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INTRODUCTION AND SUMMARY

This report is a sumary of research activities performed under grant
NAG-I-6. The objective of the research has been to study the design of
adaptive/learning control systems for the control of large flexible structures.
In 1 an adaptive/learning control methodology for flexible space structures
was described. The approach was based on using a modal model of the flexible
structure dynamics and an output-eirror identification scheme to identify
modal parameters. The identification scheme was tested on simulated data
characteristic of the solar electric propulsion (SEP) array. In 2 a least-
squares identification scheme was proposed for estimating both modal parameters
and modal-to-actuator and modal-to-sensor shape functions. The technique was
applied to experimental data obtained from the NASA Langley beam experiment.

In 3 a separable nonlinear least-squares approach was described for estimating
the number of excited modes, shape functions, modal parameters, and modal
amplitude and velocity time functions for a flexible structure. A digital
computer program was delivered to the NASA-Langley Research Center and was used to
process experimental flexible beam data to obtain estimates of the parameters

and functions mentioned above. Because least-squares residuals are computed
during the identification procedure , the method provides its own monitoring

of identification quality. In 4 a dual-adaptive control strategy was developed
for regulating the modal dynamics and identifying modal parameters of a flexible
structure. It is well known that input signals that are optimum for identifying
system parameters often yield a dynamic response characterized by large ampli-
tude modal variations. Hence a min-max approach was used for finding an input
to provide modal parameter identification while not exceeding reasonable bounds

on modal displacement. The approach was tested using simulated beam data.



FUTURE PLANS

Our future research plans include the following: (1) simplification of
the separable nonlinear least squares computational procedure to obtain a
"real-time" identification algorithm that will run on the same time scale as
the process to be controlled; (2) derivation of a convergence proof for the
nonlinear least-squares identification algorithm that uses a "moving data
window;" (3) generalization of the nonlinear dual-adaptive control method
and derivation of asymptotic stability conditions for the resulting closed-

loop system.
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ADAPTIVE AND LEARNING CONTROL

Raymond C. Montgomery®
NASA Langley Research Center
tilampton, Virginia

Abstract

For large complex structures, knowledge needed
for control system design cannot be determined ana-
lytically at present. Also, ground testing is not
possible because of the size of the objects and the
fact that they are not designed to be self-
supporting in Earth gravity. The adaptive/learning
system for space operations assumes Lhat structural
testing must be conducted during deployment or
assembly. Testing is conducted only when necessary
to insure adequate control performance. Required
design information is analytically extrapolated and
monitored during other times. This report
describes the adaptive/learning system proposed and
presents simulation results using the SEP (solar
electric propulsion) array and a novel remote
sensor which involves raster scan television
coverage of the motions of the array from four
cameras on the corners of the space shuttle payload
bay. This report includes a detailed description
of the simulation, the filtering algorithm for
precessing the TV data, the parameter extraction
algorithm, and simulation results gathered thusfar.

Because of the desire for efficiency, the
structural designs of large space systems are
driven to low weight per unit area of surface.

This necessarily results in low effective stiffness
of the structures making them very flimsy and flex-
ible. For such structures, operations invoiving
barging, towing, and assembly require precise
knowiedge of the structural dynamics of the objects
involved to accomplish adequate attitude and con-
figuration control. At preseut, for complex struc-
tures, the knowledge required cannot be determined
analytically. Also, ground testing is not possible
because of the size of the objects and the fact
that they are not designed to be self-supporting in
Earth gravity. Thus, it may be that an adaptive
control system is required to deal with the prob-
lem. Unfortunately, the control excitation levels
usually required by adaptive systems (e.g. Ref. 1)
are unacceptable for many precision space opera-
tions. An alternate procedure is to schedule the
adaptation process during those times when it is
consistent with operational requirements and to
analytically extrapolate and monitor the system
during other times. An adaptive/learning system
that operates in this manner was proposed and
studied in an aircraft application (Ref. 2) and

was later modified for use with structural systems
(Ref. 3). The distinguishing feature of this
system lies in the extrapolation and monitoring
processes and the proposed system should not be
confused with learning systems as described in
reference L4 which deals with pattern classifica-
tion. 1In the next section, the adaptive/learning
concept is explained in the context of an example
of the deployment of the solar electric propulsion
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array (SEP) from the space shuttle payload bay.
Alternatives are discussed for the testing, «
polation, and monitoring subsystems. The estima-
tion and parameter identification subsystem
which simulation results are available are n
mathematically outlined. This is followed by a
iescription of the simulation example and by

rresentation and discussion simulation results.

II. Adaptive/Learning System Description

For the purpose of explaining the functions of
the learning system, consider the problem of
deploying a large solar array from its stowed con-
figuration while attached to the space shuttle
(Fig. 1). In the upper part of figure 2 a simpli-
fied model is ~hown where the shuttle is repre-
sented by the mass m and the solar array, fully
deployed, in an undeflected state by the bar and a
typical deflected state by the curved line. F
represents the force resulting from the reaction
jets on the shuttle. The lower part of the figure
shows two variations of the plots of the first
fundamental frequency of the solar array as a
function of the deployment length & which is, in
this case, the configuration variable. As indi-
cated, the actual variation (shown dashed) might
differ from that determined analytically. The
system must initially use the analytic variation
to schedule the feedback gains during deployment.
It is assumed that, at the start of the deployment,
information is available through analysis or ground
testing that adequately defines the dynamics, and,
hence, produces adequate stability and control
margins. In other words, the error between the
actual and analytical frequency curves of figure 2
is acceptable for small values of %£. Also, if
considered necessary, an in-flight test in the
stowed configuration could be used to further
reduce errors for ¢ = 0. Semi-empirical methods
must be used to incorporate the information
obtained during the test into the analytic extra-
polation used by the learning system. This is
illustrated in figure 3 where the initial error
(2 = 0) has been reduced (Test 1) and the analytic
extrapolation has been adjusted as a result of
Test 2. During further deployment, the error
between the actual and the model frequencies may be
expected to become large enough that further test-
ing is required (test point 3). The decision to
conduct another test can be put on an analytical
basis by monitoring sensor signals during deploy-
ment and comparing them to the output of an ana-
lytic model based on the extrapolation. When the
error grows to an unacceptable level, a new test is
needed to insure favorable control system margins.

For the adaptive/learning system discussed
above, estimation and parameter identification
theories are required together with an extrapola-
tion of the system model, a method for evaluating
the extrapolation to determine the need for test-~
ing, a method of designing the test inputs, and a
method of refining the extrapolation process to
bring it into agreement with the evolution of the
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system. During testing for narameter identifica-
tion a lerpe signal to noise environment is
provided by designed test inputs., In this case,
speed of testing is important because parameter
identification of ultra low frequency systems -
characteristic of larpge space structures - will
require considerable time. During other times, no
specific test inputs are available. The only
system inputs are those resul'iag from spacecraft
perations, hence, there is : low signal to noise
environment for parameter iden..fication. 1In this
case, parameter identification in as low a signal
to noise environment as possible is important
assuming small deviations from the extrapolation
model. For this case sequential parameter identi-
fication as employed in reference 2 or a moving
window lNewtom-Raphson parameter identification may
be desirable. The latter offers considerably more
tolerance to noise but is also considerably more
complex than the former. It also has monitoring
information since estimates of the parameter
variances are available by processing the informa-
tion matrix of the data base (Refs. 5 and 6). The
former is simpler to implement, requiring consid-
erably less computation and is amenable to parallel
processing using a bank of second order parameter
estimators. For that reascn the former technique
has been selected for development here.

The technique used here was applied in
reference 1 to the dynamics of a closed ring. The
motion of the ring was assumed to be described by
a Fourier series in the spatial variable with time
varying coefficients. The coefficients were
obtained using a fast-Fourier transform (FFT) of
noise free measurements at sample times and their
time series were used in parallel to identify
frequency and damping characteristics of each
coefficient. In that case a sine-cosine series was
appropriate because of the closed nature of the
ring. Generally, however, a sine-cosine approxima-
tion may not yield a bank of uncoupled second
order dynamic systems that describe the time evolu-
tion of the coefficients of the FFT. In that case,
the approximation functions of the series used to
represent the dynamics must be "tuned" to effect
decoupling of the bank of second order systems.

The remainder of this section will deal with
implementing the bank of sequential parameter
estimators using arbitrary approximation functions
and "tuning" the approximation functions to
decouple the bank of parallel second order esti-
mators. The general philosophy is to assume a set
of approximation functions in the spatial and time
domain (to account for rotating dynamics, e. g.
Ref. 1), to obtain the "best fit" coefficients of
a linear representation of the measurements at a
sample time using the approximation functions, to
select parameters of a bank of uncoupled linear
second order difference equations to minimize the
error between the model output and the observed
coefficient time series, and finally, tc "tune" the
approximation functions to render the parameters
time invariant.

Analytically the motion, w, of the system can
be represented by

M
w(s,t,2) = }
i=1

wi(t,pi(l))si(s,ci(i)) (1)
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where £, are the M approximation functions to be
i

used to represent w; £ is a measured configuration
variable; yi are the time varying coefficients of
is the spatial variable; t is time; Py

.

S 1s e

$:3

: th .

parameter vector of the i linear second order

difference equations modeling wi and 6, - ‘cl1r
+ J

the coefficient vector that relates the i =~ func-

tion &i to a constant set of Hu basis functions

oy (s,2) as follows:
HG
i
E{se)i = ¥ wu, (s,2)c,  (2) (2)
i o iJ iJ
J=0

Thus, for each mode number, i, there is a set of
basis functions {oiJ(s,l), j=0, l"'”c } which,

i
= {e;ys 30, 1,,,

when summed using the weights s
th

Hc } according to equation (2), produces the i
i

mode shape approximation function Ci. The ¢

- 2
vectors will be adjusted, thus tuning the approxi-
mation functions, only if monitoring indicates a
deviation of the actual response from the extra-
polation (1): One method for selecting the tuning
functions oiJ is illustrated in figure 4 where the
mode shape El is represented by a table of values
The function °10 is the
t

at discrete values of s.

best ground analysis estimate of the 15% mode
Remaining o_, functions are selected to

1
allow for adjustment of the value of El
corresponding to the Jth table point. Initially,
the values of No +1 dimensional ¢y vectors are

i
[1,0,,,0] which corresponds to using the best
ground based analysis to start the system.
Updating o and monitoring will require time series

analysis of the parameters p;-

shape.

The parameters p; are selected to minimize the

error between the output of each model,

wi(k) = A, wi(k-l) + A, wi(k-Z)

+ B, Fi(k-l) + 3B, Fi(k-2)

and the "best" fit of the sensor data to the
approximation function representation wi(k) at

sample time t . In (3) the parameter vector p; is

py = [Ayys Ayps Byys Byl and Fy

force command inputs which are known to the
controller. Thus wi is, in effect, the input

sequence for a second order parameter estimator.
In this report, this sequence is obtained using
least squares fit of position measurements, y,
which can be sequentially implemented. The form
of the estimation problem is

is the time series
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=4
w

v(k) = uimai(x) + v(k) (1)

=t

i=1

where y is the measurement vector, Hi is a known

operator algebraically related to £, v(k) is the
error in the fit and wi is the estimate of wi.

The least squares solution to estimate Ei is well

known (Ref. 7) and will not be cduplicated here.

The solution may be sequentially processed but one
must take care not to propagate the estimated vari-
ance of Gi since this is equivalent to averaging

the measurements at different times and will =
eventually produce an insensitive estimation of wi.

The technique used here to avoid this difficulty is
to set the a priori variance estimate to a constant
at each k to start the sequential estimation.

Subscripts i will now be dropped for simpli-
city since processing for each approximation func-
tion is parallel and identical. The parameter
vector p can be selected iteratively using an out-
put error formulation (Ref. 8) wherein the measure-
ment sequence is Ek (k indicating the sample time

index) and the model output error is

-1 = k-1 = M¥k2 - A%y

« B.P (5)

=B F2 2°k-3

The iteration of p for the output error formulation
is given by

(wlwk-2—

Woly-3
e . (6)

Pe ® Pp1 * 8 i
3 k-2

| "uFg-3

As indicated in reference 1, the weightc wl,,wh
should be selected to be consistent with
-2 2 2

* e Wl

2
and the inputs, Ek and Fk' must be sufficiently
varying and large if convergence of the sequency P,
to some value say pc is to be assured.

After convergence, the parameters track a
sequence of converged parameters pc which satisfy

(3) locally (for the sample sequence when the para-
meters were identified,) If the sequence P, is

constant our Job is dcnc. However, if the sequence
varies, "tuning" is needed for the approximation
functions. The basic task is to adjust ¢ so that,

for all approximation functions, the identity e = 0
(Eq. 5) holds for a constant P p*. Consider

then the variation of the NM dimensional error
vector F(pc,c) = {el} where el is the ith error

function taken locally and Py {pci). The terms

involving ¢ appear explicitly in F only through the
least square estimation process of ¥ and hence we
may calculate the change in F caused by a change in
¢ by first calculating the change in v given the
measurement y (locally) and the change in ¢. This
may be accomplished analytically (using the formu-
las of Ref. 7) or numerically. Similarly a change
in pc results in a change in F which is linear

(through e) and is easily calculated. Hence, we

may construct the equation

OF = VF Ac +V_F Ap
c P, .

et
c

= = 1
where Vp F= (Vp F,,,VFP ] and Apc-[Apc”Ap §

c ey M
If a constant value p* = [pi'] exists then we may

set Api = p; = TE i=1,2,,,§M, and, hence,
i

c
(vF, v F) + 9V Fp =AF
c P. o¥ P

In the last equation P, is the parameter vector of

all modes identified locally assuming convergence
of the output error algorithm. The solution of

AF = 0 for p* and c provides, in the variational
sense, the value of ¢ that will result in a con-
stant p* solution of the output error parameter
identification problem for each mode taken over the
data base. The next two sections concern the
application of the methods presented here to a
large space structure control problem. The only
results gathered thusfar pertain to the least
square estimation problem which serves as the input
driver to the parallel output error identifiers and
the output error identification process itself.

III. Simulation of the SEP Array

A simulation of a large space structure has
been developed to test the algorithms presented
here as well as others. The structure used is the
solar electric propulsion (SEP) array which is
scheduled for deployment tests in orbit attached to
the space shuttle as shown in figure 1. This
section is a discussion of the finite element
modeling of the array, the simulation, and the
sensors and actuators simulated.

The SEP array is illustrated in figure 5. It
consists of a canister, an extendable mast, a con-
tainment box with cover, and the solar array. The
array is folded in the containment box and is
lifted during deployment by the mast and box cover.
The canister and box are attached to the shuttle
payload bay using a carriage assembly not shown.
First, the mast will be deployed without the array
to test the mast deployment machanism. Then,
deployment of the complete configuration will be



tested. The deployment mechanism is designed so
that it may be stopped at 3/L4 of full extension or
at full extension. At these points dynamics test-
ing may be accomplished. He -, we assume that such
tests will be conducted by ..ring the space shuttle
reaction control jets which produce three axis
force and moment control at the base of the
canister.

The simulation is developed as shown in
figure 6. First, a finite element model of the
physical structure is developed (Fig. 7) in a form
required by the SPAR computer program (Ref. 9).
The finite element model involves 436 joints with
1705 interconnecting elements. ‘Ihe elements are
bars, tubes, and beams which are included in the
SPAR element repetoire. A total of 1350 degrees of
freedom (includinz translation and rotational joint
motion compunents as appropriate) are involved in
the GPAR model. A modal simulation was selected
because of the large order of the state required
to simulate the 1350 coupled degrees of freedom.
Mode-frequency data required for the simulation is
also provided by the SPAR program (Fig. 6). This
mechanization also provides for the use of flight
test data reduced to mode-frequency data (dashed
blocks of Fig. 6). At present, a maximum of 10
modes can he used in the simulation. However, that
limitation can be removed without serious computa-
tional penalty.

The simulation also assumes a novel remote
optical sensing concept that involves raster scan
television coverage of the array (Fig. 8). Optical
targets are distributed on the SEP structure and
can be identified in the TV raster and registered
in digital form at a given sample frequency. The
sensors measure target motion but do not include
components along the line of sight of each camera
to the associated target. A total of 23 targets
are assumed placed on the SEP structure which are
observed with four cameras thus producing 18k
sensor components at each sample time. The loca-
tion of the cameras is shown in figure 8. (The
targets on the containment box are not shown.) All
sensor data is generated during the simulation but,
for the studies undertaken here, only 16 sensor
camera-target combinations are used. These 16 have
been selected to render some of the 10 modes
essentially unobservable.

In summary, the simulation to be used in
evaluating algorithms for the adaptive/learning
system is a modal one which uses up to 10 modes of
six degree-of-freedom motion of the SEP array. The
simulation inputs are the forces and moments
applied to the base of the SEP canister. Sensor
information is the motion of spots located on the
SEP structure as perceived by four comeras located
in the space shuttle payload bay.

IV. Simulation Results

The simulation results gathered thusfar per-
tain to the first test--mast deployment without the
attached array--at 3/4 and full extension. The
least squares estimation of modal amplitudes has
been developed and tested, in simulation, assuming
that o5 functions are the ones computed from SPAR.
The sensor targets were three equally spaced along
the containment box cover (at the top of the mast)
and one spot halfway down the extension axis on the
mast. All four cameras were used. This spot-

camera combination renders the seventh UPAR mode
essentially unobservable since it is predominantly
a torsional excitation of the containment box, the
targets on which were not processed. The assumed
a priori variance of ¥ was proportional to the
square of the product of frequency of the associ-
ated mode and the sample time, T = .1 sec. For the
array simulated the lowest model frequency was

.109 Hz and the highest frequency (mode 10) was

.0 Hz. (This will obviously challenge the sample
duta parameter identification process). The modes
are ordered in increasing frequency and Shannon's
sampling theorem is violated for modes 8, 9, and
10. Mode T is, as mentioned earlier, unobservable.
Also, modes 1 and 2 are very close, frequency-wise,
but correspond to vibrations which are totally
different spatially. Measurement noise was

assumed to be independent of other measurements
and Gaussian with zero mean. Studies have been
made with measurement noise standard deviation of
.03 in. to .003 in. dependent on the range of the
target to the camera. For the results, herein, the
sensor standard deviation was .0l in. for the
closest target which was on the mast and .003 in.
for the targets on the containment box cover.

Thus, the sensor processing was essentially noise
free with respect to motions of about six inches.

Figure 9 shows the spatial distribution of the
mast motion along its deployment axis at selected
times during a 10 sec. simulation at 3/4 extension.
Only the X, component is shown which is normal to

the space shuttle longitudinal axis for €=0
(Fig. 8). The simulation resulted from a unit
excitation of all 10 modes.

The measurements taken from cameras 1 and 2
(x; and xp raster components) for the target on the
mast are shown in figure 10. Figures 11, 12, and
13 are results taken from the estimation and
identification algorithms of the learning system
during the simulation. Figure 11 corresponds to
controller mode 2, figure 12 to mode 6, and
figure 13 to _mode 10. In each figure we have the
sequence of |y estimates and the identifiers itera-

tive estimate of Al and A2. Figure 13 also

includes the modal estimation error which was the
largest of all 10 modes. The length of time for
convergence is substantially larger for mode 2
parameters than for mode 6. This is, of course, to
be expected since the frequency of mode 2 is mucn
lower than that of 6. Mode T results are not
presented since 37 cannot be estimated. For this

mode the parameter identification algorithm does

not converge using the wT sequence as input since

it is uncorrelated with the motion. Tests as
recommended in reference 5 should be made on the
estimated variance of WT before passing it to the

sequential identification algorithm. The mode 10
results are somewhat unexpected since convergence
to the actual parameters does occur although
Shannon's sampling theorem is violated. Table 1
shows the actual, initial, and final A1 parameter

values for all modes. The B parameter values were
not identified since there was no force or moment
inputs. Note that under the assumed structure thre
unobservability of mode 7 does not affect other
modes.
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V. Concluding Remarks

This paper has presented an adaptive/learning
control system concept for large space structures.
The concept employs a priori ground tests and
analysis initially to model the structure. The
learning process requires in-flight testing to
refine the model whenever control system perfor-
mance degrades to an unacceptable level. OJub-
systems required for learning involve distributed
sensor rrocessing and parameter identification--
algorithms which have been proposed in this report.
A simulstion of a large space structure has been
developed to study the performance of the proposed
algoritnms. The structure simulated was the solar
electric propulsion array which is scheduled to be
flight tested for deployment and structural
dynamics. To this time the only identification
performed has been the parameters of a bank of
second order difference equations (one for each
mode in the learning system model). For the
simulations conducted the parameter estimator
behaved as expected--converging to the actual
parameter values. The behavior of the system with
realistic noise levels in the sensors is yet to be
evaluated as is the approximation functions
"tuning" algorithm which was presented.
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Table 1 Initial, Final, and Actual A

1
Parameter Values for the Simulation

Mode Initial Final Actual

1 .9953 1.9953 1.9953

2 .9952 1.9902 1.9952

3 .9855 1.9852 1.9855

N L3470 1.3L43 1.3470

5 .2637 1.2637 1.2637

6 -1,5u482 -.5482 -.5u82

T -1.9849 1.8561 -.98Lko

8 -2.8423 -1.8k412 -1.8L23

9 -2.9973 -2.0291 -1.9973

10 .7520 1.7413 1.7520
#Unobservable

Sun vector

Deployment
and ¥
Retraction e R

Figure 1.- Solar Array Deployment from
the Space Shuttle.

Analytical
Extrapolation

Figure 2.-"Simplified model of solar array deploy-
ment showing the variation of frequency
with array length.
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single-cutput system = e 355-
tem input and noisy measurer = out-
pus are avallable, It is s that
the instrumental variatle mec! szent
carareter estinmates. In [5 2 7 4 her
of methods of estimaticn »¢ paramesers in —ulsi-
variate autcresres ng averaze mciels is
cresentedi., Azonz i3ues considered are
Zeneraliz t- res, instruzental variedle
methods, imum likelihood estimaticn pro-
cedures. ited informaticn" estimation is
proposed i [ and, for autoregressive models, is
shown to produce parameter estirmates asympiotically
identicel %o conditional maximum likelihood estimat-
es while requiring reduced cozputational =ffore<.

In [7] a statistizally effizient least-sqguiares pro-
cedure is ievelcred for estimating the natural
frequencies d dagpiag parameters sf 1 svstem
characterized by a lumped mass-spring-Zamger model
under stationary randon forcing functions. The
only available measurement is 2 sequence of ispl-
acerents subject to additive noise. Although the
formulaticn in [7] dces no% inzlude the treatmens
of znown forcing functions nor the inclusion of
multi-output measurements, numerical resulits preo-
sented demcnstrate that the ierived least-sjuares
estizates are a zood approximation to maxizuz-like-
lihood estirmates.

In
meter {
proclex R
discret t ti
using n n ents. on 3
corbine i lgerit 2 it
the new approach for updating the approxizaticn
functions. T=ae YASA-Langley structural Zymamics
and control test facility is then descrited in
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iine ident e to a flexi
assuming ¢ i icn funstion
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test of the flexible structure. A compar
the results of digital computer simulatin
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II. Problem Fermylaticn
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exarined from the following fcrmulation: <he
motion w(s,t) of a flexible structure may te re-

presented Ty
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s a finite ¢ of N1 sp
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ze

st M elgealfunc
re <ime-varyring
or =odal amplitudes, and
nigher-order terms not apgearin
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(hﬂ) A h)#A %(h-‘)o- ,L“(k)o-B‘ T-(k 1) (2)

g (R)=
A‘A nAh. aB

"4

The measurements available to the
controller are a set of sampled values of the
motion at the points S J =12 .."NS

ggere IS is the nurter cof senscr locations and
e regresents the xeasureczent error.
) e
If w4e write the set of measurements as the
recter y (R) , trne set of mcdal axplitudes as the
restar (k), the set 2% actnuator and mcial forces
2s the vectors U(R)and F(R) , respectively,

Zave the following =odel

Rei)=A g (R)e A g (k1) +EMURI+B,M Ulk-1)

then ve

—~
O

/—Ig(k)# w (k)

The ilentification problem is the on-line calcul-

ation 37 the elerents of the zatrices apr earing

e (3), JeeA“Az,ﬁ”B are iiaczonal mat-

wi~a w - wain -

rizes with Tain laonal e -.*..:er.,.a A“_"AZLABH,-BZA)

ASl,,,. 9 .M respectively, M is an M X

matrix and ¥ is an S x M matrix whose columnrs

are linearly independent in the zodal model.

errsr vactor w(k) appearing in (6) is an IS

whose compcnenss wi (R)are she sum of the measure-
-1 = - -

aens arrars ‘(k) ard the nodel errors VTSi;rk)

w (k)= € (R +v(s, ), i= NS 7)

ey

, then the mcde. (&)

1o
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glk+i)= A,g(n)*Azg(h-') +B,Ul®)+B_U(k-1)

y(R)= Hg(k)+u’(k) -

The availaple measurements are the series of act-
uator Jorces { \4(k)} and sencor measurerents

{y()} .

ITI. On-Line Parameter Identification

The adaptive control system in Tigure 1 was
desizgned to take advantage o the parallel prc-
cessing capatility cf moder micrcccmputers. Unfcre
tunately, the zarallel architecture is correct only
in cas o t functicns iz the Tigure
are th e structurel sys:eé.
geca ational rrectlem tosed
by cozpu s it is unrsalistic
to assure :h1: e ¢ tputs, pcle-zerc
varaceters, and zode n be computed at the
same frequency, The adopted nerein is to
assume that :he control outputs are ccmputed at the
highest ‘requency, rarameters that define the pole-
zerc cheoracteristics at a lower {requency, aad the
mode shapes are updeted when possible. .n;s sec-
tion first summarizes an algorithz, taken from
refererce[2], Jor identifying the parameters that
define the pole-zers characteristics of tihe system.
Trhen an original zethod for updating the approx-
ization functions in Fizure 1 is presented.
1. TIdentificaticn of the Pole-Zeroc Characteristics

Here it assumed that the approximaticn functiorns
are givern and that the parallel architecture of
Migure 1 is velid. Under these assuxptions tre
proclem is r:iucez_tc one of :ientify:n§
/'J"z(. i, A28, By ) of equation (2). The
technique of :efere::s[i]is followed here. It
is an output error formulation wherein the error
is given by

and the formula for updating the estimates of the
vector »; is

W, i (k-2)
w4 (R
w, F, (k-2) (12)
Wy F (R-3)

h(R)= b (R-1) + € k-1 -

icn (1C) the weights W shouli ve seleczed

In equatic
satisly the requirement that

<0
z z 1 l / «\
Wi (R-2)+ W, @7 (k-3) + W, F[k-0) # W, Fik-)< 2 “22)

identification algoriths.

taszed upon rewrising



Hiym-H*

‘?_(R):

w(k) s 2

(15a)

it 20
t
g
a.
]
i

N,=HB;, |,

ket (250)

m(kol) =wi(ket)- M. w'(k)-Mzu'(k-')

Hence, a1 procedure rfor determining the modal
carareters 13 as Jollows: 1) Use measurement 3ata
o ietermine the = Mg v M,y dp in (1K),
21 Zalsulate the er i%aisenvectars o7
“yand M, %o determine A, n ) Solve
f3r 3,and 3, froz= (15b.. nc genvactors
-} 4 3-'A' are lipearly inderendens bu y in zeneral,
non=-unique, ,re ldentisication of Hand hence,qf

G on-unique., This, however, is
surprising siven the fora of the modal model

bR

1 =ay te letermined ty Sake
< iatd }(ku),,.bu),

S “hnese Ieasurezents

2

ing 2 seguen

oo, YlReN22)
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T
yr(n.;)_r,(n.z)'y /k..) ( (km'r/(r.., l:‘,

. ¢ NI
. g N:

r n?kr?)

T
T M, (17)

r H ]
lﬁk,mg): l'y(k.Nn)J?P»N)’L‘/A";NoQ(:/,‘me} M; & nffk'*N'Z)

Yin) = SINM + V(N) (23)
S(N)= [Y(N-'):‘Y(N-z)EU(N--); U(N-g)]

Y (k-(n-3))
YiK)= :

y'(K+2)

Ul
AR

U'(L+2)

K=ReN, kiN-1, RIN-2 L=th' ReN-I

and
n"(k+3) [_M‘T
; .M
vin= |, M =

nr(k0N02) -

lote that tha Y(K) are lxil xzatrice

t s and that the
U(L) are ixlNA zatrices. The jth solumn YH(K) of
zasriz Y(K) comprises a sequence of measurements
taken at <he th mes3urement point

¥; (K- (n-3Y)
3’0\) = r21)
‘j) (K+2)

dow, 1f N)&(NM#NA) s & leas
T raA

) may te 2btained as

solu-

ot
o
,.
(o9

= S’Y(N) (22)
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Figure l.- Schematic diagram of distributed
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Figure 2.- Experimental beam facility.
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LEAST-SQUARES SEQUENTIAL

PAKAMETER AND STATE ESTIMATION FOR

LARGE SPACE STRUCTURES

F. E. Thau
City University of New York
New York, New York

Abstract

This paper presents the formulation of sim-
ultaneous state and parameter estimation problems
for flexible structures in terms of least-squares
minimization problems. The approach combines an
on-line order determinatior algorithm, with
least-squares algorithms for finding estimates of
modal approximation functions, modal amplitudes,
and modal parameters. The approach combines pre-
vious results on separable nonlinear least squares
estimation with a regression analysis formulation
of the state estimation problem. The technigue
makes usc of sequential Householder transforma=-
tions. This allows for sequential accumulation
of matrices required during the identification
process. The technique is used to identify the
modal parameters of a flexible beam.

1. Introduction

On linc identification of parameters and
states of distributed paramecter systems is a
significant problem affecting the design of
adaptive controllers that have been proposed for
large flexible space structures. In 1 we
proposed a technique for identifying the modal
approximation functions and modal parameters of a

-finite-dimensional approximate model of a flexi-

ble structurc. The technique proposed in [l]
was based upon a priori knowledge of NM, the num-
ber of modes being excited during an identifica-
tion time interval. Because the number of excited
modes is gencrally unknown we propose here a
procedure for identifying NM on-line. This tech-
nique is based upon using Householder transforma-
tions (2] to determine the rank of a sequential-
ly obtained mecasurement matrix. Onece NM is iden-
tified, the approximation function updating pro-
cedure of [1] is used to determine a set of
normalized approximation functions. The modal
parameters arc then determined using a non-linear
least-squares parameter and state estimation al=-
gorichm. This algorithm, reported in [3] , is
based upon the work of Kaufman [L] and Golub and
Pereyra [5] on separable nonlinear least squares
problems.

In the following section the structural

_paramecter fdentification problem is formulated as

2 problem of estimating the parameters of a linear
multf=input, multi-output system of unknown order
using noisy on-line measurements. The identifi-
cation algorithms are presented in section 3 and

City University of New York
New York, New York

Eliazov R. C. Montgomery
NASA Langley Research Center

Hampton, Virginia

applied i1n section 4 to identify the parameters
of a flexible beam from measurements performed at
the NASA-Langley structural dynamics and control
test facility.

11. Problem Formulation

The motion w(s,t) of a flexible structure
is represented by

'{"_4
- > \ ' (i)
w = - SESiE V(s
1) =) ¢, (t p )50 + Vst
(=t

where s denotes the spatial variable and t repre-
sents time. The E;(S) represent the first
NM eigenfunctions in a modal expansion,

gl e ) are modal amplitudes, and
v(s,t) represents those higher-order terms not
appearing in the finite sum. The parameter vec-
tor 1k¢ represents a set of parameters charac-
terizing ecach mode. For example, il cach mode is
characterized by the differential equation

g s2re W e
fl +~J; u’f?»(-*u“' f-a ="y I«"* (2)

then parameter vector fu would comprise the com-
ponents [, & w;)} . If each mode were
characterized by a difference equation

(ke )=A, ’l(/()rA), "(l:-')ngT(k) r'.l_,; Fli-1)
7 ALY Ll AR

then parameter vector ‘ﬁ( ~ would comprise the
components ( Asi, Ay, B, Ba, ) o In(2)

and (3) 7(. (t) and ¥, (k) respectively represent
the modal forces in the continuous and discrete
models.

The measurements available to the controller
are a set of sampled values of the motion at the
points s 3 , j=1,2,...,N5, and a set of sampled
values of the actuator forces \J; s §21,2,..4,NA,
where we have assumed NS sensors and NA actuators
are used. Thus, if JJ‘k) denotes a measurement of
the flexible structure motion at point s, » then

. Lolod
Fas o > NS s 4 ol 4
PR -%;.:s,)atf,,r.)-n (b)Y S k) @

where < (b) represents the measurement error and

~



$91,2,004,88. 1t T;.(k) represents the modal
force applied to the 1-th flexible mode at time

t , then
k NA

Fw=2 m Uk 5)
4 =T
J
where i=1,2,...,NM and where the M, actuator in-
fluence parameters are usually unknown.

The parameter identification problem to be
treated below 1s that of on-line processing of the
available sequences of actuator force measurements
(U-(k)} and sensors measurements 54“")}
in srder to estimate the number of excited modes
NM, the approximation functions X, 53). the
modal parameter vectors P& , and the actuator
influence parameters *"‘j .

111. lderntification Algorithms

A set of identification algorithms is des~
cribed below for performing on-line parameter i=-
dentification in the following sequence: (1) est-
imate "M, ,(2)estimate the 3.(shand(3)eetimate the
Randl}”": From the des:npzi‘l)n below it will be
seen that while the computational procedures for
accomplishing these tasks make use of common vec=-
tors of stored measurement data, the computation=-
al time for each procedure differs from the others
so that, in general, these 1dentification subtasks
will operate in parallel with transfer of updated
estimates occuring as new estimates become avail=-
able.

1. ldentification of number of excited modes NM

To examine the nature of this .dentification
subproblem, define the vector of measurements
and modal amplitudes i(k) by
y, (k) 5/(1@)
(R)= . ) ?(k): : (6)

so that from (4) we have

y(k)= H;(k) + wi(k) M

where the NSxNM matrix H has A&j ~th element

(8)

H), = 5.()

‘-
‘j J:I‘

and the measurement error vector w(k) is an NS-
vector whose components are given by

L

-N= o[ X F g
wiR= € (k) + U(s,t,) 4=1,..,mc "’

1f we denote the columns of H by h?
j=1,2,...,NM, then (7) may be rewritten as

7’ Nay
AOERFAORIS S AR T

In (10) NM as well as the vectors hy are un-
known and must be determined from the on-line
measurements y(k). The procedure described below
for finding NM is a generalization and extension
of the work of Woodside [6] to multi-dimension-
al systems.

First consider the case where w(k) = 0. The
problem then is to determine the number of lin-
early independent vectors hJ) required to repre-
sent the measured response vectors y(k)=z(k),
where

o
(R) = Z 4% (k) (11)
ke Y
o
Assume that there is sume maximum system order

NM* « NS beyond which we will not attempt to
model the fiexible structure. Form the array

’;(M)=[ys),...5(~1-n}, (12)
e tt...

From (11) it is seen that if M is such that

NM* 2 M > NM, the M columns of 3(.‘1) will be
linearly dependent whereas, the columns of ™)
be linearly independent ifM £ MNM. Hence, to
determine NM we examine the rank of the % (M)
array for a sequence of M values. 1f it is found
that there is a value M* such that

rank [3(H‘)] = rankf_:’)(n'u)_] (13)

then NM=M*,

A simple rank test is based on the orthogonal
decomposition of the data matrix (12). As shown
in [2] if A is an mxn matrix (m > n) of rank

Rem then there is an mxm orthogonal matrix
Q and an nxn permutation matrix P such that
n- R

- —

R, R
8 @) tm-k

(14)

QAP =

where I{., is a kRxk wupper triangular matrix of
rank R . A computational algorithm based upon

use of Householder *ransformations for obtaining
the decomposition (14) is specified in [2] and
is applied in section & below where the data



matrix #(M) replaces matrix A. Testing the main
diagona: elements of the right hand side of (14)
provides a rank test and, hence, an estimate of
the. number of excited modes.

2. ldentification of Modal Approximation Func-
tions

Once the number of excited modes NM has been

determined, a least-squares procedure can be
used to estimate the modal approximation func-
tions. A procedure was presented in [1] for de-
termining the modal approximation functions
J.',,._,f"for a discrete modal description of the
form

Az,'(ku) =A,4(h)4A_.Y_(k-a)» B (k) o’BJU(t-l) (15)

with available measurements (7). 1n (15) A and
A, are diagonal matrices, q(R ) is a vector of
modal amplitudes and U(R ) is a vector of act-
uvator forces. The procedure consists in finding
the eigenvectors corresponding to the NM largest
eigenvalues of estimates of matrices M, and My
where

ke )= Mg 004 g (ke K LR, Uirdrind 109

and

M":HAAH' ) Nj:H% LA=h2 (17)

)

7 (ko) = wkan) =M wfk)- Mywlk-1) (&)

H’ in (17) is given by

e

where ( ¢ ).r denotes matrix transpose.
Least-squares estimates of M , M, N'. and

N, are obtained Ey finding the least-squares
matrix solution M to

Y(N)= SINMT + VN (20)

where
:
Sty= [y v Ui unad )
T = \ r 7
¥ (K= i¥-3)) U (i-(w-3) i
Yi=| e - | W
y (ke 2) JT(er2)

K:th,hN-l,’R'N-Z L= F4NIL‘9N—I

and
»(ke3) MT_H
V(N) = . M = ':T} (23)
P (RN 2) N, _I

From (17) it is seen that the columns of H are
eigenvectors of M; and the non-zero eigenvalues
of M are the diagonal elements of the matrices
A, . Furthermore the matrices B, can be deter-
mined from (17) once es®imates of H and N; are
available. This procedure requires the storage
of measurement data over a time-interval that in-
cludes at least 2(NM+NA) measurement samples. In
situations where more rapid up-dating of parameter
estimates is desired, alternate techniques [17 ’
[BJ may be used. These are described below.

3. ldentification of Modal Parameters

in [17 it was assumed that the estimates of
modal apperimation functions would be calculated
at a lower frequency than the computation of the
modal parameter estimates. The latter were ob-
tained from an output error algorithm. 1In this
paper we employ a nonlinear least-squares algor-
ithm [3] which could also be used to provide
estimates of modal position and velocity. The
technique is based upon computing a least -squares
estimate of modal amplitudes at each sampling
time. For each mode i we use a state description
of the form

xi (k1) = F"'z‘(le)-r G(p) Ulk) (26)

where

(25)



b

and G* is a 2x5 matrix whose elements depend on
the modal parameters vector $, . From this
point on we will drop the superscripts and sub-
scripts "i'" since the following alporithmic app-
roach is to be used for each of the NM excited
modes.

Since we assume here that the modal approxi-
mation functions comprising the H matrix of (7)
have already been identified, we now use (7) at
:aj: sampling instant to generate an estimate
Q( )v

?(k)=7,(k‘)+ r (k) (26)
=[1,0] x (k) + m(k)

of modal position,where n(R ) denotes the error
in the modal amplitude estimate. A separable
nonlinear least-squares formuiation of the par-
ameter/state estimation problem is obtained as
follows: Solve (24) with respect to U(R ) to
obtain

Uk = G (p) 2(re) = G F) % (R)

ol 9]

where G’(p) denotes the pseudo-inverse of G(p).
Combine (26) and (27) as sugpgested by Duncan and
Horn [7 to form the overdetermined system

ﬁ(')] %0 | '3'5',‘-]
Jni 7(2) 7o |

U@ : :
Y = E(p) o ¥ iphe . l (28)
h(n)i

= L= &
(K)
l; |

-

where
-I %
*4’ +
b -G.lr)%(r), Gl
5 x HJ
L
and { o
of
G'n' - ’0.
| : (30)
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The vector on the left-hand side of (2F) is a set
of lnpul-outpul measurements taken over an in-
terval of lenmgth K. Equation (28) may be rewrit-
ten more briefly as

YK = E(F)X(K) + G, ek (31)

The simultaneous state/parameter estimation pro-
blem is now considered to be the least-squares
minimization,

win | Flp X(Ks= IR (32)
XK, p

P

Following the work of [L] and :S
separated into the form

s (32) is

mon {“ P\X(K)-Q,Y(k)”z‘k Q. Y(‘h‘),'i'::l' (33)
XK, p E

where Q, , Qg and R are defined from the orth-
ogonal decomposition of F, (p),

Glp o |R

1
ste Y

(34)

It is shown in [3,5] that the optimum parameter
estimate ﬁ and optimum state trajectory f(K )
that mininize (33) can be obtained as solutions
to two subproblems: a nonlinear least-squares
problem

win |G () YK (35)
y |G (r

to yield 3 s and a linear least-squares problem
based upon

R(P) Xix,p)= G, (P) Y{x) (36)

A
to yield X(K).

An algorithm for the solution of these
problems based upon the approach of Kaufman | &4
has been implemented and used in the simulation
study reported in the following section.



IV. Simulation Results

The algorithms described above have been
implemented in a simulation program for identi-
fying the characteristics of a flexible beam
used in the NASA-Langley structural dynamics
and control test facility. The experimental test
facility is described in detail in [l] « Six
flexible modes were used in simulating the beam
response. Figure 1 shows the results of apply~
ing the algorithm of section 3 for testing the
number of excited modes when only three modes
were actually excited in the simulation. In the
figure the magnitude of the main diagonal element
Ryy of the test matrix on the right hand side of
(14) is plotted against the number of assumed
excited modes. Results of tests with noiseless
measurement data and with two levels of noisy
data are presented. It is seen that when the
assumed number of modes exceeds the actual num-
ber of excited modes (3) the corresponding main
diagonal element remains below the test level

Figure 2 shows the result of appiying the
regression analysis approach of section 3 to
identifying the mode shape functions when it was
established that only one flexible mode was
excited. Test results for two cases are shown
in the Figure: (a) a simulation wherein the beam
was piven an initial displacement corresponding
to the first flexible mode and (b) a laboratory
experiment in which only the first flexible mode
was excited. In the simulation the normalized
mode shape obtained agreed with that produced by
the SPAR structural analvsis program. In the
laboratory experiment a distortion in the ident-
fied mode shapc was ob<erved. 1n both cases the
mode shape was 1dentified on-line after approx-
imately one second of data processing.

Figure 3 presents one illustration to dem-
onstrate the convergence of the nonlinear least
squares parameter identification approach of
section 3 for identifying the modal parameters of
the first flexible mode. Four samples of meas-
urement data are used and convergence of the
algorithm is achieved after ten iterations. A
study of the algorithm performarce with various
levels of measurement noise is presented in [3] .

V. Conclusion

In this paper the state/parameter identifi-
cation problem for large flexible systems is dec-
omposed into a number of simpler subproblems
which may be solved by least-squares algorithms.
The technique comprises the following steps:

(1) estimating the number of excited modes in a
set of sequential measurement data, (2) estima-
ting the spatial approximation functions needed
in a modal response representation and (3) estim-
ating the pole-zero parameters and moaal position
and velocity coordinates for each excited mode.

Particular least-squares algorithms for ac-
complishing the three subtasks above were imple-
mented 1n a simulation for identifying the para-
meters of a flexible beam. These algorithms

ORIGINAL PAGE IS
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employ nouseholder transformations thus avoiding
the need for matrix inversion and resulting in
accurate and rapid i1dentification. Other techni-
ques may also be considered tor solving vath sub=-
problem. For example, in testing the number of
excited modes, identification of the measuiement
noise covariance matrix could lead to a more ac-
curate setting of the test level used. One sub-
ject of current research is a comparison of com-
peting techniques with repard to computational
requirements and achievable accuracy.
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A NONLINEAR DUAL-ADAPTIVE CONTROL STRATEGY
FOR IDENTIFICATION AND CONTROL OF
FLEXIBLE STRUCTURES*

F. E. Thau
City College of The
City University of New York
New York, N.Y. 10031

ABSTRACT

A technique is presented for obtaining a control law to
regulate the modal dynamics and identify the modal parameters

of a flexible structure. The method is based on using a
min-max performance index to derive a control law which may
be considered to be a best compromise between optimum
one-step control and identification inputs. Features of the
approach are demonstrated by a computer simulation of the
controlled modal response of a flexible beam.

I. INTRODUCTION

A class of indirect adaptive control systems proposed for the
control of large space structures [1] is based on a modal
decomposition of the system dynamics and may incorporate one
or more on-line testing schemes [2] to determine when
successful parameter identification has been achieved. The
control strategy used in calculating the actuator inputs must
achieve adequate regulation or tracking performance and, at
the same time, provide inputs to allow adequate parameter
identification. A control system designer is thus faced with
tiie problem of devising a control strategy to ensure
acceptable system performance even when on-line parameter
identifiability tests have failed because the system

* This work was supported by NASA under Grant NAG-I-6.



configuration has changed or the environment in which the
system operates has changed.

In this paper we formulate and examine the performance of a
noniinear dual-adaptive control scheme in which a
sampled-data controller is designed to select a best
compromise between an input signal that is optimum for
mean-square system regulation and an input signal that is
optimum for parameter identification. Dual control theory,
originally formulated by Feldbaum [3,4], has been studied in
[5-7] and in the references cited therein. A key concept
introduced by Feldbaum is the dual control strategy based on
a performance index that takes into account the fact that
future observations on the process will be made. A
controller may be able to "probe" the system for state and
parameter estimation improvement, which then may improve
future regulation and tracking performance. In many
situations where the dual nature of stochastic control is nut
taken into account the controller becomes "cautious" [5,6]
and tends to "turn-off", This undesirable phenomenon is
avoided by the approach described below.

II. FORMULATION OF AN ADAPTIVE PERFORMANCE INDEX

The discrete-time dynamics for each mode is assumed to be
described by the ARMA model

y(t)*ary(t-1)+agy(t-2) = bju(t-1)+bpu(t-2)+e(t) (1)

where y(t) denotes modal displacement, u(t) denotes modal
force, and e(t) 1is a sequence of independent,
equally-distributed, normal (0,¢2) random variables. It is
assumed that e(t) is independent of y(t-1),y(t-2),...,
u(t-1),u(t-2),... and that the parameters aj,ap,bj,b?

are unknown constants. If we let Yt denote the information
available to the controller at time t,

Ye = lt)y(t-1),..., ult-1),u(t-2),...1 . (2)

x(t) denote the modal parameter vector and e(t) denote a
modal measurement vector,

xT(t) = (a1 ,az,b1,b2); (3
)
oT(t) = (-y(t-1),-y(t-2),u(t-1),u(t-2)

where ( . )T denotes vector or matrix transpose, then (1)
may be rewritten as

y(t) = oT(t)x(t)+e(t) (4)



where the constant parameter "dynamics" satisfies

x(t*l) = x(t) (5)

It can than be shown, following the analysis of [8], that the
conditional distribution of x(t+2) given Y¢+; is normal

with mean x(t+2) and covariance matrix P(t+2) where x(t) and
P(t) satisfies the difference equations

R(t+1) = K(t)*K(t)(y(t)-oT(t)x(t)) (6)
K(t) = P(t)e(t)/(o2+aT(t)P(t)e(t)) (7)
P(t+l) = P(t)-(P(t)e(t)eT(t)P(t))/

(c2+eT(t)P(t)el(t)) (8)

Furthermore, the control law that minimizes the regulation
criterion

Ve(u(t)) = Ejy2(t+1)Ive) (9)
is given by
/,A A
Z(xi(t*l)x3(t*l)*P3i(t*l))oi(t*l) (10)
Qg(t+1)+P33(t*l)

u(t) = -

/
where Z denotes the sum over i = 1 to 4 with the value 3
excluded.

To provide bounded modal inputs that improve parameter
identification accuracy while guaranteeing that the modal
amplitude will not become excessively large, the controller is
designed to optimize, at each sampling instant t, the following
performance criterion:

min max [V(a, u(t))] (11)
u(t) A

subject to the constraints

u(t) <M, 0 < 2 <1 (12)
where
VC(U(t)) VI(u(t))
Vir, u(t)) = A —m————m ¢ (o)) (13)
Ve Vi



VC denotes an acceptable or desired level of regulation cost.

Vi(u(t)) denotes and identification cost function of u(t),

Vi(u(t)) = trace [P(t+zﬂ (14)

VI denotes and acceptable or desired level of identification
cost. The maximization indicated in (li1) yields a function

V(u(t)) which, although not convex, is interpreted as
specifying, for each admissible u(t), the most costly linear
combination of relative regulation and relative identification
cost. Minimization of V(u? thus yields the modal input that
minimizes this most costly combination of relative
identification and regulation performance.

IIT. SIMULATION RESULTS

Since Vc(u(t)) and trace P(t+2) are relatively simple
functions of u(t) the numerical solution of the one-step
optimization problem (11)-(13) at each sampling time is quite
feasible. Results of simulation studies described below
illustrate an interesting feature of this approach: since the
parameters involved in the evaluation of V.(u(t)) and
Vi(u(t)) depend on system measurements, the optimum
distribution of relative cost, » (u) depends on on-line
measurement data and hence, at each sampling instant, the
weighting between identification and regulation will change
depending on the on-line system performance. This is in
contrast to[9] in which a fixed weighting between absolute
control and identification cost is used at each sample time.

In the simulation study we compare the performance of three
control systems:

a) A constrained adaptive controller that minimizes (9)
subject to the control magnitude constraint.
b) An optimum identification controller that minimizes
(14) subject to the control magnitude constraint.
c) Ih?)o?iaitep dual-adaptive controller based on
11)- .

In Figures 1-3 we present simulated modal response data for the
first flexible mode of the Langley beam experiment described in
[10] where we assume here that a single actuator is used. The
accumulated on-line reguiation cost, VT, shown in Figure 1 is
defined as

VT(N) = 2: y2(k) (15)



.

and the on-line identification cost, PT, is defined as

PT(N) = trace [P(N)] (16)

where P(N) is calculated on-line using (8). Note that for the
first 10 to 15 sampling times the regulation cost of the
dual-adaptive controller is close to that of the constrained
minimum-variance controller and the identification cost of the
dual-adaptive control system is close to that of the
constrained one-step optimum identification controller.

Figure 2 indicates that the dual-adaptive controller's actuator
signals switch between its limits, +0.5, more frequently than
do the actuator signals of the other controllers. This may be
due to the lack of any energy constraint in the above probiem

formulation.

A future study will examine the performance of the
energy-constrained dual-adaptive controller in comparison witn
energy-constrained minimum-variance and one-step optimum
identification controllers. The relative regulation cost and
relative identification cost defined in (13) are plotted in

Figure 3 where

vc° (N) = o2N (17)

is the accumulated control cost that would be achieved if the
parameters of the system where known preciselx and if an
unconstrained control law were used; o2 = 10-% was used in

the simulation runs. A constant value Vi = 10-4 was chosen

as indicating the acceptable level of parameter
identification, Figure 3 indicates that, depending on on-line
measurements, the one-step identification and regulation cost
at one sampling instant can have widely differing shapes from
their respective distributions at other sampling times. This
leads to the on-line variations in the dual-adaptive control

strategy mentioned earlier,

The simulation results indication that the one-step,
constrained dual-adaptive controller has the feature of
providing, based on measured data, system inputs that result in
parameter identification while maintaining bounded modal

amplitude response.
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