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FINITE ELEMENT OR GALERKIN TYPE SEMIDISCRETE SCHEMES
Kanat Durgun *
ABSTRACT

L]

*

A finite element or Galerkin type semidiscrete method is proposed for numerical
selution of a linear hyperbolic partial differential equation. The question of
stability is reduced to the stability of a system of ordinary differential
equations for which Dahlquist theory applies.

We also present some results of separating the part of numerical solution which
causes the spurious oscillation near shock-like response of semidiscrete scheme
te a step function initial condition. In general all methods produce such
oscillatory overshoots on either side of shocks. This overshoot pathology,
which displays 2 behaviour similar to Gibb's »henomena of Fourier series, is
explained on the basis of dispersion of separated Fourier components which
relies on linearized theory to be satisfactory. We present expository results,

polished formal proofs will appear elsewhere.

INTRODUCTION

Our model of one and two dimensional linear hypertolic equations are
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Introducing c;=_.J‘:"T b, C, =CCs ol and C\,:CSm& equation { 2) can be written as

(2') EU+{£¢d +cSmu3U o
?Jx, 5

Galerkin or finite element semidiscretization [1], [2], T3], [4] ,seeks en

approximate solution for equation ( 2') in the form

(3 Ulcytd= 2

m,n

S b8 U 6

where
‘ X=X =
mMn \O Otherwise.
We obtain a system of ordinary differential equations by requiring that the
residual ReY U, cSa.fde be orthogonal to the basis functions i.e
3%{: »c&sd%+c d’%‘i g ‘ym,‘_
, R>=0. Candidates for Lgmare too many producing algorithms with

increasing complexity proportional with their smoothness. We only present bilinear

finite elemerts on squares. The orthogonality reﬁuirement yields, say in one

dimensional case

(9) &K u®=L, ue

where Kkand L., are discrete Toeplitz operators with eigenvectors {e "} .

If\(his an identity operator then scheme is explicit, otherwise implicit. If

the real part of the corresponding eigenvalue Aw) is zero then the scheme is L
conservative [6] , [7] . The quantity

(6) C(w)e - 3_"_._10'1.&“13

1s the velocity of propagation of numerical solutions in comparison with exact
propagation velocity C in ( 1). The quotient Cw)ic or difference Eiuﬂ-c in
an appropriate norm is the measure of spurious oscillatinons and dispersions 1in
numerical solutions. Purely mathematical treatment without the effects of
discretization {.e nonnumerical can be found in {8].

In the next sections, to study the response of semidiscrete scheme to sharp
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gradient changes we simulate a shock by a step function initfal condition in ( 1),
here we present an heuristic argument for the cause of parasitic oscillations

around a point of discontinuity.

Consider the weighted Galerkin semidiscretization

(7) ;.Lai“"-\—(ﬂ d)““:"-\-;‘_ éd‘_‘?rz—icn (W= Yam)

of our model equation ( 1), where ote(o,1] is a parameter. Note that «=0 corresponds

to the equation

du,, _ o u
( 8) §E~=centered difference approx?matwn to (-c?x.u‘)

Since for any n , in equation ( 7), indices take three successive integer

values we may relabel them for n even as w, and for n odd as v, we then

obtain respectively the following systems

d
o=~ & (V- Vo)
(9)
S __c (.
ot =— 5o ( TN

for ol.0,and

L( o+ )y oy L (v, v,
(10) at 2h v

<§v JUnt |, dwans
(- d) +I(:t +:€)='"’(“ b

These equations are consistent approximations for the following systems

“Du -

('”) 5€ ’Z)C
- U

: 2t - C’Zx.

’B Cau. oV
(]Z) L +L‘\ 0(\ '3)(

(o e

Eliminating u or ¥ in (11) we obtain respectively

O
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Showing that in a doubly spaced grid wave equation 1s satisfied. This indicates
that finite differencing is consistent with (13) rather than ( 1). Also adding
the equationc in (11}

Wiy -2 (W
(14) %‘F(T)‘ C'ax,(z)
we see that discretization 1s consistent for the avarage of the solutions at
two successive grid points. However subtracting equations in (11) we obtain

2_. -A)= 2 w-v

(15) %(u. )= € 2 (w-v)
This shows that due to discretization difference, however small, of two successive
solutions propagates as an error wave in the discrete medium in the opposite
direction.

For (12), adding we obtain
o, wav Wy
Do) H(4Y)--cZ

= N7
© and subtracting we find
{
c = ‘(’ - Q -
; (17) (\) w) = == ’bx.(v w) 23 7

which is the cause of oscillations in general.

GALERKIN SEMIDISCRETIZATION FOR EQUATION (2')

On the square with vertices (x,_ .,y ), (xmp‘ﬂw ) (X M., ) and
x ) we take basis functions to be
-1 ) %\‘\-\
Loy £XE Xy,
Y-Xom
i + o for S - m_g,gﬁ{x~x0
Ao dde Un€d € Yna
h L= (e € XL L ‘3’3“\
(]8) q(}.,é)z \ - x—;—;}.—."\ for Xmé& X éxmﬂ
ma 3“-L1-1m3£353h+(x-xg\
L
A+ Ldn for ERRRY R
h Loy (Y £ & X m (Y- Y
L0 otherwise
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These are pyramids whose bases is a square with vertices are given above, centered

at (Jcnl,gn) with unit height. Forming the inner products with the residual we
obtain

du
(19) Z{% dtt C g ;Péz*cdu “w \M) 0 V mn

Only nonvan1sh1ng terms come for the values of indices h m-{, m msiand Len-yamn,
Thus equat1on (19) reduces to

20 A“m\fn-l ’9\? KV N '6\9"““‘@ =0
“Z_‘ m-'k t\—Q 3¢ +Cx_ m\tn- “":'é‘"‘"‘" + Y m- 1\,-2. > >

Computat1on of 1nner products as double integrals are straightforward but

tedious. Rep]acing the values of various inteqrals in equation (20), we obtain

(2] ) 36:: dt [u"“l a-1 + 4 u"M e \+ u’mﬂ n-\ +4“m yn + \G“ +A tkwu\ n.+“'m \n+\+4“ mu '\h-\
=-2§;\,‘:‘9um"l“‘rd3 LL'“J""*\FP““"‘)“'\' dxu'm")“+ux.:“m§\)w_t"wﬁ ' “\-*-Q(BLLM n+1+ Gu‘mn,‘\ﬂ‘\

= 2Cy

373

oystem of equat1ons (21) can be written in matrix notation on a rectangle [ O,(M+1)h}

where 8- C"_"'fj P.-C’_*__Ci’ oc.-l;"‘ and

-
X [0,(N+1)h  in various ways. Let Uk ‘-"Lw G %] R kz\,)_)._ N . Iy be the
NxN identity matrix, and LN=[ QU NxN where

L. J' { J"—l‘.-l

‘1 1'
0 otherwise,

o

superscript T indicates transposition. Then

' 3@.-_\*; ‘4(‘-“'41 *Ln)U +(Ly+4T,+L U l"“" X L LU, +
(ot I+ 0L, ) - m\_vo-wﬁxz-(e\_N+o¢xlN+P\_N)U°3 -
5 Fel(Lar AT EOUo + 8r 4y

(LA T L) Ut 4L AT, L) (AT ) U e

(22)

-

{
36 d
'\T\. (OL o L v g ALY ", oy - N U (e, L -w::L -&
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e (L +AT +LT)U, +4(L+4T + ]

~or l(eL o T+ LU, o« (~Lr U, \

V-\-w A+

+(ply+ o, 1,46 L) Uy 4 % gﬂ_(‘—,ﬁ A1 ‘-7430“*(*5,«#43“*

where we introduced vectors in IRN

=‘_-6u.£°,0) R’

\Uk: [-d.j ukc)o).

={cku,k°) O, o
gk=[“h>o
We let

- T
e \-Nﬁ--‘ﬂ.’ﬁ\_N -

FN = (“ LN+0£I.IN+ BLTN =

,0. 8u

-
9 "(ukk,uul , k=

%y ‘*k,mtf

ﬁ,u+\}

0t i}
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36 dt -7
o Lk
~ ! T, AT, LUy
23 ’
() [ : "LL T [oewex, ]
O 0 V+W;_-1:3
A -
4 s
O 0
U

where

rﬁziﬁo"%x*gw'ﬁﬁﬁf"iﬁ' e

Here entries of matrices are NXN matrices and entries of vectors are N vectors.

@N..

J
M

Lv +w ax
Mmee M MK

rOLN PN
..e’: )

3 Wiy \rﬁm\f\

Then the system (22) in vector and block tridiagonal matrix notation becomes

O 1

ke

e e e

iy B e

Note that for time independent boundary conditions the last term in this equation

vanishes.

or M dimensional compound vectors i.e vectors whose components are N dimensional

vectors,
” - -
U(
U"
F S

UMJ

Further simplification is obtained by introducing KM dimensional vectors

» M=

v,

i

)W:

rw'

, Ks

hWMJ

-

- X Mgy

-~

g
o

?N M-

i ——

= - [Z-f\,-&W‘VX J

and the square matrices of order NM, 6& for the matrix on the left and ® for

5 the matrix on the right hand side of equation (23).

The linear system (22) or equivalently (23) can be written as

(24) —‘—,;

[P

4 AL

U+T

Do
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with the initfal condition 11'\1 when t=0,

This system has a unique solution for 311
‘
FTH

W O

. Letting A= A +A_ with

?'o T“
T 0o O
N .
A‘=4' 3 A= ) o

2

. O . '-,Tk
L- Tnd b T” OJ
direct multiplication shows that A] and AZ commute, this is a direct con-

sequence of both being Teeplitz matrices.  therefore they have the same eigervectors.

Efgenvalues of A1, as easily verified, are

= kO 4,2,.. - NM,
lk 6(2‘*%NM-\-‘) 4 k‘ 3%
with corresponding eigeavectors
-
=l Qb NMkt
><s'~_‘-g"“'m~«+\ ' " NMa 1

Let f\k be an efgenvalue of Az associated witk the eigenvector Xk’ 'since A1~_- A:

we have
P'k< Xk ’Xi:> =<}_‘\>(w><k> =<A1XR»X“> = <XL ) A.:.X\? =<Xg‘; AK> = F\<)<K‘X\>

and Xd:o implies h: F“ $0 r_keR . Gerschgorin theorem applied to A2 ylelds
h‘*f’o , hence A
similar to a diagoial matrix §) with efgenvalues of A , which are the sum of the

is nonsingular [9]. It is known that A is unitarily

efgenvalues of A1 and AZ’ are the diagonal entries. This similarit, transfor-
mation is performed by taking 53 ‘3( 4 ;l i.e columns of S are

efgenvectors of A . Letting Su. W} and multiplying (24) by 5 the initial

value problem reduces to
25) SZdt[S.\ASOJ] z}"ér
S'U,=U
" stce S'= S

Note that one does not ne:d to compute S

§'8SU+SC

For the solution of (25) one step methnds such as Runge-Kutta method can be used.

Also a large number of multistep methods, implicit or explicit in time (predictocs-
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corrector), o.ce a starting procedure is realized by a one step method, are
available, and their stability theory is well understood and detailed treatment
can be found in {101 , [11].
To show that the finite differencing scheme is conservative, we must show that
the eigenvalues Alw o)of Galerkin difference operators in (21) belonging to
efgenvectors expy [w 1m'm,lé 1, are purely imaginary where w,=wWnx and
u}a:wS‘.mx . Substituting u’mh(ﬂ'qwu)ex""[“’x.x’m*wéén] in (21) after some
manipulation yields for the left hand side

. ifw, x AR, (D) ~ihw U
L-H-S=5‘€&'me ot J“ P S U PP SUTAS -l

w

Hw tmrwoy3n)

4 e hex-w) 4 the "h (urig) {24+ Cosich \[2+ Coswé}‘t-.\ 2

+4e I+ €
and for the right hand side
(o X 4w NGO IW) stk (wA0y) h
R.H. S"'_h‘l cne[u -t 5‘*3[ (e ¥ e " 5)* ST e

- w - —\ W= ‘(‘J m n

3:.5; d)C

~thw

[c Sawh (2+cow g+ Gy Sinfa 2+ Cnw \q\

3
Hence
{
& /)= G0 Alws)
where
(26) l(w’q);—*: “C Ca'.\q' bbf\wx»\ 5 ‘ ~- -).A d-. gl» i\\' 5 « - 1
"UX-“' -3‘:\- % Cﬂd}xs'\p ""“4“’ 3- + 5— L(?Sk)ah

which is imaginary. Setting mé"(u;'&\,-.}mﬁ.(w‘d.) we find the numerical solution
W B) = 0 (0) expi[wyXmt gy -w Tt ] -

The discrepancy between C(wal) and C or more precisely the order of zero of

E‘:Iw,«)-c about wh=0 is the the order of accuracy of the semidiscrete method.

To show that this method is of order four, we expand E(w,eL) in a Taylor series

and a straightforward computation shows that

(27) T, 8)~-C =& \‘L:é:r&“\ i+ G (o] oy W)

5-9
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ERROR ESTIMATES FOR PRE AND POST OSCILLATIONS ABOUT DISCONTINUITIES

To justify the heuristic arqument nresented earlier we may assume that this
spurious oscillations are rapresented by small perturbations in w , and replace
W by w+t 1in trial solutions

(28) wxpy=a, cwralx-Cw+ort)

Expanding E(w-rg) in a Taylor series abcut €~0 and retaining only the
linear terms we obtain

Clw+e) = Ce)+ £ C (w)
Since w>g . terms of order £ can be neglected and introducing group velocity

oY B
(29) §w)= $~ (T
(28) can be written as

v (- T e (% — gl
(30) u(z.,k);o,ae"“@—ccw\t) eeLx quwdt)

Straightforward computation shows that ejgenvalues of {7) corresponding to

x
eigenvectors {QN) “\ , are

1(.“)‘)'-'-'- - ;'c' s‘\.l\h)\‘\-
oA Coswh

and therefore

ES(U§)=-- C Siawl

t-olt+olloswn  wh

Using (29), g\uJ) is easily computed as

A+ (V=) Coson
(i ~ X+ oL Coswn)™
due to the discretization of the domain of the equation, the group velocity

(31) QuW)=cC

corresponding to 2h wavelenght, from equation (31) is

‘ c
(32) 3(%)2 T A1

which is the same as depicted in (17) and for =g in (15),

To obtain estimates on local and global errer of numerical solution we recall

the definitions. [5] p.43, [13]. We say an infinite series Zlukis (C,1)

~d
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summable if 1im W ~lim M‘: exists where § :" W, » in this case
Ny M naw WA+ k LLo L

An infinite series Zw is said tobe summable by Abel's method ( some say
Poisson' s) or simply A-suimable to s, if Zu rk is convergent for \ri¢y and
1im Zu -1r],n;(1 r)Zsk‘:S where S is defined above.

Ne need two results, the first {s that the series

(33) -—+i€asnx

is (C,1) and a]so A-summable to zero.

It is known ..hat [5] p.20

Sy = +anakx— ‘L’_S“_"E_L x 420w

Sia X
and from the **1gonometr1c identity

ZSLQI Sin, (h-\' 5.-31 = CC\S‘Q'X*— COSLE'.L\)?'-
it follows that

i , .
k=0

Thus o ~
n C. & vl -
n ‘ ‘ Dl =X
_ |\ N R+ L X = > C 29.1'('
On = n+\Z "’ru-\ ‘smxl__sm( \ Ly sn;_c, ¥
and 1im 0':0 To show A- sumnab1hty, recaH the Poisson's formula [5} » p.61;
n-)ou
\-T

2 ¥ 2\” Cosnx = 2(1-2rCosx +r1) i<t

ey
Letting ra{ we see that the assertion is true.

The second result is that
o0
2_Sianx
nel

is (C,1) and also A-summable to % wt

et

It is known that [57, p.21;

;S(nk’x = ._‘_ Cbt L A*.ﬂ_):—

U51ng the tr1gonometr1c 1dent1ty

2 5% 5 [Co.s é{-‘ +Cos 2% 4o+ Cos(ny %)'J;l:. S axryx = Sinx

we find
g = S,‘VS;"“ s '5"\. = n )_ \ 2': ‘ Sh\(\'\?”X"SL"\.x_
n n+ 4 w2 T 4Su\§ iy
and the result follows by Tetting n - oo
5-11
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To show A-summability we use Poisson's formula
o0

. Sin
Zr'\Sm.mc. = v 2w

A-2vCasx+v2

;:é let ).

We now estimate the J%Lnorm of the global error. As a direct consequence of
Parseval's identity, it is known that Fourier transform is an isometric isomorphism
between the Hilbert spaces involved [16] p.51-52, [15] p.25. Therefore it
suffices to coupute the 3n_norm of the Fourier transform of the error. To simulate

the shock, we let the initial condition to be the step function
x20 o

t
(35) U(x,o):{o x<C

Without loss of generality we may assume that the discrete Fourier transform of
the net initial condition u (o) is equal to the Fourier transform of (35) , and

we obtain w ) W
N =LA, \.o.>'\.
(36) U(w o)= an(w, o) = h u,(o)e " h S k[{ t-Z_Casum\\ LZ_Su\un‘:X
- n: O
It follows from the proofs of statements concerninrg equations (33) and (34) that

serias on the right of equation (36) is (C,1) and hence A-summable to
R i
~ i T
(37) Uw,0)= U (w,0)= L—g‘-—;ﬁ
2&.5;&.?-

From equa;ion (1), Fourier transform of the exact solution is easily computed
U(w't) U(\» o) (.':um{:
Lln(£) is the solution of semidiscrete equation, for simplicity we assume K
to be the identity operator, taking the discrete Fourier transform of the
semidiscrete equation and solving the resulting differantial equation one
obtains

At
u.(wt) a(w,0) e
For conservative schemes )w)z-w'&w) » therefore the i.)_ norm of the global

error is

“E“i 1 5iw,0) e —e  |dw

RS
‘ ﬂ* 7 -twetadt  -twek 2
27T o

x4
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.\ Introducing dimensionless variabies T =t¢ and y:uﬂx, a straightforward
h
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R
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computation shows that
B

2 .
Y - \L S‘ut Xg (’C(g:\\"c') '
“t“z- ™ S Siat S R
2

-

- CONCLUSION

The'semidiscrete method proposed here has a reasonable Courant number and a fourth
. order accuracy. Results are thecretically conclusive. Computational evidence for
detailed comparison of this method with conventional methods will await our
nunerical experiments.
The measure of oscillaticns in the numerical solution, in a neighborhood of sharp
changes is the pointwise error. We were able to show with a lenghty argument,
although there are some gaps in details of proofs, that maxima of the difference
between the exact and the numerical solutions continually diminish and minima
continually increase in an interval of lenght 4h on each side of the sharp
gradient change. Numerical solution is approximately 0.28h 1larger in the

upstream direction.
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