilize all the eigen-
of the control law as in equations (10) and (25): values, the eigenvalues can actually move in the di-
a third-order numerator polynomial over a fourth- rection opposite to that desired: that is, unstable
order denominator polynomial. The design variables eigenvalues become more unstable and stable eigen-
were chosen as the coefficients of the numerator and values become less stable. The second is that during

denominator polynomials (type 1 design variables), the optimization process, some eigenvalues can criss-
The initial values of the eight design variables as well cross back and forth across the imaginary axes, thus
as the value of gain were all chosen as unity, becoming unstable or stable until all the eigenvalues

Figure 8 shows a history of the normalized per- are finally stable. The third is that real eigenval-
formance index. The design algorithm converged to ues combined and formed complex conjugate pairs of
a stable system in five iterations. Figure 9 shows eigenvalues.
histories of the design variables. Design variables

Second Application
do, dl, and no (corresponding, respectively, to the
coefficients of the two lowest order terms of the de- The second application successfully solved by us-
nominator polynomial and the constant term of the ing this method was the determination of a second-
numerator polynomial) remained at their initial val- order control law for stabilizing an unstable multi-
ues. A history of some of the eigenvalues is given in input multi-output lateral-directional automatic



flight control system (AFCS) for the DAST ARW-2 Case 2. For the second example, the initial values
(ref 11). The augmented ARW-2 vehicle has an un- of the design variables are 0, 0, 1, 1, 0, and 0, which
stable Dutch roll mode. Figure 14 shows a planform correspond to Tl(s) = O/s and T2(s) = O/s. The
of the ARW-2 with the locations of the control sur- eigenvalues at this starting point are the open-loop
faces (rudder and differential stabilizer)and the sen- eigenvalues plus two additional eigenvalues at the
sors (which measure roll and yaw rates) to be used in origin. A plot of the normalized performance index
the lateral-directional AFCS. Figure 15 is a block di- is shown in figure 19. A stable system was found in
agram of the lateral-directional AFCS, which is char- three iterations. The histories of the design variables
acterized by two feedback loops (one for yaw rate and are shown in figure 20. A history of some of the
one for roll rate) and cross-feed. The design algo- eigenvalues is shown in figure 21.
rithm was used to find the coefficients of the two first-

order transfer functions identified as control laws in Concluding Remarks
the block diagram. These transfer functions from
figure 15 are given as A method has been developed that uses a formal

optimization method and eigenvalue gradient infor-

"/1 (26) mation to determine a control law that stabilizes a
Tl(s) - _lS + al linear system. The goal of the method is to determine

a stabilizing control law of a given general structure

q2 (27) with a minimum amount of trial and error by the
T2(s) - _2s + a2 control-law designer. The method is easy to imple-

ment for a general problem in which the state space
The transfer function is denoted by Tl(s) in the roll

model of the system and the structure of the control
rate loop and by T2(s ) in the yaw rate loop. The

law are given. The method was originally formulatedtransfer function matrix representation of the control
as a constrained optimization problem, but because

law can be realized in the state space A, B, C form
of convergence problems, the problem was reformu-

given by the 2 × 2 matrices shown in
lated as an indirect, constrained optimization prob-

[ 0 ] lem in which the performance index is a function of
A = - 1 0 (28) the real parts of the eigenvalues. Analytical expres-

-a2 sions for the gradients of the eigenvalues were derived

B=[_01 _2] (29) and implemented.The effectiveness of this method was successfully
demonstrated by using several numerical examples.

[_ 0] (30) Using a single-input single-output flutter suppressionC -= _/2 problem as the first application of the method, sev-
eral fourth-order control laws were determined that

Two different examples are presented, both with six stabilized the unstable system. Two types of the de-
type 1 design variables. The six design variables are sign variables and several initial values of these de-
O_1,a2, _1, /_2, '71, and q2. sign variables were used. The second application was

the determination of a second-order control law for a

Case 1. For the first example, the initial values of multi-input multi-output lateral-directional system.
the design variables in the order listed previously are The results of the numerical examples showed that
0, 1, 1, 1, 1, and 1, which correspond to Tl(s) -- 1/s the method was very successful in reaching its objec-
and T2(s) = 1/(s + 1). A history of the normal- tive of finding a stabilizing control law.
ized performance index is shown in figure 16. The
program converged to a stable system in one iter-
ation. The design variables are shown in figure 17.
All the design variables changed during the optimiza- NASA Langley Research Center
tion. A history of some of the eigenvalues is shown Hampton, VA 23665-5225
in figure 18. At the starting point there was a pair August 13, 1985
of unstable complex conjugate eigenvalues that were
stabilized by using the design algorithm.
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Appendix A The parameters p are defined to be the elements Pjk
of the matrix P where P is defined as

EigenvalueGradients

This appendix describes the derivation of the p=[O CA] (A9)
equations for the eigenvalue gradients (shown in (Nc+M)X(No+M)

eqs. (18) and (20)) using the method of reference 12.
It is known that for any real square matrix A, that Nc is the number of control inputs, No is the number

is (N × N) the following equations are satisfied: of outputs, and M is the order of the controller.' The matrices F l, G I, and H I are defined, respec-

Aui = Aiu i (A1) tively, as

ATvi=Aivi (A2) F' [F0 0] (A10): 0 (Ns+M)×(Ns+M)
In the previous equations, Ai are distinct eigenvalues,

and ui and vi are complex right and left normalized G'=[GO u _] (All)eigenvectors (dimensioned N x 1) associated with (Ns+M)X(Nc+M)

the specific eigenvalue. Differentiating equation (A1) H' [H 0] (A12)with respect to a parameter p gives = I (No.M)×(Ns+M)

0A A 0ui 0Aiu q- Ai_p / (A3)O--pui + Op = -_p i The symbol I is an (M × M) identity matrix. Using
the definitions given in equations (A10), (All), and

Equation (A3) is a vector equation. In order to (A12), the augmented state system matrix is then
solve for OAi/Op, which is a scalar, the equation is defined by
rearranged and premultiplied by viT to obtain Fa = F r + GtPH I (A13)

Differentiating equation (A13) and noting that F I is

vTO_iu. TOA T - OUi T- OUi
On _= vi _pUi + v_ A--_-p- vi &-_-p (A4) not a function of the parameters Pjk, the followingequation is obtained:

Since this is a scalar equation, the last two terms can
be transposed since the transpose of a scalar is itself. OFa _ 0(GIPH I) (A14)
Using the distributive property OPjk OPjk

Substituting equation (A14) into (A7) gives the fol-
" OuT T

vTi OAiui : vT!Aui + -_-P (AOla' vi -'AiVi) (Ab)
lowing scalar equation:

P P

The last term is identically 0 by employing equa- O)_i T0(GIPHr)

tion (A2). Equation (A5) becomes OfiZk : vi OPjk ui (A15)

T O)_i T 0A (A6) The trace properties of compatible matrix products
v i --_pU i = v _ui can be used to write equation (A15) as

Since OAi/Op is a scalar, equation (A6) is a scalar OAi [0(G'PH') T] (A16)
equation, and viTui = l for normalized eigenvalues, OPjk- tr[ _ nit i ]
the following equation is obtained:

Since H t is not a function of Pjk, equation (A16) can
OAi _ T0A (A7) be writtenvi ui as

Steps (hl) to (h7) are also given in reference 12. OAi 0(G _P) TI T]
The next effort is to evaluate OA/Op. Matrix A OPjk - tr _ 11 UiV i J (A17)

is the closed-loop augmented system matrix. For our
specific example, the augmented system matrix A is Since tr[AB] -- tr[BA], equation (A17) can be
the matrix Fa defined by written as

0(G'P)]Fa = (gs+M) x (N_+M) (AS) OPjk tr (A18)
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Since tr[A] = tr[AT], equation (A18) can be written Substituting equation (A25) into (A21) gives
as

0] r l, [-01O)_i "0(PTG'T) TT jT" (A26)

OPjk -- tr _ viu i m (A19) 0P
Knowing the definition of P given in equation (A9),

Since G I is not a function of Pjk, equation (A19)can the gradients of the rea! parts of the eigenvalues
be written as with respect to the matrices As B, and C are given,

respectively, by

0%i [o(PT)_, T T-,T] = [G,TviuTH,T]

(A20) O%iR
_-_ -[K22] (A27)

Combining all derivatives with respect to Pjk gives
aAiR
_-B -[K21]H T (A28)

(A21)-_ - O_iR
0C - GT[K12] (A29)

Having already defined G t and H t in equa-
tions (All) and (A12), respectively, the next step These equations are valid for type 1 design variables.

is to get an expression for viui T. The right eigenvec- For the case 2 design variables, the following
tor ui is calculated by solving the eigenvalue problem equation is also satisfied:
given in equation (A1). The left eigenvector v i is cal-
culated from the right eigenvector without using the A = RFR T - BHR T + RGuC (A30)
complex matrix operations. (This method is derived
in appendix B.) The product of the left and right The total derivatives of the eigenvalues with respect
eigenvectors is expanded by separating both the left to the design variables B and C have an additional
eigenvector and the right eigenvector into their re- term because of this expression. The gradients of
spective real and imaginary parts as seen in the real parts of the eigenvalues for type 2 design

variables are shown as

dB - 0B 0A RHT (A31)
Expanding the product of the eigenvectors gives

d,_i R O_i R (._TRT O_i R
dC - _ +_u_" _ (A32)

(A23) After substituting the appropriate partial derivatives
For the gradients of the real parts of the eigenvalues, (eqs. (A28) and (A29)) into equations (A31) and
only the real part of equation (A23) is needed. This (A32), the gradients of the real parts of the eigen-
term is shown as values with respect to the type 2 design variables are

K = Real [viu T] (A24) given as

d._iR
where K can be partitioned as shown in _-_ = [K21]H T - [K22]RH T (A33)

rKI1 K12 [(Ns× Ns) (Ns × M) (A25)
[K]= LK21 K22 -- L(MxNs) (MxM) dC

10



Appendix B Since the imaginary part of the right eigenvector is
0, the following equations are satisfied:

Calculationof Left Eigenvector T U. = 0 (BIO)vii 31

This appendix describes how the complex left VTRUa.I = 0 (Bll)
eigenvectors are calculated directly from the com-

plex right eigenvectors without complex matrix op- For a right eigenvector uj that is complex, the
erations. The definitions of the right eigenvectors u i defining relations are equations (B6) and (B7). Its
and left eigenvectors vi are given, respectively, by complex conjugate is also an eigenvector. Equa-

tion (B7) becomes
Aui = )_iui (B1)

ATvi = Aivi (B2) --vTRuj, + vTuj. = 0 (B12)

Note that both A and A T have the same eigenvalues Adding equations (B12) and (B7) gives
and if A = AT, the right and left eigenvectors are

The following equation is known to be satisfied 2 (vTUjR) =0 (B13)equal.
for normalized eigenvectors:

which can also be written as

vTuj = 5ij (B3)
vTuj R T =0 (B14): --VilUjR

Since the eigenvectors uj and vi are both complex,
equation (B3) can be expanded to Equation (B14) can be substituted into equation (B7).

Then, equations (B6) and (B7) can be added to
obtain

(ViR + jVQ)T (UjR + jUj,) = 5,j (B4)

VTRUjR __ VTujI + VTRUj, __ ViIUjRT = _ij (B15)
Expanding the relation, the equation becomes

Applying the distributive property gives

(vruj,- ). j(vru.i. vT, :
The real terms can be separated from the imaginary
terms to form

Combining all the equations for all the eigenvalues

vTRujR _ vQ ujIT = 5ij (B6) gives (Vn - vz)T (UR+ ui) = I (B17)

vT RujI + vTu3' R : 0 (n7) The matrix of the left eigenvectors can be determined
from the right eigenvectors by using

If the right eigenvector is real where uj is given

and i refers to any eigenvector, equations (B6) and (B18)
(B7) become, respectively, (VR - VI) = [(UR + UI)-I] T

VTRUjR = _ij (B8) The real and imaginary parts of the eigenvectorscorresponding to each specific eigenvalue can then

VilUjRT = 0 (B9) be extracted.
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