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SCARE - A POST-PROCESSOR PROGRAM TO MSC/NASTRAN FOR THE RELIABILITY

ANALYSIS OF STRUCTURAL CERAMIC COMPONENTS

John P. Gyekenyesi

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135

SUMMARY

A computer program is developed for calculating the statistical fast frac-
ture reliability and failure probability of ceramic components. The program
includes the two-parameter Weibull material fracture strength distribution
model, using the principle of independent action for polyaxial stress states
and Batdorf's shear-sensitive as well as shear-insensitive crack theories, all
for volume distributed flaws in macroscopically isotropic solids. Both penny-
shaped cracks and Griffith cracks are included in the Batdorf shear-sensitive

crack response calculations, using Griffith's maximum tensile stress or crit-

v	 ical coplanar strain energy release rate criteria to predict mixed mode frac-

ture. Weibull material parameters can also be ca l culated from modulus of

rupture bar tests, using the least squares method with known specimen geometry

and fracture data. The reliability prediction analysis uses MSC/NASTRAN
stress, temperature and volume output, obtained from the use of three-
dimensional, quadratic, isoparametric, or axisymmetric finite elements. The
statistical fast fracture theories employed, along with selected input and
output formats and options, are summar;zed. An example problem to demonstrate
various features of the program is included.

INTRODUCTION

The attractive physical and mechanical properties of modern ceramics -
high temperature strength, light weight, excellent erosion, corrosion and oxi-
dation resistance, low thermal conductivity, low cost, and wide availability -
have made ceramics an increasingly important- structural material. The poten-

tial of ceramics in demanding structural applications is especially attractive
when resistance to hign temperatures, such as in heat engines, is the main
concern. With today's needs for more fuel efficient transportation, multifuel

engine capability and reduced emissions, advanced engines, operating at much
higher temperatures with ceramic components, appear to be mandatory to econom-

ically meet these national objectives.

However, ceramics, like all other brittle materials, display linear
stress-strain behavior from zero to fracture. The lack of ductility and yield-
ing capability give ceramic materials their most undesirable characteristics
such as low strain tolerance, low fracture toughness, and large variation in
observed fracture strength. This wide variation of material strength is due to

the nature and distribution of intrinsic microscopic flaws, which are unavoid-

abl y pr?sent as a result of materials processing operations. Failure in

ceramic, usually initiates at a single weakest flaw when the local stress there
reaches a critical value. Because of the large scatter in strength, designers
today use statistics and reliability analysis for the failure prediction of
brittle material components, which may be suoject to arbitrary loadings and
multidimensional stress states.
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The first probabilistic approach used to account for the scar r in frac-

ture strength of brittle materials was introduced by Weibull (ref. .). His
analysis was based on the weakest link theory (WLT) and assumed a unique

strength cumulative distribution for the uniaxial fracture data obtained from
simple specimen tests. Weibull also proposed a method for calculating the
failure probability in multidimensional stress fields when using material

parameters obtained from uniaxial tests. His approach basically invokes cal-
culating the risk of rupture by averaging the tensile stress in all directions.
This is intuitively plausible but not rigorous, and consequently other models
were introduced. The most widely used among them is the assumption that prin-

cipal stresses act independently (PIA) (ref. 2). This is a very convenient
formulation because of its simplicity. However, as shown by several investi-
gators these models can lead to unsafe estimates of failure probability, since
they both ^glect the shear force, and in case of the PIA hypothesis, the
effects of combined local principal stresses (ref. 3).

An important element of failure predictive theories is the crack extension
criterion. In the classical Weibull formulation, a normal stress criterion is

used, which is likely to be correct when the dominant crack is normal to a
uniaxial tensile stress. However, in a multiax;al stress field with flaws
orientated at arbitrary angles to the applied stresses . both normal tensile

stresses and in-plane shear stresses will influence the deformation and frac-
ture processes (refs. 4 to 6), and lead to a different fracture response than
that of the uniaxial case. Several fracture criteria have been proposed
(refs. 7 to 9), with the critical coplanar strain enercy release rate, Gc,

criterion, among those available in this study, leadins to the best agreement
with available brittle material experimental data.

The primary objective cf this report is to develop a public domain com-
puter program which will be coupled to a general purpose finite element code,

such as MSC/NASTRAN (ref. 10), to predict the fast fracture failure probability
of ceramic components due to the presence of volume type flaws. The user is

given various options to select currently available fracture models in additicl
to calculating statistical material parameters. Two versions of the program
are presently available which are designated as SCAREI (Structural Ceramics

Analysis and Reliabilitiy Evaluation) and SCARE2, respectively (ref. 11). In
SCAREI, the finite element centroidal principal stresses are taken as constant
throughout the element volume and the convergence of the mesh for accurate
stress analysis leads to convergence for volume type flaw reliability analysis.
However, previous results from higher order isoparametric finite elements with
permissible internal stress gradient , showed that the accuracy of failure pre-
dictions is significantly improved when the finite element volumes are further

subdivided. In the SCARE2 version, all 6-sided HEXA MSC/NASTRAN elements are
further discretized into 27 subelements, which are then used with interpolated
principal stresses to perform all analysis.

PROGRAM CAPABILITY AND DESCRIPTION

The basic computational elements of the post-processor program for the
reliability analysis of structural ceramic components using the SCARE2 version
of the code are shown in figure 1. Clearly the NASTRAN part is totally inde-
pendent of SCARE, and output data from other general purpose analysis programs
could also be used as long as similar elements are available for the thermal
and stress analysis of the structure. For computational efficiency, all the

experimental fracture stresses, if used to calculate material parameters, as
2
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well as the elemental principal stresses ere normalized. Initially, the nor-
malizing stress used is the average of all experimental fracture data when
specimen test results are available. When material parameters are known, an
appropriate value of the Weibull scale parameter, co, is used to normalize
all stresses.

As shown in figure 1, executing the SCARE program requires FORTRAN logical
units 1, 3, 4, 5, and 1 in addition to those generally used in performing
NASTRAN analysis (such as units 5, 6, and 14). The program uses these tape

drives for intermediate storage of large amounts of data, so that the transfer
of information from NASTRAN to SCARE is done internally rather than manually.
MSC/NASTRAN Bulk Data including required nodal temperatures, and element
centroidal as well as selected corner node stresses, are stored on logical
unit 1 where NASTRAN punch files are saved for access and further processing in
SCARE. Since element volumes are obtained through a NASTRAN Parameter call,
the required volume data is taken from the printout files on unit 6 and stored
on logical unit 3. The input to SCARE is handled through logical unit 5, but
the output from SCARE had to be plated on unit 1 to avoid potential terminal
problems. In addition to NASTRAN output files and analysis data, input to
SCARE includes control indices specifying various fracture models, temperature
dependent material parameters if available, specimen geometry and ordered (in

ascending order for a given temperature) fracture strength data when required

statistical parameters are internally calculated.

In order to use WLT, no principal compressive stress is permitted to

exceed three times the maximum principal tensile stress in absolute value. If
this criterion is violated in an element, compressive stress state predominates
and the corresponding reliability is set equal to unity. Additionally, when
using the PIA model in conjunction with Weibull staistics, only tensile prin-
cipal stresses can contribute to failure and fracture due to compression is
inadmissible.

The program has broad capabilities by allowing the user to specify temper-
ature dependent statistical material parameters, several crack configurations
and four fracture criteria. Uniaxial fracture data along with specimen geom-
etry from four point modulus of rupture (NOR) bar tests can be used to cal-
culate Weibull parameters and the Batdorf crack density coefficient. Figure 2
contains the flowchart summarizing the available options is fracture criteria

and flaw configurations used to model the volume imperfections. Note that two
of the failure criteria are for shear-insensitive cracks, even in polyaxial

stress states. The other two criteria are used for the more general shear-
sensitive model. The available three crack configurations include the spher-
ical void, which is isotropic or direction independent, and is inherently
assumed in the Weibull PIA and normal stress failure theories. However, imper-

fections in high density, sintered ceramics are best represented by the struc-
tural response of penny-shaped and Griffith cracks. Amoeg the available
criteria and crack configurations shown . in figure 2, the penny-shaped crack
(PSG) with the Gc criterion gives the highest failure probability for a
given case, while the PIA approach yields consistently the lowest failure
estimate. It should also be noted that the Batdorf shear-insensitive fracture
model, although in slightly different form, gives identical results to the
originally proposed Weibull normal stress averaging method.

Fr



INPUT INFORMATION

NASTRAN (NASA Structural Analysis) is a large, comprehensive, general
purpose finite element computer code for structural analysis, which was devel-

oped under NASA sponsorship to fill the need for a universally available

analysis program. In addition to the government supported version, there are

several, greatly enhanced, proprietary versions of this program, the most
widely known of which is called MSC/NASTRAN. This program is used throughout
the world in large corporations, government laboratories, and most commercial

data centers. The SCARE program utilizes results from only a very small frac-
tion of available NASTRAN analysis capability. Since fast fracture mechanical
design of ceramic components requires only the temperature and stress distribu-
tions, static analysis results from rigid formats 61 and 47 (in case of cyclic
symmetry) are most often used. Ceramics are also extremely sensitive to geom-
etric discontinuities, requiring the use of isoparametric three-dimensional
and quadratic axisymmetric finite elements. Within MSC/NASTRAN, these elements

are denoted as HEXA, PENTA, and TRIAX6, respectively. Although the midedap

nodes of HEXA elements in NASTRAN are optional, their use when analyzir, nth

SCARE is required. It is assumed here that analysts using the SCARE pr.,.-am

would be fully familiar with MSC/NASTRAN, and its input requirements in creat-
ing the Executive Control, Case Control, and Bulk Data decks. Preceding the
entire NASTRAN input file is the system operating JCL (job control language)
set of commands, which usually identify the job, user, set time and memory
requirements, and define NASTRAN input, punch, plot, and printout files. If

the self-contained, solid modeling processor, called MSGMESH, is used to dis-
cretize the structure, the SCARE program includes a number of sorting routines
to permit arbitrary numbering of elements and nodes. Figure 3 shows the
arrangement of a typical NASTRAN input file.

The MSC/NASTRAN program at the Lewis laboratory runs on the CRAY 1-S/2200
computer in a batch-mode. Input and output to and from the CRAY is handled
through an IBM 370 mainframe computer, which serves as the front-end processor
for the CRAY. Consequently, an additional set of JCL commands is required to

handle the involved data sets, compiler, FORTRAN logical units, and execution
commands. Both versions of tre SCARE source program are permanently stored on

the IBM in the user's library, where all reliability calculations are even-
tually made. Details of the system JCL for executing MSC/NASTRAN first, and
then the SCARE program can be found in reference 11. These instructions are
unique to the computer system existing at Lewis, but are representative of the
required commands in performing reliability analysis at other installations.

SCARE input requirements can be grouped into three categories. The first
category, called Master Control Deck, defines control indices, information on
the finite element mesh and some integer data describing crack configurations,
fracture criteria and material parameter format. Figure 4 shows the details of
the required information, with explanatory notes and size limitations available
in the program user's manual (ref. 11). The second category, called the Speci-

men Deck, summarizes fracture specimen results needed in calculating statisti-
cal fracture parameters, or direct material properties, including Poisson's
ratio, when available. There are five different entries required in this

category. The first entry includes the material Poisson's ratio, which is used
in the reliability calculations when PSC's are selected for volume imperfec-
tions. The second entry defines the MOR specimen geometry, which was used in
generating fracture data. The third entry includes experimental, extreme fiber
fracture stresses, arranged in ascending order for a given temperature. For



multiple temperature tests, the temperatures must also be ordered according to
ascending values, since calculated material parameters are interpolated within
SCARE. At a specified temperature, fracture readings must be unique and mul-
tiple values of identical magnitudes are not permitted. The number of avail-
able fracture readings for all temperature tests must be the came. The fourth
entry is used when material statistical parameters are directly available as a
function of temperature. The three required parameters are the Weibull modulus
or shape parameter, m, the Batdorf normalized crack density coefficient or flaw
parameter, kB, and the Weibull scale parameter, co. These material param-
eters must be so arranged that t,iey correspond to ascending order of discrete

temperatures. The last entry in the Specimen Deck category lists the discrete
temperatures at which fracture data or material parameters are known. Addi-
tionAl explanation of the required input, including size limitations, can be
found in reference 11.

The last SCARE input category, called the Structures Deck, contains
results of the finite element structural analysis needed for failure probabil-
ity predictions. These include element volume, element or nodal temperatures,
and element principal stresses along with the appropriate identification
numbers. In the present version of SCARE, which relies on MSC/NASTRAN output

files, all of this data is ; nternally manipulated through subroutine ELEM, and
the Structures Deck requires no specific input by the user. It is this input
data, however, that has to be caref411y catalogued if another general purpose

program were to be used or element data were to be directly read, instead of

using temporary storage devices.

OUTPUT INFORMATION

The results of MSC/NASTRAN thermal analysis are the grid point tempera-

tures, which can be obtained at transient or steady-state conditions. After
solution of the component temperature distribution, the most severe thermal
gradients can be selected and combined with the mechanical loads to obtain an
elastic solution ;rigid formats 47 or 61). The usual output from these rigid
formats includes the nodal displacements along the global coordinate directions
and the element stresses. Depending on the element type, normal and shear
stresses in the local element, or material coordinate system are always avai -
able at element centroids. Additionally, element principal stresses are cal-
culated there for the HEXA and PENTA elements. Corner node stresses are also
printed for these elements. For available stress recovery options, users

should consult reference 10 and the appropriate program manuals. In addition
to the displacements and stresses, useful parameters such as element volumes,
element areas, component center of gravity, moments of inertia, etc. can be
calculated through the Parameter call feature of the program. For volume flaw

reliability analysis, the element volumes are esst `.ial, since in the weakest
link model, integration of the stress distribution over the material volum p is

needed.

The first part of all SCARE output data contains an echo of important
NASTRAN finite element analysis results. Identifying labels, element type,
and number of elements in the model are noted. A table of element centroidal
principal stresses with appropriate element identification numbers is given.
For the SCARE2 version, the 27 centroidal subelement principal stresses within
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each HEM element are listed. Element volumes and calculated element tempera-
tures are summarized in another output table. Next, the selected fracture
model is identified and the room temperature (70 °F) statistical fracture
parameters are listed. Additionally, a table of discrete temperatures with

corresponding material parameters, which were either internally calculated or

directly supplied, is printed. For the shear-sensitive fracture models, the

crack shape is identified along with a more specific description of the frac-
ture criterion. The last table in the SCARE output file contains an element
results summary, listing the element number, corresponding element survival

probabili les and material parameters. Finally, the overall component proba-
bility of failure as well as the component probability of survival are printed.

THEORY

The statistical nature o` fracture in engineering materials can be viewed
from two distinct and extremt ,aodels. The first was presented by Weibull and
is termed the weak link model. With it a structure is characterized as a
series of li cks connected in such a manner that the structure fails whenever
any of the links fractures. In contrast the second model is referred to as

the bundle or parallel model for which failure is defined only when all links
in parallel have fractured. Structural ceramics have been observed to approach

the weakest link hypothesis and fail when the stress intensity factor at an"
one flaw reaches a critical value. In view of its pessimism, WLT design is in
most cases conservative. Other important features of WLT are that it predicts
size effect and that failure of a complex component may not be initiated at the

point of highest .iominal stress. A particularly severe flaw may be located at
somewhat less highly stressed point and may still be the first crack to become
critical. It is for this reason that the entire field solution of the stresses

must be obtained and examination of the most highly stressed point, as in
ductile materials, is no longer adequate.

Experimental fracture strength data obtained from uniaxially loaded simple

specimens, when arranged in ascending order, can be represented in two differ-
ent forms. The probability density function of a random variable (fracture
strength) is a mathematical function that best represents the data in a rela-

tive frequency histogram, that is failure stress versus number of failures.
The result, typically, would be a bell shaped cure (ref. 12). Alternatively,
fracture data can be plotted as stress versus failure probability which leads
to an S-shaped curve, called the cumulative distribution function of this
random variable. Various distribution curves have been used to characterize
the material's fracture property. The two most commonly used distribution
functions are the Gaussian (normal) distribution and Weibull's distribution.
The Weibull distribution is selected to characterize ceramic strength varia-
tions, since the Gaussian distribution is intrinsically associated with the
bundle model aid is incompatible with WLT. Consequently, the uniaxial fracture
data is approximated by the 3-parameter Weibull distribution, defined by

m
o - a

Pf = 1 - exp -	 u	 dV {{

o	

(1) 
f( 0
V 	 J



where Pf is the probability of failure, ao is the scale parameter with

dimensions of stress x (volume) l/m , au is the threshold stress which is

usually taken as zero, m is the Weibull modulus which measures the degree of
strength variability, a is the applied tensile stress and V the stressed

volume.

In the analysis of failure of brittle materials subject to multiaxial
stress states, the Weibull model, when combined with the PIA hypothesis, yields

m	 m	 m
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Pf = 1 - exp -	

cl
	 (01

+ 
	 + a3	

dV	 (2)
V	 o	 0	 0

where al, 02, and 03 are the principal stresses and it was assumed that

au = 0. Equation (2) has been widely used in the past to estimate failure
probabilities of ceramic structures (ref. 13). The failure probability using
the normal tensile stress averaging method, as proposed early by Weibull
(ref. 1), and described later through an integral formulation (ref. 14) can be

calculated from

P 
	 1 - exp- f 

kwp f am dAd V	 (3)

	

V	 A

where kwp is the polyaxial Weibull crack density coefficient given by

k	 - 2m+1	 1 m
	

( )
wp	 2,^	 ao	

4

This constant can be obtained by making the result of integrating equation (3),
using the normal stress an distribution on an arbitrary plane, obtained from

the Cauchy infinitesimal tetrahedron in principal stress space as shown in
figure 5, for uniaxial stress cases, agree with the results obtained from the
uniaxial, 2-parameter Weibull equation. The area integration is performed on
the surface of the unit sphere where the normal stress is tensile and neglect-
ing regions where the normal stress is compressive. The crack-like flaws can
then be regarded as located in these arbitrary planes which are tangent to the
sphere and are acted upon by an which is induced by the principal stresses

al, 02, and 03. Since equation (3) is just the shear-insensitive case of the
more general Batdorf (ref. 15) polyaxial stress fracture model, its SCARE
implementation follows a somewhat different format. The polyaxial Weibull

equation has also been extensively used in the past (ref. 14), but since it
neglects the effects of shear loads, it also underestimates failure for the

more general loading condition.

In the previously described two multi-dimensional stress fracture models
no direct use was made of the hypothesis that fractures are due to crack

growth. In references 4 and 15, attention is focused on the cracks and their
failure under stress. Since there is not as yet a consensus regarding how to
treat mixed mode fracture, even in ductile materials, the SCARE pronram
includes several fracture criteria and flaw shapes. Rufin et al. (ret. 16)
recently compared results obtained from various fracture models and experi-
mental tests, with similar work being reported in reference 5.
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Consider now a small uniformly stressed material element of volume eV.
The probability of failure under an applied state of stress can be written as
(ref.  16)

Pf = P1 P2
	

(5)

where P1 is the probability of existence in AV of a crack having a cri-
tical stress in the range of acr to acr + dacr, and P 2 denotes the proba-
bilicy that a crack of critical stress acr will be oriented in a direction
such that an effective stress ae equals or exceeds acr . ucr is defined
as the rerrote, uniaxial, normal fracture stress of a given crack. Failure will
occur when the effective stress (a function of chosen crack configuration and
fracture criterion) exceeds oc- for a particular crack. P 1 has the form

P 1 = eV dN
docr (a

cr ) dacr	(6)

and

P

	

_ n	 (I)

2	 4,r

where N(acr) is the crack density function (the density of cracks having a

critical si,ess < acr) and 9 is the solid angle in principal stress space

containing all the crack orientations for which ae > ocr• Using the weakest
link theory, the overall failure probability c%.n b p calculated from (ref. 15)

fdV
l

Pf = 1 - exp - 

	

	
(9L do	

dacr	(8)

	

1	 cr
V	 o

The crack density function N(acr) is a material constant and is inde-
pendent of stress state. It is usually expressed as a power function of acr,
that is N ( acr) = kBOPr, where the flaw distribution parameters kB and m
can be evaluated from experimental data using uniaxial or equibiaxial tension
specimens. Batdorf (ref. i5) initially proposed a Taylor series expansion for
n(ocr), but this method had computational difficulties. Recently, a more

convenient integral equation approach was formulated and extended to the use
of data from 4-point MOR bar tests (ref. 16).

The statistical analysis of fracture is greatly simplified by assuming
that cracks are shear-insensitive. For this case fracture o-curs when

ae = ocr = vn and there is no reed to specify the crack shape or the mate-

rial's Poisson's ratio. Note that the crack size is never used in statistical
fracture theories and 's always eliminated from the analysis. Since for uni-
axial loading shear-insensitive cracks are assumed to dominate the fracture
process, ae is defined such that in the absence of shear on the crack plane,

ae = an. In a similar manner, when the Gc criterion is used, we define
ce as the uniaxial normal stress that would induce the same energy release

rate as the actual stress. The same ideas can be extended to noncoplanar crack
growth criteria, such as the maximum G or strain energy density, to define
ae for those applications. In any event, for polyaxial stress states, the

effective str?ss ae is a function of both on and i, where T is the shear

8
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stress in the crack plane. Similarly to calculating an at any point, the

Cauchy infinitesimal tetrahedron of Fig. 5 can also be used to obtain T on

the same arbitrary crack plane. Reference d gives effective stress expressions

for two crack shapes using the maximum tensile stress and GC fracture cri-

teria. The same four options for shear-sensitive cracks are available in
SCARE, a- can be seen in figure 2. The hest choice among then is ae for

PSC's, given by

where v is Poisson's ratio.

The solid angle 9 depends on the fracture criterion selected, the
assumed crack configuration and on the applied stress state. Closed form
expressions for 12 can be derived for analytically simple fracture criteria
in uniaxial and balanced biaxial stress states (ref. 15). Assuming a uniaxial

stress, a, and the normal stress (shear-insensitive) fracture criterion, we

obtain (ref.  5)

a 1/2

P 2 	 4A	 1 -	
0	

(10)

Note that when a shear-sensitive fracture criterion is used, the crack shape
must also be specified. In general for three-dimensional stress states, S2

must be determined numerically. Using the shear-insensitive case as an
example, we obtain at fracture (ref. 15)

a  = an = acr = a3 + ( al - a3 ) cos 2 a + ( a2 - a3 ) cos 2 R sin  a	 ( 11 )

where from figure 5 angles a and Q define the crack plane in principal

stress space, on which an and T act. Using direction cosines 1, m,

and n, the equilibrium of forces on the Cauchy tetrahedron yields values of

an and T in terms of the principal stresses and the angles a and 8

(ref. 11).	 It is computationally convenient to define (P = cos 2 0. Then

equation (11) can ut rewritten as

a 1 y2 + a 2w + a 3 = 0	 (12)

where al = 0, a2 = (62 - 03) s1n 2 a and a 3 = (al - a3)

cos2 at + 03 - acr• Solving for (p gives

N = -a3
	 arr - a

3 - (a l - a3 ) Cos t a	
( )13

a 2	 (a2 - a3 ) sin  a

If we define p = cos-1 ,/,—, thee. 02 can be calculated from (ref. 15)

9
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,m equation (1) are compared to the expression given . 	 Iuation
(15), ana the relationship between oo and C is derived by mak.,iy Pf from

the two equations agree. For a rectangular beam of width w, length Ll

between symmetrically placed outer loads and length L2 between inner loads,
the result is

_ 4 / (L
1 + mL2) 1/m

C2	
(16)a°	C(m + 1)2

In addition to obtaining ao and m, the SCARE program requires knowledge

of kg. We can evaluate kB from 4-point flexure dat" by substituting
equation (10) into equation (8). Integration by parts of the results gives

	

al 	 N(o )

	

Ps a exp - f 
r	

cr	
docr dV	 (17)

J J	 2 a 
V o	

C o
r 1

We again utilize the power function form of N(ocr) in equation (17) and

carry out the stress integration. Similarly to the Weibull analysis, a l is

expressed in terms of of and the beam height. The volume integration is
then performed over the tensile portion of the beam, including effects of
changing al along the beam length. Results from this integration are com-

pared to equation (15) and the relationship between kB and C is derived by
setting Pf equal from the two equations. For a 4-point loaded beam speci-
men having a rectangular cross section,-we obtain

2C(m + 1)2
k B	 (2m + 1) wh(L

1 + mL2)

By comparing equations (16) and (181, we conclude that when using the normal

stress failure criterion, kB and oo are related by

M

k B = (2m + 1) 
al	

(19)

0

Ho%;^ver, equation (19) changes when the Gc criterion is used (ref. 5).

EXAMPLE

In order to validate SCARE, a number of example problems were analyzed
from the open literature (ref. 11). Among them failure probability predictic-,
were made, using Batdorf's shear-insensitive fracture model, for a silicon
nitride disk rotating at various angular velocities (ref. 14). The dimensions
of the disk dlong with ap p ropriate material statistical parameter data are
given in figure 6. Because of the simple geometry, only eight HEX,A elements

were used in one 15° sector MSC/NASTRAN model of the disk. The calculated
NASTRAN stresses and volumes both were within approximately 1 percent of the
available closed form answers. Both SCAREi and SCARE2 predictions were gen-

erated and the results were compared to those listed in reserence 14. Reli-

ability calculations were also made at various speeds using other fracture
theories. Selected results from these 14alyses are shown in figure 7 and

(18)
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the two equations agree. For a rectangular beam of width w, length Ll

between symmetrically placed outer loads and length L2 between inner loads,
the result is

wh ( L 1 + ML 2)1/m

°o '	 2	 C(m + 1)2

In addition to obtaining °o and m, the SCARE program requires knowledge

of kg. We can evaluate kB from 4-point flexure data, by substituting
equation (10) into equation (8). Integration by parts of the results gives

°1	 N(° )
P s = exp -	 f	 cr	 docr dV
	 (17)

J 2JTc °
V o	 r 1

We again utilize the power function form of N( °cr) in equation (17) and

carry out the stress integration. Similarly to the Weibull analysis, °1 is

expressed in terms of of and the beam height. The volume integration is
then performed over the tensile portion of the beam, including effects of
changing al along the beam length. Results from this integration are com-

pared to equation (15) and the relationship between kB and C is derived by
setting Pf equal from the two equations. For a 4-point loaded beam speci-
men having a rectangular cross section,-we obtain

k = (2m + 1)	
2C(m + 1)2

B	 wh(L1 + mL2)

By comparing equations (16) and (18;, we conclude that when using the normal

stress failure criterion, k B and °o are related by

m

	k B = (2m + 1) °̂ 	 (19)

o

Hov^ever, equation (19) changes when the Gc criterion is used (ref. 5).

EXAMPLE

In order to validate SCARE, a number of example problems were analyzed
from the open literature (ref. 11). Among them failure probability predictic-,
were made, using Batdorf's shear-insensitive fracture model, for a silicon
nitride disk rotating at various angular velocities (ref. 14). The dimensions
of the disk along with appropriate material statistical parameter data are
given in figure 6. Because of the simple geometry, only eight HEXA elements

were used in one 15° sector MSC/NASTRAN model of the disk. The calculated
NASTRAN stresses and volumes both were within approximately 1 percent of the
available closed form answers. Both SCAREI and SCARE2 predictions were gen-

erated and the results were compared to those listed in res"erence 14. Reli-
ability calculations were also made at various speeds using other fracture
theories. Selected results from these IQalyses are shown in figure 7 and

(18)
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table II. For a given speed, the Weibull PIA model yields clearly the lowest
failure estimate, while the shear-sensitive PSC w'th the Gc criterion gives

the highest. The agreement between SCARE2 results and those in reference 14
was within 10 percent, with the difference probably due to the different
stress-volume data used in solving the reliability problem. Laboratory mea-
surements agree best with the selected shear-sen0 tive fracture model, as can
be noted, especially in the high failure probabilities range. Since only seven
disks were fracture tested compared to 85 MOR specimens, there is some concern
about the accuracy of the experimental disk Weibull modulus of 4.95, which
causes the greater difference between experimental and predicted Pf at
lower failure probabilities.

CONCLUSIONS

A general purpose, statistical, fast fracture failure probability code
has been generated, which is coupled with MSC/NASTRAN, and can be used to
design structural ceramics components. The program includes a number of widely

used polyaxial fracture models, appropriate extreme value statistics and the
ability to calculate material failure distribution parameters, all for volume
distributed flaws. Current work includes extension of this same capability to

bimodal flaw populations, where failure due to extrinsic defects is a con-
current possibility. The addition of more advanced failure criteria which
permit out-of-plane crack extension is also planned. Finally, the problem of
3 transversely loaded circular plate will be investigated, both analytically
and experimentally, to resolve some of the contradictory trends reported in

references 5 and 16.
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TABLE I. - FORMS OF P 2 FOR VARIOUS SHEAR-SENSITIVE FRACTURE CRITERIA AND

SELECTED CRACK CONFIGURATIONS (02 t 03)

	Fracture	 Crack	 P2

	

criterion	 configuration

!Maximum tensile Griffith crack	 1	 1	
it

stress	 (G.C.)	 4n 
_ * ! cos f sin a do

0
I where

	1

	
(P= COS2 a = -d 

2 - 4a1a3

i 1and 

I	
a,

(02 - a
i l' sin 4 a

^	 j	 I

i

a2 = ( c 2 - a 3 ) sing a (2(0 l cost a + a3 sing a)

- 4ocr - o + - a2}

I	 a3 = (0l cost a' 	 '3 sin
g a) 2 - 40 `r( 0 l Cos t a

i

	

I+ 0 3 sin ` a) - (ai Cos 2 a ' a3 sing a)	 + 4acr

Penn shaped	 2	 d
I crack (PSC)	

a1 = D 1 ( 02 - 03 ) sin a	 I

I!

i
a2 = D 1 ( 02 - 0 3 ) sin g a (2(a l cost a + a3 Sin a)

j
4

-

	

Dl °
cr - 0 3 - 0 2 }	 !

1	 I
a 3 = G l ( a 1 cos t a + 0 3 sin g a) 2 - 4aCr( a l Cos t a

i
+ a 3 Sin 2 n) - D^(a 2 cos t a + a3 sing 	aj + 4a2rl

(Strain energy	 !Griffith cracks	 2	 2	 2	 22

	

Cos	 sin°	 a	 a	 a	 i	 a

	

release rate	 j(G.C.)	 ^ - cr - 1	 - 3	 j

	

(02 - a3) sin a	 j

(Penn shaped	 2	 4y	 j	 a- D (o	 c i	 sin a
'crack (PSC)	 1 - 2( 02 - 3'

i	 a2 = D 1 (02 - a3) Sin 2 n + 2D 2 (o 2 - ° 3 ) 5in
2
 n

• ( a 3 sin ` a + c, Cos t a)

a 3 = D 1 (01 Cos t a + 03 sin g a) + U 2 ( c l Cos t a
I

1
	

1	 + 0 3 sin- a) 2 - acr

where

1	 -v(1 - 0.25 v)
DI = (1̂  ' D 2 = (1

..	 t

+.r
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TABLE	 II.	 - EXAMPLE 1 FAILURE PROBABILITIES AS A FUNCTION OF ROTATIONAL SPEED FOR VARIOUS

FRACTURE MODELS

[m	 7.65;	 oo = 74.82 MPa (,)0.3922; 	 keep = 16.30; NGP = 5;

I SCAREZ
I

SCARtl Ford (Ref. 14) For 	 (Ref.	 14)

(

Angular
s peed (HEXA elements) (HEXA (axisynmetric
(rpm)	

I
elements) elements)

-
Weibull Batdorf shear- Batdorf shear- Batdorf shear- Shear-insensitive Experimental

PIA insensitive sensitive PSC I	 insensitive

Gc criterion

!

70 000 ! 0.0021 0.0026 0.0078 j	 0.0022 `	 0.0023 0.0583
75 000 .0061: .0075 .0222 .0064 ``1	 .0067 .1121
80 000 .0163 j .0201 .0584 .0170 .0179 .2017
85 000 I .0412 ! .0505	 I .1426 .0426 .0446 .3367
93 000 .1530 .1850 .4549 `	 .1579 .1650 .6321

1100 000 .3954] .4623 .8410 4074 t	 .4223 .8714
104 000 .6000 .6763 9649 .6124 6321 .9514
110 000 I .8847 9301 .9996	 I Il 8931  .9055 .9949
114 000 i .9736 .9900 1.0000  9792

I^	
9830	 _ 9994	 r

TABLE	 III. - EXAMPLE 1 FAILURE PROBABILITIES AS A FUNCTION Or APPLIED PRESSURE FOR VARIOUS FRACTURE MODELS

[m = 28.53; u o = 36 200 psi (in) 0.105. kBop = 58.06; NGP = 151

(Pressure, SCARE 2 I^- SCARE i SCARE 1
^MPa	 ( p si) (three- dimensional elements) (three- dimensional	 elements) (axisymietric

element s)

IWeibuW Batdorf shear- ! Batdorf shear Weibull7lBatdorf shear- Batdorf shear- ;Batdorf shear-

i
PIA	 insensitive sensitive PSC PIA insensitive Isensitive PSC isensitive PSC

;en.	 re.	 ra.	 cr. den,	 re.	 ra.	 cr. len.	 re.	 ra.	 cr.,
^- ---

~

t

1.31 	 (190)1 ------ 0.0039 0.0065 ------ 0.0030	 0.0049 0.0064
X1.38	 (200) 0.0037 .0168 .0279', 0.0029 .0128	 ?i	 0211 0275
1.45	 (210)' 0149; 0558 .1078 .0115 .0504	 0821 .1061

11.5[	 (220) !1 .0552 .2265 .3495 {I	 .0425 .1770	 .2760 .3448
1.59	 (230), 1828 5981 7832 1430 4996	 6827 .7775
1.66	 (240)j .4934 .9538 .9942 .4054 .9028	 .9790 .9937
1.72	 (250) .8869; .9999 1.0000 .8110 .9994	 1.0000 1.0000

X 1.79	 (260) .9987 1.0000 110000 .993 9 1. 0000	 1.0000
-

 1. 000
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Fig. I Computational elements of the SCARE2 reliability analysis program.
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Fig. 3 NASTRAN input file arrangement.
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(4-1

M:

COLUMNS VARIABLE ENTRY (FORMAT - 11I5)

r
CONTROL INDEX FOR EXPERIMENTAL DATA1 -5 ID1

1: PURE BENDING TEST DATA
2: 4-pt BENDING TEST DATA
3: ALL THE MATERIAL PARAMETER'S VMT, VKT

AND VSPT ARE KNOWN AS INPJT

6-10 ID2 CONTROL INDEX FOR FRACTURE CRITERIA

1:	 SHEAR-INSENSITIVE, NORMAL STRESS
CRITERION

2: MAXIMUM TENSILE STRESS CRITERION
3: ENERGY RELEASE RATE CRITERION
4: WEIBULL PIA SHEAR-INSENSITIVE MODEL

11 - 15 ID3 CONTROL INDEX FOR CRACK SHAPES

1:	 GRIFFITH TYPE CRACK
2: PENNY-SHAPED CRACK

16- 20 NE TOTAL NUMBER OF ELEMENTS IN MODEL

21 - 25 NH NUMBER OF HEXA ELEMENTS IN MODEL

26- 30 NP NUMBER OF PENTA ELEMENTS IN MODEL

31 - 35 NA NUMBER OF TRIAX6 ELEMENTS IN MODEL

36-40 NT TOTAL NUMBER OF SPECIMENS IN EACH SET AT
A GIVEN TEMPERATURE

41 -45 NGP NUMBER OF GAUSSIAN QUADRATURE POINTS

46-50 NS NUMBER OF SEGMENTS IN CYCLIC SYMMETRY
PROBLEMS

51 -55 JT NUMBER OF TEST TEMPERATURES AT WHICH
MATERIAL DATA IS SPECIFIED

Fig. 4 SCARE master control deck data requirements.
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r	 Y

I • Cos a
m - sin a
n - sin o

AREA OF PLANE

03

r i = 6.35 mm (.25 in)

ro = 41.275 mm (1.625 in)

t = 3.80 mm (.15 in)

m	 = 7.65

00 = 74.82 MPa m• 3922

t	 kg =16.30
ri

RPM RANGE	 70K TO 114K

Fig. 6	 Example 1 - rotating annular disk (Ref. 14).

NC - 132 HOT PRESSED Si3N4

01	 an

02 'K	 01

Fig. 5 Stresses on Cauchy infinitesimal tetrahedron in principal
stress space.
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o
a

.2 /l
1

',--WEIBULL
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of	 I	 I
60	 70	 80	 90	 100	 110	 120

ROTATIONAL SPEED, rpmx10-3

Fig. 7 Example 1 probability of failure vs disk rotational
speed for various fracture models (SCARE2 data).
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SCARE MAT. DATA:
m - 2& 53
°yo - 36 200 psi, in • 105

W ,

SHEAR-SENSITIVE
LL	 PSC (REF. 32 MAT. DATA)-\
o
^-	 .6

m ^

o SHEAR-SENSITIVE PSC,
EN. RE. RA. CRIT..^

4 .`

EXPERIMENTAL

(REF. 32)

.2

SHEAR -INSENSITIVE
CASE

WEIBULL PIA

0
1
I

WEIBULL PIA
(REF. 32)
m - 28.4
00 - 35 535 psi, in .106

0 1 	 1 J	 1	 1	 -	 1	 1	 1	 1
140	 160	 180	 200	 220	 240	 260	 280

PRESSURE, psi

1.0	 1.1	 1.2	 1.3	 1.4	 1.5	 1.6	 1.7	 1.8	 1.9	 2.0
PRESSURE, MPa

Figure 8. - Example 1 probability of failure vs applied pressure for various fracture models
(SCARE2 data).
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