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ABSTRACT

xce-feedback robotics techniques are
p ing developed for automated precision
,sembly and servicing of NASA space
ight	 equipment.	 Design	 and
iplementation of a prototype	 robot
rich provides compliance and monitors
err Ps is in progress. Computer
It4are to specify assembly steps and
eke force-feedback adjustments during
isembly are coded and tested for three
!nerically different precision mating
oblems. A model program demonstrates
at a suitably autonomous robot can
.an its own strategy.
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1.0 INTRODUCTION

The research and development work described in this

document has been undertaken as part of an effort to advance

robotic techniques so as to be able to automatically and

efficiently assemble or service NASA hardware either on

ground or in orbit.

The basic impetus for this work is to achieve the

efficiencies that robotic manipulators can offer over manual

approaches. Given the added expenses, operational

constraints, and safety requirements that affect the work

man can do in space, the greatest potential for efficiently

utilizing robots is in space. 	 However, there is also

significant labor required to prepare and refurbish launch

system and payloads, and therefore there are also

significant benefits to be gained from using robots on the

ground to support such activities.

	

The particular activities pursued in the work reported 	 ^..^
1

	on here are due to the special characteristics if NASA 	 I

hardware, with respect to the goal of providing automatic

robotic assembly and servicing.	 Some of the pertinent

considerations of much tJASA hardware are:

1. There are precision components with small clearances.

2. The hardware is highly complex.

1
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3. The hardware is either a unique custom item, or has been

produced in very small quantities.

The significance of point 1 is that small clearances

essentially require the robot to have an advanced form of

force feedback. This is because it is essentially

impossible to use dead reckoning to position components

having clearances on the order of .001 inches. Even if the

robot can be guaranteed to have the required accuracy, the

assembly into which components are being placed can be

expected to be out of position by .001 inches due to thermal

and load induced structural deformations or to the buildup

of manufacturing tolerances. As is the case when a person

performs assembly or servicing of precision hardware, the

sensing and interpretation of interference forces is often

more critical th,ar, vision feedback for compensating for the

fine positioning errors. It seems that vision feedback is

generally useful for positioning items to somewhere within

about 0.1 to 0.5 inches and force feedback is used to

correct for the remaining positional errors.

The other two considerations, namely the complexity and

limited production volume of most NASA hardware means that,

there needs to be an efficiene means of automatically

generating the very large set of robot motions needed to

assemble or service a piece of NASA hardware, such as a

satellite.	 Eased on past data of components per pound, a

2
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satellite which represents an entire Shuttle payload, would

have on the order of 1 million components. Recent changes

in the ways hardware is designed, namely with the use of

Computer Aided Design (CAD) equipment, offers a solution to

this problem. Py using CAD in the design of new space

hardware, it is possible for a by product of the CAD design

process to be a data base describing the geometric and other

properties of the final product. with appropriate

algorithms, many of which are being developed in artificial

intelligence research programs, it will be possible for a

computer program to analyze this data base and automatically

generate from it the robot sequences needed to assemble or

service the hardware represented by that CAD data base.

Therefore, the two activities pursued in this work have

been the development of advanced robotic force feedback

techniques and the automated generation of robot motions

from geometric data bases. It should be noted that in

certain instances these two activities merge, for the

software which interprets the force feedback data can often

require a very detailed knowledge of the interferina

geometries and use artificial intelligence techniques to

deduce what kind of positioning error, or other possible

error source is causing the detected interference forces.

3
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.......ARCH IN AUTOMATED ASSEMBLY

2.1 BACKGROUND

Research in automated assembly i.,cludes work in robot

mechanisms and the softy: ra to control them. Work is now in

progress on mechanisms from articulated hands (Salisbury and

Craig 1982) to multi-legged robots (Klein and Briggs 1980;

Orin 1976) and systems in which several robots work together

iIshida 1977). In support of robotics there is active

research in end effectors (any of various devices located at

the end of a robot arm or movable platform) (Frohlich 1979),

vision systems cBrooks 1981), and tactile sensors (Harmon

1982;	 Hillis 1982).

In addition to work on robot mechanisms, research is in

progress on the software to control them. Robot control

software exists in a hierarchy of functional levels that

ranges from the mechanism control level (Whitney 1976) to

the level in which artificial intelligence can be used. At

the lowest level (excluding the operating system that

supports the robotics software) is the software that

directly controls the mechanism itself: procedures that

issue commands to the stepping motors (motorb that translate

rotational motion into very precisely controlled linear

motion by "stepping" through many positions per rotation)

and monitor analog-to-digital (A/D) converters. At the next

level are procedures that compute forces, moments, and motor

4
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speeds.	 Next is the software that effects primitive robot

motionL such as rotations and point-to-point motions, with

numerous variations. Then comes the software that is

responsible for executing robo t- tasks and, finally, the

planning and strategy software that delineates the robot

tasks (Fahlman 1973; Prooks 1983; Taylor 1976).

Research in automated assembly is important because of

the potentially enormous benefits of its practical

applications. For example, automated assembly could provide

improvements in quality control, productivity, product cost,

and employee health and safety.	 In addition to their

applications in well-known areas such as the automobile

industry and manufacturing facilities,	 the	 techniques

developed in automated assembly research will find

application in many other areas (Schratt 1980), especially

those in environments in which it is either dangerous or

a economically infeasible for humans to work. Examples of

such applications include nuclear power plant operation,

toxic waste disposal, and space engineering.

There has also been research into the design of

completely	 automated	 assembly	 systems	 (Ambler 1973;

Lozano-Perez 1976) and software for describing and

implementing assembly procedures (Popplestone, Ambler, and

Bello 1980; Taylor 1976).

5
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TOLERATING THE REAL WORLD

Assembly and repair in the real world have two motion

ins: gross motion and precision motion. Gross motion

,s a tool or part from a bin to the proximity of its

J position.	 Gross motion, in this context, permits

p rances that are well within the accuracies of structured

,ronments, that is, numerically specified engineering

.ronments. The main pt:oblem to be solved during gross

,on is to find an unobstructed path. Vision systems can

.st in the determination of such paths, but in 'a

ictured environment, with its detailed knowledge of

.tion and geometry, they a-e not necessrry.

Precision motion to mate or match parts (such as cover
f

plates and electrical connectors) or fasteners (such as

bolts or screws) to a partially assembled mechanism requires

the solution of a different problem. In practice there are 	 p

always machining tolerances and tool and gripper sag due to

gravity (or centrifugal forces in space). These effects 	 },^

combine to produce minor misalignments bolts do not go into

holes, electrical connectors resist mating, and cover plates
i

do not seat properly. 	 j

Vision systems with limited resolution cannot reveal

precision misalignments. In fact, the part, tool, or robot

arm usually obscures the view. Desp :e this, work is being

done to visually locate and identify partially hidden

6
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objects (Bolles and Cain 1982; Tsuji and Nakamura 1975).

The solution to the problem of achieving precision

motion is suggested by the machinist or mechanic who pushes,

wiggles and loosens his grip until the part appears to mate

itself; the mechanic uses force feedback and compliance as

an adjunct to precision motion.

2.2.1 Force Feedback -

To assist in the development of technology useful to

practical automated assembly systems, one focus of the

research has been to develop a system that allows

uncertainties in part placement and compensates for those

uncertainties through the use of farce feedback. 	 To

investigate the use of interpreted force feedback in

assembly procedures, the system has been used in several

insertion tasks which are described in detail in Section

4.0. These tasks provide an excellent vehicle for studying

force feedback and its use in compensating for positional

uncertainties since the tolerances involved in an insertion

can be very small (.0005 inches is typical) and the

misalignment that can be tolerated is correspondingly small.

As in example of an insertion task, the problem of inserting

a peg in a hole has been addressed by several investigators

(Goto, Takeyasu, Inoyama 1980; Inoue 1974; Nevins, et al

1977).

7
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I Compliance -

Compliance is the capacity of a

^s, or be displaced, without

3e. For example, the sheet metal

a relatively low compliance

-per-hour bumper that is deli,

)ut being damaged.

device to yield to

suffering structural

of the fender of a car

compared to a five

fined to be displaced

When performing assembly tasks, humans often make use

varying levels of compliance. For example, when

rting a peg into a hole, a person can use gravity to

insert the peg.	 By relaxing the grip pressure, and

eby increasing ccmpliance, the gravitational force

ted on the peg will center it in the hole. At fist it

seem that to simulate such behavior it would be

necessary only to have a device with high compliance since

it is the ability to yield to the force of gravity that

permits the centering motion to take place.

A compliant device may itself, however, be displaced by

the same gravitational forces; the greater the compliance

the greater the displacement. 	 When the position of a

compliant device has been changed, adjustments for

gravitationally induced displacements can be made from a

knowledge of the mass and stiffness of the device. When

operating near zero gravity, such displacements are not a

problem.

8
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Compliance is not r common feature of present robot

systems, but research has been done in this area (Paul and

Shimano 1976; Nevins, et al 1977; Drake 1977, Klein and

Briggs 1980)

)

i
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3.0 THE INTELLIGENT END EFFECTOR (IFE)

3.1 INTRODUCTION

The Intelligent End Effector (IEE) consists of the

robot hardware and software to control the tools necessary

to perform assembly and servicing of NASA hardware.

Precision motion is an important element of these tasks

and arises when the robot attempts to mate two parts, such

as screwing in a bolt, inserting a peg, or fastening

connectors, with clearances on the order of 0.0005 inches.

Critical to the perfor-nance of precision motion is a

recognition that the robot must compensate for positional

uncertainties of the parts and of the robot itself. These

uncertainties are on the order of half an inch in position

and ten degrees in orientation. They are an accumulation of

manufacturing	 tolerances,	 thermal	 expansion,	 part

distortion, servo error, and general 	 misalignment	 of

fixtures.

To develop and test a system that would accomplish the

goals chosen, a robot, a precision positioning system, a

computer system, and several sets of associated software

ai
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3.2 HARDWARE DESCRIPTION

The hardware of the IEE consists of a robot, a VAX

11/780 computer, and a Computer Automated Measurement and

Control (CAMAC) crate.

The robot itself is a	 three-force,	 three-moment

compliant, force-feedback platform mechanism attached to a

) six-degree-of-froedom movable platform. Compliance in the

platform mechanism relaxes the servo loops in the system,

and prevents damage to the robot.

The mechanisms were designed and built at Goddard Space

Flight Center, with the result that they easily interface to

the VAX computer and have complete access to the control

systems used.

The same VAX that controls the T EE is also being used

to develop the CAD system that is an integral part of the

project. It was chosen for both economic advantage and for

the fact that its operating system is well-suited for

software development. See Figure 1 for a block diagram of

the system and Figure 2 for a photograph of the IEE.

3.2.1 IEE Support And Positioning Design -

d)
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The support and positioning device for ;ne Intelligent

End Effector is based on the design of an aircraft simulator
i

mechanism (see Figure 3). A movable platform is supported

above a stationary base by six axially extensible rods.

Recirculating ballscrews provide the extensibility.

One of the goals in choosing components for this

mechanism was to eliminate all possible backlash, for this

reason, a solid preload Saginaw ballnut SSP-5700391 mounted

on a Saginaw ball screw 1000-0200 was used. Each ballnut 1

P
has 14 inches of travel along the screw. The ballscrew has

a five-threads-per-inch pitch.

;_

Stepper motors were chosen 	 to	 drive	 the	 ballscrews.

Using	 stepper motors eliminated the complexities introduced

by servo loops.	 A new type of stepper and	 controller	 made

by	 Compumotor,	 Incorporated was selected.	 Each of the six

units required is comprised	 of	 an	 M83-135	 stepper	 motor

coupled with a 2100 series 	 indexer.	 The motor	 is capable of

400	 ounce-inches	 of	 static	 torque,	 25,000

steps-per-revolution, 	 20	 revolutions-per-second in angular

velocity and 1000 revolutions-per-second squared in	 angular

acceleration.	 Together with the ballscrew each actuator can
r

exert 785 pounds of thrust.	 One step of the motor moves the

ballnut	 eight	 micro-inches.	 These	 motors	 can	 execute

various	 preset	 commands;	 the	 distance,	 velocity	 and
r

acceleration	 are	 set	 in	 the	 controller before a move is

12
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executed.

This positioning device is capable of moving the upper

platform, and hence the IEE, within a one-cubic-foot

envelope. Since the maximum translation is dependent on

orientation and vica- versa, only nominal values from the

equilibrium position can be given. The device can move at

about 3.5 inches-per-second and has a load carrying capacity

of approximately 2000 pounds.

The interface of the positioning platform to the

computer was simplified by the design of the stepper motor

controllers. Each controller has an RS-232C compatible I/O

port. To control more than one motor, the controllers are

serial]! daisy-chained, where each controller has a unique

identification number. As an example, the ASCII string to

set motor three to have an acceleration of 8 rpss, a

velocity of 3.45 rps, and to move a distance of 3000 steps

is: 3A8 3V3.45 3D3000 ". As a result of this design,

only one terminal port is required to control all six

motors.

3.2.2 Compliant, Force-Feedback Design -

Compliance in the IEE is achieved through the use of a

platform suspended from the active platform. The suspension

mechanism consists of six spring-loaded pistons arranged in

a geometry similar to the positioning actuators of the

13	
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movable platform. when resistive or gravitational forces

are exerted on the IEE, the pistons are compressed or

extended, providing compliance (Figure 4). This compliance

is obtained by permitting strain on two opposing springs

acting in the piston. A linear voltage differential

transformer ( LVDT) is used to measure the deflection of each

spring. The force along each piston is obtained from the

spring constant and the deflection measured by the LVDT.

The forces and moments acting on the compliant platform are

computed from the geometry and the forces along each piston,

and force feedback is achieved. Forces measured when

pressure displaces the spring-loaded compliant platform are

relieved by adjusting the position of the movable platform

to which the compliant platform is attached.

Each piston was designed to have about one inch of

compliance and to be able to accept springs of various

stiffness values. The current mechanism can support about

40 pounds dead weight and 25 foot-pounds of torque. In this

configuration an accuracy of about 0.5 pounds is achieved.

A set of TRANS-TEK DC-DC gaging LVDTs was used. 	 Since

they work with a variable supply voltage, interfacing to the

analog-to-digital converters was simplified.	 The supply

voltage is provided by a KEPCO ATE 15-3M power supply, a

very stable variable voltage power 	 supply	 which	 is

especially suited for this type of application.

' ^..	 tl
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interface to the computer consists of an

iigital converter driven by a CAMAC crate. The

LVDT voltages are read by the A/D conve y ter and this

information is, in turn, read by the computer via the CAMAC

crate. A Kinetic Sys!.ems 3514-AlA 16 channel A/D converter,

capable of various input ranges, provides 12 bits of data.

3.3 SOFTWARE; DESCRIPTION

The robotic software consists of a group of layered

facilities for controlling the robot and accessing data

about the robot and the forces it is sensing. The software

has been developed as a set of self-contained modules, each

one controlling some specific hardware task. There also

exists a group of facilities which contain general library

functions; some of these are robot independent, others are

robot dependent.

The software is naturally partitioned into the main

control software, which the user's program calls, and the 	 x

force monitoring program which measures robot performance.

The force monitoring program is run as a subprocess of the

main program. This enables asynchronous monitoring of the

force-feedback mechanism in real time.

15
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Two typical functions of the software are to move the

robot and to access the force-feedback data. These two

functions are described to give an example of the flow

through the software.

To move the robot, six data items which satisfy six

degrees of freedom must be specified to target the new

location and orientation of the movable platform in global

space. In practice, motion is prescribed by providing the

offset from the origin of the Cartesian coordinate system of

the movable platform to the base platform and the three

Eulerian angles which define the coordinate transformation

tensor between the two systems. The six data items are

passed to routine MTN_POSITION TO. This routine performs an

absolute translation and rotation of the movable platform to

the given position. Figure 5 details the flow through the

software to produce the motion.

Force-feedback	 data	 is	 accessed	 by

FRC GET CONTACT FORCES.	 This routine returns the three

forces and three moments acting on the force-feedback

mechanism. The units are in pounds and inch-pounds

respectively. This routine must access the data passed to

it by the subprocess. The flow is detailed in Figure 6.

4
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The following is a list of the various user facilities.

The routines are mainly written in FORTRAN, with a few

hardware specific routines written in Macro. The code and

inline documentation amounts to approximately 17000 lines of

FORTRAN and 2000 lines of Macro.

1. AD Analog-to-Digital Facility
2. AP Active Platform Facility
3. CMC CAMAC Facility
4. CP Compliant Platform Facility
S. FRC Force Facility
6. IEE Intelligent End Effector Facility
7. LIB General Library Facility
8. MTH Mathematics Library Facility
9. MTN Motion Control Facility

10. MTR Compumotor Motor Control Facility
11. OBJ Object Facility
12. SCRW Screwing Control	 Facility
13. SDF Six-Degree-of-Freedom Facility
14. SPC Spatial Transformation Facility
15. WRST Wrist Facility

3.3.1 Analog-to-Digital Facility -

The anal.og-to-digital library contains routines which

interface the analog-to-digital converter on the CAMAC crate

with routines which need the data. The A/D converter is

strobed by a subprocess running at a real-time priority

which averages the data and passes it back to the main

process via an installed section file. The subprocess is

used to ensure that the readings are within a given band.

Values outside this band indicate that the compliant,

force-feedback mechanism has been displaced beyond a preset

17
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limit. when this occurs the subprocess issues a halt to the

stepper motors and thus prevents damage to the mechanism.

The facility consists of two basic modules, one which

is called by the main process and the other which is called

by the subprocess. The main process routine is an

initialization routine which creates the subprocess. The

subprocess is created with a termination mailbox. To ensure

that the robot can't be run if the process is abnormally

terminated a write attention asynchronous system trap (AST)

is queued to this mailbox. The AST service routine executts

when the subprocess terminates, writing the termination

message to the screen and then 4 topping the main process.

The subprocess is in charge of scanning the A/D

converter, averaging the data and if necessary stopping both

the motors and itself if the readings are out of range. 	 It

runs at a real -time priority. Since the A /D converters

can't update the readings as fast as the VAX can scan them,

a ;_imer is set after each scan. This also prevents the

process from becoming compute -bound and degrading	 the

system.	 The current scan time is 10 milliseconds, at which

rate the subprocess uses only 3 to 5 percent of the CPU.

' ^.. tl

The mechanism used to pass the data from the subprocess

to the main process is called a section file or shareable

data file. It consists of a FORTRAN routine which is

compiled, linked as shared and ins l .alled into the system as

18



writable using the VAX INSTALL utility. 	 Both the main

process and the subprocess are linked with this file. It

maps the pages of this data area to the same physical pages 	 ^{

in memory, which allows the data to be passed in a common

memory area. This is the fastest way to pass data between

two or more processes. There is no synchronization between

the two processes, that is, no mutex to control the wait for

read during a write. Even though the VAX provides this

service with the lock manager, the service is not required

since the A/D voltages will never change too much before the

next scan. Furthermore, when the subprocess is writing out

the data it is doing so at a priority of sixteen. Hence,

there is little chance that it will be interrupted during

its update.

ANALOG-TO-DIGITAL FACILITY	 M

Routine Function

ADMSG.MSG Message file

AD ASCEFC Associates	 common	 event	 flag	
.^

cluster.

fAD_MAIN_INITIALIZE h	 f	 fInitialize the A/D facility.

AD-MAIN-RUNDOWN-AST Executes	 when	 subprocess
terminates.

AD—MAIN—STOP—SCANNER Forces an exit	 of	 the	 subprocess
(used	 in a termination handler.)

AD READ VOLTAGE Routine to	 place	 data	 in	 common
memory area.

AD SHARE Global	 section	 file	 executable
(Passes	 data	 from	 sub	 to	 main

19
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AD SUB_INITIALIZE

AC SUB SCAN_READINGS

Error codes

AD—OUTOFRANGE

AD SCANTERM.

process).

Initializes the subprocess.

Scans the AID readings.

This fatal error 1.9 signaled when
one of the AID values is out cf
range.

This fatal error is signaled when
the scanning process is terminated
by the main process.

A

3.3.2 Active Platform Facility -

The active platform facility controls the	 active

platform at its lowest conceptual level. 	 Routines are

provided to start, stop, and position it in absolute

coordinates.	 The active platform facility consists of the

six ball screw stepper motor actuators and 	 the	 two

triangular aluminum weldments.

s

	This software fr^ility relies primari.y on the SDF
	 f

(Six-Degree-of-Freedom) and MTR (Motor) facilities to do the

work. It keeps track of the position of the active platform

and of the commands sent to the motors.

To	 execute	 a	 movement,	 a	 target	 positi("I

(x,y,z,roll,,pitch,yaw) for the active platform is sent to

the routine AP_SET_POSITION. This routine computes the

length that each actuator will be when the new position is

achieved. It then computes the necessary changes in the

20
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lengths of the actuators and sends these changes of length

to the associated motor controllers. The velocities of the

motors are such that they terminate their moves at the same
V

time.

The routine AP	 FIND VELOCITY is used to compute the

velocity of each actuator. It uses the total travel time

computed by AP TRAVEL TIME. The total travel time is

computed by taking the distance the actuators are to be

extended and the peak velocity of the actuators and then

integrating over the velocity profile. The profile can lave

two shapes: an inverted "V" shape or a trapezoidal shape.

The trapezoidal shape occurs when the distance is long

enough for the stepper motor to reach its peak velocity.

Given the travel time, AP FIND VELOCITY computes the

actual veloci° • and sets each actuator so that it will

travel the distance assigned to it in the time computed by

AP	 TRAVEL TIME. (For equations, see Dit• udonne, 1972).

ACTIVE PLATFORM FACILITY

Routine	 Function

AP MSG	 Messag- file.

AP	 FIND VELOCITY	 Computes the velocity	 of	 each
actuator.

AP—GET—POSITION Returns the position of the active
platform (and places the data in
the common memory area).

AP INITIALIZE	 Initializes the active platform.

AP	 RESET	 Resets the active platform data

21
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AP_ZEROMOVEMENT

base when the motors are stopped
before completing their preset
commands.

Sets the motors for a move.

Defines the peak velocity at which
an actuator can move.

Set the movement of the platform.

Execute the set motion.

Stops the motion of the active
platform.

Computes the time for a movement.

Movement requested out of range of
the active platform. warning.

No movement requested. Warning.

AP SET—ACTUATORS

APS ET_PEAK_VELOCITY

AP—SET—POSITION

'
	

AP—START—MOTION

AP—STOP—MOTION

AP TRAVEL_TIME

Error codes

AP OUTOFRANGE

3.3.3 Computer Automated Measurement And Control Facility -

The Computer Automated Measur ment and Control Facility

(CAMAC) provides the basic routines for accessing a CAMAC

crate connected to a VAX. To access a foreign device on a

VAX one can either write a full device driver or, if the

device does not perform direct memory access, map the device

into a virtual address space to reference the device

registers. Since the crate controller used here does not

perform direct memory access, the latter method was used.

22
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The CAMAC crate controller is plugged into the UNIBUS.

The physical address of the device is mapped into virtual

address space using a system service call to $CRMPSC (Create

and Map Section). It is called by CMC MAP CONTROLLER. This

routine stores the virtual address of the crate for use by

other routines which access the device registers.

CMC_INITIALIZE maps the device and then verifies that

it is on line. To speed up the scanning of the A/D

converter a special routine was written, CMC READ 3514.

This routine uses the auto index capability of the crate,

thereby removing the need to set up special codes to access

each channel.

Computer Automated Measurement and Control Facility

Routine	 Function

CMC_READ_3514	 Reads the channels of a Kinetic
Systems	 3514	 analog-to-digital
converter.

CMC INITIALIZE	 Initialize the CAMAC crate.

CMC_MAP_CONTROLLER	 Map the CAMAC controller into our
virtual address space.

-'"- ""--^- ----	 Write data to the CAMAC crate.

itform Facility -
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The compliant platform is the name used for the

three-force,	 three-moment	 compliant,	 force-feedback	
.4

mechanism. It consists of six passive pistons mounted

between two plates. From the known spring co'.Ltants and the

measured tension or compression displacements associated

with the pistons, the force on each piston and thus the

forces and moments on the moving platform are computed.

CP	 GET LNGFRC is responsible for converting 	 the

output	 voltage	 of	 each	 linear voltage differential

transformer (LVDT) to the actual length for each piston and

the res i stive force generated by it.	 The values are

averaged if the robot is stationary; otherwise the readings

are taken instantaneously. This routine accesses the

voltage of each LVDT with the routine AD RFAD VOLTAGE.

CP UPDATE _POSITION uses the lengths of each piston to

compute the position (x,y,z,roll,pitch,yaw) of the compliant

platform relative to the compliant base. It uses the SDF

library routines to do this.	 CP GET FORCES is used to

compute the forces on the compliant base. This routine

performs an equilibrium analysis on each piston. After

finding the reaction forces at the pins where the pistons

are attached to the compliant plate, it sums the forces and

moments about the origin of the plate.

F

4
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CP INITIALIZE is used to initialize the constant data

concerning the compliant platform.

COMPLIANT PLATFORM FACILITY

Routine	 Function

CP—GET—FORCES

	

	 Computes forces and moments acting
on the platform.

CP GET LNGFRC

	

	 Computes force and length of each
piston.

CP INITIALIZE	 Initializes the compliant platform.

CP UPDATE_POSITION

	

	 Updates	 the	 position of	 the
platform.

3.3.5 Force Facility -

The force facility contains the basic routines for

monitoring the forces on the compliant platform. They

perform the tasks of obtaining the contact forces on the

compliant platform and monitoring these forces while the

robot is moving. The robot is stopped if any force has

exceeded a prescribed limit. This is the logic for the

move-until routines.

FRC GET CONTACT FORCES computes the contact forces on

the compliant platform. The reaction force supporting the

plattirm is computed by CP—GET—FORCES. The gravity forces

acting on the platform are then subtracted, yielding the

contact forces. The gravity forces consist of the weight of

the platform along with the weight of the object that is

25
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attached to it.

FRC MC`1TORING WHILE MOVING is the routine used to

check the forces while the robot is moving. When the robot

starts a move a timer is set. When the timer runs out an

event flag is set to stop the move. This routine monitors

the forces while the move is in progress; if the force is

out of range it calls two routines: AP —STOP—MOTION and

MTN CLEANUP—POSITION. While the forces are within range

it continues this loop until the event flag CEF MTN TIMER

has been set by the timer. Once the event flag has been

set, the robot has stopped moving and the routine exits.

FRC MONITORING—WHILE MOVING-1 is basically the same

routine except that the routine which monitors the forces

(FRC CHECK—FORCES) is passed to the routine as an argument.

LIB$CALLG is used to call FRC CHECK—FORCES with its argument

list.	 This routine provides the basic	 facility	 for

monitoring while moving. 	 It eliminates proliferation of

monitoring routines.

FORCE FACILITY

Routine	 Function

FRC CHECK FORCES	 Checks if forces are within a band.

FRC_GET_CONTACT_FORCES Computes the contact forces on the
compliant platform (subtracts
forces due to gravity).

FRC_GET—FORCES_AB

	

	 Contact forces on the compliant
platform in the active base space.

26
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FRC MONITOR WHILE MOVING	 Move until forces exceeded.

FRC MONITOR WHILE MOVING 1 	 Move	 until	 user-supplied
routine returns false.

Error codes

MAXEXCEEDED	 Force exceeded the maximum range.

i	 MINEXCEEDED	 Force exceeded the minimum range.

	

'.	 INBAND	 Force is within range.

USERTRUE	 User routine returned a true.

F

r	 USERFALSE	 User routine returned a false.

3.3.6 Intelligent End Effector (IEE) Facility -

The IEE facility performs all initialization necessary

to bring the robot on-line. IEE_INITIALIZE must be called

before any of the robotic software can be used.	 It, in	 4

turn, calls all other initialization routines. If any

facility needs to be initialized before use, it is called

here.

	

r "	 Since many of	 the	 routines	 read	 data	 files,
_

IEE INITIALIZE DATA provides a FORTRAN logical unit number

through which to perform	 the	 I/O.	 To	 speed	 the

	

w
	

initialization process and since many files need to be read,

	

a ti

	 one common file is created by all the initialization
l k

	

wC
	 routines.	 It is an unformatted file which if present is

referenced by the logical name IEE_DATA. If not present, it

	

t	 is created with data from the original ASCII data files.

27
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All exit handlers are established through IEE_HANDLER.

i their execution is last-in, first-out the sequence of

>lishment is critical.

IEE INITIALIZE MOTORS initializes the stepper motors.

issigns a channel to the motor controllers through the

anal port device IEE_PORTO.

IEE FACILITY

:ine	 Function

INITIALIZE DATA	 Calls the initialization routines
of all facilities.

HANDLER	 Declares all exit handlers.

_INITIALIZE	 Initializes the Intelligent	 End
Effector.

IEE INITIALIZE MOTORS 	 Initializes the motor I/O channel.

t

3.3.7 General Library Facility -

This library facility is a collection of general

utility routines which are robot-independent. They can be

used without the robot software. A brief description of

each routine follows.

LIB ARGNUM, when called, returns the number of

arguments with which the subroutine which called it was

called. This is useful if the subroutine function depends

on the number of arguments, and is useful in some FORTRAN

routines since FORTRAN cannot access the call stack.

28
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LIB—FILL—VECTOR fills a vector (PEAL'4) of length N

with a scalar.

LIB—MAKE ARGLIST creates an argument data structure.

This is used to establish the argument list for the routines

which require it, such as FRC MONITORING WHILE MOVING 1.

LIB_PACk VECTOR packs a vector (REAL'4) of length N

with scalars S1,S2,...SN.

LIB TRACE enables or	 disables	 the	 function	 of

LIB_SIGNAL.

LIB_SIGNAL signals a condition if enabled. It is the

same as LIB$SIGNAL except that the condition is passed by

reference and LIB_TRACE turns off the signalling mechanism.

This is useful in debugging programs.

LIB WAIT waits N (where N is a real number) seconds and

then returns. This routine reduces the proliferation of

event flags throughout the program.
1 _t]

GENERAL LIBRARY FACILITY

Routine	 Function

LIB ARGNUM	 Number of arguments with	 which
routine was called.

LIB FILL VECTOR	 Vi - scalar; i - 1,2,...,N.

LIB MAKE ARGLIST	 Creates an argument list.

LIB_PACK_VECTOR	 (V1 - (scalarl , scalar2 ,...,
scalarN1.

29
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r	 LIR_TRACE

LIB SIGNAL

LIB WAIT

Enables or disables the function of
LIB SIGNAL.

Signals the condition if enabled.

Waits N seconds.

t 

3.3.8 Mathematics Library Facility -

The mathematics facility contains utility routines for

performing mundane mathematical functions. A brief

statement is given which describes each routine.

MATHEMATICS FACILITY
t

Routine Function
r

MTH ADD VECTOR Add two vectors.

MTH CROSS Calculate cross product.

MTH—DOT Calculate dot product.

MTH—LNG Magnitude of a vector.

MTH MOVE VECTOR Move a vector.

MTH—MUL—MATRIX Multiply two matrices.

MTH MUL VECTOR Vector times a scalar.

MTH NEG VECTOR Negate a vector.

MTH PLANE—NRM Calculate the normal to a plane.
i

MTH—ROTATE—VECTOR Rotate a vector.

M

MTH SUB VECTOR- Subtract a vector.

` MT[? TRANSPOSE MATRIX Transpose a matrix.

MTH—TRANSMATRIX Calculate a	 rotation	 matrix	 from—
three angles.

` MTH TRANS TO EULFRS Inverse of MTH—TRANSPOSE—MATRIX.

30



MTH UNIT VECTOR

MTH_ZERO_VECTOR

Error codes

ZEROLNGVECTOR

COLLINEAR

SINGULARMAT

Normalize a vector.

Zero a vector.

Vector has no magnitude.

Three points are collinear.

Matrix is singular.

3.3.9 Motion Control Facility -

The motion library consists of the top-level movement

ruutines. These are the routines which a user calls from

his progvam. The basic motions are translation, rotation,

and curvilinear motion. 	 Rotations can be performed about

any point. Motions can be specified in absoiu ►e or relative

coordinates.	 A position has three coordinates (x,y,z) and

three orientation angles (roll,pitch,yaw). A motion is

specified by three position displacements, in inches, and a

rotation of three angles, in radians.

The UNTIL routines provide for motion while monitoring

forces. A force in a given direction is monitored while the

robot is moving. If the force is increased beyond a

prescribed envelope the robot is stopped. To provide a

general move-until logic the routine MTN MOVE REL UNTIL 1 is

used. Here the user specifies his own check routine.
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Since other routines may need to determine if the robot

is moving or not, a state routine is provided. MTN STATE

returns the state of the motion.

The SET STOP and SET WAIT routines toggle flags which

control the flow of the lower-level positioning routines.

During a motion, after the motors have been sent the go

command, the program waits for the motion to be completed by

setting a timer. The timer in turn sets the event flag

CEF MTN TIMER.	 If the wait mode is clear the routine

MTN	 SET POSITION doesn't wait for this event flag but

returns.

The SET STOP routine controls the scanning process. If

the flag is set and any of the A/D converter readings are

out of a specified range, the robot will be brought to a

controlled stop. The flag AD STATE_STOPPED is then set to

acknowledge this fact. This function was included because

it is the fastest way to perform a move-until-touching. It

provides a recoverable method for stopping the robot, as

opposed to a failure caused by the scanning process with an

AD OUTOFRANGE error.

MOTION FACILITY

Routine	 Function

MTN MOVE REL	 Move the active platform (AP) a
-'	 —	 relative distance.

MTN MOVE REL POLAR AND SCREW 	 Move the AP a relative

4. )I
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distance in a direction and turn
the bolt spinner.

MTN MOVE_REL_POLAR_UNTIL	 Similar to MTN MOVE _RE:L_UNTIL
except with polar move.

MTN MOVE REL UNTIL Move the AP a relative distance
until a force is out of range or
motion is completed.

A

Like MOVE REL UNIT except with user
check routine.

Move the AP an absolute distance.

Position the AP a relative distance
and rotate.

MTN MOVE REL UNTIL 1

MTN MOVE TO

MTN_POSITION REL

MTN POSITION_TO	 Position	 the	 AP	 an	 absolute
distance and rotate.

MTN ROTATE REL	 Rotate the AP a relative amount.

MTN ROTATE REL ABOUT_CP_INAB	 Rotates the AP a relative
amount	 about	 a	 point in the
compliant platform.

MTN ROTATE REL ABOUT_INAS Rotates the AP a relative
amount about a point in active base
space.

MTN P.OTATE TO	 Rotate the AP an absolute amount.

MTN SET STOP	 Enable or disable the 	 stopping
- logic.

MTN SET WAIT	 Enable or disable the wait logic.

MTN STATE	 Returns the state of the machine
(move or nomove).

3.3.10 Compumotor Motor Control Facility -

The motor control facility is used to control the

Compumotor Series 2100 stepper motor controllers and motors.

The motor controllers are microprocessors which control the

33



stepper motor power supplies. The processors accept ASCII

command strings from a host computer over PS-232C terminal

ports. There are numerous command stringat the ones used

here control the distance to travel, the peak velocity

during the motion, and the acceleration. To facilitate

multiple controllers, they may be serially daisy-chained

togethers the echo of the command from one controller is

fed into the input of the next controller. A device number

precedes the command string if it is to he applied to only

one controller. For example, to set the distance, velocity

and acceleration of all of the motors in the same string the

command would look like s D25000 V3.23 A8.12 " where

D25000 is a distance of 25000 steps, V3.23 is a velocity of

3.23 revolutions-per-second, and A8.12 is an acceleration of

8.12 revolutions-per-second squared. If one wanted only

controller number tnree to have these characteristics the

string would be: " 3D25000 3V3.23 3A8.12 ".

This library contains the necessary routines to send

and receive the command strings. Also included is a routLne

which computes the time of motion given the distance,
k

velocity and acceleration.

COMPUMOTOR MOTOR CONTROL FACILITY

Routine	 Function

MTR INITIALIZE	 Initialize the motors.

MTR MOTION_'rIME 	Computes the time and velocity for
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MTR READ COMMAND

MTR READ_POSITION

MTR_RE.VS_TO_STEPS

MTR SEND_COMMAND

MTR_SET ACCELERATION

MTR—SET_DISTANCE

MTR_SET_VELOCITY

MTR SEND GO

MTR 3TEP5 TO_REVS

Error codes

DATAC6FCK

INTERNALWRITE

IDOUTOFRANGE

ACCOUTOFRANGE

VELOUTOFRANGE

DI SOUTOFRAN,,E

a move.

Send and read command.

Read position of a motor.

Convert revolutions to steps.

Send commands.

Set acceleration.

Set distance (steps).

Set peak velocity.

:'tart motor(s) .

Convert steps to revolutions.

String echoed from controller not
the same as the one sent.

Internal write error.

Controller ID number out of range.

Acceleration out of range.

Velocity out of range.

Distance out of range.

*i

3.3.11 Object Facility -

This facility is used to define data for objects

carried by the IEE. The object, such as a gripper, a bolt

spinner, or a peg, is attached to the compliant platform. A

data file for the object is pointed to by the logical name

IEE OBJECT, and specifies the weight, center of gravity, and

position of the object relative to the c ompliant platform.



This facility will be removed when the planned gripper

is integrated into the system. At that time there will be a

routine to reinitialize the data depending on the gripper's

task.

OBJECT FACILITY

Routine
	

Function

OBJ_INITIALIZE
	

Initializes the object data.

.s

3.3.12 Screwing Control Facility -

This facility controls a separate stepper motor which

is used as a bolt spinner. SCRW_ROTATE rotates the motor a

given number of revolutions. The SET—MOVE command is used

to set up a movement; the motor is ac'zivated by the general

motion commands.

Tnis library is under development. Since the bolt

spinner motor torque is inadequate to perform the desired

tasks, other methods are being studied.

SCREWING CONTROL FACILITY

Routine	 Function

SCRW ROTATE	 Turns the bolt spinner.

SCRW SET MOVE	 Sets up a movement for the spinner.
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3.3.13 Six-Degree-of-Freedom Facility -

The Intelligent End Effector contains two

six-degree-of-freedom mechanisms: the positioning platform

and the force-feedback mechanism.

The routines for the mechanisms compute the position of

the movable platform from the lengths of the six rods, and

the inverse.	 They	 are	 called	 SDF GET LENGTHS	 and

SDF GET POSITION.	 The algorithm uses six vector loop

equations and Newton's method of solving simultaneous

equations to solve for the location and orientation of the

specific platform. (Dieudonne, et al, 1972).

SIX-DEGREE-OF-FREEDOM FACILITY

Routine	 Function

SDF_INITIALIZE Initializes the fixed data for the
mechanism, and fills the position
and transformation matrices.

SDF_GET_LENGTHS

	

	 Gets length vectors given position
of movable platform.

SDF_GET_POSITION	 Gets position of movable platform
given	 lengths	 of	 extensible
members.

3.3.14 Spatial Transformation Facility -

The robot contains five reference frames: active base

(AB), active platform (AP) , compliant base (CB) , compliant

platform (CP), and object (OBJ). Tho world or global space

L. A



is equivalent to AB space. To convert vectors from one

space to another the set of routines called SPC_RF_nn mm is

used, where "nn" and "mm" are each one of the above

reference frames. These routines multiply a given vector

with	 a	 second	 order tensor to produce the desired

conversion.	 SPC TRN nn mm	 is	 used	 to	 compute	 the

coordinates, in "nn" space, of a point in "mm" space.

SPATIAL TRANSFORMATION FACILITY

Routine	 Function

SPC RF nn mm

	

	 Converts a vector from reference
frame "nn" to "mm".

SPC TRN nn mm

	

	 Converts a point in space from
Euclidean space "nn" to "mm".

nn, mm - AB , AP , CB , CP , OPJ

Wrist Facility -

At present there is no real wrist mechanism on the

robot.	 If there were, it would be located at the active

platform and compliant base interface. This facility was

created to provide the structure if such a mechanism is

installed. Presently there is a tensor which converts the

space from AP to CB space with constant data initialized at

startup time. If a mechanism is put at this interface in

the future then it will dynamically alter this data.

WRIST FACILITY

38
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Function

'rZE	 initializes the wrist data.
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4.0 THE INTELLIGENT END EFFECTOR IN USE

Precision assembly was demonstrated for three different

assembly configurations. For each test problem the

compliant, force-feedback characteristics of the IEE were

used as an adjunct to precision motion. A round peg was

inserted into a round hole, a 25 pin D-type connector was

mated, and a bolt was screwed into a threaded hole.

The three cases are described in 	 the	 following

sections.	 The use of compliance and force feedback and the

achieved precision are explained in detail.

4.1 PEG INSERTION

The insertion of a round peg into a round hole was

chosen as the first test case. The problem required that

the robot insert a standard 0.375 inch dowel pin into an

0.3755 inch hole drilled normal to the surface of a plane. 	 Y

P

The engineering 3ata, which provided a structured

environment, consisted of the diameter of the peg, the

location of the peg in the robot's space, the depth of

insertion, the location of the hold in global space, and the

orientation of the hole in global space. The location and

orientation of the hole were accurate to 0.5 inches and five

degrees respectively.

40
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The algorithm to insert the peg into the hole consists

of six parts:

1. Find the plane of the hole by tilting the peg and

touching three points around the hole with the edge of

the peg.

2, Find the hole by dragging the edge of the peg along the

plane until it protrudes slightly into the hole.

3. Center the peg in the hole by moving it back and forth

perpendicular to the previous direction of motion until

the sides of the hole are encountered.

4. Continue in the original direction of motion, but now

along the centerline of the hole, until the far edge is
	 E,

contacted.

5. Reorient the pey until it is normal to the plane,

keeping the end cf the peg in the hole during the

reorientation process.

6. Insert the peg into the hole while nulling out forces
Al

and moments.

A detailed description of how the software performs

each of these six actions follows:

1. The plane-finding algorithm requires three points on the

plane to determine its equation. The robot uses the peg

to probe the surface of the plane, tilted at an angle

such that point contact is made between the surface of

41
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the plane and the peg. The coordinates of the touch

point can be determined because the position and

orientation of the circle which is the end of the peg

are known.

The algorithm begins by tilting the peg to obtain

the best touch geometry. rho given data for the plane

is used in this case. This is done by orienting the peg

so that the axial vector of the peg is parallel to the

gradient of the plane. This ensures (within a known

error) that the lowest point on the end of peg will be

the touch point.

The algorithm then determines three eligible touch

points on the plane. For this case the three points

chosen lie on a circle concentric with the hole with a

radius of the given hole radius plus 1.5 times the

assumed positional error of the hole. This ensures that

the peg will not fall into the hole prematurely. The

points are equally spaced around the circle. The robot

then moves the touch point on the peg above each chosen

point on the plane and then moves down toward the plane,

monitorina the forces as it moves. when it encounters a

change in the force it stops and computes the position

of the peg, and hence the position of the plane.

42

W

'	 ^l



^ ^-- 1^

2. In the next step, the robot must find the hole. Keeping

the peg tilted as in step 1, the robot touches the peg
.41 I

to the plane below the hole and then drags the peg up

the plane. The idea is that since the motion is

parallel to the plane the force on the peg normal to the

plane will remain relatively constant until the end of

the peg protrudes into the hole. When this happens the

robot has found the hole.

3. To center the peg in the hole the robot moves

perpendicular to the previous direction, still parallel

t,) the plane, until it encounters one edge of the hole.

It then moves in the opposite direction to find the

other edge. This line segment is a chord of the circle

defined by the top of the hole. The perpendicular

bisector of this chord is a line along the diameter of

the top of the hole.

r

4. The robot moves the peg along this line in the same

direction as the drag move in step 2 until the far side

of the hole is encountered. When this happens the robot

stops and checks the side forces to center the peg in

the hole again.

5. Next, the robot orients the peg until its axis is

parallel to the axis of the hole. The orientation of

s.

	

	 the hole is known from step 1. The robot performs this

step iteratively, one degree at a time. After each step
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it checks to determine that the end of the peg is still

below the surface of the plane. It also checks the

contact force of the peg against the hole. 	 The robot

always maintains pressure between them. 	 After each

iteration, the robot compares the angle between the peg

and the hole.	 When this is within a satisfactory

tolerance the robot moves to step 6.

6. Finally, the robot begins to insect the peg into the

hole. As the peg is inserted two forces and one moment

are monitored. The force normal to the axis of the hole

is checked.	 This force is generated if the peg is

pushing against one side of the hole. The force

parallel to the axis of the hole is also checked. This

force indicates that the peg is jammed. If the peg is

cocked in the hole a moment will be generated. Since

the peg is round, the robot does not monitor moments

about the normal of the hole. When any of the forces or

moments are out of range the robot stops and takes

corrective action. For the force in the plane the robot

moves in the direction of the force until it disappears.
	 1

If the peg is cocked, the robot rotates until it

eliminates the moment. If the peg is jammed, the robot

withdraws	 the peg until the force disappears and

performs a wiggle motion and then tries again. This

force-feedback insertion continues until the peg has

been inserted the required distance.
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The peg routine takes approximately three minutes to

run. Although the process is not fast enough for industrial

applications, the basic steps have been worked out. This

solution to the peg-in-a-hole problem demonstrates that a

force-feedback robot is capable of mating two precision

parts.

4.2 MATING A 25 PIN D-TYPE CONNECTOR

The D-type connector is an excellent example of a

multisided component that has few symmetry properties. A 25

pin connector was used in this experiment. It consists of a

male half that contains 25 pins and a female half with 25

corresponding sockets. To mate the connector components,

the two halves must be properly aligned with the male half

partially inserted into the female half. Such a partial

insertion is possible since there is a gap of approximately

0.05 inches from the ends of the pins in the male half to

the edge of the surrounding lips in the female half. The

pins in the male can therefore be inserted into the sockets

on the female slightly more than this distance before a

resistant force must be overcome. when the halves are

properly aligned and the direction of insertion is correct,

the force that is required to fully mate the male and female

halves is approximately 4.5 pounds.
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4.2.1 Assumptions -

It is assumed that the male half is held in a fixture

and that the female half is held by the IFE. In addition,

the following were the maximum allowable errors in assumed

position and orientation of the female:

o eight degrees about any axis of rotation

o one-half inch in X, Y, or Z axes

It is assumed that the free space volume in which the

IEE is able to move the female half of the connector is a

hemisphere of radius three inches, centered at the fixed

male half of the connector.

4.2.2 Database -

Implicit within the program is an understanding of the

geometry	 of the connector components. 	 Therefore, the

supporting database contains only the values of those	 ^.. r

parameters which quantify the geometry (length, width,

height, short-side length, distance between pins, etc.). In

addition, the program is given the assumed position of a

single point on the object that is considered to be the

origin, and the orientation of the object about that point

in terms of the three Euler angles, specifying a rotational

displacement about the X, Y, and Z axes.
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4.2.3 Algorithm To Perform Mating -

The connector mating program uses	 the	 following

strategy. First, it assumes that the given location of the

connector is correct and attempts to perform the insertion

immediately. It does this in two steps. In the first step,

the IEE attempts to position the female partway into the

male by moving down until it touches the object. If the

male is located precisely at its assumed position, this will

place the female just inside the lip of the male, with the

pins not yet inserted. To determine whether or not the male

is actually where it is supposed to be and whether or not

the female is inside the lip of then male the IEE moves from

side to side and determines the displacement of the female

that occurs at the extreme ranges of this motion. If the

resulting displacement of the female half is significantly

less than the displacement of the movable platform to which

the compliant platform is attached, it is assumed that the

movement of the female half was constrained because it was

partially seated inside the male half. If, indeed, the

female half is partially seated, the insertion proceeds to

completion.	 If not, the end effector proceeds with the

following different mating strategy.

If the immediate insertion attempt fails, the end

effector attempts to determine the orientation of the fixed

male half of the connector by touching it at various points.

Al' ^.
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After it does so, the ICE then aligns the femme with the

male and touches the object again to accurately locate the

side.	 (This must be done because, due to the rounded edges

the connector, the exact point that is being touched

cannot	 be determined.	 This is not a problem in deteemining

orientatiun, since only relative positions aro	 of	 concern.

The	 position	 of the connector must, however, be accurately

known to perform the next step.) The IEE then positions 	 the

female	 directly	 above the center of the male and tilts the

J female so tiAt one end can be used to probe 	 into	 the	 male

connector.	 It	 then	 moves	 down	 into	 the connector, and

slides	 in the direction of the tilt until 	 it	 finds	 the	 end

of	 the	 male	 connector.	 In	 doing	 so,	 the	 IEE	 makes

allowances for the possibility that it may get	 stuck	 on	 a

Fin in the male, mistakenly believing 	 it has reached the end

of the connector.	 Once it believes that	 it	 has	 found	 the

end	 of	 the	 connector,	 the	 IEE	 then removes the tilt by

pushing	 against	 the	 touched	 end	 of	 the	 connector	 and

rotating	 about	 that point.	 This allows the female half to

remain inside the connector at all times 	 and	 improves	 the

reliabilty	 of	 the	 operation.	 Once the halves are aligned

the insertion operation is continued.	 As the	 insertion	 is

` being	 performed,	 the	 IEE	 monitors forces and torques and

attempts to ',. , ap all forces except for the	 insertion	 force
k

as	 low	 as possible.	 This helps to eliminate any remaining

error in the alignment of the two connector halves.

4
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4.2.4 Results -

The robot has demonstrated that it can mate the

connector f • om initial starting positions that vary from

bt fikward to upside down. The solution to this problem

demonstrates r.hat force feedback with compliance can be used

tc mate non:^,ymmetrical connectors which require precision

motion to avoid damaging functional parts.

^,3 SCREWING A BOLT INTO A THREADED HOLE

The operation of screwing a bolt into a threaded hole

introduces several new problems for the IEE. Although it is

similar to the task of putting a peg in a hole, there are

important differences. Some of these are:

i. the bolt screwing task makes use of a tool to spin the

bolt ( the bolt spinner);

2. both the bolt and the hole have threads;

3. the bolt is not rigidly held by the bolt spinner; and

4. the bolt cannot simply be inserted into the hole but

must be screwed in, meaning that the operation consists

of two concurrent parts: turning the bolt in the

correct direction and inserting the bolt into the hole

at the correct speed.
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4.3.1 Problem Description -

This experiment used a 0.375 UINC x 1.500 inches long

socket head cap screw and a corresponding hole in an

aluminum block with a steel 3/8" helicoil insert. The

device used to spin the screw was a stepping motor (of the

same type used to drive the IEE extensible rods) attached to

the compliant platform of the IEE. Attached to the shaft of

the motor was a device used to hold the screw. This device

is shown in Figure 7. The cap bolt was held in place by

three ball-detents. The bolt was seated in the holder by

pressing lightly against the bolt Dead and rotating the

holder until the hex-head driver in the holder was aligned

with the hex head of the bolt. When that condition was met,

the IEE then pressed the holder against the bolt head until

the head was firmly seated into the holder.

4.3.2 Assumptions

It was assumed that the block containing the hole was

held rigidly in place and that the following were the

maximum allowable errors in the assumed position and

orientation of the hole:

o 3/4 of one bolt radius in any direction
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o 8 degrees about any axis of rotation

It was also assumed that there were no obstacles (other

than the block itself) to impede the motion of the end

effector.

4.3.3 Database -

As with the 25 pin connector mating program, implicit

within the bolt screwing program is an understanding of the

geometries of the components involved in the assembly task.

Information in the database which is available to the

program includes measurements that completely describe the

bolt (pitch, size, length, drive type and size, and bolt

type), and the assumed position and orientation of the hole.

4.3.4 Program To Perform Bolt Insertion -

e	 As with the peg-in-hole program, it is assumed that the
s-

IEE must verify or refine the position and orientation

information given about the	 location	 of	 the	 hole.

Therefore,	 the	 IEE	 first attempts tc determine the

f

	

	 orientation of the block that contains the bolt hole. 	 It

does so by touching the surface of the block at three points

a and determining the equation that describes the plane that

contains those three points. With this information, a point_

is found on the block that is two bolt-hole radii from the

c4nter of the assumed hole position and that provides a path
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of steepest ascent to the hole. The bolt is then tilted in

the direction of travel (towards the hole). This is done

for two reasons. First, it provides a smaller surface area

with which to touch the block. Second, it allows gravity

and the compliance of the 1EE to help center the bolt in the

hole once it has been found. The IEE then gently presses

the end of the bolt against the block and slides the bolt in

the direction of the hole until the force exerted against

the block diminishes, indicating that the IEE has found the

hole. once it has found the hole, a series of wiggling

maneuvers are performed to center the bolt in the hole.

When the end of the bolt is in the top of the hole, it

` must be aligned with the hole's axis so that it can be

screwed in place. The procedure to do this is very similar

to the method used to orient the peg and the 25 pin

connector in previous tasks. The bolt is pushed down and

against one side of the hole and is reoriented toward the

assumed alignment position while keeping the end of the bolt	
4 _11

in the hole. This reorientation is performed in small

angular increments to allow for adjustments, ensuring that

the bolt remains in the hole while the alignment takes

place. At the end of each incremental orientation motion

the bolt is wiggled to help it seat itself and then is again

pushed down into the hole and against one side.



a
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Once the bolt's axis is aligned with the hole's axis,

the screwing procedure is begun. First the bolt is pressed

into the hole. Then while moving downward the bolt is

slowly turned to allow it to thread itself partway into the

hole. As screwing proceeds, the IEE nulls out any forces

acting on it due to any remaining misalignment between the

bolt and the hole. That is, if the block were removed the

bolt would remain in the same position. The IEE continues

screwing until the torque required to spin the bolt reaches

the desired value, indicating that the bolt has been fully

inserted and tightened to the desired torque.

4.3.5 Compliance -

	

The compliance of the IEE was used to advantage in this
	

4

task by allowing gravity and forces generated due to

misalignment to center the bolt in its hole.	 without

7

compliance, these forces would not affect the position of

the bolt unless they caused some deformation in 	 the
	

i

mechanism or they exceeded the forces produced by the

stepping motors that keep the IEE in a given position.
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5.0 A MODEL FOR ASSEMBLY AND REPAIR STRATEGY

5.1 INTRODUCTION

The section most closely associated with the techniques

of knowledge engineering has been given the acronym ASP for

Automated Sequence Planner. This part of the project is

responsible for determining a sequence of robot moves to

effect construction from information available in a CAD

database.

The basic	 strategy	 used	 is	 that	 of the	 reverse

heuristic search	 (a search through a tree of possibilities

that treats what	 would	 ordinarily	 be	 the goal	 as	 the

starting node and what would ordinarily be the start as the

` goal, and that uses heuristics to limit	 the	 search). The

ASP first synthesizes a disassembly of the indicated object,

and then reverses	 that	 sequence	 to	 derive an	 assembly

sequence. For	 those	 applications	 involving repair, both

~ disassembly and assembly	 sequences,	 partial or	 complete,

would be utilized.

The ASP is general in nature. Specific information

about the format of the CAD database and particular robot or

other assembly devices used is imparted in the form of

databases.



To demonstrate the most important features of the ASP,

and to determine the most difficult aspects of its

implementation, a model program has been written in the LISP

language.	 It has been successfully used to provide a

construction sequence for a number of simple	 objects

consisting of blocks held together with bolts.

5.2 DESCRIPTION

The following sections describe particular details of

the model, as well as describing the generalized goals,

where determined, for each part of the problem in the ASP

program.

5.2.1 Input And Output -

Input to the ASP will occur via program generated calls

to FORTRAN subroutines that will access and manipulate a CAD

IGES ( Initial Graphics Exchange Specification) format

database, ( a specification for geometric databases that has

achieved considerable attention as a uniform, transportable

system) and in some cases do considerable computation on

acquired data. The goal will be input at a fairly abstract

and database - independent level. In the model, the database

queries are simulated by English requests for database

information from an interactive user.
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Output from the ASP will consist of a file of robot

commands, giving all information necessary for construction,

or in the case of repair, disassembly, part replacement, and	
.Q,

reassembly.	 This file will in essence be a robot command

language, to be interpreted by software associated with the

robot.	 The model program writes such a file, with the

production of certain information, such as tool placement,

not yet implemented.	 This model file is interpretable by

human or robot.

5.2.2 Demonstration Limitations -

The ASP will be made as general as it is feasible to

do, so that it will be able to operate on complex parts and

assemblies, including multi-path part trajectories, curved

parts, different screw pitches, and so on. Particular

limitations imposed by the CAD database or by the robot will

be realized from their database descriptions. For example,

in the case of the IEE, only those objects that can be

asseitoled with one hand are viable candidates.

The model program has been necessarily limited in the

scope of objects on which it can operate. Specifically, any

object under consideration by the program is assumed to

consist of a base to which other parts are attached. The

base is held in a vise table that can rotate about three

axes.	 Ea.;h part is attached either to the base or to
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another part with one or more threaded bolts. It is assumed

that each part may be eventually removed from the assembly

	

in a trajectory that is a straight line along one of the six
	

.01

directions defined by the three coordinate axes: that is,

no curved or multi-path trajectories are permitted. The

fastening bolts are removed in the same way. Finally, each

part must be specified by straight @dyes, flat planes, and

right angles.

or r
A number of assumptions are also made about the

capabilities of the robot in the model program. only

assemblies that can be constructed with one hand plus the

moving vise table are allowed, and only one face of the
:I

object can be approached at a time. The movement envelope

of the IEE is respected. No calculations are made as to

tool placement or the complications that tool positioning

makes to the trajectory determination. in addition, all

parts in the model are removable by a simple gripper or by a

bolt spinner with one size of bolt head.

5.2.3 CAD Database -

r	 The CAD database (in this case, in the IGES format),

stores a description of the object in its assembled form, as

well as information about each of the constituent parts in

a	 the object. This information, as well as information about
F	 v

the particular robot and tools that are available, is used



by the ASP in determination of the construction sequence.

The modelprogram assumes a articular database formatT, asP

follows: the assembly as a whole and each separate part are

located in three-space coordinate systems witn associated

dimension and bolt attachment information; two triplets of

numbers describe a part's location in the assembly; the

first triplet gives the location of the origin in the part's

reference frame in assembly coordinates; the second gives

the angular rotation around the three coordinate axes (the

Eulerian angles) to transform the part's original

orientation to its orientation in the assembly. Thus when

the model asks foe a part's location and orientation, it

expects the information in this form. When fully developed,

the ASP will make these queries directly to the database

interpretation subroutines.

The model program also demonstrates some necessary

coordinate system transformations. The object as described

in the CAD database exi-ts in one system, but for efficiency

during construction, the assembly is turned on the vise

table and thus assumes a robot-oriented coordinate system

that changes with each move of the table. For simplicity is

its database queries, the program translates between these

two systems, changing dimensions and orientations as

appropriate through a filter that keeps track of prior moves

of the vise table.
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5.2.4 The Strategy Planner

4 I

As has already been noted, the basic strategy of the

ASP is to first determine a disassembly sequence for the

given object, and then to reverse it tc: find an assembly

sequence. For those applications involving the r6pair of an

object, both sequences would be involved, ei , . her wholly or

partially.

This strategy is implemented as a reverse heuristic

search. The assembled object, which is really the goal, is

taken to be the starting point, and the goal is any state in

which the object is completely disassembled. Traversing the

search path amounts to removing parts from the object one at

a time, and the reversal of the search path is one of

possibly many solutions to the opposite search, that is,

from parts to assembly. It is assumed that the domain of

objects is restricted to those which can be disassembled.

The CAD database contains an implicit tree that

represents the totality of all possible search paths,

successful or unsuccessful. The root node of the tree is

the assembled object= at subsequent levels are lists of all

	

the parts, possible removal trajectories, tool selections,	
I

tool placements, and so forth. The ASP is designed to

intelligently make enough of this tree explicit so as to

elicit a successful disassembly path. "Intelligently" in

;y	 this context means that at each decision point in the tree,
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as much heuristic information as can be queried or inferred

from existing information as possible is used to make the

best choice. For example, the best removal trajectory for a

cylindrical part will probably be along the principal axis

of the cylinder.

The major branches of the tree are those that represent

the removal of individual parts. Amongst these branches, a

heuristic ranking is given, if possible, to the various

choices. The first ranking occurs among the parts. Once a

part has been chosen, the remainder of the search is

depth-first in the tree: all possibilities for removing the

part will be exhaustively tried. Each choice, however, is

still guided by heuristic information.

Once the successful removal sequence for a part has

been determined, the removed part is taken from active

consideration and another is chosen. It may be noted that

once a point in the tree has been reached at which a part

has been removed, the preceding tree structure is assumed 	 'v. 4 

correct. Because of the restrictions placed on the domain

of objects, backtracking above this point need not occur to

determine a correct disassembly sequence. Thus, this is a

recursive problem, since the ASP is always presented with

the situation of an object and a part to be f.ind and

removed, and since the same tree structure, in successively

smaller manifestations, is always apparent. It differs from
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	 a purely recursive problem in that information obtained

	

.N

	 during the removal of previous parts is accumulated and
to

available to guide the removal of subsequent parts.

The model program incorporates most of the above

features in the design of the ASP, including the use of

heuristics and the tree search. As the first step, the

program requests a list of the parts in the assembly and the

dimension of the smallest enclosing cube. The latter is

used to determine removal points for the parts. (when a

part has been moved to a position at which it is entirely

outside of the enclosing cube, it is considered to have been

removed).

Beginning from the top of the assembled object, the

Program asks which of the parts are visible, and thus

potentially accessible to the IEE gripper tool. (Recall

that the model program restricts itself to IEE limitations,

including operating on one face of the object at a -lime).

It is then determined along which of the six trajectories

these parts may be removed, and thus which are candidates

for immediate removal.	 This is done by requesting the

orientation of the principal axis of the attaching bolts in

each part.	 These parts are removed by first removing the

bolts and then the part to a point outside of the enclosing

cube.	 (Tine problem of setting the parts down in a parts

rack is not addressed;	 removal to a point outside the
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enclosing	 cube or envelope is considered sulfisient).

Another query is made to see if parts formerly hidden from

view are now visible.	 If so, disassembly from the toy

continues.

Once all possible parts have oeen removed from the top,

previously obtained or inferred information is used to

choose another face of the assembly on which to work. If no

such information is available, a face is chosen randomly.

The procedure continues until all parts have been removed.

As each part is removed, the information necessary to

reproduce its removal is concatenated and placed in a

disassembly list.

The final task of the ASP is to take the disassembly

list that it has generated and either reverse it for

assembly or reverse a part of it tt accomplish repair.

Unfortunately, the process of reversal is not as

straightforward as might be hoped. A number of processes

are by themselves irreversible, as for example the expansion

of a springs	 spring-loaded devices require either more

tools or more moves to assemble than to disassemble.

Gravity is also a factor, at 	 least	 in	 earth-based

applications:	 a part held by a bolt to another part may

fall off if the bolt is removed, and thus must be held in

place during assembly.	 Ad-Iational intelligence must be

incorporated about such factor at this stage in the ASP
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development, and limitations must be imposed on the types of

assembly Oat can be done.

The model circumvents these problems through 	 its

restricted domain of constructible objects. The major

problem solved in the model is the reversal of orientation

changes as the vise table rotates, wnich are cumulative but

not directly reversible. (This is a result of the fact that

orientation tranefurmations are not in general commutative).

5.2.5 Internal Databases -

In addition to the CAD database and the database

storing infottration about the robot capabilities, the ASP

will use and maintain internal databases. Here will be

stored the informations obtained frame queries to these

supplied databases. In addition, and very importantly, the

heuristics and other rules about the process that can be

coded in the ASP will be used by an inference engine to

perform deductive reasoning on the database information, and

to infer and store new information. 	 in this way, all

information will be used as fully as possible. Because an

internal database is used, expensive outside	 queries,

especially those involving extensive calculations in the CAD

database, need only be :one once. The internal database

also makes it easy to remove a part from consideration. All

references to it at the top level of the database are
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removed.	 This renders the part invisible, but makes other

information accessible to the remaining removal processes.

The ASP learns in the sense that all
	

of	 this

information is accumulated, so that as the disasEembly

proceeds, decisions	 can	 be	 made	 faster
	 and	 more

intelligently.

The model program uses the LISP property list feature

to	 stores	 and manipulate information in its internal

	

database. Global variables and part names have attached 	 r

	

values which store both the information directly requested	 y

from the CAD database and information deduced from those

queries. As an example, each part has associated with it a

bolt trajectory orientation, bolt hole positions, a position

within the assembly, and an orientation change from its

original coordinate system to the assembly coordinate

system. As parts are removed, infcrmation about them in the

database is either removed or made invisible to function
9

calls.

5.3 RESULTS

The model program has been successfully used on sample

objects in its restricted domain, producing correct and

efficient assembly sequences. The program has also

demonstrated the feasibility and significance of many of the

knowledge engineering techniques that will be incorporated
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into the ASP. First, the utilization of the flexible LISP

property list database allows the program to augment its

store of knowledge about the	 r.tilem -- no piece of

information is ever requested twice; second, through

various rules of inference written into the LISP code, the

information content from queries to the CAD database is

maximized, in an attempt to minimize the number of queries

necessary; third, the use of heuristics has been shown

significant in increasing the speed of the search; fourth,

the recursive nature of the problem has been naturally

modeled in LISP; finally, the translation from implicit to

explicit disassembly tree has been made, so that as the

program translates from CAD database to robot command

language, logical information inherent in the database is

made explicit in the commands, and dynamic quantities like

trajectories and changing orientations are added to the

static geometric description.

5.4 IMPLEMENTATION

The model LISP program; descriptions of its functions,

and a sample program run on the blocks model of Figure 8 are

here provided.
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5.4.1 LISP Code -

The LISP code which comprises the model program is

listed.

(defun assemble ()
(prog (port)

(print '(Welcome to the Automatic Assembler))
(terpri)
(get-parts)
(get-boundary)
(putprop 'direction 'top 'why)
(putprop 'orientation 1 (0 0 0) 'why)
(putprop 'bolt-number 0 'why)
(disassemble)
(terpri)
(print '(The assembly list may be found in file

assemlist))
(terpri)
(setq port (outfile '"assemlist.dat"))
(print '(base gripper (0 0 0) (0 0 0) (0 0 0)

(0 0 0)) port)
(terpri port)
(printout (chain-orientations (reverse-dis-list

(get 'dis-list 'why))) port]
(defun disassemble O

(coed ((null (get 'parts 'why)))
(t (remove-a-part) (disassemble)

(defun reverse-dis-list (dis-list)
(cond ((null dis-list) nil)

(t (cons (rdll (car dis-list)) (reverse-dis-list
(cdr dis-list)

(defun get-parts ()
(print '(What are the parts?))
(terpri)
(putprop 'parts (remove 'base (read)) 'why]

(defun get-boundary ()
(print
'(What is the dimension of the smallest enclosing

cube?))
(terpri)
(putprop 'boundary (read)

(defun printout (1st port)
(cond ((null 1st) nil)

(t (print (car 1st)
(printout (cdr 1st) port]
(defun chain-orientations (1st)

(col 1st 1 (0 0 01
(defun col (1st orient)

(cond ((null 1st) nil.)

'why]

pov - ) ( terpri port 1

R
i
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((eq (cadar lst) 'wrench)
(cons (car 1st) (col (cdr lst) orient)))

(t (cons (cot (reverse-orient orient) (car lst))
(col (cdr 1st) (caddar 1st]

(defun remove-a-part ()
(prog (p-list i-list)

(setq p-list (get 'possible-parts 'why))
(setq i-list (get 'impossible-pal's 'why))
(con. ((null p-list)

(setq p-list (putprop 'possible-parts
kt
	

(get-visible-parts i-list) 'why))))
(cond ((null p-list) (turn-part i-list)

(return)))
(putprop 'possible-parts (cdr p-list) 'why)
(rapl (car p-list]

(defun rdll (dis-elt)
(list (car dis-elt) (cadr dis-elt) (cadd y dis-elt)

(cadddr dis-elt) (cadddddr dis-elt)
(caddddr dis-elt)

(defun remove (atm lst)
(cond ((null 1st) nil)

((equal atm (car 1st)) (cdr 1st))
( t ( cons ( car lst) ( remove atm ( cdr 1st)

(defun rapl (part)
(prog (b-lis:)

(setq b-list (get part 'bolts))
(cond ((null b-list) (putprop part (setq b-list

(get-bolt-orientation part)) 'bolts)))
(cond ((correspond b-list (get 'direction 'why))

(rap2 part))
(t (putprop 'impossible-pa-°:s (cons part

(get 'impossible-parts 'why)) 'why]
(defun turn-part (i-list)

(prog (b-list dir)
(cond ((null i-list) (putprop

'direction (setq dir
(next-direction (get 'direction 'why)))

' why ` )
(t (setq b-li^ _ t (get ( car i-list) ' bolts')

(putprop 'direction (setq dir
;get-direction b-list)) 'why

(remprop 'impossible-parts 'why)
(putprop 'possible-parts (list

(car i-list)) 'why)))
(putprop 'orientation (compute-orientation dir)

'why)
(defun get-visible-parts (i-list)

(gvpl (remove-list i-list (get 'parts 'why]
(defun rap2 (part)

(prog (point dir removal-point answer)
(setq point (get part 'position))
(cond ((null point) (putprop part (setq point
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(get-position part)) 'position)))
(setq dir (get 'direction 'why))
(setq removal-point (compute-removal-point

point dir (get 'boundary 'why)))
(print (list 'Ignoring 'bolts 'can part

'be 'moved 'towards 'the dir))
(terpri)
(print (list 'from point 'to removal-point '?))
(terpri)
(setq answer (read))
(cond ((eq answer 'yes) (rap3 part point

removal-point))
(t (putprop 'possible-parts (snoc part

(get 'possible-parts 'why)) 'why]
(defun correspond (b-list dir)

(cond ((eq (get-direction b-list) dir]
(defun get-bolt-orientation (part)

(grog ( )
(print (list 'What 'is 'the 'orientation 'of

the
'bolts 'in part '?)) (terpri)

( return ( read]
(defun remove-list (a-list b-list)

(cond ((null a-list) b-list)
(t (remove-list (cdr a-list) (remove (car

a-list) b-list)
(defun gvpl (parts-list)

(prog (answer)
(cond ((null parts-list) (return nil))

(t (print (list 'Of 'the 'following
'parts: parts-list))

(terpri) (print (list 'which 'are
'visible 'from 'the

-90) 'top)
90) 'front)
-90) 'back)
0) 'left)
180) 'right]

(defun next-direction (dir)
(cond ((eq dir 'top) 'front)

((eq dir 'front) 'back)
((eq dir 'back) 'left)
((eq dir 'left) 'right)
((eq dir 'right) 'top]

(defun compute-orientation (dir)
(cond ((eq dir 'top) 1 (0 0 0))

(get 'direction 'why) '?)) (terpri)
(setq answer (read))))

(cond ((eq answer 'all) (return parts-list))
((eq answer 'none) (return nil))

(t (return answer]
(defun get-directio

(cond ((equal
((equal
((equal
((equal
((equal

n (b-list)
(caddr b-list
(cadr b-list)
(cadr b-list)
(cadr b-list)
(cadr b-list)
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((eq dir 'front) '(-90 0	 0))
((eq dir 'back)	 1 (90 0 0))
((eq dir 'left)	 1 (0 0 -90))
((eq dir 'right) 1 (0	 0 901

(defun rap3 (part point rem-point)
(remove-bolts (get-bolt-info
(rap4 part point rem-point)

(defun compute-removal-point (point
(cond ((eq dir 'top)

(list (car point)

part) part)

dir bound)

(add (cadr point) bound)
(caddr point)))

((eq dir 'front)
(list (car point) (cadr point)

(add (caddr point) bound)))
((eq dir 'back)

(list (car point) (cadr point)
(diff (caddr point) bound)))

((eq dir 'left)
(list (diff (car point) bound)

(cadr point) (caddr

((eq dir 'right)
(list (add (car point) bound)

(cadr point) (caddr point)
(defun get-position (part)

(prog ( )
(print (list

'What 'is 'the 'position 'of part '7))

( return ( read)
(atm 1st)
((null 1st) (list atm))
(t (cons (car 1st) (snoc atm (cdr 1st)
(part point rem-point)
(dir orient)
(setq dir (get 'direction 'why))
(setq orient ( get 'orientation 'why))
(putprop 'dis-list (cons (list part 'gripper

(add-orientation (get-orientation part)
(compute-orientation dir))
(transform-point point dir)
(transform-point rem-point dir))
(get 'dis-list 'why)) 'why)

(putprop 'parts (remove part (get 'parts 'why))
'why)

(putprop 'orientation 1 (0 0 0) 'why)
( terpri ) ( terpri )
(print ( append ' ( The part named)

(cons part ' ( has been removed))))
( terpri) ( terpri)

(defun snoc
(cond

orient
h

(defun remove-bolts (bolist part)
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(cond ((null bolist) nil)
(t (rbl (car bolist) part) (remove-bolts

(cdr ool!st) part)
(defun get-bolt-info (part)

(prog (bonum)
(print (list 'How 'many 'bolts 'hold part

'to 'the 'assembly '?)) (terpri)
(setq bonum (read))
(return (gbil bonum 0 part)

(defun add-orientation (orientl orient2)
(list (aol (car orientl) (car orient2))

(aol (cadr orientl) (cadr orient2))
(aol (caddr orientl) (caddr orient2)

(defun transform-point (point dir)
(cond ((eq dir 'top) point)

((eq dir 'front)
(list (car point) (caddr point)

(minus (cadr point))))
((eq dir 'back)

(list (car point)
(minus (caddr point)) (cadr

point)))
((eq dir 'left

(list (cadr point) (minus (car point))
(caddr point)))

((eq dir 'right)
(list (minus (cadr point)) (car point)

( caddr point)
(defun get-orientation (part)

(prog ()
(print (list 'What 'is 'the

'orientation 'of part 'M
(terpri)

(return (read)
(defun rbl (bolt part)

(prog (dir point)
(setq dir (get 'direction 'why))
(setq point (get bolt 'position))
(putprop 'dis-list (cons (list bolt 'wrench

'(0 0 0)
(add-orientation (get part 'bolts)
(compute-orientation dir))

(transform-point
point dir) (transform-point

(compute-removal-point point dir
(get bolt 'length)) dir))

(get 'dis-list 'why))
'why)
(defun gbil (bonum num part)

(cond ((zerop bonum) nil)
(t (cons (gbi2 (addl num) part)

(gbil (subl bonum) (audl num) part]
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numl num2)
(newnum)
(setq newnum (add numl num2))
(cond ((greaterp newnum 180)

(return (diff newnum 360)))
((lessp newnum -170)

(return (add newnum 360)))
(t (return newnum)

se-orient (orient)
(minus (car orient)) (minus (cadr orient))

(minus (cadd y orient)
(bonum part)
(boname pos len glonum)
lonum (addl (get 'bolt-number 'why)))
p 'bolt-number glonum 'why)
(print (list 'What 'is 'the 'position ' ,^f 'bolt

'number
bonum 'in part '?)) (terpri)

(setq pos (read))
(setq len (bolt length glonum) )
(setq boname (cpncat 'bolt glonum))
(putprop boname pos 'position)
(putprop boname len 'length)
(return boname]
orient dis-elt)
(car dis-elt) (cons (cadr dis-elt) (cons
(add-orientation
(caddr dis-elt) orient) (cdddr dis-elt]

.9 I
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5.4.2 Function Descriptions -

This section gives a brief description of each function

in the preceding model LISP implementation. Included for

each function is a list of the support functions that it

calls.

assemble -- sets up the database, gets part names and
boundary,  starts disassembly process, prints messages,
calls disassembly list reversing functions

calls -- disassemble, reverse-dis-list,	 get-parts,
printout, chain-orientations, get-boundary

disassemble -- calls the part removal function until the
parts list is empty

i	 calls -- remove-a-parta

reverse -dis-list -- recursively applies rdil to each element
of the disassembly list

calls	 rdll

get-parts -- queries the user for the list of parts and
reads it in, removing the part "base" if necessary, and
stores it in the database

calls -- remove

get-boundary -- asks for the dimension of the smallest
ending cube and stores it in the database

printout -- writes the assembly list to the file of robot
commands

chain-orientations -- calls col with the initial orientation

calls -- col

col -- performs the process of reversing the orientation
information as the disassembly list is made into the
assembly list

calls -- co2, reverse-orient
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remove-a-part -- attempts to remove the first pact in a list
"	 of po—sasTble parts; if it cannot, it turns the assembly

to a new face	 i

p calls -- rapl, turn-part, get-visible-pacts

rdll -- resequences a disassembly list element so tha* it
can go on to the assembly list

remove -- removes an atom from a list at its first occurence

ra 1 -- gets the removal trajectory direction for a part
from the orientation of its bolts, and either continues
to attempt to remove the part or puts it on the
impossible (from the current direction) list

calls -- rap2, correspond, get-bolt-orientation

turn-part -- if there is any impossible list, turn the
assembly so that the first part on that list can be
removed; otherwise, turn the assembly to a new
direction

calls	 --	 get-direction,	 next-direction,
compute-orientation

	

set-visible-parts -- removes the impossible parts from the 	 g
current part y list and calls gvpl on the remainder

calls -- remove-list, gvpl

rap2 -- gets the position of a part and computes its removal
point; then asks whether the required removal can be
made - if so, the removal process continues, if not,
the part is put on the back of the possible list

calls --• rap3, compute-removal-point, get-position,
snoc

correspond -- gets the direction from a bolt list and
compares it to a given direction

calls -- get-direction

et-bolt-orientation -- queries the user for the orientation
of the bolts in a particular part and reads the answer

remove-list -- removes all the elements of one list from a
second list

r.

j

^i

LW

calls -- remove
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gvpl -- asks which of a list of parts are visible from a
particular direction= accepts "all" and "none"

et-direction -- determines a direction from the orientation
of a bolt

next-direction -- given a direction, this returns the next
in t e sequence

compute-orientation -- given a direction, returns the
orientation triplet which, if applied to the object,
would realign the top to that direction

rap3 -- finds out about and removes the bolts from a part=
then removes the part

calls -- rap4, remove-bolts, get-bolt-info

com ute-removal- oint -- given a point, direction, and
boundary, finds a new point at which a part will have
been removed

get-position -- queries for the position of a part

snoc -- puts an element on the enu of a list

rap4 -- does the actual removal of a part by making up a
disassembly list element, removing the part from the
database, and informing the user

calls	 --	 add-orientation,	 transform-point,
get-orientation, remove, compute-orientation

remove-bolts -- recursively calls rbl on a list of bolts

calls -- rbl

get-bolt-info •„ asks for the number of bolts holding a part

calls -- gbil

add-orientation -- given two orientation triplets, calls aol
on each member of the triplet

calls -- aol

transform-point -- translates the numbers in a location
tr plet to reflect a change in orientation of the
object

get-orientation -- queries for the orientation triplet of a
part
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rbl -- removes a bolt by adding an element to 	 the
disassembly list

calls	 --	 add-orientation,	 transform-point,
compute-removal-point, compute-orientation

gbil -- calls gb12 for the number of bolts in a part

calls -- gbi2

aol -- adds two orientation angles together= 	 reduces if
greater than 180 or less than -170

reverse-orient -- reverses an orientation by simply negating
ear o the three angles in the triplet

gbi2 -- asks for the position of a bolt in a part and calls
the FORTRAN program "bolt length" to get the length of
the bolt from a datrbase

cot -- makes a now disassembly list element out of an old
element and an oriel-•ation



T

5.4.3 Sample Program Run -

This sdction gives a sample output from the model LISP

implementation. An object composed of five blocks and held

together with seven bolts of varying lengths is verbally

described to the pr4ram. The object is depicted in Figure

8. The following is output:

(base gripper (0 0 0) (0 0 0) (0 0 0) (0 0 0))
(inblock gripper (0 0 90) (90 90 90) (-3 13 3) (-3 4 3))
(bolt? wrench (0 0 0) (0 180 90) (-2 6 2) (-2 5 2))
(sideblock gripper (0 0 180) (90 0 -90) (3 9 4) (3 0 4))
(bolt6 wrench (0 0 0) (90 0 -90) (2 	 5) (2 -4 5))
( bolt5 wrench (0 0 0) (90 0 -90) (2 1 5) (2 -1 5))
(topblock gripper (0 0 90) (0 90 0) (3 14 4) (3 5 4))
( bolt4 wrench (0 0 0) (0 0 -90) (4 8 3) (4 6 3))
(bolt3 wrench (0 0 0) (0 0 -90) (4 8 1) (4 6 1))
(overhang g ripper (0 0 0) (90 90 0) (0 17 4) (0 8 4))
(bolt2 wrench (0 0 0) (0 0 -90) (1 12 3) (1 8 3))
(boltl wrench (0 0 0) (0 0 -90) (1 12 1) (1 8 1))

Each line in this output contains the information

ne- ssary for a hypothetical robot to add the described part

to the assembly.	 Words describe the parts and tools

employed, and numerical triplets describe

positions. The numbers in the orientation

angular rotations ,n degrees about the

respectively.	 Numbers in the position

poi 's in three-space. A three-axis coo

det:. • ad for the assembly as a whole and for

is located in the parts rack. one point in

one in each part is set to be the origin of

orientations and

triplets define

X, Y, and Z axes

triplets define

rdinate system is

each part as it

the assembly and

the associated

r

coordinate system.	 There are six elements in each output
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line, which have the following significance:

1. Name of the part.

2. Name of the tool to be used.

3. Orientation change of the assembly

for addition of the part.

4. Orientation change of the part.

5. Starting position of the part for addition.

6. Ending (assembl.A) position of the part.

As an example, consider the following output line:

(block gripper ( 0 0 90) (90 0 90) ( 3 4 6) (3 4 1))

This would cause the robot to perform the 	 following

functions:	 rotate the entire assembly ninety degrees about

the Z axis; take the part called 'block' with the tool

called 'gripper' from the parts rack; rotate the part

ninety degrees about both the X and Z axes; move the origin

point, of the part to the point ( 3 4 6) in the assembly

caoi•dinate system; move the origin paint of the part to the

point ( 3 4 1) in the assembly coordinate system, thus adding

the part to the assembly.

^i
i

7
yY.

77



6.0 CONCLUSIONS AND FUTURE WORK

The development of robotic hardware and sequence

planning software is an effort at Goddard Space Flight

Center to provide robotic assistance in the design, assembly

and servicing of NASA hardware for both space and

ground-based applications. To this enc the Intelligent End

Effector ( IEE), a robot equipped with compliance and force

feedback for precision assembly, and knowledge engineering

and robot control software techniques have been combined

with an existing Computer -Aided Design ( CAD) facility in

synergism of expertise, with promising results.

Tha IEE, with its compliance, force feedback, and

six-degree-of-freedom capabilities, has been built and

proved capable of functioning in the engineering environment

for which it was designed. A significant body of software9	 Y

exists for cont .ollin ,, the IEE, for positioning the movable

platforms,	 end	 for	 reading	 and	 interpreting	 its

force-feedback sensors. Iii addition, software has been

provided for future enhancements to the robot, including

controlling programs for a gripper and a wrist mechanism.

Three problems were chosen for the demonstration of the

IEE and for the development of higher - level robot control

software: inserting a peg in a hole, mating a 25 pin D-type

connector, and screwing a bolt into a threaded hole.

Success was achieved in each case, even though considerable

78	
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uncertainty	 in position and orientation of parts was

allowed, requiring the robot's acquisition of knowledge

about the operating environment. The importance of

compliance and force feedback in precision assembly was

proved, and the design and use of a bolt spinner as one of

several proposed tools was accomplished.

An important part of this project is the use of

knowledge engineering techniques to address the problem of

translating the implicit construction sequence inbedded in

the information available about an object, the robot, and

the process into an explicit sequence of robot commands. A

system is under development to do this, using the technique

of reverse heuristic search and the CAD geometric database

description of the hardware under consideration. A model

program was written to demonstrate and test significant

features of the system, including knowledge acquisition, use

of heuristics like part visibility and bolt hole position,

dynamic databases, and recursive search.

Future wo:-k on automated assembly system will focus on

two principal areas: the completion of the Automated

Sequence Planner (ASP) program, and an expansion of the

robot control software, with the inclusion of artificial

intelligence techniques.
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The ASP program will be implemented in the language

Prolog, which allows a natural modeling of :nary of the
s>

aspects of the problem. The IGES format CAD database of a

piece of hardware will be input to the program, which will

automatically generate a sequence of robot 	 mover-a	 to

construct the object. Additional information about the

characteristics of the robot and tools avai l able will also

be input to the program. Completion of the program will be

the result of significant work in three-dimensional space

planning and logical inference on the available data.

s
Once the robot move sequence has been generated, it

will be provided to a second Prolog program, which will

represent an expansion of current robot control software

such as the connector mating program. This new program will

be able to receive and intelligently interpret the

force-feedback information produced as assembly occurs.

Eventually, this program will be combined with the ASP in a

system that will incorporate cooperative error analysis and

contingency handling, with the possibility of designing

dynamic	 robot	 move	 sequences	 based	 on operational
i

information.
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