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Abstract

An analysis was conducted of the attitude and

flightpath angle response of configurations used
in the Total In-Flight Simulator (TIFS) pitch-rate

command systems program. The results show poor

correlation between pilot ratings and attitude re-
sponse and inc,cate that attitude was not a major
influence in the results. A strong correlation

was found to exist, however, between the amount
of flightpath angle peak overshoot and the pilot
ratings. This correlation is similar to the best
correlations that have been obtained in recent

closed-loop and time-domain analyses but has the
advantage of greatly simplified implementation and
interpretation.

Nomenclature

DB attitude dropback, deg 	 (Fig.	 1)

h altitude

q pitch rate, deg/sec

qm maximum pitch rate, deg/sec

PR pilot	 rating

T62 pitch-attitude numerator time constant,
sec

TIFS Total	 In-Flight	 Simulator

C& angle of attack, deg

Y flightpath angle, deg

YD flightpath angle at peak overshoot, deg

Y R 	 flightpath angle at control release, deg

a	 pitch attitude, deg

eR	pitch attitude at control release, deg

© Ss	 pitch attitude during steady state, deg

T	 time constant, sec

idn	 short-period dominant mode natural fre-
quPncy, rad/sec

;Aerospace Engineer, Flight Operations and
Research Division. Associate Fellow, AIAA.

Introduction

In recent years. virtually all advanced air-

craft have utilized pitch-rate command flight con-
trol systems. It is well known in the flying

qualities community that pilots newly introduced
to pitch-rate command flight control systems have
a strong tendency to float or balloon on landing.
Some analysts believe this is because of the atti-

tude-hold tendency of these systems and is only a
familiarization problem that can be overcome with
modest training. Others think that these systems
have a basic flying qualities deficiency and should
be designed to have characteristics more like con-
ventional aircraft. In most cases, problems of
this nature are not adequately resolved in ground-
based simulators because of the complex interac-

tion of visual and motion cues and pilot stress in
an actual landing environment.

Because of the paucity of flight data taken

under controlled conditions applicable to these
situations, a Total In-Flight Simulator (TIFS)

program was undertaken to enlarge the flight data

base. 1 Analysis of the results of Ref. 1 did not
correlate well with established flying qualities
criteria. However, time history analyses based on
angle of attack (a) and normal acceleration at the
pilot location (NZP), and analyses based on alti-
tude and altitude-rate pilot loop closures did

provide promising results.1.2

Despite the success of the altitude and al-

titude-rate pilot loop closures, a time history
approach has much appea l because data can be ana-
lyzed directly from simulator or flight responses.
It is especially adaptable to specification and
evaluation criteria requirements. It also pro-
vides flexible guidelines for flight control
system design. Although the a-NZP time history
criterion proposad in Ref. 1 provided good corre-
lation, it relies on a somewhat complex equation
that consists of several terms involving the ini-
tial angle-of-attack slope, intermediate angle-of-
attack slope, first NZP peak value, second NZP
peak value, and a weighted value of the time to

reach steady-state angle of attack. In addition,
it is not directly pilot-centered in that angle of
attack is not visible to the r.ilot and cannot be
used as a direct cue. It would seem that attitude
and altitude rate or flightpath angle would be
better time history parameters because the pilot
can perceive these. Reference 1 acknowledges this
by pointing out that angle of attack may be a sur-
rogate for flightpath. Howe v er, i t would seem
better to use the primary variable rather than a
surrogate.
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This study was undertaken, therefore, to de-
termine if pilot-centered time-domain variables

provide good correlation with the data base of
Ref. 1. A summary of the Ref. 1 configurations

and results is presented in Table 1.

Procedure

At the outset, an attempt was made to use heu-
ristic reasoning to choose the most promising time-
domain variables for a preliminary analysis of the

data. Pilots most frequently use the terms atti-
tude, altitude, rate of descent, and flightpath
angle when describing their cues in approach and

landing tasks. However, these terms are used in a
piloting sense and cannot always be interpreted in
terms of strict engineering definitions. The use
of attitude by the pilot during landing approaches
has been well established analytically, but its
role during flare and touchdown is less well under-
stood. During flare and touchdown, pitch-rate com-
mand systems typically evoke comments on float ten-
dencies, which suggests a perception of the rate
of descent, flightpath angle, and height above the
runway (altitude). Rate of descent, flightpath

angle, and altitude are directly related; hence,
considering any one of them is probably adequate

for a first analysis. Flightpath angle is gener-
ally considered more fundamental by most analysts
and therefore, in addition to attitude, is a rea-

sonable choice for analysis. Consequently, atti-
tude and flightpath angle were chosen for initial
analysis.

Attitude Analysis and Discussion

The data base was first analyzed from the point

of view of attitude dropback (DB) and overshoot of
pitch attitude as defined by Ref. 3 (Fig. 1).
These concepts could be applied in a straightfor-
ward manner to most of the pitch-attitude respon-

ses (Fig. 2). However, a few of the attitude re-
sponses had no steady-state value. Instead, they
exhibited a continuously increasing dropback after
the peak value was attained (Fig. 3). Consequent-
ly, the values of dropback and overshoot were nor-
malized by dividing by the value at control re-
lease. The configurations that had no steady state

tended toward a value of zerc. They were there-
fore arbitrarily assigned a normalized value of 1
and flagged when plotted (Fig. 4).

Results of the attitude dropback analysis

(Fig. 4) show that most of the configurations had
very little overshoot (negative dropback) or drop-
back. Only the washout and conventional configu-
rations had dropback greater than 0.25. The con-
figurations with continuously increasing dropback
are plotted on the left-hand axis and flagged.
Reference 3 indicates that attitude dynamics are
satisfactory if there is no overshoot and if drop-
back is not excessive. This is true if the con-
figurations meet requirements on frequency and

damping, which these data do. 1 To achieve satis-
factory attitude dynamics, some pitch-rate over-
shoot is required, but not necessarily very much.
Pitch rate, of course, transforms into pitch atti-
tude by way of integration. All the configura-
tions had some pitch-rate overshoot.

The correlation between pilot rating (PR) and
the amount of attitude dropback was poor — 54 per-
cent of the data were within a i1.0 PR band, and

86 percent were within a !1.5 PR band. There is

d tendency for the ratings to degrade as dropback
becomes negative (overshoot), as predicted in

Ref. 3. However, the large spread in pilot rat-
ings, particularly in the zero dropback region,
indicates that attitude response was not a major
factor in the pilot ratings. This result is in
agreement with Ref. 1 that showed poor correlation
between the results and classical attitude cri-

teria such as Neal-Smith 4 and equivalent systems.
Flijhtpath Analysis and Discussion

None of the flightpath angle responses had a

steady-state value, because all configurations had
a gradual decrease in flightpath angle (Y) after

the peak value (Yp) was attained (Figs. 2 and 3).

Therefore, it was decided to use the value at con-

trol release (YR ) and the peak value as parameters

for flightpath anole response (Fig. 5). This is

convenient both from an analytical and a pilot-
centered point of view. It is easily determined

from a boxcar command input, and it is a reason-
able pilot-control strategy (pull on the stick to

achieve a comfortable pitch rate, and then release
it when the desired flightpath angle is achieved).
A 5-sec boxcar command was used because Ref. 1

documents the configurations with this input. The
difference between the peak and release values was
proportioned to the release value and expressed as
a percent peak overshoot in flightpath angle
(Fig. 5).	 Hence,

YP

Y peak overshoot (percent) =	 -y  YR 100
R

Because all the pitch-attitude peak responses were

only slightly larger than the values at control
release, it was clear that this technique should

not be applied to pitch attitude.

Figure 6 shows pilot ratings as a function of

flightpath angle peak overshoot — 77 percent of
the ratings were within a *-1 PR band, and 95 per-

cent were within a *-1.5 PR band. This correla-
tion is quite remarkable when one considers the

simplicity and ease of applying the metric. The
reason for this correlation may be that flightpath
angle peak overshoot is an indication of the pre-

dictability of flightpath response. This is very
important to the pilot in the landing task. If

the aircraft acquires — with little or no over-
shoot — the flightpath that the pilot sees on neu-
tralizing the controls, he can readily predict the

response. On the other hand, if the aircraft
significantly overshoots the flightpath angle that
the pilot sees when he releases the controls, it
is difficult for him to anticipate the response.

The characteristics of flightpath response

after the peak overshoot value were also examined.
As previously mentioned, all configurations exhib-
ited a gradual change or settling in flightpath
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angle after the peak value was attained. This is
because a change in angle of attack was brought
about by the speed bleedoff during the pullup com-

mand. The settling is an indication of the amount
of aft stick that the pilot needs during the land-
ing maneuver. Reference I indicates that, because
conventional aircraft require a noticeable amount
of aft stick during the landing maneuver, aft
stick is an important factor in the handling
qualities.

The settling in flightpath angle was minimal
for the typical pitch-rate command configurations
(Fig. 2), but was more pronounced for the conven-

tional aircraft configuration (Fig. 3) and the
washout configurations (Fig. 7). In the case of
the pitch-rate command systems, the settling was

minimized by their attitude-hold tendencies. It
was noted that prefilters (Fig. 8), as well as
washout (Fig. 7), reduced the flightpath overshoot
ratio when applied to a typical pitch-rate command
system (Fig. 2). However, prefilters (Fig. 8) did
not increase the amount of flightpath settling,
whereas washout (Fig. 7) did.

A comparison of data from configurations with

prefilter added and with washout added is presented
in Fig. 9. Conventional and canard configurations
are included for reference. The trend line from
Fig. 6 is superimposed on these data. All the

basic configurations (circles), basic configura-
tions plus lead/lag (squares), and basic configu-

ration plus lead/lag plus canard (quarter-circle)
had a minimum of flightpath settling, which is typ-
ical of pitch-rate command systems. All the wash-

out configurations (diamonds and triangles) had
flightpath settling representative of a conven-
tional aircraft (elongated diamond). Nevertheless,
it can be seen that all the data follow the same
trend line, and flightpath peak overshoot is clear-
ly the dominant influence. This indicates that the

decrease in flightpath peak overshoot, and not the
increase in flightpath settling, is responsible for
the improvement in pilot ratings. It appears that
flightpath settling and the associated monotonic
stick forces are much less important factors than
proposed in Ref. 1.

Figure 9 also illustrates how well the flight-

path peak overshoot parameter correlates what seem
to be a variety of unrelated configuration effects.

Conventional aircraft, superaugmented aircraft,
space shuttle-like aircraft, various combinations
of lead/lag and washout filters, and even the
canard configuration can be explained in terms of
flightpath peak overshoot. The canard configura-
tion was thought to be influenced by NZP effects
associated with the change in center of rotation.
Figure 9 indicates that these influences were
small in comparison to flightpath peak overshoot.

Figure 10 shows a direct comparison between

the flight results of Ref. 1, the ratings predic-
ted by the a-NZP time-domain technique of Ref. 1,

the ratings predicted by the altitude (h) closure
technique of Ref. 2 that used an altitude outer
loop closure and an attitude inner loop closure,
and the ratings predicted by the results of this

analysis. (Rating predictions from the results of
this analysis were obtained using the central trend
line from Fig. 6.) It can be seen that the rating
predictions are in general agreement, and in most
cases they track the flight data fairly well. The
largest disagreement between flight results and the
flightpath criterion is configuration s, where a

2.5 PR error exists. The worst comparison for the
a-NZP criterion is configuration r, where the dis-
crepancy is a APR of 2.75. The worst case for the
altitude closure analysis is configuration u, where

a APR of 6 exists. Figure 11 presents this infor-
mation in histogram form. It can be seen that the

flightpath criterion gives somewhat better results
overall, despite the fact that it is considerably
easier to implement and interpret than the other
techniques.

With regard to Fig. 6, it is worth noting that

the study of Ref. 1 was essentially eight subex-
periments. The study considered the influence of
several different parameters — 1/782 (where T82 is

the pitch-attitude numerator time constant), domi-

nant mode frequency, conventional response, super-
augmentation, shuttle dynamics, rate command, pre-

filters, washout, static stability, and canards —
in the landing task. This wide diversity of influ-

ences can be explained in terms of one relatively
simple unifying parameter. Of course, until other
data bases are analyzed, these conclusions must he
limited to the range of parameters considered in
Ref. 1. Nevertheless, the general conclusions
reached here seem very convincing and should aid
in the analysis of other landing data.

Concluding Remarks

An analysis was made of the attitude and

flightpath angle response of configurations used
in the Total In-Flight Simulator (TIFS) pitch-rate

command study. Results indicate that the attitude
response was generally satisfactory for all config-

urations and therefore not a factor in the pilot-

rating results. A very strong correlation was
found to exist between the amount of flightpath
angle peak overshoot and the pilot ratings. The
correlation was va l id for all configurations de-
spite a diversity of configurations that included

conventional aircraft, space shuttle dynamics, su-
peraugmented aircraft, neutral static stability,
prefilters, and canards. In comparison to the in-
fluence of flightpath angle peak overshoot, ex-
pected influences such as monotonic stick forces
and initial acceleration at the pilot station were
negligible. The correlation was similar to the

best correlations that have been obtained in recent
closed-loop and time-domain analyses, but has the

advantage of greatly simplified implementation and
interpretation.
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TABLE 1. - DESCRIPTION OF CONFIGURATIONS

-_ -- - - - - - - - - - -- - - - - - - - - --- - - - -- - - - - - --------

1/782,

------ - --- - - - - - - - - --- -------- - -- - - 	 - - - - z - - -

Pilot
-	 -	 - - -
Reference 3

Configuration `n' Description rating configuration
rad/sec sec-1 (average) number

a 2.8 0.38 Rate command 6.0 1-1-1

h 2.7 1.00 Rate command 4.5 1-3-7

c 1.8 0.38 Rate command 6.0 2-1-1

d 1.8 0.72 Rate command 3.8 2-2-2

e z = 0.4 sec 0.38 Neutral	 static 5.8 3-1-3

f z = 0.4 sec 0.72 Neutral	 static 3.8 3-2-4

g 2.8 0.38 Rate command (a) plus lead/lag 3.8 4-1-1

h 2.8 0.72 Rate command plus lead/lag 2.5 4-2-2

i 2.7 1.00 Rate command (b) plus lead/lag 4.0 4-3-7-1

plus washout
j 1.8 0.38 Rate command (c) plus lead/lag 4.5 5-1-1

k 1.8 0.72 Rate command (d) plus lead/lag 2.5 5-2-2

1 2.3 0.38 Superaugmented 5.0 6-1-1

m 2.3 0.38 Superaugmented	 (1) plus washout 3.0 6-1-1-1
n 2.3 0.38 Superaugmented	 (1) plus lead/lag 3.7 6-2-1

0 2.3 0.38 Superaugmented	 (1) plus lead/lag 3.0 6-2-1-1

plus washout
p 2.8 0.72 Conventional	 aircraft 2.8 7-1-4

q 1.5 0.40 t' plus	 lead/lag 5.2 8-1-5

r 1.5 0.40 t' plus	 lead/lag plus washout 2.0 8-1-5-1

s 1.1 0.40 Modified shuttle 7.7 8-2-5

t 1.5 0.40 Shuttle-like 6.7 8-3-5

u 1.5 0.40 Shuttle-like	 (t) plus washout 3.0 8-3-5-1

v 1.5 0.40 t' plus lead/lag plus canard 1.0 8-4-6

The term wn is the short-period dominant mode natural	 frequency; T8 2 is the pitch-attitude numerator time

constant;	 r is the time constant.	 The t' configuration	 is the shuttle-like t configuration minus a

47-msec time delay.
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Control
input

I,

Pitch rate
141,

deg ► sec

Pitch
attitude

(e),
dog

Time

Normalized dropback = 
OR - 9SS

OR

OR = Pitch attitude at control release

6SS = Pitch attitude during steady state

Fig. 1 Attitude response analysis features.

6

	Pitch	 4
attitude

	

(e).	 2deg

0

2

Pitch rate	 1
141.

	

degisec	 0

4 r-

3

Flightpath 2
angle
(Y).
dog	 1

0

_1
0	 2	 4	 6	 6	 10	 12

Time, sec

Fig. 2 Typical response for pitch-rate command
system (Ref. 1), 5-sec boxcar command input.

Pitch	 2
attitude

(e),	 o	 I	 I
deg	

1

Pitch rate
(4).	 0

deg/sec

	

_ 1 	 I	 I

2
Flightpath

angle
(y),	 1

deg

	

0	 2	 4	 6	 6	 10	 12
Time, see

Fig. 3 Typical response for conventional aircraft
(Ref. 1), 6-see boxcar command input.
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Flightpath

angle
(y),
deg

0	 5	 10

Time, sac

y peak overshoot (percen t) = YP y R 100y
R

yp = flightpath angle at peak overshoot, deg

yR = flightpath angle at control release, deg

Fig. 5 Flightpath angle response features.

Control
Input

— t 1.0 pilot-rating band
--- t 1.5 pllot•rating band
Flags denote continuous
dropback

Lower-case letters denote
configuration (Table 1)

1 v 
r

3
m, h qu	 O o f

nl d

Average
pilot 5 --------------- , 1 b^^`^
rating 8

q .,
t

c	 `^\aOe

7 s `.
8 0ck	 Owrshoot
9
10 1	 .5	 0	 - .5
Attitude dropbock (DB)Ipitch attitude at control release OR)

Fig. 4 Pilot ratings as a function of normalised
attitude dropback.

— ± 1.0 pilot rating band
--- ±1.5 pilot -rating band
Lower-case letters denote

configuration (Table 1)
0
1  v
2

k

`hO 3

4

o^,O	 n .1nO ` b^ ^^ ,`Oft`
Average

pilot	 5
10,`	

9 _
	 1

_	 ' _Q
rating8 '-,	 a

T -_	 t

e Os	 -

`A

0 10	 20	 30	 40	 50	 80

Fllghtpoth angle peak overshoot, percent

Fig. 6 Pilot ratings as a function of flightpath

angle peak overshoot.
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Pitch

attitude	 2
MI
deft

0

2

Pitch rata	 -
(q),

deg/sec	 0

-1

Pitch	 2
attitude

( e).	 0	 1	 t	 I	 I	 I	 I

Pitch rate
(qp	 0

deglsee

-1

	O Shuttle-like	 • Superaugmsnted

	

O Shuttle-like plus leadllag	 6 Supersugnanted plus leadlleg

	

O Shuttle-like plus washout	 ♦ Superaugnnnted plus washout

	

& Shuttle-like plus loodllag 	 • Supersugmented plus leadllag
plus washout	 plus washout

D Shuttle-like plus %WC11109
plus canard

0 Conventional

	

1	 (7v

	

2	 &1

	

3	 ^o

	

4	 wn

Average S
pilot
rating 6

7

e
g

10

	

0
	

10	 20	 30	 40	 so	 60

Flightpoth angle peak overshoot, percent

Fig. 9 Pilot ratings for selected configurations.

2 -

Flightpath

deg	 0

_^	 __	 I	 I	 I	 i	 I	 I
0	 2	 4	 6	 a	 10	 12

Time, sec

Fig. 7 Typical response for pitch-rate command

with washout filter (Ref. 1), 5-sec boxcar oommand
input.
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Flightpath
angle
(y), 	 0

	

_^	 I	 I	 I	 I	 I
0	 2	 4	 6	 a	 10	 12

Time, sec

Fig. B Typical prefilter rate command aircraft
response (Ref. 1), 5-sec boxcar command input.

Configurations
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'NZP time domain
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8 closed k*p IRot 2)
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Fig. 11 Pilot-rating prediction srror histogram.
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