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Abstract 

The construction of airborne observatories, high mountain-top observatories, 

and space observatories designed especially for infrared and submillimeter 

astronomy has opened fields of research requiring new optical techniques. 

A typical far-IR photometric study involves measurement of a continuum spectrum 
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in several passbands between - 30~m and 1000~m and diffraction-limited mapping of 

the source. At these wavelengths, diffraction effects strongly influence the 

design of the field optics systems which couple the incoming flux to the radia­

tion sensors (cold bolometers). The Airy diffraction disk for a typical tele­

scope at submillimeter wavelengths (- 100~m - 1000~m) is many millimeters in 

diameter; the size of the field stop must be comparable. The dilute radiation at 

the stop is fed through a Winston nonimaging concentrator to a small cavity 

containing the bolometer. 

The purpose of this paper is to review the principles and techniques of 

infrared field optics systems, including spectral filters, concentrators, 

cavities, and bolometers (as optical elements), with emphasis on photometric 

systems for wavelengths longer than 60 um. 

Keywords: nonimaging optics; field optics, infrared; submillimeterj astronomy; 

photometry 

1. INTRODUCTION 

The prospects for astronomy at wavelengths beyond a few microns were greatly 

improved when, in 1961, Frank Low constructed a cold germanium bolometer with a 

sensitivity approaching the limits set by thermodynamics. l For the first time 

one could seriously consider far-infrared observations of cold interstellar 

clouds, distant galaxies, and other faint celestial objects. 

To realize such observations, the cold bolometer had to be put at the focal 

plane of a telescope on a high mountain top or on some other platform above most 

of the earth's atmospheric water vapor with provision for subtracting background 

radiation from the sky and for selecting the desired infrared wavelengths. 
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The solutions to these and associated problems were well advanced by the 

late 1960's. In their paper of 1974, Low and Rieke2 gave a brief historical 

review of infrared instrumentation and a comprehensive presentation of the state 

of the art at that time. It is still an excellent reference for anyone entering 

the field. The emphasis of that review is on photometry at wavelengths less than 

30~m. 

I shall present here a narrower review confined to field optics with emphasis 

on photometry at wavelengths greater than 60 pm. In either range of wavelengths 

a field optics system is essential to restrict the view of the detector to the 

telescope mirror: an unrestricted view would expose the detector to a flood of 

thermal radiation from surrounding ambient-temperature objects. Other functions 

of the field optics vary according to the wavelength. At ten or twenty microns 

the image of a point source is smaller than the smallest practical size of a 

detector (i.e., smaller than a few tenths of a millimeter) and one relies on the 

field optics to spread the energy from any point within the field stop over the 

entire detector to overcome any nonuniform response over the detector area. At 

100 or 200 microns the diffraction image of a point source is much larger than 

the size of the detector and one relies on the field optics to concentrate the 

radiation by a large factor (typically hundreds or thousands) and couple it 

efficiently to a radiation sensor. Since I am a colleague of Roland Winston's I 

could hardly escape noticing that that is a job for nonimaging 

concentrators. 3 ,4 In 1974, I enlisted the aid of Winston, Harper, and Stiening 

and after more trouble than we expected, we produced an efficient system, which 

we call a heat trap,S for diffraction limited applications in the far-infrared 

and submillimeter (SMM) regions. 
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I shall review what is now known about such systems, and how to handle 

some of the practical engineering problems that are not mentioned in previous 

literature. 

2. GENERAL CHARACTERISTICS OF FAR-IR FIELD OPTICS 

A field optics system for far-IR photometry usually includes a spectral 

filter, a field stop, a concentrator (a lens, mirror, or Winston concentrator3 ,4), 

a cavity fed by the concentrator, and a bolometer suspended in the cavity. Such a 

system is shown schematically in Figure 1. The radius of,the field stop (stop 

sometimes provided by reflector aperture) is set to give the desired beam radius 

(i.e., the radius of the antenna patern, FWHM) or to give the desired trade-off 

between angular resolution and throughput (cf. Figure 2). The reflector and lens 

together compose the concentrator (no lens is used for a compound parabolic 

concentrator). The concentrator, cavity, and bolometer together compose a heat 

trap. The bolometer is suspended in the cavity from the leads which supply the 

bias current. The leads enter the cavity through small slots. 

The dimensions of the system depend on the wavelength band passed by the 

filter and on the focal ratio, f, of the telescope. Where angular resolution and 

throughput are both important, the radius of the field stop is made equal to or 

somewhat less than the radius, 0 = 1.22Af, of the Airy disk. The dependence of 

angular resolution on aperture size, as computed from the convolution of the 

aperture with the diffraction image of a point source, is shown in Fig. 2a. In 

computing the dependence of throughput on aperture size one must take into 

account the contribution of the field stop itself to diffraction effects in the 

concentrator. A curve showing the solution to that problem for point sources is 

given in Fig. 2b. 6 • 
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The acceptance angle of the field optics, aI, is chosen close to the angle, 

arc sin (1/2f), of the peripheral rays reaching the field stop from the telescope 

mirror (usually the secondary mirror). A slightly larger value insures acceptance 

of all rays from the mirror; a slightly smaller value insures exclusion of stray 

rays. It is not possible, without loss of performan~e, to adapt a Winston con-

centrator of one acceptance angle, a1, to a telescope requiring a different 
, , 

acceptance angle, aI' simply by using a lens ahead of the focal plane to redirect 

the peripheral rays from Consider first the case with no lens (Figure 

3a). Since the field stop is very small compared to the dimensions of the tele-

scope, the range of angles, 0 to ai, of rays reaching the focal plane is very nearly 

the same at every point within the, fie~d stop~ When a lens is inserted (Figure 3b), 

the range of angles reaching the center,of the field becomes 0 to a1; the range at 

other points depends on the distance from the center. Hence the throughput of the 

system is reduced and stray rays are accepted. It is possible and often desirable 

to incorporate a lens in an efficient field optics system, but only if the figure of 

the reflecting surface of the Winston concentrator is appropriately modified or the 

telescope mirror is re-imaged onto the field stop. (See later sections.) 

The relationship between the diammeters, d1 and d2, of the entrance and exit 

apertures of an ideal concentrator is governed by the general condition that the 

integral, fA. dG, of the projected area over the solid angle is conserved when 

radiation passes through an optical system without losses. If an entrance aperture 

of area Al = ~(dl/2)2 accepts radiation from angles zero to al,and if the area, 

A2 = ~(d2/2)2, of the exit aperture is made as small as possible then one must h~ve 

a2 = ~/2 and 
(1) 

Because of diffraction effects within the concentrator, the system cannot be 

entirely free of losses, but for d 1 = 26 = 2.44Af, d2 = 1.22A the diffraction loss 
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remains negligible. The loss is - 20% at d1 = 1.7Af, d2 = 0.6A and increases 

rapidly as the dimensions are further reduced. 

The "diameter" (i.e., the smallest transverse dimension) of the radiation 

sensor is made somewhat larger than the larger of A or d2 • If that is greater than 

the size of a sensor giving the best electrical noise equivalent power2 (i.e., 

greater than a few tenths of a millimeter), then a composite structure is used to 

extend the collecting area without enlarging the sensor itself7 (see section on 

bolometers). 

The cavity is designed to contain the strongly divergent (2n ster. rad.) 

radiation emerging from the collector and to optimize its absorption by the radia­

tion sensor. The bolometer, and hence the cavity and light collector, are operated 

at low temperatures (usually < 2 K) in order to reduce the detector noise. The 

filter, field stop, and lens (when used) are operated at low enough tempertures 

(usually ~ 77 K) so that they do not become significant sources of thermal 

radiation. To reduce exposure to room temperature radiation these components are 

protected by cold baffles. 

3. WINSTON CONCENTRATORS 

The principles of ideal concentrators have been reviewed for both geo­

metrica13 ,4 and diffraction limited5,6 optics. For wavelengths A « d2 the 

ideal concentrator achieves very nearly the maximum concentration of radiation, 

(d
1
/d

2
)2 = (l/sin 6

1
)2, allowed by phase space conservation (equation (1». 

A small loss of skew rays drops the concentration slightly below this value in 

all but the lens/trumpet design, the only truly ideal design (see below). As 

discussed in the last section, diffraction effects cause an additional loss when 

d 2 < A. 
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The simplest design, the compound parabolic concentrator3,S (CPC), is 

generally preferred for use with small apertures and large acceptance angles 

(low f). As d
l 

and f increase, the length of the collector, 

1 = d l (2f + 1)(4f
2 

- If/~(4f), 

becomes inconveniently large. For f » 1 this expression becomes 

(2) 

(3) 

A CPC designed for 1 mm observations at f/35, the focal ratio used at some large 

IR telescopes, would have a length of more than 2-1/2 meters (for d
l 

> 2Af), 

which is much too long to be contained in any cryostat now used in submillimeter 

photometry. 

A much more compact design is achieved by incorporating a lens as a com-

ponent of the light collector.S In this case the reflecting surface becomes a 

compound hyperbola. The lens/reflector system is called a compound hyperbolic 

concentrator (CHC) or, in early references, a lens-mirror CPC. To good approxi-

mation, the length of a CHC with a lens of focal ratio fL is given by 

and is thus shorter than the CPC by approximately the factor fL/(f + f L). For 

f = 35, fL = 2.1 (the values for a millimeter photometer for the NASA/University 

of Hawaii Infrared Telescope Facility9), this factor is 0.057, and the length is 

reduced to 152 mm for d
l 

= 2.2Af, A = 1 mm. 

The aberrations of spherical lenses produce negligible effects in these 

collectors for fL ~ 2. Faster lenses can be used without loss if the system • 
continues to satisfy the following conditions: (1) no caustic is formed between 

the lens and the reflecting surface, (2) rays entering at the extreme angle, e
l

, 

are focused at the edge of the exit aperture, and (3) Inds = constant, where n 

is the index of refraction at the path element ds and the integral is taken along 
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the light path of rays at the extreme angle from the incident wavefront, w, to 

the focal point. 

A third design, the lens/trumpet concentrator (LTC), described by Winston 

and Welford,10 has not yet been applied to infrared photometry but may prove 

valuable because of its ideal beam pattern. The profile follows the configura-

tion of electrostatic field lines from a charged conducting disk of diameter dA 

originating from a circle of diameter d , where d is the diameter of the exit 
2 2 

aperture and dA is the diameter of the virtual image of the telescope mirror 

seen by the reflector (Figure 4). The length is approximately equal to that of 

the CHC. This design is unique in having no loss of skew rays. In the limit of 

geometrical optics the beam pattern is perfectly sharp. This ideal behavior is 

not precisely realized, even in the geometrical limit, when reflection losses are 

taken into account: the number of reflections becomes very large for rays near 

the acceptance angle. However, the number of reflections can be reduced with 

very little loss of concentration by slightly truncating the (nearly cylindrical) 

exit end of the concentrator. The average number of reflections vs 91 (and vs f) 

is shown in Figure 5 for each type of concentrator. A technique for estimating 

the mean number of reflections in specular radiation passages has been presented 

by Rab1. ll Reflectivities are generally very high in the far-IR and sub-

millimeter regions. l2 

For all these designs, one can severely truncate the entrance end of the 

reflector with very little effect on the throughput or the angular response 

pattern. For the CPC, the loss is 10% when the length is reduced to 60% of the 

value given by equation (2).5 For the CHC, the loss is 10% for 1 = 50% of the 

value given by equation (4). No exact analysis or test of truncation has been 

made for the LTC, but the results should be similar to those for the CHC. For 

the CHC and LTC, truncation does not reduce the overall length: the lens must 
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remain at the position of the entrance aperture before the truncation. The 

reduction in length of the reflector can be important, however, in reducing the 

bulk of material to be held at the temperature of the bolometer. The gap between 

the lens and the reflector can be used for the field stop and filters. 

All of the Winston concentrator designs are readily incorporated into close­

packed arrays. A 36-element array has been designed by Harper for the Kuiper 

Airborne Observatory. 

4. CAVITY DESIGN 

Radiation entering the cavity will eventually be absorbed by the bolometer 

or will escape through the apertures in the cavity walls. Losses at the highly 

reflecting surfaces of the cavity are generally negligible. The aperture 

admitting the radiation (the exit aperture of the concentrator) is constrained to 

a diameter d2 ~ A. The apertures for the bolometer leads can be reduced to 

slots ~ 0.15 mm x 0.6 mm; i.e., to areas somewhat less than half of the area of 

the smallest bolometers now in common use (typically cubes ~ 0.25 mm on a side.) 

A large ratio of bolometer surface area to aperture area is not sufficient 

to assure that a large fraction of the energy will be absorbed. An element of 

the bolometer surface is effective only to the extent that it is exposed to the 

entering radiation. The design principle for the cavity is to maximize the solid 

angle in which each surface element views the sky or a reflection of the sky, and 

hence to minimize the solid angle in which each element views a reflection of the 

bolometer.~ A spherical or hemispherical cavity is therefore an especially poor 

choice.5 A cylindrical cavity of depth = diameter = 2d2 with the bolometer 

approximately centered is a much better choice. 5 The analysis of solar 

concentrator design by Welford and Winston~ may serve as a guide for better 
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cavity designs, especially when the size, shape, and placement of bolometers can 

be controlled with better precision than is now achieved. 

5. OPTICAL PROPERTIES OF BOLOMETERS 

The thermal and electrical properties of bolometers have been discussed by 

Low and Rieke2 and by Mather. 13 Doped silicon bolometers with ion implanted 

leads have been shownl~,15 to be ideal in having only the fundamental sources of 

electrical noise. 13 The absorptivity, however, is significantly less than ideal 

at submillimeter wavelengths for all known bolometer materials. (Hence, the 

importance of efficient cavity design.) Factors influencing the absorptivity 

include the wavelength and the ratio of wavelength to bolometer dimensions, as 

well as the intrinsic properties of the material. 

In order to minimize the noise and heat capacity, the size of a bolometer is 

usually limited to a few tenths of a millilmeter. In applications where values 

of A and/or d2 necessitate larger sizes, one can increase the absorbing area 

without a corresponding increase in noise and heat capacity by bonding a 

dielectric substrate to the sensing element. 7 ,16 Typically, a diamond flake is 

bonded to the sensing element with epoxy. Since the substrate is itself a poor 

absorber, it is coated with a metal film of such a thickness that the reflec-

tivity goes to zero; that is, so that 

Z /R = n - 1 o (4) 

where v Zo = (€o/~o) 2= 377 n = impedence of free space, R = surface resistance in 

ohms per square, and n = index of refraction of the substrate at wavelength A. 

For the proper thickness, the Fresnel formulae7 for the transmission and 

absorption reduce to t = lin, a = (n - l)/n. The values for diamond at 1 mm 

(n : 2.7) are t = 0.37, a = 0.63. 
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In principle, any metal can be used for the absorbing film, but since the 

heat capacity of the film may be large and strongly temperature dependent, one 

must consider both the required thicknesses and the specific heats of possible 

film metals at the intended operating temperatures. Bismuth7 is a good choice 

for temperatures below - 0.3 K (temperatures for 3He refrigeration). Gold is 

significantly better at T ~ 1 K (temperatures for pumped 4He refrigeration).17 

6. RE-IMAGING OPTICS 

In the preceding discussion, we have described systems for maximum concen­

tration of radiation. In some circumstances the performance can be improved by 

reducing the concentration below the limiting value (2f)2. This is particularly 

true for A ( 100 pm where the limiting concentration may result in an exit 

aperture smaller than the smallest practical size for a bolometer. In a suitably 

designed system one may effect a trade between concentration and throughput, 

thereby reducing losses due to diffraction within the field optics. A corollary 

is improvement in the antenna pattern. 

A reimaging system which realizes these improvements has been designed by 

Harper. A lens (or mirror) at the focal plane of the telescope reimages the 

telescope mirror at a second lens (or mirror). The second lens reimages the first 

(and again the telescope mirror) at the entrance plane of the light concentrator 

(Figure 6). Both lenses are cold so as not to introduce thermal radiation. The 

first is much larger than necessary to transmit the geometrical rays reaching the 

field stop at the entrance aperture of the light concentrator. The second lens is 

a pupil stop which is much larger than the field stop. The acceptance angle of 

the light collector is larger than necessary to contain the rays reaching the 

field stop but not so large as to require an unacceptably large detector. 

Accordingly, there is a negligible loss of throughput or degradation of the 
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antenna pattern due to diffraction by the field stop. No stray radiation reaches 

the field stop. 

If instead of a single light concentrator, one uses an array in which each 

individual concentrator receives rays well removed from the edges of the first 

lens, and each accepts a wider range of angles than is covered by the pupil stop, 

then there will be negligible differences in performance between elements at the 

center and those at the edge of the array. 

7 REFLECTOR FABRICATION 

The first and most time-consuming step in producing a reflector is to make 

a mandrel whose outer surface follows the desired contour of the (inner) reflect-

ing surface. The error in the radius, r, must be « A and « d /2 along the 
2 

entire length. The error in the slope of the surface, dr/dz, must everywhere be 

« d
2
/(2z), where z is the distance from the exit aperture measured along the 

axis. 5 When the mandrel is to be re-used or pressed into copper, it is made of 

stainless steel; otherwise it is made of aluminum. 

Two satisfactory techniques have been found to fabricate the reflector from 

the finished mandrel. One is to electroform nickel over the mandrel; the other 

is to press the mandrel into soft copper. In neither case is there difficulty in 

removing the reflector from the mandrel. The chief difficulty is in producing an 

exit aperture of the desired radius free of burrs or other imperfections. For 

this reason the mandrel does not end at the position of the exit aperture, but 

extends to a point. A clean aperture can be produced by grinding off the end of 

the reflector before removing the reflector from the mandrel, or by withdrawing 

the mandrel for later use and then grinding the end to the desired aperture and 

carefully hand-working the edge. No satisfactory replacement for the mandrel has 

yet been found for use during the grinding process. 
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8. LENS MATERIALS 

Summaries of the optical constants of far-infrared materials have been given 

by several authors. 18 - 20 Two materials which have been used for far-IR and 

submillimeter lenses are TPX, a polyolefin resin marketed by Imperial Chemical 

Industries, and high density polyethylene. Both have very low dispersion over a 

wide wavelength range. TPX is convenient because of its transparency at optical 

wavelengths and because of the close match between the visible and far-IR indexes 

of refraction (n = 1.465 optical; n = 1.45 from - 30 pm to ) 300 pm). High 

density polyethylene (n = 1.52 for ~ 60 pm to 1000 pm) is not optically 

transparent but it has lower absorption losses than TPX. The coefficients of 

absorption at 200 pm are 1.4 cm-1 for polyethylene and 6 cm-1 for TPX. 

Polyethylene lenses are easily fabricated by pressure moulding of pellets. 

Allowance must be made for shrinkage of 4% between the moulding temperature 

(325°F, 150°C) and cryogenic temperatures (~ 77 K). 

9. SPECTRAL FILTERS 

In the far-IR, wideband, medium-band, and low-pass (long-wavelength 

transmitting) filters are readily constructed from dielectric materials with 

suitable absorption properties. 18 The optical characteristics of these 

18-20 materials and the techniques for cutting, grinding, and polishing them21 are 

well documented. 

At submillimeter wavelengths, the choice of suitable dielectric materials is 

severely limited. At these wavelengths, however, several types of practical 

filters have been constructed from metal grids. Ulrich22-2~ has given a 

theoretical description of filters incorporating inductive grids (metal meshes) 

and capacitive grids (arrays of metal squares supported on dielectric substrate~). 

Low-pass filters with high transmission () 75%) sharp cut-ons, and good blockiq~ 
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at short wavelengths have been constructed from series of capacitive grids. 22 - 28 

When these filters are made with dielectric spacers,30 they accurately follow the 

theoretically predicted scaling and are mechanically rugged. High-pass filters 

with very sharp cut-offs ("thick grill filters") have been fashioned of hexagonal 

close-packed arrays of holes drilled in metal plates27 where the plate thickness 

is ~ 1.5 to 2 times the hole diameter, d. The transmittance is very low below the 

cut-off frequency, Vi = 0.586/d, for the lowest propagating mode in a circular 

waveguide of diameter d. The transmittance at the peak (> 80%) is somewhat 

greater than the ratio of hole area to total filter area. The simplest high-pass 

filters are made of rectangular metal meshes. The transmittance is high (and the 

reflectivity low) for A < 1.3 times the grid spacing and drops nearly to zero for ,... 

A ~ 2 times the grid spacing. 22 ,29 The cutoff in transmission is not as sharp as 

that of the thick grill filters. Bandpass filters have been constructed by com-

bining high- and low-pass elements,24,27 and by using resonant arrays of metal 

24 30-34 crosses' which serve as hybrids of inductive and capacitive grids. 

For submillimeter passbands with ~A/A ~ 0.2, the best performance has been 

achieved with double half-wave (DHW) filters 3S ,36 (two immediately adjacent Fabry-

Perot interferometers combined with low-pass filters to reject all but the 

fundamental passband). The width of the passband depends on the grid period of 

the meshes used in the reflecting layers. The mean wavelength depends on the 

spacing. Convenient fabrication techniques have been devised to produce DHW 

filters which have accurate, adjustable spacing and which survive mechanical 

shocks and temperature cycling. 37 Figure 7 shows the transmission curve of a 

17 representative DHW filter. 
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10. POLARlMETERS 

Measurements of the linear components of polarization of astronomical sources 

38-1t0 have been made in the far-IR and, more recently, at submillimeter 

wavelengthslt1 • The analyzing elements for the far-IR measurements have been 

rotating grids of parallel conductors made of free-standing wires or of photo-

etched ribbons on dielectric substrates. The theory of such grids has been 

presented by Auton. 1t2 In a typical design, the actual transmitted intensity 

through two free-standing wire grids, of wire spacing = A/5 = 3.5x wire diameter 

and r.m.s. spacing error = 5%, is reduced by more than a factor of 100 as the 

grids are turned from the parallel to the crossed position. 

With spectral passbands of the quality shown in Figure 7, it is feasible to 

incorporate retardation plates into the analysis system and hence to make measure-

ments of all the Stokes parameters of the incoming radiation. Quartz and sapphire 

are both suitable birefringent materials with well-known optical properties at 

far-IR/SMM wavelengths and cryogenic temperatures. 19 For each, the difference 

between the indexes of the E and 0 rays is nearly independent of wavelength for 

A ~ 60 ~m. Quartz has the disadvantage that a largs difference in the absorption 

coefficients for the E and 0 rays causes a significant instrumental polarization. 

In sapphire, a large difference in the indexes and hence in the reflectivities for 

the E and 0 rays again causes a significant instrumental polarization (~ 5%). 

This effect can be overcome, however, by using a "sapphire sandwich" composed of a 

sapphire retardation plate between two thin plates of non-birefringent sapphirelt3 • 

For measurements of linear polarization, the retardation plate may be 

replaced by an Abbe/Konig K-mirrorIt1 ,1t3,1t1t a device which, unlike a half wave 

plate, has the property of rotating the image at twice the rate of the mechanical 

rotation. The K-mirror has the advantage that it is achromatic and hence permits 

use of a broad passband or changes in the passband. A disadvantage is that 
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rotation of the image can produce spurious effects if rays entering different 

portions of the defining aperture are detected with different efficiencies. An 

achromatic device incorporating two Fresnel rhombs could be used to rotate the 

plane of polarization without rotating the image. 

Since the degree of polarization to be expected at SMM wavelengths from 

astronomical sources is usually not more than a few percent, measurements must be 

accurate to a few tenths of a percent or better. One must therefore design a 

polarimeter in such a way as to suppress the effects of "sky noise" (changes in 

atmospheric emission and transmission) which limit the statistical accuracy of 

typical photometric measurements, even for bright sources, to ~ 1%. One approach 

is to rotate the analyzing element at a rate faster than the characteristic 

frequency of the sky noise under the conditions of the observations 38. Another 

approach is to make simultaneous measurements of two components of polarization. 

To first order, the difference in the signals divided by the sum, e.g. 

S = (V - H)/(V + H) where V and H are, say, the vertical and horizontal compo­

nents, is independent of fluctuations affecting both signals equally. This 

quantity, the "polarization signal", S(a,a), measured as a function of the angle, 

a, of the retardation plate at a known position, a, of the field of view with 

respect to the instrument should, in principle, give a measure of the source 

polarization. But since instrumental polarization effects are generally large at 

submillimeter wavelengths, the source polarization is best derived from the 

difference D(a,Q1,Q2) = S(a,a2) - S(a,a 1) between the values of S measured at 

two orientations, a1 and a2. 41 ,43 To good approximation, the effects of 

instrumental polarization are removed in taking the difference. With an alt­

azimuth telescope, the change in a is automatically produced by the rotation of 

the earth. The effects of instrumental polarization can also be removed by 

comparison of the values of S(a,a) for an unknown source with the values for a 
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calibration source of known polarization. As yet, very few such calibration 

sources exist. 

An instrument41 ,43 designed for submillimeter polarimetry in the Kuiper 

Airborne Observatory is shown schematically in Figure 8. It has been operated 

both with a K-mirror, as shown, and with a halfwave retardation plate. An impor­

tant feature of the instrument, when operated with a retardation plate, is that it 

minimizes spurious effects due to intensity gradients across the apertures. Such 

effects can be produced by non-normal reflection near the edge of a lens or by 

absorption of the electric vector tangent to a conducting surface such as the 

concentrator surface. The latter effect can become significant in diffraction­

limited field optics where the wavelength is non-negligible in comparison with the 

aperture dimensions. The effect is greatly reduced when (as in this design)' the 

radiation is 100% polarized before reaching the lenses and concentrators. 
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FIGURE CAPTIONS 

Fig. 1. Schematic diagram of a far-IR/SMM field optics system. 

Fig. 2. (a) Beam diameter vs. relative aperture, R, where R = aperture 

radius t radius of Airy disk. (The beam diameter is in units of the minimum 

diameter as R + 0). (b) Relative throughput vs. R, normalized to the value 

for R = 1. 

Fig. 3. Effect of a lens ahead of the focal plane on the angular distribution of 

rays at the field stop. (a) No lens. (b) Lens inserted. A concentrator accept­

ing the range 0 to 61 at every point (shaded regions) will accept some stray rays 

(e.g. ray s, which reaches the field stop at 6 = 0), and will reject some wanted 

rays (e.g., ray w, which reaches the field stop at 6 > 61). 

Fig. 4. Lens/trumpet concentrator. AAI is the image of the telescope mirror 

which would be formed by the lens in the absence of the reflector. With the 

reflector, the radiation is concentrated to an exit aperture of diameter d2. 

Fig. 5. Number of reflections~. acceptance angle, 61, (and~. telescope focal 

ratio). The LTC curve is for a lens/trumpet concentrator in which the small end 

is truncated by an amount such that the area of the exit aperture is 10% larger 

than that of the full length LTC. 

Fig. 6. Re-imaging field optics. Lenses placed at the focal plane and the pupil 

stop reimage the p~imary mirror at a second focal plane containing the field stop. 

Fig. 7. Bandpass of a double half wave filter. The central wavelength, AO, is 

easily adjusted by changing spacers between the reflecting grids. The width, ~A, 

of the passband (FWHM) depends on the periods of the grids. As shown here, 

Aa = 286 ~m, ~A = 45 ~m, ~A/A = 0.16 A capacitive grid is used to block the 

resonances at Aa/2 and shorter wavelengths. 
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Fig. 8. Schematic diagram of a submillimeter polarimeter for the Kuiper Airborne 

Observatory. The incoming radiation passes through a spectral filter, F, and then 

through an Abbe/Konig K-mirror, K. The K-mirror is rotated about the optic axis 

in 15° steps giving 30° steps in the plane of p~larization of the transmitted 

radiation. A fixed parallel wire grid, G1, separates the vertical, V, and hori­

zontal, H, components. The light paths are folded (and additional short wave­

length filtering is provided) by reflections from the fixed grids G2 and G3 which 

have wires parallel to the planes containing the V and H components respectively. 

The beams are concentrated using Winston concentrators and detected by 3He-cooled 

bolometers Bv and Ra· 
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