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ABSTRACT

A mathematical model is proposed for closing or
matnematically completing the system of equations
wnicn describes the time-average flcw field through
the blade passages of multistage turbomachinery.
These equations referred to as the average-passage
equation system govern a conceptual model which has
proven useful in turbomachinery atr-)dynamic design
and analysis. The closure model is deve',oped so as to
insure a consistency between these equations and the
axisymmetric tnrough-flow equations. Ths closure
model was incorporated into a computer ccae for use in
simulating the flow field about a hign-speE! counter-
rotating propeller and a high-speed fan stage.
Results from these simulations are presented.

INTRODUCTION

Engineers nave +ong recognized the difficulty
associated with adopting a "First Principle" approach
based on directly solving the Navier-Stokes equations
for the purpose of designing (or analyzing) vehicles
wnicn operate in high Reynolds number turbulent flows.
However, numerous examples exist, such as turbomachin-
ery olading, aircraft wings and bodies, inlets and
nozzles, wnich clearly show that models which describe
an "averaged" flow state can be used to design aero-
dynamic vehicles and provide answers to many aero-
uynamic proolems. In both ex t ernal and internal
aerodynamics, the "averaged" state most often modeled
is one in wnich the flow appears steady. in general,
the numoer of equations associated with thi
"av , ,ageo" flow representation does not equal the
number of unknowns. The problem of mathematically
completing this system of equations so that they may
be solved is referred to as the closure problem. The
flow models associated with the completed system of
equations must be considered semi-empirical for they
rely neavily on empirical correlations to introduce
the effects of turoulent motion and, in the case of
turbomachinery, the additional effects of unsteadiness
and spatial nonunifornities into these "averaged" flow
representations. For nonturbomachinery application,
the equation governing such a flow is the familiar

Reynolds-averaged Navier-Stokes equation. In general,
tnf, length scales associated with this equation are
su f ficiently restricted so as to make them amenable to
numerical simulation. Indeed there is considerable
ac0 vit y these days in the external aerodynamic com-
munity co develop numerical simulators based on these
equations for flows over an entire aircraft.

For turbomachinery involving more than one blade
row, the Reynolds-averaged form of the Navier-Stokes
equations do not describe a flow which is steady in
time. On the contrary, they describe a flow which is
nignly unsteady in which blaoe rows are moving rela-
tive to one another, generating disturbances whose
time scales range from a fraction of wneel-speed to
many times that of blade passing frequency and whose
length scales range from the circumference of the
machine to the thickness of the laminar sublayer
region of the turoulent boundary layers. Simulation
oased on the Reynolds-averaged Navier-Stokes equations
are well beyond the capabilities of today's computers
for all but the simplest of multistage geometries.
Tney also do not govern the conceptual flow model tra-
ditionally used to d°sign multistage turbomachinery.
As noted above, mult .tage designs are based on flow
models in wnich the fl,,w appears steady within each
blade row. In addition,-:iith respect to a given blade

row, these models assume the flow to be spatially
periodic from one blade passage to anotner. In
Ref. 1, a mathematical derivation of the equations
governing this flow was presented. These equations
were referred to as the average-passage equation
system. This derivation was carried out for arbitrary

configurations and clearly showed the relationship
between the Navier-Stokes equations, their Reynolds-
averaged form, and their average-passage form. The
closure problem associated with the average-passage
form of the Navier-Stokes equations was also identi-
fied. This work put the average-passage model on a
sound matnematical base equivalent to that of the
Reynolds-averaged Navier-Stokes model. A brief sum-
mary of that work is presented in the next section.
The purpose of the present work is to elaborate
further on the issue of closure for the average-
passage equation system and to propose a closure model
for the inviscid form of this equation system. This
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closure model was used to obtain the results presented
in Ref. 2. Those results and the ones to be presented
in this worK show that the present model appears
applicable to configurations in which the average-
passage flow field is nearly irrotational between
blade rows.

MODEL EQUATION HIERARCHY

In Fig. 1, a hierarchy of equations are shown
which can be used to analyze turbomachinery flows.
Tne Navier-Stokes equations appear at the upper left-
nand corner of this figure. These equations are
assumed to provide a complete description of the flow
field, including a complete description of turbulent
motions. To use these equations as a basis for simu-
lating turbomachinery flows requires sufficient com-
puter capacity to resolve all of the time and length
scales associated with high Reynolds number flows. In
addition, since turbomachinery flows are statistically
nonstationary, a sufficient number of computations
would nave to be performed over a range of randomly
chosen initial conditions to insure a stastistical
steady-state description of the flow. Such simula-
tions are clearly oeyond the capacity of today's most
advanced computers. The next box (i.e., Fig. 1) con-
tains the Reynolds-averaged form of the Navier-Stckes
equations. They are derived by ensemble averaging the
Navier-Stokes equations and hence govern a determin-
istic description of the flow field. An illustration
of this description for a two-stage configuration in
which the first and second rotors have five and four
blades respectively while the first and second stage
stators nave four and five blades is presented in
Fig. 2. The rotors rotate relative to the stators,
and, therefore, the flow will be unsteady in either
the rotor or stator frame of reference. As noted
previously. the time scales associated with this
unsteady flow are quite diverse, which makes simula-
tion for all out the most simple of geometries beyond
the capabilities of today's computers. The closure
problem associated with these equations requires the
modeling of the familiar Reynolds stress and energy
correlations. It is by means of these correlations
that the "average" effects of random fluctuations in
momentum and energy of a fluid particle are introduced
into the equation, governing the deterministic flow
field.

Tne third box from the left in Fig. 1 represents
the time-averaged form of the Reynolds-averaged
Navier-Stokes equations. These equations govern the
time-averaged flow field as viewed by an observer
whose frame of reference is fixed to a given blade
row. An illustration of this description for the
two-stage configuration used to illustrate the
keyi,olds-averaged flow model is also presented in
Fig. L. All rotating olade rows have a unique time-
averaged flow field associated with them. In a
similar fashion, all nonrotating blade rows have their
own time-averaged flow field representation. These
two flow fields are not the same. For both flow
fields, the blade rows which rotate relative to the
blade rows which are stationary (i.e., with r.spect
to one another) appear smeared. Their physical
appearance is very similar to what one observes wnen
viewing a high-speed propeller. Within the context of
the time-averaged flow description, these smeared
blade rows are replaced by actuator ducts (i.e.,
actuator ducts of finite thickness). These ducts are
represented oy a oody-force distribution which can add
or extract energy from the flow. In addition, the
time-average flow equations contain correlations

between time-varying flow variables. These correla-
tions arise because the Reynolds-averaged Navier-
Stokes equation is nonlinear. These correlations
represent the time-average of the fluctuating density
field and products of the fluctuating velocity field
as well as the time-average of the fluctuating
density, fluctuating velocity, and fluctuating total
enthalpy field. It is through these correlations
that the "averaged" effect of the relevant unsteady
physical phenomena is introduced into the time-
averaged representation. The modeling of the body
forces and energy sources associated with the smeared
blade rows and the temporal correlations, plus the
modeling of the time-averaged Reynolds stresses, forms
the closure problem associated with the time-averaged
equations. Finally, it should be noted that, for a
single-stage configuration, the time-averaged flow
field associated with either blade row will be spa-

tially periodic over the pitch of that blade row.
Thus, if the closure issue associated with the time-
averaged representation can be addressed without over-
due complexity, it should be feasible to conduct a
simulation based on this flow model for a single
stage.

For a multistage configuration in which the
number of rotor blades differ from rotor to rotor, or
for which the number . stator blades differs from
stator to stator, the	 ne-average flow field will
not, in general, be spatially periodic over the pitch
of any given blade row. An averaging-procedure may
be introduced which transforms this spatially aperi-
odic flow field into one that is periodic over the
pitch of a given blade row. Tne resulting flow field
is referred to as the average-passage flow and appears
in the fourth box from the left in Fig. 1. Each blade
row in a multistage machine has associated with it an
average-passage flow field. An illustration of thi,
description is shown in Fig. 2. For the two-stage
machine under consideration there exists four average-
passage flow descriptions due to the number of blades
assigned to each wheel. The geometry of neighboring
blade rows (rotating and stationary) for which the
blade count is not an integral multiple of the blade
row of interest, and are stationary relative to this
blade row, appear smeared in this flow description.
Their appearance is similar to that of the rotating
blade rows in the time-averaged flow description. It
Should be noted that all of the blade rows which
rotate relative to the blade row of interest appear
smeared, since the average-passage description is also
d time-averaged description. The four average-passage
flows illustrated in Fig. 2 are coupled to one another
through a system of body forces, energy sources, and
temporal and spatial correlations. The closure prob-
lem associated with this flow description consists of
developing mathematical expressions for the spatial
and temporal correlations in addition to the body
forces and energy sources. These correlations intro-
duce the transport on the "average" of momentum and
energy between the time-averaged representation and
the average-passage representation.

Many analyses currently used to analyze multi-
blade row turbomachinery involve iterating between a
meridional flow analysis and a blade-to-blade anal-
ysis. Within the context of the present discussion,
these analyses may be viewed in one of two ways. They
may be thought of as attempting to describe the
average-passage flow field. if one gives these anal-
yses this interpretation, then one immediately notes
that their derivation lacks mathematical rigor. As a
result, the closure problem associated with the
average-passage representation is never addressed,

i

V.



Jr IL. 11

_	 .'^_` •tea; ' ^"^:	 .... _

for it is completely overlooked. On the other hand,
one may interpret these as axisymmetric analyses in
which the blade-to-blade solution, along with some
empirical correlations, is used to close the merid-
ional flow equations. in this case, these analyses
are rigorous because the closure problem that being
the closure of the axisymmetric representation is
generally clearly defined. However one wishes to
interpret these analyses, one must be impressed with
the degree of accuracy with which they predict the
axisymmetric flow field in the neighborhood of design
conditions. As one moves away from the neighborhood
of the design point, however, the validity of these
analyses appears to degenerate quickly. This dis-
agreement is thought to be due to the inability of the

blade-to-blade model to properly account for large
spanwise migration of flow which occurs at these off-
design conditions. To analyze such situations, a true
three-dimensional analysis is needed. The average-
passage model provides a framework fur deve Nping such
an analysis, as illustrated by the work presented in
Ref. 2. The accuracy of such simulation will, of
course, depend upon the validity of the closure model
used in the simulation.

The next box in Fig. 1 represents the axisym-
metric flow model, which is the mainstay of many turbo-
mdcninery design systems. The field equations for
this model can oe derived by tangentially averaging
the average-passage equation system. An illustra-
tion of the geometry associated with this representa-
tion is also provided in Fig. 2. Each average-passage
flow model can be related to an axisymmetric model.
Tne equations governing these four axisymmetric models

must be equal to one another, for there can only be
one axisymmetric or througn-flow representation of the
flow field within a multiblade row configuration.
Tne average-passage equations thus define the three-
dimensional passage flows having a common axisymmetric
flow description. All of the blade rows within the
axisymmetric description appear , smeared and are mathe-
matically replaced by actuator ducts. These ducts
exert a force on the fluid which may add or extract
energy from the flow. There may also be energy
sources or sinks within the ducts which are associated
witn blade heat transfer. Over the years, numerous
publications have appeared which dealt with modeling
these forces and the energy sources. Quite often they
are estimated from cascade or blade-to-blade analyses
tempered oy empirical correlations. In addition, the
axisymmetric or through-flow equations contain corre-
lations between temporal varying flow variables as
well as correlations between spatial varying flow
variables. These correlations introduce on the
"average" the effect of radial transport of momentum
and energy from the average-passage representation.
Unly very recently have models for these correlations
appeared in the open literature. Sehra (3) was one of
the first to attempt to incorporate these correlations
into a through-flow code. His correlation model was
oased on data obtained from a high-speed isolated
rotor test. Jennions (4) modeled these correlations
using results from an inviscid blade-to-blade anal-
ysis. He was able to develop an iterative procedure
for incorporating these correlations into a tnrough-
flow analysis. Finally, the Adkins and Smith (5)
model for accounting for the effects of the spanwise
mixing in multistage machinery, may be thought of as
an attempt at modeling the correlations which appear
in the axisymmetric model. Tne last box in Fig. 1
represents a quasi-one-dimensional equation system.
These equations result from averaging the axisymmetric
equation over the span of the flow annulus. This
equation system is often used in engine stability

studies and in preliminary design to establish the
flow properties along the pitch-line of a machine.
Closure of this system of equations can be quite
involved. It requires models for the blade forces,
energy sources, spatial and temporal correlations
associated witn the olade-to-blade flow field, as
well as a model for the force exerted by the casing
on the flow.

The flow models identified in Fig. (1) are by no
means complete, nor were they ever intended to be
complete. The purpose of this figure was to illus-
trate symbolically the connection between a hierarchy
of equations associated with turbomachinery aero-
d;namics. It is hoped that the rational derivation
of the average-passage equation system will ultimately

l ead to the development of three-dimensional viscous
computer codes for multistage configurations. Such
codes will enhance our ability to analyze turbo-
mdchinery flows, especially at uff-design conditions.
For it is our inability to accurately predict off-
design performance of multistage machinery which is
often the major contributor to their high development
costs and not problems associated with poor design
performance. In the next section, the closure model
associated with the inviscid form of the average-
passage equation system will be developed.

THE CLUSURE PROBLEM

For simplicity we shall only address the closure

problem associated with solving the inviscid form of
the average-passage equation system as it pertains to
a single stage. A solution to the corresponding
multistage problem can be obtained by a direct exten-
sion of the analysis which follows. For a single-
stage configuration, each blade row has associated
with it an average-passage equation system. As noted
in the previous section, the dependence of the flow
through the first blade row upon that through the
second is introduced by means of a body force, energy
source, and time-average correlations between fluctu-
ating flow variables. Likewise, a corresponding
dependency exists between the flow through the second
blade row and that through the first. In Ref. 1, the
body force and energy source which appear in the
inviscid form of the average-passage equation system
were shown to depend upon the ensemble-averaged pres-
sure. This "averaged" pressure was estimated from
samples of the pressure field taken over a period or
one revolution of the wneel recorded at the instant a
blade passes an ooserver whose frame of reference is
fixed to that of the blade row of interest. If one
assumes the average-passage flows of the two blade
rows to be nearly irrotational outside of the blade
passage region, then this ensemole-averaged pressure
is nearly equal to the average-passage pressure dis-
trioution on the surface of the neighboring blade row.
Hence, from the solution for the first blade row, one
can estimate the body force and energy source which
appear in the equations for the second blade row. In
a similar fashion, one may estimate the body force and

energy source which appear in the equations for the
first blade row from a solution to the corresponding
equations for the second blade row.

The remaining terms which must be estimated are
the temporal correlations associated with the time-
varying flow field. The origin and nature of these
correlations were discussed in the previous section.
To develop a model for these correlations, we
decompose the absolute velocity field, 1", according
to the equation

w
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7 (r,e,z,t) . —v (AX)

* Iv(I) (r,e-n it,z) - v(AX) (r,z)J

+ L 2) (r9-a 2
. 	

- r(A

X) r,z)J

+ v(3)(r,e,z,t)	 (1)

where *AX)	 epresents the axisymnetric velocity
component, x( 1 5, the time-averaged absolute velocity
field as observed	 a frame of reference fixed to the^j^
first blade row, v^ ). the corresponding velocity
field observed in a frame If reference fixed to the
second olade row, and 7 31 , the component of
velocity which is unsteady in either frame of refer-
ence. Tne remaining variables which appear in Eq. (1)
are the cylindrical coordinates r,u.z, time t, and
the rotational speed of the first and second blade
rows al, a2. In a similar fashion, the total
entnalpy, H. measured in the absolute frame of refer-

ence can be decomposed according to the tqua.ion

H (r,e,z,t) - H (AX )(r,z)

• [H (I) (r,e-n 1 t.z) - H (AX) (r,z)
J

• 1H (2) (r.e-a 2 t,z) - H(AX) (r,z)]

• H(3) ( r ,e,z. t )	 (2)

Fixed in the frame of P^ference of the first blade row,
the velocity field v(_ lill appg1C steady in time,
while the components v( 2 / and 4 1̀ !! will appear to be
unsteady. If we define the velocity component
v"(r,e,z,t) as

1" (r,e,z,t) = v(2) (r,e-a2 t .7) - j(AX) (r, z )	 (3)

the correlations which appear in the average-passage
momentum equations associated with the first blade row
are obtained by forming the	 thtime-average (% e
product of the fluid density and (7" + '74' )	 (1).
The result is

^^ r ^^_
	R. = pv v +p v i v	 + p v	 vj +d	 i j	 j	 i 	 pvi	 vj

(4)

where the subscripts i.j take on the values of 1, 2,

and 3. On the right-hand of Eq. (4), these subscripts
are used to denote the axial, tangential, and radial
velocity components respectively. The variable p is

the fluid density, and the over-bar represents the
time-average of the variables which appear beneath it.
Thus for i - 1 andj

;e 2;i
 R12 denotes the temporal

correlation between the nty p, and the product of

the axial and tangential components of the fluctuating
velocity field. For low Mach number flows in which
the 

7
dersity may be assumed constant, the correlation

p vi vj will be independent of tangential position
e, since vi is spatially periodic over the pitch of
the second blade row. This correlation is thus asso-
ciated with the transport on the "average" of momentum
across the axisynmetric stream surfaces. The remain-
ing correlations which appear in Eq. (4), however,

will be functions of a if v (3) is spatially
aperiodic over the pitch of the second blade row. In
general this will be the case.

Based on the arguments used to derive Eq. (4) and
the analysis presented in Ref. (1), the correlations
which appear in the energy equation are obtained by
forming the time-averay of the product of p,
H" + H(3) and v" + v i5) . The result is

Qi = aH" vi" + pH" 
v, 

+ pH	
v + p HT7 7,1T

(5)

where

H" ( r ,e, z ,t) = H(2) ( r , e-n2t , z ) - H (AX) (r,z)

(b)

The first correlation in Eq. (S) is independent

-f a if the fluid density is constant. This is
the result of H" and vi" being spatially peri-
odic over the pitch of the second blade row. In
general., the remaining correlations will not exhibit
this behavior. As a result, the total enthalpy assc-
ciated with the average-passage flow field for a
multiolade row configuration wi)l De nonuniform in
the tangential direction. Ker,ebrock and Mikolajczak

(b) were the first to attempt to analyze the fluid
mechanics associated with this phenomena. They attri-
buted it to the transport of excess total temperature
of a fluid particle in a rotor wake across the stator
passage. Their analysis of this process was based on
kinematics. Although the present work makes no
attempt at developing an alternative model of this
phenomena, it does suggest that it is associated with
the dynamics of stator-blade rotor-wake interaction.

For an inviscid nearly irrotation	 flow, the
magnitude of the unsteady component v^ ) will be
comparable or less than the magnitude of v", except
for regions near blade leading edges. In particular,
in regions where the body force and the energ^ source
are finite, the correlation associated with	 "
(i.e., Eqs. (4) and (5)) will b significantly larger

than those associated with v(^f. For this reason
we assume tnat the correlations in Eqs. (4) and (5)
associated with the unsteady velocity component V3)
can be neglected. As a result, the correlation Rij
anu the correlation Q i can be directly evaluated

from the average-passage solutions. For a stage, this
implies that the flow field through both blade rows
must be evaluated simultaneously.

To incorporate the suggested closure model into
a numerical simulation, one may envision a two-tier
iteration procedure as depicted in Fig. 3. In the
inner loop, the body forces, energy sources and cor-
relations are frozen. An average-passage flow field
is evaluated based on the value of these quantities
and the imposed boundary conditions. In the outer
loop, the body forces, energy sources, and correla-
tions are updated based on the converged inner loop
solutions. We must update these terms, as previously
noted, in a manner which yields a unique axisymmetric
representation of the flow field through the machine.
This will insure that the average-passage representa-
tion of the flow is consistent with the axisymnetric
representation.

Tne equations to be solved in the outer loop may
be derived starting from the equations of motion
expressed in the vector form (2).
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L(Un) + fK(Un)dV + fSn_1 dV - 0	 (7)

The operator L(Un) in this equation represents
the net flux of mass (i.e., continuity of flow through
a control volume), axial and radial momentum, angular
momentum, and energy through a differential volume of
fluid, while K(Un) represents the added contribution
of the pressure field and centrifugal acceleration to
the balance of radial momentum. The components of the
vector Un are density, axial and radial momentum,
angular momentum, and total inertial energy. The
symbol Sn_1 represents the sum of the contribution
of the body force, energy source, and temporal cor-
relations to the momentum and energy equations, while
the subscript n denotes the iteration index of the
outer loop. The remaining symbol, dv, denotes the
volume of a differential volume of fluid. Based on
the discussion presented earlier, the temporal corre-
lations which are embedded in Sn	 are simply a
function of average-passage flow field associated with
the neighboring blade row. Thus, for a single-stage
configuration, the field equation for the first blade
row can be written as

L(U^ 1 )) + J K(U^1) ) dv + fS(Un-
('l

	

)) dv =	 0	 (8)

while the corresponding equation for the second blade
row is

	

L(Ur2)) + J K(U(2))	 dv + fS (U n (1) ) dv =	 0	 (9)

The superscript (1) and (2) respectively denote
the variables associated with the first and second
blase row passage flow fields. Next we multiply both
Eqs. (8) and (9) by an operator A, which forms the
axisymnetric average of its argument. This is equiv-
alent to averaging the three-dimensional equations of
motion (i.e., Eqs. (8) and (9)) over the tangential
direction. For the first blade row, the axisymnetric
average of the operator L is

	

AL (U G )) = L(AX)(AU(1)) + J S(U G )) Adv	 (10)

while for the second row

	

AL(U(2) ) = L (AX) (AUn 2) ) + fS (U (2) ) Adv	 (11)

In both of these expressions, the operator L(AX)
denotes the axisymnetric counterpart of L. The
axisymnetric average of the combined integrals which
appear in Eq. (8) is

AI IK(U( 1) ) dv + JnS(U 2) ) dv] =

	

J
AI K(U (1) ) dv

J
+
 f

S(U (2) ) Adv	 (12)

Similarly, the axisymnetric average of the combined
integrals in Eq. (9) is

AI fK(U (' ) ) dv + fS(U ( ' ) ) dv] =

These last results follow because S is independent
of tangential position. Based on the above equations,
the axisymnetric average of Eqs. (8) and (9) may be
expressed as

L(AX) (AU
M ) + JA[K(UG) ) dv

J

	+ ( LS(U
(

n
l) ) + S(U (2) )

J
 Adv = 0	 (14)

L(AX) (AUn
2) ) + fA  I 	 dv 

J

	+ J [S(U( ' ) ) + S(U ( ' ) )] Adv = 0	 (15)

Upon convergence of tha outer loop, Eqs. (14) and
(15) yield identical solutions for the axisymnetric
flow field. In addition, these eq at'ons provide a

means of updating the variables	 (4) and f (U2)
without evaluating the body forces, energy sources,
and correlations directly. This becop^es apparint as
soon as one notes that the vectors U 1n and Un are
known naving been evaluated in the inner iteration loop,

while the quantitiesf(LIM ) and f(U (2) ) are known

from the previous outer iteration loop.
This simple strategy for incorporating the

closure model into a numerical simulation has been
implemented into the computor code outlined in Ref. 2.
That code has been used successfully to simulate the
flow about high-speed counter-rotating propellers as
illustrated by the results presented in Ref. 2. We
shall present additional results from that simulation
as well as that for a high-speed fan stage.

RESULTS

The model proposed for closing the inviscid form
of the average-passage equation system was based on
the assumption that, within the confined region of a
blade row, the correlations associated with the blade
row interaction velocity field are small relative to
those associated witn the steady aerodynamic blade
loading. The ,justification for this assumption can
be based on the argument that the unsteady airload,
Which is an indication of the magnitude of the veloc-
ity component associated with blade row interaction,
is generally smaller than its time-averaged counter-
part which serves as a measure of the magnitude of
the nonaxisyrrrnetric component of the average-passage
velocity field. Data presented in a recent publica-
tion by Dring et al, (7), shows this to be the case
in the midspan region of a turbine stage. Outside of
the confines of a blade row, the magnitude of both of
these velocity fields should be comparable; however,
their magnitude is small compared to the magnitude of
the axisymnetric velocity field. As an illustration
that hardware does exist in which one may find regions

in which such flows exist, we present the circulation
as a function of radius at a number of axial locations
generated by a high-speed counter-rotating propeller.
These results are for a flight Mach number of 0.72 and
an advance ratio for both propellers of 2.8. The cir-
culation is defined as the integral over a blade pitch
of the product of nondimensional radius and nondimen-
sional tangential velocity. The tangential velocity
is nondimensionalized oy the far-field speed of sound,
while the radius is rendered nondimensional by the tip
diameter of the first propeller. The results pre-
sented in Figs. 4(a) to (d), are for an axial location
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slightly forward of the first propeller, aft of the
trailing edge of the first propeller, slightly forward
of the second propeller, and aft of the trailing edge
of the second propeller respectively. For each axial
location, two plots are drawn. The first (solid line)
represents the axisymmetric flow field obtained from
the average-passage simulation of the first propeller.
The second (dashed line) corresponds to the axisym-
metric flow field obtained from the average-passage
simulation of the second propeller. It is quite
apparent that both results agree with each other to
within plotting accuracy and hence are more than
adequate for assessing blade row performance.
Upstream of the first propeller the circulation must
be zero since there is no swirl present in the
incoming flow. At the trailing edge of the first
propeller, the circulation is nearly constant over
the inboard portion, decreasing in a smooth monotonic

fashion towards zero as the tip is approached (i.e.,
r . 0.5). Thus the aerodynamic loading of the inboard
region is nearly independent of radius, which implies
a near-free vortex design. The flow between the two
propellers would therefore be nearly irrotational.
The reduction in circulation with radius in the out-
board region produces a weak tip vortex which convects
downstream. In the axisymmetric flow representation,
this tip vortex is smeared into a ring vortex. At the
leading edge of the second propeller, the circulation
distribution is seen to be nearly identical to the
distribution at the trailing edge of the first pro-

peller. This result further substantiates that the
flow field between the two propellers is nearly
irrotational, for in an irrotational unsteady flow
the time-averaged circulation (or angular momentum) is
conserved along the axisymmetric stream lines. The
slight redistrioution of circulation that one observes
in the outboard region is attributed to spanwise mix-
ing of angular momentum due to the tip vortex.
Figure 4(d) snows the distribution of circulation at
the trailing edge of the second propeller. The second
propeller appears to taKe out almost all of the swirl
produced by the first propeller. The change in the
swirl distribution across the second propeller implies
that the spanwise aerodynamic loading is nearly uni-
form over the inboard region of the second propeller.
The inboard region is behaving as a free-vortex
design. The results shown in Fig. 4 strongly suggest
that the closure model developed in this work should
be applicable to this and similar high-speed counter-
rotating propellers. This is confirmed by the com-
parison between the measured and predicted nacelle
pressure distribution presented in Ref. 2. Further
comparisons are planned as shown as experimental data
becomes available.

An attempt was also made to predict the average-
passage flow fields generated by a high-speed fan
stage. The stage chosen was the first of a two-stage
machine designed and tested at NASA Lewis (8). The
computation was performed for an operating point near
maximum efficiency of the first stage. This point was
chosen to minimize the effect of viscosity on the
measured flow variables. The rotor's rotational speed
was 80 percent of design and the stage pressure ratio
and adiabatic efficiency were 1.352 and 0.891 respec-
tively. The inferred velocity field between the blade
rows resembled that induced by a free-vortex design
in the midspan region. The inlet boundary conditions
in the computation were chosen to produce an inlet
absolute Mach number and flow angle distribution which
approximated the measured distributions. At the down-

stream boundary the nondimensional pressure at the
hub at the exit of the stator was set equal to the
measured value. the absolute Mach number distribution

at the inlet to the rotor is shown in Fig. 5, while
the relative Mach number distribution across the rotor
is snows in Fig. b. The measured results at the inlet
to the •otor agree very well with the predicted
results, as they snoula, due to the choice of inlet
conditions. The predicted exit relative Mach number
distribution appears to be in good agreement with the
measured results, especially in the midspan region.
It should also be noted that the predicted relative
Mach number is less than measured over most of the
rotor span. This result is to be expected since the
blade boundary layers restrict the flow area, thus
reducing the diffusion capabilities of the rotor. The
measured distribution also shows the existence of an
end-wall casing boundary layer which obviously cannot
be predicted by the present inviscid analysis.

The relative flow angle distribution at the lead-
ing and trailing edge of the rotor was also computed
and is shown in Fig. 7 along with the measured dis-
tribution. This angle is defined as the angle between
the relative circumferential velocity component and
the meriodional component. At both stations the pre-

dicted results appear to be in reasonable agreement
witn the measurements inboard of the tip region. The
discrepancy in the tip end-wall region is caused by
the inaoility of the present inviscid analysis to
properly simulate the three-dimensiunal end-wall flow.
k"er the region inboard of the tip, the neglect of the
influence of viscosity on the simulated axisymmetric
flow field produces more turning of the flow than
experimentally measured. ay introducing the effect of
viscosity into the current average-passage model
(which includes the outlined closure model), the
agreement between prediction and experiment should
improve in the midspan region.

Tne next series of results are for the stator.
The absolute Mach number entering and leaving the
stator is plotted as a function of blade span in
Fig. 8. The corresponding plots for the absolute
flow angle is shown in Fig. 9. This angle is defined
as the angle between the absolute tangential velocity
component and the meridional component. The agreement
between the predicted results and measurements appears
to nave deteriorated from that for the rotor. This
illustrates the difficulty in predicting multiblade
row flows. A small error in predicting the perform-
ance of the first blade row can escalate very quickly
into a large error in predicted performance of later
blade rows. This problem becomes particular;y acute
whenever there are appreciable regions of flow separa-
tion in the end-wall region, as appears to be the case

in the stator hub region. The poor agreement in the
stator tip region is attributed to the end-wall wall
flow induced by the rotor. To analyze these flow
regions requires a model which incorporates the proper
end-wall flow physics. A step in this direction might
oe made by including the effects of viscosity into the
current average-passage flow solver. An additional
issue is the development of a closure model for the
average-passage model applicable to highly rotational
flows. Research in both of these areas is currently
underway.

CUNCLUSIUN

A model was formulated to close the inviscid form
of the system of equations governing the average-
passage flow fields for a stage. This model was
developed so as to insure consistency between the
average-passage equation system and the axisymmetric
flow equations. This closure model was used success-
fully to simulate the average-passage flow fields



associated with a nigh-speed counter-rotating pro-
peller. The model was also used in a simulation of a
nign-speea fan stage operating near measured peak
efficiency. This simulation showed the rotor results
to be in reasonable agreement with measurements out-
side of the end-wall region. For the stator • the simu-

lation yielded results which were only qualitatively
correct. The lack of quantitative agreement was
attributed to neglect of viscosity and the question-
able applicability of the present closure model to
the end-wall regions where the flow is known to be
highly rotational. Research directed at overcoming

tnese shortcomings is currently underway.
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Figure 2. - Two stage flow models.
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Figure 3. - Solution strategy.
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