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Abstract

This paper describes the development of a nonlinear dynamic model for
large oscillations of a robotic manipulator arm about a single joint.
Optimization routines are formulated and implemented for the identification of
electrical and physical parameters from dynamic data taken from an industrial
robot arm. Special attention is given to the role of sensitivity in the
formulation of robust models of this motion. The importance of actuator
effects in the reduction of sensitivity is established and used to develop an

electro-mechanical model of the manipulator system.
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1. Introduction

The purpose of this research 1s to develop and 1investigate methods for
identifying parameters in a dynamic model of a robotic manipulator.
Identification routines of this type are important 1in the construction of
control algorithms for manipulator systems [4]. Because the parameter
1dentification must be based on input and output data from an assembled
manipulator, which acts wunder gravity and has possibly complicated joint
friction, the dynamic model 1s a nonlinear differential equation, which must
be solved numerically.

The approach used to date is to employ a nonlinear search routine to
minimize a quadratic fit—-to—data criterion formed using the experimental data
and the solution to the model equation. This method has been applied to a
Unimation 600 Puma arm, with data obtained by F. W. Harrison 1in the
Intelligent Systems Robotics Laboratory at the NASA Langley Research Center.

Section 2 describes the mathematical model of the manipulator arm and the
parameters to be identified. Section 3 describes the parameter 1dentification
scheme and the computer algorithms used. In Section 4, the experiment is
discussed in more detail, along with some preliminary data reduction and
analysis of the relationship between angular velocity and torque. Section 5
presents an analysis of the sensitivity of the manipulator arm model to
perturbations of uncertain parameters and i1initial conditions. We also discuss
a method for reducing this sensitivity which 1n this application corresponds
to the inclusion of a back electromotive force in the arm model. In Section 6
we discuss the results of the parameter estimation routines for several models

of robot arm friction.



2. Manipulator Model

To minimize the number of unknown parameters 1in each set of data, each
experiment was performed with all but one manipulator joint locked. For each
experiment, then, the model of the manipulator 1s a rigid arm that pivots
about the one moving joint at a point O, Thus, the arm in the model for a
given experiment consists of several wmanipulator 1links, 1including the end

effector, constrained to move as a rigid body. The equation of motion is

(2.1) Jo - mgrsin 6 + £(8) = u(t)

where 6 1is the angle between the arm and the upward vertical and u 1is the
control torque applied to the arm by the electric motor (actuator) at the
joint in question. The damping term £(8) represents friction in both the
joint and the motor; J 1s the moment of 1inertia about the appropriate joint,
m 1is the mass of the arm, g 1s the acceleration of gravity, and r 1is the
distance from O to the arm”s center of mass.

The angle between the arm and the vertical was measured at sampling times
t; and the sampling rate was 30 Hertz, so that

1

(2.2) t =t - ti = 1/30 sec.

We will denote this measured angle (i.e., the data) by y(t;) to distinguish
1t from the solution to the model equation (2.1).

The basic idea of the parameter identification scheme 1s to find
parameters for (2.l1) so that the solution to this differential equation

matches the measured angle as closely as possible at the sampling times.



Because we cannot identify all of the parameters in (2.1) from the experiment
described, we must define a minimal set of parameters for this model.

Therefore, we rewrite (2.1) as
(2.3) - o sin 8 + f(cl, Cys 8) = Bu(t)

where o = mgr/J, B = 1/J, and we have parameterized the the damping term
£(8) in (2.1) as f(cl’CZ’é)' The damping term £(§) may include various
forms of dissipation: linear damping, nonlinear damping, and Coulomb
friction. Our best results have come with (sometimes piecewise) linear damping
and quadratic damping in combination with a linear damping term resulting from
back electromotive force.

We will refer to the set of parameters in (2.3) by the parameter vector

(2.4) q=[aB cpcy e .].

3. Parameter Identification
An experiment performed on a time interval [tg,tg] yields data u(ty)

and y(t;), L, = tg + Egseces € With the known command torque u(t)

tO’ 0 f'
and a set of trial parameters, we solve (2.3) on the interval [to,tf] and

form the fit-to—-data criterion
2
(3.1) J(q) =] [8Ce) - y(e)]%

The parameter identification then consists of finding the parameter vector q



to minimize J(q). Usually, we take the initial time tO > 2 sec. because we
suspect some error in the data near the beginning of the experiment due to
transients 1in electronics. Therefore, in some cases we know that the initial
angular velocity 1s zero, but in most cases we must estimate it using finite
differences obtained from the position measurement,

To solve (2.3), we use a fourth-order Runge—-Kutta algorithm with variable
step size [3]. We tried using the numerical 1integrators DGEAR and DVERK in
the IMSL library, but both of these routines often hung up-—i.e., the step
size was reduced to zero—where the manipulator arm turned. This was
especially troublesome for models with piecewise continuous damping and
Coulomb friction. The step-size control in our final Runge—-Kutta routine does
not allow the step size to fall below a specified minimum.

For minimizing J(q) we used the subroutine ZXSSQ from the IMSL library,
which 1s a Levenberg-Marquardt algorithm {[2] that approximates gradients by
finite differences. It also estimates the Hessian. Hence we assume certain

smoothness and local convexity of J(q) and the performance of the algorithm

indicates that these assumptions are valid.

4. Data Collection and Analysis

Experimental data was collected by F. W. Harrison 1in the Intelligent
Systems Robotics Laboratory at NASA Langley Research Center. The subject of
the experiments was a UNIMATE PUMA industrial robot with six degrees of
freedom. A schematic [l] of the robot arm with rotational joints 1s shown in
Figure 1. The experiments described below were performed by rotating only the

shoulder (joint 2) with all other joints locked in a collinear position.



a. Static Experiment

The purpose of this experiment was to establish a relationship between the
current delivered to joint 2 and the torque exerted on the robot arm. The arm
was placed in a horizontal position and the force exerted by the arm at a
fixed distance from the joint was measured at a sequence of motor current
levels. The results of this experiment are shown in Figure 2. Because of the
linear relationship of these quantities, it was decided to use the measured
motor current data as the torque input in our dynamic models of the arm

motion.

b. Dynamic Experiment

The purpose of this experiment was to gather input and output data for the
dynamic model described in Section 2. The arm was initialized in a vertical,
upright position and then commanded to rotate about joint 2 through an angle
of approximately 90 degrees in both directions. During this oscillation, 512
measurements of the joint angle in radians and the motor current as measured
by the voltage drop across a known resistance were taken at a frequency of 30
Hertz. These input and output data are illustrated in Figures 3 and 4,
respectively. The angular velocity of the robot arm, calculated by backward

differences, is shown in Figure 5.

c. Command Torque Synthesis

This data analysis 1is designed to recover the square-wave commanded
voltage across the motor terminals. If only back electromotive force is
included in the motor model, then this commanded voltage is the sum of the
voltage drop across the motor resistance (Figure 3) and the angular velocity

(Figure 5) multiplied by the back emf constant. Figure 6 shows the results of



this computation for a back emf constant of 1.5, estimated by trial-and-error.
In Section 5 a square-wave approximation of Figure 6 1s used as input to an

alternate model of the robotic system which includes back emf effects.

5. Sensitivity Analysis
In this section we discuss the sensitivity of the solution of the

nonlinear model

& —a sin 6 + f(cl, Cys 8) = Bu(t)

(5.1) 8(0) =96

0
8(0)

0]

with respect to small perturbations of the 1initial velocity and the

“0
unknown friction parameter c;.

In some applications of parameter estimation, moderately high parameter
sensitivity 1s advantageous in that it allows the unknown parameters to be
estimated with a greater degree of certainty for a given level of noise 1in the
output data. However, in parameter estimation for simulation, a sensitive
model will yield poor simulations when the unknown parameters are subjected to
slight variations due to modeling errors or external factors. For this reason
1t 1s preferable to have a mathematical model which 1s relatively stable with
respect to perturbations of the parameters.

The same reasoning applies to perturbations of 1initial conditions. In

this application only the initial position can be measured directly for a

selected subinterval of the data. The angular velocity, computed by a finite



difference, 1s subject to considerable error. Therefore, it 1s desirable to
have a simulation model which is not subject to high sensitivity with respect
to this 1initial condition,

Unfortunately, numerical testing indicates a substantial degree of
sensitivity oun both parameters and initial conditions for the model (5.1) with
measured motor current as 1nput. Figure 7 indicates the effect on the output
of a small perturbation of the friction coefficient ¢, and Figure 8 shows a

similar comparison for a small perturbation of the initial velocity In

Wy
fact this figure indicates an almost chaotic dependence of this model on the
initial angular velocity.

We therefore undertake a mathematical method for reducing this sensitivity
which 1n this application has physical implications as well. The basic 1idea

1s to 1ncrease the damping i1n the system by adding a term of the form gkd to

both sides of the differential equation. Setting v{(t) = u(t) + kb (t) yields
(5.2) 6 — o sin 6 + [f(cl’CZ’é) + Bké] = gv(t)

which 1s of the same form as (5.1) except that the damping term has been
increased at the expense of changing the input function. If, in the parameter
estimation procedure, the new input v(t) can be either measured directly or
synthesized from data, then equation (5.2) is a model which may possess
greater stability with respect to 1initial conditions and parameter values.
This factor tends to yield numerical solutions for the state which are more
reliable over long time 1ntervals and therefore lead to more robust parameter

estimates.



A numerical test of this procedure 1s shown 1in Figures 9 and 10. These
figures show the output of a model based on (5.2)., The input v 1s the
synthesized commanded motor terminal voltage (Figure 6). The damping
parameters are greater because they include back emf effects. The numerical
results show significantly lower sensitivity on friction parameters (Figure 9)
and 1aitial angular velocity (Figure 10).

The physical implications of the mathematical procedure for this system
have already been indicated. By using the commanded motor terminal voltage as
input rather than the torque delivered to the joint, one arrives at a more
stable model of the robot dynamics. In effect, the model which i1ncludes back
emf takes advantage of a natural damping in the electro—mechanical system,
One can obtain good fit-to—data over short time 1intervals for the mechanical

system alone, but the stability provided by this effect is lost.

6. Numerical Results

The iterative parameter estimation routine described in Section 3 was
applied to the model (5.1) on the time interval [1.67, 15.0]. The results are
given 1n Table 1. Three alternative friction models were employed: 1linear

friction given by

(6.1) f(x) = cx,

quadratic friction of the form

(6.2) f(x) = c,x + c2x|x|,



and piecewise linear, direction-dependent friction model of the form

(6.3) f(x) =

As shown in Table 1, the cost function (3.1) 1s quite large for all three
friction models and the 1iterative method does not converge.

The results of the same procedure for the desensitized model (5.2) with
input given in Figure 6 are shown in Table 2, The friction values are larger
because they include the effect of back emf. The procedure shows convergence
to relatively low cost values for each of the three friction models. The
direction—dependent friction model (6.3) shows the most rapid convergence to
the lowest cost value. While the quadratic friction model (6.2) eventually
obtains a low cost, it converges much more slowly and alters the physical
parameters a and B to values which are quite different from those obtained
by models (6.1) and (6.3). The solid graph in Figure 10 show the output of
the most accurate model in Table 2, This graph is almost 1indistinguishable
over this time interval from the graph of the measured robot arm motion

(Figure 4).

7. Conclusion

Our experience 1indicates the 1importance of actuator effects 1in the
development of robust dynamic models for the motion of a robotic manipulator
arm. The 1inclusion of natural damping due to back emf effects improved the

performance of both the numerical integrator for solving the nonlinear
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equation of motion and the numerical optimizer for estimating parameters.
Among the friction models we studied, the model allowing direction~dependent
damping coefficients was the most successful. In continuing research, we plan
to combine this model with a first-order dynamic model of the actuator to

study more complex wmotions of the robotic manipulator arm.
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Numerical Results for Model (5.1).

Linear friction model (6.1)

iterate
0

1
2
3
4
5

a
13.39
16.33
15.51
11.72
13.18
14,14

Quadratic friction model

lterate
0
1
2
3

a
13.39
31.55
26,72

180.4

21.00
24.07
22.64
13.64
11.58
10.31

(6.2)

21.00

38.38

23.31
130.5

Piecewise linear friction model (6.3)

Lterate
0

1
2
3
4
5
6

a
12.05
11.23
10.65
10.94
10.40
11.28
12.26

8
21.42

20.73
21.26
21.40
20,98
20.66
19.70

€1
1.17
3.13
5.47

27.2

c1
2.59
3.49
4,22
4.08
4.09
3.64
1.65

1.17
1.08
1.12
1.18
3.23
4.03

c2
0.00
0.55
0.58
2.96

)
4.87
4.67
5.50
8.79
1.86
4.07
6.52

cost
82300,
65600,
137000.
6110,
5410,
5240,

cost
82300,
152000,
103000,
56800,

cost
450,
848,
720.
734,
25000,
15300,
14400,
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Table 2. Numerical Results for Model (5.2).

Linear friction model (6.1)

iterate o B c cost
0 12.00 20,00 35,00 301.
1 10,91 20.99 34.04 25.2
2 11,09 21,44 33.55 5.14
3 13.25 21.41 33.42 2.85
4 13,57 21.44 33.34 2,60
5 13.39 21.01 32,67 2,59

Quadratic friction model (6.2)

iterate o B cy co cost
0 12.00 20,00 35.00 0.00 301.
1 11.01 20.85 34.19 -0.72 14.8
4 14,19 21.93 32.87 1.08 2,26
7 18.74 25,20 27.19 10.59 0.89
14 20,23 26,17 24,07 14,81 0.66

Piecewise linear friction model (6.3)

iterate o B I co cost
0 12.00 20,00 35.00 35.00 301.
1 11,27 20.70 34.30 35,70 5.00
2 11.31 20.91 34,20 35.68 0.21
3 11,81 21,09 34,21 35.49 0.116
4 12,05 21,42 34,72 36.00 0.112
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Figure 1. Robot arm with rotational jolnts [1].
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Figure 7. Parameter sensitivity for model (5.1) with friction model (6.3).

Common parameters are o = 12,74, 8 = 21.209, and ¢y = 4.301. The
perturbed parameter is ¢y with ¢; = 2,296 1n the solid graph and

cy = 2.306 in the dotted graph.



_21..

14

o
r
>

o o o
] | |

S
T

Angular Position (radians)

2+
O
-2 pr——
_4 | | | 1 |
0 2 4 6 8 10 12 14 16
Time (sec)

Figure 8, Initial angular velocity sensitivity for model (5.1) with friction
model (6.3). Parameters are a = 12.74, B = 21,209, c; = 2.296,
and ¢y = 4.301. The angular velocity is wy = 0.63 1in the solid

= 0,64 1in the dotted graph.
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Figure 9. Parameter sensitivity for model (5.2) with friction model (6.3).

Common parameters are o = 12,05, 8 = 21.42, and ¢y = 36.00. The
perturbed parameter is ¢y with c¢; = 34.72 in the solid graph and

cp = 33.72 in the dotted graph.
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Figure 10, Initial angular velocity sensitivity for model (5.2) with friction
model (6.3). Parameters are o = 12,05, B = 21.42, and
¢y = 34.72, and ¢y = 36.00. The 1nitial angular velocity 1s

Wy = 0.76 1n the solid graph and wy = 1.76 in the dotted graph.
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