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Introduction

The work undertaken during and this contract and its results are described in the remainder

of the report. Fortunately many of the results from this investigation are available in the journal
	

.0i

or conference proceedings literature — published, accepted for publication, or submitted for publi-

cation. For these we simply give the reference and the abstract. The papers themselves have

been separately delivered to NASA/GSFC. Those results that have not yet been submitted

separately for publication are described in considerable detail.

The accomplishments duting this contract are summarized in the following list. They

correspond to the objectives of the revised proposal.

(11 Analysis of the snow reflectance characteristics of the Landsat Thematic Mapper, including

spectral suitability, dynamic range, and spectral resolution.

121 Development of a variety of atmospheric models for use with Landsat Thematic Mapper

data. These include a simple but fast two-streatn approximation for inhomogeneous atmo-

spheres over irregular surfaces, and a doubling model for calculation of the angular distribu-

tion of spectral radiance at any level in an plane-parallel atmosphere.

131	 Incorporation of digital elevation data into the atmospheric models and into the analysis of

the satellite data.

[4]	 Textural analysis of the spatial distribution of snow cover.

,t^^l
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1. Snow Reflectance born Landsat-4 Thematic Mapper

This paper has been published. The reference citation is:

Dozier, J., "Snow reflectance from Landsat-4 Thematic Mapper," IEEE Transaetions on Ceoaei-

enee and Remote Sensing, vol. CE-22, pp. 323-328, 1984.

Abstract. In California 75 pe!cent of the agricultural water supply comes from the melting

Sierra Nevada anowpack. Basin-wide spectral albedo measurements from the Landsat -4 Thematic

Mapper (TM) could be used to better forecase the timing of the spring runoff, because these data

can be combined with solar radiation calculations to estimate the net radiation balance. The TM

is better-suited for this purpose than the Multispectral Scanner because of its larger dynamic

range. Saturation still occurs in bands 1-1, but is severe only in TMI (0,45-0.521im). Snow

reflectance in TM2 (0.43-0.61pn!) is typical of the visible wavelength region, where reflectance is

almost insensitive to crystal size but sensitive to contamination. TM4 (0.78-0.80µm) allows esti-

mation of effective optical grain size and thereby spectral e — ension throughout the near-infrared.

TM5 (1.57-1.78pm) can discriminate clouds from snow.

.t+ I
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Z. Registering Thematic Mapper Imagery to Digital Elevation Models

This paper has been published. The reference citation is:

Frew, J., "Registering thematic mapper imagery to digital elevation models," in Proceedings,

Tenth International Symposium on Machine Processing of Remotely Sensed Data, with Spe-

cial Emphasis on Thematic Mapper Data and Geographic Information Systems, ed. M. M.

Klepfer and D. B. Morrison, pp. 432-435, Purdue University, West Lafayette, IN, 1984.

Abstract. Several problems arise when attempting to register Landsat Thematic Mapper (TM)

data to U.S. Geological Survey digital elevation models (DEMs). Chief among these are:

• TM data are currently available only in a rotated variant of the Space Oblique Mercator

(SOM) map projection. Geometric transforms are thus required to access TM data in the

geodetic coordinates used by the DEMs. Due to positional errors in the TM data, these

transforms require some sort of external control.

• The spatial resolution of 7'M data exceeds that of the most commonly available DEM data.

Oversampling DEM data to TM resolution introduces systematic noise. Common terrain

processing algorithms (e.g. slope computation) compound this problem by acting as high-

pass filters.

a
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3. Reflectance Measurements from Landsat Thematic Mapper over Rugged. Terrsin

This paper has been published. The reference citation is:

Dozier, J., "Reflectance measurements from Landsat Thematic Mapper over rugged terrain," in

Proceedings, Tenth International Symposium on Machine Processing of Remotely Seneed

	

e b
	

Data, with Special Emphasis on Themetie Mapper Data and Geographic Information Systems,

	ti	 ed. M. M. Klepfer and D. B. Morrison, pp. 230-234, Purdue University, West Lafayette, IN,

1984.

•	 Abstract. Spectral albedo measurements 'rom the Uindsat -4/5 Thema„ic Mappers require that

$ spacecraft upwelling radiances be corrected for atmospheric absorption and scattering .,nd for

local surface illumination. A two-stream model is developed, with a lower boundary condition

that varies with incidence angle. TM data must be registered to digital terrain data. Reflectance

from points in shadows can be used to estimate optical depth. Our primary application is deter-

mination of the spectral albedo of snow. The TM is better-suited for this purpose than the KISS

because of its larger dynamic range.
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4. Automated Basta relineatlon firom Dig6al Elevatiou Data

This paper has been published. The reference citation is:

Marks, D., J. Dozier, and J. Frew, "Automated basin delineation from digital elevation data,"

Ceo-Processing, vol. 2, pp. 299-311, 1984.

Abstract. While digital elevation grids are now in wide use, accurate delineation of drainage

basins from these data is difficult to efficiently automate. We present a recursive `order N " solu-

tion to this problem. No point in the basin is checked more than once, and no points outside the

basin are considered. Two app!:cations for terrain analysis and one for remote sensing are given

to illustrate the method, using a basin with high relief in the Sierra Nevada. This technique for

automated basin delineation will enhance the utility of digital terrain analysis for hydrologic

modeling and remote sensing.

q
I
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B. Field and Laboratory Measurements of Snow Liquid Water by Dilution
I

This paper has been accepted for publication. The reference citation is:

4
Davis, R. E., J. Dozier, E. R. LaChapelle, and R. Perla, "Field and laboratory measurements of

snow liquid water by dilution," Water Resources Research, 1985. In press

Abstract. Field trials of the dilution technique for measuring snow liquid water content show 	 i

that the refined procedure is rapid and simple. Measurements of the liquid water mass fraction

with an absolute error of — 1.5% can be obtained by one operator at a rate of 10 -15 "ampler per

hour, but if the water content is low, 0-2%, the relative error can be high. Electrolytic -onduc-

tivity is the preferred method for measuring concentrations, using a stock sclution of 0.01 N HCl.

The recommended amount of stock solution to add is 0 . 5--0.8 X the mass of the snow sample.

Extraction of the resulting mixture of stock solution and snow liquid water is beat done with a

screened pipette, instead of by decanting,
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0. Orthographic Terrain Views Using Data Derived from Digital Elevation Models

This paper has been submitted for publication. The reference citations rre:

Dubayah, R. O., "Orthographic terrain views using data derived from digital elevation models,"

M. A. Thesis, Department of Geography, University of California, Santa Barbara, CA, 1985.

Dubayah, R. O. and J. Dozier, "Orthographic terrain views using data derived from digital eleva-

tion models," Photogrammetric Engineering and Remote Sensing. (Submitted 1985)

Abstract. A fast algorithm is present for producing three-dimensional orthographic terrain views

using digital elevation data and co-registtred imagery. These views are created using projective

geometry and are designed for display on high resolution raster graphics devices. The algorithm's

effectiveness is achieved by (1) the implementation of two efficient grey-level interpolation rou-

tines which offer the user a choice between speed and smoothness, and (2) a unique visible surface

determination procedure based on horizon angles derived from the elevation data act.

.!
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7. Two-Stream Method for Radiative Transfer In Inhomogeneous Atmospheres over

Irregular Surfaces

This paper has been submit t ed for publication. The reference citation is:
	 .s

Dozier, j . and R. F. Milliff, "Two-stream method for radiative transfer in inhomogeneous atmo-

spheres over irregular surf-res," Journal of Geophysical Research. (Submitted 1985)

Abstract. Two-stream a i roximations for solution to the radiative transfer equation in plane-

parallel media can be extended to inhomogeneous atmospheres over irregular surfaces. For a

homogeneous layer the two-stream equations are solved for an irregular bounds y condition,

which includes topographic effects and variation of reflectance with i..umination angle. Direct

and diffuse reflectances of this layer are then used as the boundary condition for the next upward

layer, continuing recursively to the top of the atmosphere. Accuracy of the method compares

favorably to more precise solutions, with standard errors of —1.5%.
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I. A Component Decomposition Model for Eval o• sting Atmospheric Effects in Remote

Sensing

8.1. Introduction

Images acquired by radiometric sensors on satellites are ►omewhat degraded compared to

th,sre from lower altitude platforms because of atmospheric effects. For better der;vation of sur-

face properties and classification of ground features, it is desirable to make constructive atmos-

pheric corrections and retrieve the ground reflectance. It is also desirable to better understand

the relationship between the properties of the atmosphere and surface and the upwelling radiance

at the sensor 's level. An atmospheric model with wide wavelength coverage is also useful for

selection of optimal bands or band combinations in future remote sensing instruments. Here we

describe an ultraviolet- through- infrared atmospheric component evaluation model for a plane-

parallel atmosphere -earth system with arbitrarily nonuniform albedo, either Lam '.,ertian or aniso-

tropic. Such a model can be used for testing simpler atmospheric correction models and selecting

new war elength bands for future sensors.

Many researchers (Ueno et al., 1978; Otterman and Fraser, 1970; Dave, 1980; Kaufman and

Fraser, 1989 1 have noted that the radiance L received by a remote sensor is composed of three

components: (1) directly transmitted ground signature, (2) diffusely transmitted ground radiation

through the atmosphere, and (3) the atmospheric radiation that would occur even over a perfectly

absorbing and non-emitting ground. Different researchers use different terminologies for these

three components. Hereafter, we ca I them L, (attenuated signal), L d (diffusely transmitted

ground radiation), and L O (pure atmospheric radiance). The physical meanings of these three

components are depicted in Figure 8.1.

L =L, +Lj +Le	 (8.1)

Among their three components, L, contains useful information that we want to retrieve

from the remotely sensed data, while the other two degrade the satellite measurement and need to

be removed.

L O is usually regarded as the result of scattering of sunlight. This is true for visible and

shorter wavelengths, but in the more general case we can consider this as caused by both scatter-

ing and emission. For accurate calculation of L O, multiple -scattering should be included (Ueno et

al., 1978.

_,^
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The Li term is difficult to calculate for a nonuniform surface, because radiation reflected

from surface areas that are not within the instantaneous field of view (IFOV) of the sensor can

arrive at the sensor by atmospheric scattering. Ueno et al. (1978) use the mean albedo of the

neighborhood of the target pixel to correct for individual values. Pearce 119771 takes a

backward-tracking Monte Carlo approach to solve this problem with given ground albedo pat-

terns. He also introduces the concept of a point spread function and points out its importance in

retrieving ground albedo by deconvolution. Otterman s:i,, Fraser (19791 look into the significance

of adjacency effects by a single scattering approximation, Dave 110801 uses a more sophisticated

version of first order scattering, the "primary scattering source function" model, to inveatigate the

atmospheric eflcct caused by surface inhomogeneity. Kiang (19821 assesses the importance of

atmospheric spreading effects on Landsat Multispectral Scanner and Thematic Mapper measure-

ments using a procedure similar to Pearce's. Mekler and Kaufman (19821 develop a two-

dimensional radiative transfer model in which a one-dimensionally varying surface can be han-

dled. Kaufman and Fraser 119841 use Pearce's results and investigate the effect of L i on

classification accuracy.

While all Chest investigations confirm the existence of neighboring area eBecte ca-!%ed by L d ,

most of the approaches are forward models only, in that they calculate the upivelling radiance at

the top of the atmosphere, given an atmospheric profile and surface albedo distribution, but they

cannot retrieve the surface albedo distribution, given the atmospheric profile and top-of-

atmospheric radiance. Kiang 11082) correctly looked into the physical meaning of the atmospheric

spread function, but he did not further investigate its possible usage in retrieving ground

reflectance. The method of Ueno et al. (19781 is an inverse method, but without support by the

atmospheric point spread function, it is somewhat empirical (Dave, 19801. Moreover, their atmos-

pheric model was composed of only two layers and might be too simile.

Pearce's 119771 model is a forward one but can be used for the inverse problem is some spe-

cial cases. The wavelength range for his model is in the solar spectrum only; atmospheric emis-

sion is not considered. The only surface type handled is Lambertian, and the point spread func-

tion is derived only for n nadir-pointing monochromatic sensor. Diner and Martonchik ;198.11

incorporate a spatial Fourier transform method and the standard one-dimensional radiative

transfer technique for solvinv 61, r three-dimensional transfer equation for a vertically inhomogene-

ous atmosphere sitting on an int. nogeneous non-Lambertian plane surface. So far, this method

is a forward algorithm.

&
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The development of a model for a wider wavelength range, handling both Lambertian and

anisotropic surfaces and producing a point spread function Un arbitrary sensor angles is the task

we consider here. Given infomation about the atmospheric profile, surface reflectance can be

retrieved from top-of-atmospheric radiance. The model therefore achieves a partial step toward

solution of the surface remote sensing inversion problem — retrieval of surface reflection proper-

ties from upwelling radiance measurements alone.

8.2. Decomposition of Remotely Sensed Radiance

To understand the physical meaning of the components of the upward radiance, let us look

at the decomposition in a layer-structured plane-parallel atmosphere. According to the interac-

tion principle (Grant and Hunt, 19691 radiation is additive, and the upward radiance at the top of

a layer, bounded by upper level ri and lower level ri , where i = i +1, is the sum of three com-

ponents: reflection of top incident radiation, transmission of bottom incident radiation to the top,

and the upward internal source emerging at the top. In vector notation,

LT ( ri ) = R ( ri , ri) LI ( ri) + Ti ; § •rr) LT( ri ) + ET ( ri S ri )	 (8.2)

The L's denote the vectors of downward and tipward radiances in different directions at different

levels r, and ri . R and T are reflectance and transmittance matrices, and E T is the upward

internal source vector emerging at level r i .

This equation is a statement, of radiation conservation. R, T, and E T are uniquely deter-

mined by the composition and status of the layer only; they are independent of the radiation imp-

inging on the layer from outside. The L terms or the right hand side represent radiation coming

from above, or below the layer and can be caused by emission and reflection. They may include

any interactions between the layer concerned and the adjacent layers. The decomposition of the

transmittance term in (8.2) is a consequence of separation of direct from diffuse transmittance.

The first and third terms on the right hand side in (8.2) result in the L O term. For further

separation, we consider general expressions for L, and Ld first. Then we derive equations for the

simpler cases. For an anisotropic inhomogeneous surface, the upward direct and diffuse com-

ponents at the sensor, which points in direction Sd are:

L. = L T (r,r ,S) a -'/v	 (8.3)

L d = f f Td (0 X A ;TA T ' Xl' ) L T ( r,*' ,d' )I t ' d 01 dA'	 (8.4)
AD
	 y.
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1'1 is composed of nadir angle coo-,u and azimuth m. 11 and 0' are directional vectors, and d n is

the differential of solid angle in direction 11. Therefore f d 0 = f f d N d O. The horizontal

position vectors -P and PI are expre, ed by s ,y and P ,y' for the horizontal positions of

emerging and incident radiation pencils, and dA' =ds' dy' is differential area. The "upward

point- to-point bidirectional diffuse transmittance function" is

T4 	,11, )—	
dL T(O,r,l)	

(8.5)
d (N , E4 T (r,r' ))

This defines the contribution to the top-of-atmospheric radiance increment at the horizontal posi-

tion V in direction il made by an upwelling irradiance increment leaving from unit surface area in

direction 0' at the horizontal position r' . For a plane-parallel atmosphere and surface it is

shift invariant: it depends on the difference (r' - r) and not on their inaividual values.

The expression for L, (8.3) remains the same for simpler Lambertian or homogeneous sur-

faces, so only L d is discussed below. For simpler cases, we first define the f-allowing quantities.

The "upward point-to-point hemispherical-directional diffuse transmittance functicn" from sub-

point r' to sensor is

Td (O d;r,r' ) = f Td (O ,I ; r ,r ' ,d, ) 
`s ' a	 (8.6)

Q

The "total upward plane-to-point hemispherical-directional diffuse transmittance coefficient" is

Td (O,S1;r) = f Td (O,f,;r,r' ) dA'
	

(8.7)
AI

For a Lambertian surface upwelling radiance at the surface is independent of viewing direc-

tion, i.e. L T(r,r' ,f1' ) = L T (r,r' ), and (8.4) simplifies to

L d = Ld ( O ,fl ; r,r) = f Td (O,fI;r,r' -r) L T (r,r' ) dA'
	

(8.8)
AP

M averaged upwelling radiance for an atmosphere of total optical thickness r at the bottom

position r for a Lair.bertian surface is

A Td (O,f'2;r,r' -r) L T(r,r' ) dA'

L t(r,r) = A^	
Td	

(8.9)
(O,^;r)

e,N	 -

r

'e>
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For a bomogeneous Lambertian surface under unifera, illumination L '(r,?'	 I, t(r).

Therefore

Ld — L T(r) Td (O,1;r)	 (8.10)

Now it is interesting to consider an opposite configuration. If a narrow beam with irradi-

ance Eo is incident on a unit area at the top of the atmosphere, in the same direction as the sen-

sor viewing axis, then po = p and the resulting diffuse radiance at the bottom is

Ld !(r,r'tl' ;o,r,I) — po Eo Td(r,l ' ,fl' ;O,r ,O)	 (8.11)

and the diffuse irradiance at that location is

Edl(r,T' ;O, ,il)	 ,I Ld l(rje l l& ;0,1^' ,Q) p/ d 0'

Q

=po E o f Td ( 'r,rl ,i t ;(J,r ,11) lit d 0'
	

(8.12)

Q

From the reciprocity principle [van de Ilulst, 1980, pp. 16-18] Td (O,O;r,r') = Td (r,r' ;0,0).

Therefore

Ed l(r,r' ;O , r , O) = po Eo Td (O,0;r,r' -r)	 (8.13)

The reciprocity relations among L , E, and T are presented in Figure 8.2.

Consider the convolution expression of Ld in equation (8.4). If the coordinates are chosen

such that the zeros of r' are at the viewing axis of the sensor each time the radiance of the con-

cerned pixel is recorded, then a new transmission function can be defined:

T (O,fl;r,r' j? ) = b(r' ) 6(041') e p/u + T
d (O,S);r,r' ,SI')	 (8.14)

where b is the delta function. Similarly, for a Lambertian surface, an integrated transmission

function is

T (0 , 11 ; r,*' ) = f T (O,d; r ,r ' ,d' ) p' d S2'

Q

Substituting T for Td , we have

L - Lo = f T (O,ffl;r,r' ) L t(r,r' ) dA'
Al

(8.15)

(8.16)
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According to reciprocity again, T (O,fl;r,r' ) equals the point spread function T (r,i'' ;0,14'

Knowing L and Lo and the point spread function we can solve for L t(r,rr ' ) by a v

dimensional deconvolution procedure (Andrews and Hunt, 19771. This is the basis of applying a

back- tracking atmospheric point spread function in restoration of remotely sensed images.

For a homogeneous, anisotropic surface, when the pattern of L 1(r,j" ,11' ) is independent of

horizontal location F' , as is shown in Figure N.3, we have the following exp ► ession for it:

L t ( r,F ' ,0' )	 L i ( r,F ' ) ri(il' )
	

(8.17)

where q is an anisotropic reflectance factor. We define

f Td (O . 11 . r.r ' .11' ) q(f? ) it' d H'	 (8.18)
n

and

L r ( r,F ' ) _ ^	 12

	

f L t ( r,F ' Al ) µ' d '	 (8.19)
Q

We can substitute t,j,* for Td in equation ( 8.14), and L r (r,F' ) for L t(r,F' ) in equation ( 8.16).

Then solve L * (r,F' ) in (8.16) by deconvolution.

For a simpler and somewhat empirical solution, go back to Ld and L, . By estimating Ld

locally, the individual upward ground radiances can be solved by

L	 = (L - Lo - Lj ) c '/"	 (8.20)

L O and r can be accurately calculated from a one-dimensional radiative transfer model, the

details of which are described in a following section. The value of L d can be estimated in the fol-

lowing way, by defining Qe = Ld /L, and Q = (L -L o)/Lo for a homogeneous Lambertian sur-

face:

La _ Qe ( L -L o)	
(8.21)Q

8.3. Azimuthally Dependent Plane-Parallel Atmospheric Radiative Transfer	 t

Multiple Scattering
	 X

a
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Azimuthally dependent radiance in an absorbing, emitting, and scattering layer is governed

by the radiative transfer equation (Chandrasekhar, 1900:

µ dL (t1 + L (r,I) — J(r,I)	 (8.22)

Here, the sign convention is that the downward direction is positive. r is optical depth, and

L (r,n) is the radiance at level r along direction fl, which is composed of zenith angle cos -10 and

azimuth m. The source function J is

J (r,l)	 w f P (r,l ; ' )L (r,iil) d il' + Q (r,il)	 (8.23)
4yr 4r

The phase function P (r,O;O' ) gives the distribution pattern of single scattering at r caused

by a pencil of radiation incident along direction fl' and scattered in direction fl. The first term

on the right hand side of (8.23) is then the total contribution made by radiation coming from all

directions to the radiance at a particular direction fl. The phase function is calculated by rapid

Me algorithms (Wiscombe, 1980).

The Q term in (8.23) represents an internal source. By separating direct from diffuse radia-

tion, it is convenient to consider the radiation scattered from the direct beam and the specularly

reflected direct beam as caused by some internal "pseudo-source" [Wiscombe, 1978a]. Then the

total internal source is

Q (r,fl ) = Qt ( TA) + Q. ( rd) + Q.p ( rA)
	

(8.24)

where Qj is the thermal source and Q, and Q,p are the direct and specular "pseudo-sources."

B[T (r)] is the Planck function.

Qj ( r,l) = ( 1 --W)B [ T ( r)]	 (8.25)

Q. (nll) = w4a 
o 

P (r,0 ;110) a -'/no	 (8.26)

Q.p ( r,fl ) = 4a POP (00) P (r,S11;d,p ) a (2r,^ -+)/ao	 (8.27)

µo is the cosine of the solar zenith angle, Eo is the solar irradiance incident on the top of the

atmosphere (normal to the beam), p,p is the directional specular reflectivity at the surface

beneath the atmosphere, and r,p is the total optical thickness from top to the specular surface.

10
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To resolve phase functions with strongly forward Teaks using lower order polynomial

approximation, a delta-M transformation is performed for the phase function moments, optical

depth, and single scattering aibedo [Wiscombe, 1977).

Interaction Principle

One way to attack this integro-differential equation (8.22) uses the previously mentioned

"interaction principle" (Grant and Hunt, 19691. In vector form, its expression for both upward

and downward outward radiances from any arbitrary layer bounded by upper boundary r; and

lower boundary ri , appears as

L l( ri ) — R(ri , ri ) L i(ri ) + T(ri ,r;) L l(r) + E I (ri ,ri )
	

(8.28)

Li( ri ) — R( ri, ri) Ll( ri) 4- T ( rr,ri) V( ri ) + Ei( ri ,ri )
	

(8.29)

Radiances Lli are vectors of m X n elements on a discrete angular space composed of m zenith
o

and n azimuth angles at a given optical depth:

L (r,fpl,01)

L IT(r) =	 L (r1tp1102)	 (8.30)

L (r,d_p,

1 > p 1 > • • • > p,,, > 0 are a set of quadrature points on (0,1) and 0 < .0 1 < • - - < 0„ < 27r

are equally spaced points in the interval 0-27r. The R's and T's are reflection and transmission

matrices, and Eli are internal source vectors. For a homogeneous thin layer, these quantities can

be derived by some initialization scheme [Wiscombe, 1976b).

Adding/Doubling Method

By applying the interaction principle to two adjacent layers, the reflection and transmission

matrices and the source vectors for the combined layer can be derived if the corresponding quanti-

ties are known for each of these two layers [Grant and Hunt, 1969].

Consider two adjacent layers with identical scattering properties bounded by planes at opti-

cal depths r1 , r2, and r3 . By the interaction principle, we have expressions for 1, 1 ( 7 2), Lt(r1),

V(r3), and L i ( r2). Since r1i r2 , r3 are entirely arbitrary, we consider a single layer bounded by r1

and r3i and we have new expressions for L l(r3) and L i ( r1 ). Both old and new forms for L l (r3) and

L i( r1 ) must be equivalent. Eliminating L l ( r2) from the first set of expressions yields the reflection

and transmission matrices and the internal source vectors for the combined layer in terms of

quantities for the separate layers.
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1

R(r3,r1) - R ( r2, rl) + T(rl,r2) I I - R( *3,*2) R( rl, r2)(`
 R( r3,r2) T ( r2,ri)	 (8.31)

R( ri,r3) - R( r2,r3) + T( r3, %2) (I - R( ri,%) R( rs, r2)j` R( ri,r2) T ( r2,r3)	 (8.31)

T(r3,r1) - T( r3,r2) (I - R( rl, r2) R ( r3, r2)1 T( r2, r1) 	 (8.33)

T(rt,r3) - T( rj,r2) (I - R( r3, r2) R ( ri, r2)j` T( r2, r3)	 (8.34)

El(rl,r3) - T( rs,r2) (I - R ( rl, r2) R ( r3,r2)1 -' R ( rl, r2) E1( r2, r3) +

T(r&%) (I - R( ri,%) R ( r3, r2)1 -1 E1 ( rl, r2) + E1(r2, r3) 	 (8.35)

E1(r1,r3) - T( ri,r2) (I - R( r3, r2) R( rl, r2)j-' R ( r3, r2) E1 (rl, r2) +

T(rl,r2) (I - R( r3, r2) R ( rlr r2)( -1 Et( r2, r3) + Et( rl, r2)	 (8.36)

These are formulae for the "adding" method. If the two layers have identical optical thickness,

the simpler "doubling" method results. If the initial layer is chosen such that

AT = (ri + 1 - ri )/2', where N is an integer and (r i + I-r; ) is the optical depth of the layer in the

multi-layer system, then the reflection and transmission matrices and source vectors f the homo-

geneous thicker layer can be built up quickly by "doubling" N times. Note that internal sources

are not constant with optical depth and need to be treated separately (Wiscombe, 1976a).

Calculation of the Internal Radiance

Knowing the reflection and transmission matrices and source vectors for each layer in the

multi-layer system, we can build the internal radiance field in the atmosphere by the adding

method. Using the formulae of the interaction principle, we have a set of simultaneous equations

for levels 0<i <k , where k is the total number of layers in the system:

L! ( rt+i) = T( ri+t, ri) LI (ri) + R ( ri ,ri+ i) L1( rr+i) + El ( rr , rr+i)	 (8.37)

LT( ri ) = R( rr+i, rr ) L!( ri) + T ( rr , rr+i) L1 ( ri+ i) + Et( ri , rr +t)	 (8.38)

The top and bottom boundary conditions that need to be satisfied are that L 1(ro) must be

specified and

LT( rk) = Ra L1 ( rk ) + E B[ T,7 j + 
No Eo a "/vo 

fr(11 0) 	 (8.39)
Ir

RQ is the surface diffuse reflection matrix, E is the emissivity vector, f,,(po) is the BRDF (bidirec-

tional reflectance-distribution function) vector for the incident beam, and TG is the temperature

of the surface.
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A method to solve this set of equations is given by Grant and Hunt 110691. Its essence is

.hat the radiation is additive, so that we can first consider the case in which there is no radiation

from the bottom of the current layer to get a partial radiance, and then take in ,.o account the

remaining contribution caused by upward radiance from the bottom of each layer.

The method includes two passes. In the forward peas, the calculation starts at the top

layer, then goes down. For each layer, only the partial radiances are calculated, which include

the contribution made by the internal sources of the current layer plus that resulting from the

downwelling radiation. Also, the cumulative reflection matrix and transmission -reflection matrix

looking from the bottom are calculated for later use. This process is carried out until the ground

surface is reached. At this point, a downward radiance over it nonreflecting, -ionemitting surface

Lbl(rk ) has been obtained. For other surfaces the interaction between atmosphere and ground is

LI( rk) 	 (I - RA Roi l ' (Lb l(rk )  + RA {^ it ° e r j /'WO 
frl{1 0) + f13( 7^c) 1	

(8.90)

where RA is the reflection of atmosphere looking from the bottom. The downward radiance can

then be calculated from the bottom boundary condition ( 8.39).

This is followed by the backward pass carried out upwards, in which the contribution from

the bottom of each layer is added to the previously computed partial radiances.

The upward radiance at the top of the atmosphere is

L1( ro) = (R (rk , ro) + T( ro, rk ) RG (I - R( ro, rk ) RG1 - ' T( rk , ro)) LI ( ro) +

E t(ro,rk ) + T( ro, rk ) RG(I - R( ro, rk ) RG1_
i
 X

1
(E'(ro,rk ) + R( ro, rk ) (E B ( Tc ) + { i o

E o e -►t 1"0 fr(No)()	 (8.91)
n

Fourier Transformation

In the azimuthally dependent case all vectors are orgznized in lexicographic ordering

(Andrews and Hunt, 19771. The related square matrices are matri ^es with circulant blocks ( Davis,

19791. For simplicity, we call them local circulant matrices. The results of operations of addi-

tion, scalar multiplication and matrix multiplication of local circulant matrices are still local cir-

culant. Moreover if the inverse of a local circulant matrix exists, it is also a local circulant

matrix. For operations involving such matrices and vectors, the Fourier transform can be used to

save computation time. Since the matrices are only local circulant instead of complete or block

circulant, the Fourier transform is performed locally to take care of the azimuthal dependence,

i

^Y.
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and the resulting coeRcients of each order of Fourier transform can also be organized as matrices.

The size of the resulting matrices and the length of the corresponding vectors are equal to the

number of discretizations in the azimuth domain.

For Fourier transforms on discrete data, the general formulae to compute the coefficients for

sine and cosine transforms are (Scheid, 19138:

F,j (k +1) — h	 f(j +1)in(21rjk /n)	 (8.42)
J-0

w -^

F,g (k +1) — h	 f(j +1)coa(21rjk /n)	 (8.43)
! -0

where k —0,1,2,	 , 2 n . For even functions, such as the phase function in the present work, all

the sine coefficients are 0. The formula for the inverse Fourier transform is:

f(j +1) = d (F j (1) + FAR (2 + 1)(-1)' +	 (8.44)

"-1z
2 E (F,, ( L +1) cos(2rrjk /n) + F,I (k +l) sin(2rrjk /n )])

k-1

The product of the coefficients h and d in the above formulae should meet the relation

hd = 1/n . If we choose h =1, .ind d = 1/n , then for a unit matrix, the F«'s are all 1 for the

diagonal subblocks and 0 elsewhere, i.e. the Fourier transform of an identity matrix is also an

identity matrix. For computation, the Fast Fourier Transform method is used.

With h — 1, the Fourier transformation of a locally even circulant matrix is isomorphic. In

other words, the forms of the original formulae remain unchanged, with the order of the matrix

reduced. Under such transformation, the isomorphism covers the matrix operations of addition,

scalar multiplication, multiplication, and inversion. This technique is equivalent to those used by

Hansen and Travis ( 1974] and Dave and Gazdag [ 1970]. The computation time is reduced

dramatically with the error introduced by the transformation of less than 10 -7 . Note that the for-

mula for the azimuthally averaged case is only the 0' k order expression of Cie Fourier transform

of the azimuthally dependent case.

^I

L



^^r x

i

.20-

8.4. Incorporation of LOWTRAN Calculations

As described thus far, the model is for the monochromatic case only. To make the model

work for the atmosphere, we need to know the atmospheric optical properties. Among them the

most important are optical thickness, r, single scattering albedo, 'w, and the scattering phase func-

tions.

The first two are related to the direct transmittance of the atmosphere. Given an atmos-

pheric profile ( temperature, pressure, water vapor density, ozone density, and the aerosol density

acid distribution) the LOWMAN codes (Kneizys et al., 19831 and Mie scattering calcodatioas give

the atmospheric • ranamittance profile for wavelengths from 0.25-28.5 Nm for every 20 cm-1

wavenumber interval. ;Unfortunately, the required r and 'w can not always be derived simply from

the results of LOWTRfW, Lecause a simple derivation makes the relation between the vertical

optical thickness and slant optical length violate the cosine law that is essential for a one-

dimensional radiative transfer model. The reason for this is that LOWTRP does not really give

monochromatic transmittance but instead averaged quantities over 20 cm -1 wavenumber intervals.

This averaging causes violation of the Lambert-Bouguer-Bet: law because of the complexity of

molecular band absorption in longer wavelengths, even in a narrow wavenumber interval like

20 em-1 . Since the total transmittance of a layer is the product of the average transmittances

owing to molecular band absorption, molecular scattering, aerosol extinction, and molecular con-

tinuum absorption, the problem resulting from molecular band absorption causes trouble in calcu-

lation of the total transmittance and single scattering albedo for each layer.

A solution to this problem is the "exponential-sum fitting" method (Wiscombe and Evans,

19771 for radiative transmission functions calculated from LOWTRAN. For each of the three

major absorbers (water vapor, ozone, and uniformly mixed gasses, which include CO 2i N20, Clk

CO, 02, and NO the exponential-fitting is performed to get equiva!ent absorption coefficients k; ,

and weights a; in this model, such that transmittance Tm, for a given absorber u is

	

At	 _k r	

(8.45)
i—^

When more then one major absorber exists, the combined effect, assuming random overlap

of absorption lines from different absorbers, ;s

N M

	

Tmo(U) ti jj	 aji ^ f^ ^

	

(8.413)

.a
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Here j represents one of N absori;ers. U is a vector composed of a 1 , • • ' ,eN . For the j'h

absorber, thr • -e are Mj expansion terms. Therefore, by expansion the total number of terms is

K — U, • • r MN , with each having its own weight and power coefficient. The new weights and

coefficients are

1ttN
s,,, 0 --	 1 spy 	 (8.47)

J-1

N

k,,,' —	 kp	 (8.48)

for 11 =-1, - • • ,M! , and m —1, • - - ,K - For each of these terms in the expansion, the mono.

chromatic radiative transfer model can be used exactly.

O. Model Performance

Comparison with Osigik and Shouman (1980)

To verify our numerical code for a homogeneous lower boundary, we compare our results

with those obtained by different methods. Ozigik and Shouman (1980) presented exact solutions,

calculated by the FN method, of hemispherical reflectance and transmittance values for isotropic

incident radiation on a two-layer model with isotropic scattering properties. Stamnes and Conk-

lin (1984) compared their discrete ordinate method with the same calculations. Now we use the

same calculations to verify our method over a variety of single scattering albedoes and optical

thickness combinations. We use 4, 8, and IB discretizations in the zenith domain and analytically

integrate over azimuth for these comparisons. In Tables 1 and 2 we show the exact solutions and

the 4-, 8-, and 18-stream results produced by different methods for reflectance and transmittance.

Tables 3 and 4 offer the comparison of reflectances and transmittances for the same model with

an underlying semi-transparent specular reflecting surface. It is shown that the 8- and 16-stream

results from our model agree with exact solutions up to 3 or 4 decimal places. For intensities

ac_ ,a racy will be reduced by about one significant figure. Our results match those of Stamnes and

Conklin (1084) to 4 decimal places in all cases but two; these minor exceptions are noted in Table

2.

Comparison with LOWTRAN8

In Table 5, we compare our results with LO%VTRANa for the spectral interval 3-4 pm. The

resulting upward radiances from LOWTRANtf correspond to our results obtained when the con-

structive contribution of atmospheric scattering is intentionally omitted.

si
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To evaluate efficiency of our code, we use a 100-layer atmospheric model with total optical

depth of 2 for computing radiance with 16 streams. Our model, coded in the C language, requi •es

80 sec CPU time on a Digital VAX 11/780 computer operating under the UNIX operating system.

It is difficult to compare this value with other reported times, because the run time depends on

the computational environment. But we can at least say that this speed is comparable with those

of Stamnes and Conklin's )1084) discrete ordinate method, which takes 2 ruin 20 sec for the same

atmosphere on the same model computer. Their model's computation time is independent of the

total optical depth, but in remote sensing applications we are usually interested only in atmo.

spheres with modest optical depths. Our code has the flexibility that the run time can be spent

only on changed layers as long as we save intermediate results.

0.1. Atmospheric Point Spread Function

For a detailed investigation of diffusely transmitted ground radiation, the validity of a

model using averaged ground albedo is open to challenge. Therefore, the atmospheric point

spread functi )n i studied. The PSF is the distribution pattern of the transmitted radiation of a

pin-narrow beam through a degrading system. It is equivalent to the transmission in a three-

dimensional model.

In the present model, the atmospheric point spread function is calculated by sparse sampling

at some specific radii and polar angles. Then the results of the sampling are smoothed by a

least-aquares fitting procedure, and a rectangular PSF is produced from ti ► e parameters describing

the curve chosen.

Point Spread Function Sampling Procedure

Tile procedure starts by shooting photons from the receiver in a specified direction. The

PSF is then sparsely sampled on the ground in a polar coordinate system. For each sample ele-

ment, two distinct sampling procedures are performed. For a Lambertian surface only the total

number of photons that hit the element is recorded. For an anisotropic surface, the angular dis-

tribution of transmitted photons is recorded for each discrete direction. The angular discretiza-

tion is exactly the same as for the radiative transfer model described in the previous section.

Single Scattering Approximation of Point Spread Function

For a thin atmosphere, multiple scattering is negligible, therefore a first order scattering

approximation is appropriate. The approximation is similar to Dave's (1980) primary scattering

,A

I is
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source function model except for the following three points: (l) Dave's approach is forward-

tracking while this model is backward-tracking (Pearce, 1977). (2) Dave's is ground albedo pat-

tern dependent. (3) Dave does the complete integration over the entire ground surface in contrast

to our sparse sampling approach.

From a beam of N photons originating at the sensor, the number lost from the beam travel-

ing between r/p and (r+Ar)/p is

AN, (r,r+Ar) — N is °'lr - e -{ ►.o.l/r)	 (9.49)

Among these, the number lost by scattering is

AN, (r,ri Ar) — AN, (r,r+Ar) w(r,r+Ar)	 (9.50)

The contribution of these photons to the ground sample element is

AN(rs ,i',^') AN, (r,r+Ar)Ar X

P (r + 2r ,tf,(f' ) exp	
r, - r i Ar .	

(c 51)
N

where the exponential factor is due to the attenuation between the scattering location and the

sampling element. AO is the solid angle increment covering the sampling element with respect to

the point r+ Ar/2. When M^t'0' and A0 is almost Or, special care needs to be taken to avoid

exaggeration of the contribution because of the strong forward peak of the phase function.

For a Lambertian surface, the contributions made by different intervals for a particular sam-

piing element are added to get the total contribution of the beam at the location. For an aniso-

tropic surface, the contribution from different intervals are grouped according to the angular

discretization of the hemisphere. In this way, the point spread function for a single scattering

approximation is calculated.

Monte Carlo Method for Multiple Scattering

The essence of the Monte Carlo me0od is that the scattering and absorption of photon bun-

dle can be statistically simulated by a sequence of random collisions before finally the bundle is

exhausted by absorption or escape. After collision, some portion of the photon bundle is

absorbed, and the remaining portion may change the direction of motion by scattering. Each

scattering or absorption is a random collision event, but the general trend is governed by proba-

bility functions of the processes.

41
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In this approach, the atmospheric optical parameters are the same as in the one-dimensional

model. However, only the transmission problem is treated by Monte Carlo techniques, because

the pure atmospheric radiance distribution has already been solved for a plane-parallel atmo-

sphere. The problem is to find the contributions of the surface upwelling radiance to the signa-

ture of a certain pixel; included are ie directly transmitted radianc y from the pixel and the

diffuse transmission of the ground upwelling radian,.,. By the reciprocity principle, the pattern of

the contributions made by the ground radiation can be mimicked by a reverse process, in which a

beam of photons impinges at a given point at the top of the atmosphere and finally some of them

hit the bottom and make a spread pattern on it, which is the point spread function. According to

the interaction principle, the transmission of a layer depends only on its properties and has noth-

ing to do with the incident radiation. Tile radiation interaction between layers can only change

the amount of incident radiation, but can not change layer transmission functions. Therefore to

calculate the transmission or point spread function, we need only consider the case in which a

photon hits the ground once.

In this model, the general procedures outlined by House and Avery (19691 are followed with

some improvements made by Pearce (1077) included: the concept of photon bundle and photon

fraction, and the separation between a real scattering and a sampling of the contribution made by

a scatterer. The photon bundle concept looks at a photon as a bundle of photons and allows the

investigator to deal with a fraction of the bundle instead of an unseparable whole photon each

time. In this way, an absorbing atmosphere can be easily dealt with. The real scattering simu-

lates the random walk process of a single photon in a scattering and absorbing layer. For each

scatt --ing event within the atmospheric layer the contribution to the point spread function is cal-

culated. In other words, the sampling is not made when the photon hits the ground, instead it is

made when a scattering occurs, because the diffuse radiance can be more accuwntely calculated

from the integration of the source contributions along the given path than by direct sampling.

Such a sampling method requires many fewer incident photons.

To mimic the random walk process, we need the distance raveled by the photon between

two random collision events, the direction of each path, the portion of the photon bundle remain-

ing after each collision, and the position of the photon in three-dimensional space. The following

sections give the mathematical expressions of these events and quantities. Similar descriptions

can be found in some representative papers (Cashwell and Everett, 1050; House and Avery, 1060;

Pearce, 1077).

•1
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Free path length. The distance traveled by photon bundle between collisions is called the

free path length. Measured in the same manner as the optical depth, it is dimensionless and is

called optical distance. The probability density function of noncollision for an optical distance I

is

P(l)=e-t
	

(9.52)

Then the probability that no collisio p occurs in the range of optical distance from 0 to I is

I
r t	 f p (I') dl 	 1- e't	 (9.52)

0

where r t is a uniformly distributed random number between 0 and 1. This equation sets up a

unique relation between a random number and an optical distance 1:

— -!n(1 -r 1 ) _ I In(1-r 1 ) 1	 (9.54)

Direction of scattering. For each scattering event, two independent angular variables

can be obtained from the random process, the scattering angle 9 and the azimuth angle 4^ that is

measured in the plane perpendicular to the original direction 0,01.

The scattering angle 9 is determined in t he following way. First define

e
P (9) = J p (9' )sing' d 9'	 (9.55)

0

where 9' is a dummy variable and p (9' ) is the phase function for scattering angle 9' for the

current scattering sublayer. Because the integration of p (9' ) over the range from 0 to >r is 2, we

need to multiply P(E)' ) by 0.5 to i+.)rmalize it. Then we can relate such a normalized quantity

to a random number r 2 to determine the scattering angle 9:

P(9) = 2 r 2	 (9.56)

The angle 4b is within the range from 0 to 27r; therefore

4 = 21rr.	 (9.57)

where r 3 is another random number. Knowing the original direction 0 1 ,0 1 , and the scattering

angle and azimuth 9 and 4^, the direction for the next path 02,02 can be determined from analytic

geometry (Marchuk et al., 19801:

cos02 = cos0, cos9 - sin$t sing cos-t
	

(9.58)

i
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cos#, sin-0 1 sing cosh + cosO, sing sin(b + sin0, sin-0 1 cos9
tan^2 =

	

	 (9.59)
cos0, cost¢, sin@ cosh - sinm, sing sin* + 8in0, cosO, cos9

The portion of a photon bundle remaining. After a collision, a portion of the photon

bundle is absorbed and the remaining portion changes direction by scattering. if the scattered

portion does not travel horizontally, some of it may escape from the medium. Therefore, if the

original portion before the scattering is / , and the scattering takes place at r within the medium

of the total optical depth r", then the retraining portion that is subject to the next scattering is

/2= -W/,(1 -
c-/ICOSO 	

for 02 > 2

/ 2 = W / 1 
(1 - c -b'-r)/(`o1i2)) for 0 < 02 <	 (9.60)

/2 =w /i 	 for 02= a

The remaining portion / 2 will still travel within the medium. The travel distance related to ran-

dom number r, can be determined from a transformed version of (9,54):

I = itr ^: _ r`	 /2	 (9.611
^wl,

Such a process is repeated until the remaining portion is too small to be of any significance.

Distance of penetration of photon in the slab. In terms of optical depth, the penetra-

tion is determined by

Or = 1 c0802 	 (9.62)

r2 =r,+Or	 (9.63)

where I is the optical distance, r l and r2 are the optical t epths for the two successive collisions,

and Ar is the increment of optical depth between the two collisions. The height at which the

collision occurs can be calculated from the relation between the optical depth and the height

according to atmospheric profile. Suppose the heights for two successive collisions are h , and h 2,

the distance traveled between collisions is

d = (h 2 - It / COS02 	 (9.64)

Horizontal displacement. The horizontal displacement can then be calculated:

Ax = d sin02 cos02	(9,65)

Ay = d sin02 sinO2	(9.66)

^ Ye
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where Az and Ay are the increments in Cartesian coordinates. The horizontal location Z242

can be derived given the location before traveling:

zz s Oz + Z i	 (9.67)

Y2 =  A Y+ Y1	 (9.08)

Sampling the PSF. The sampling procedures are the same as that for the first order

scattering except that the scattering can be of any order and can take place not only along the

path of the the direct beam but also any place outside that particular path. For the anisotropic

case, the direction of contribution can be over the entire upper hemisphere.

Point Spread Function Smoothing, Curve Fitting and Interpolation

The point spread function produced from the Monte Carlo method is not perfectly smcoth

because of the statistical nature of the Monte Carlo procedure. Therefore, some curve fitting

should be performed to apply the results `ii radiance retrieval.

One form that might be used is the normal distribution curve and its two-dimensional

extension, for their wide use in the statistics and easy calculation of integrals over infinite range.

However, we find that the normal curve gives low values on the outskirt of the PSF. A better

choice is to look for the best fitting curve over a wide range of curves. A formula suitable for this

purpose is:

f (Z) =	
1

(A +B,Z°)°

where A , B , C, and D are the parameters to be determined in the fitting. This formula is

chosen is for several reasons: (1) When the parameters A , B , C, and D are positive, the value of

f (z ) decreases with increasing absolute value of x . In other words, the curve takes a bell or

near-bell shape. (2) When D is 2, A /B = 2C-1. If A /B is an integer, it includes the t -

distribution curves, often used in statistics The t -distribution curves, in turn, includ, normal dis-

tribution curves when the degrees of freedom approach infinity. Therefore, if a normal disteibu-

tion curve or a t -distribution curve best fits the polar profile of PSF, then using this formula we

can find it. (3) The integral of the volume under the bell surface for the x range 0-oo (which

represents the total point-plane directional-hemispherical transmittance function) is convergent

when C > 1.

For an obliquely viewing sensor position, the PSF is not symmetric with respect to the verti-

cal axis and is polar angle dependent. Therefore, it is not appropriate to use a single curve to fit

(9.69)
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the PSF in all the polar angles. Instead, for each polar angle, a specific curve is fitted. Then the

volume of each piece of the PSF -bell for each polar angle, as well as the total volume of the non-
0

symmetric bell curve can be found.

Application of Point Spread Function in Image Processing

After removing Lo, we have the following relation:

D ( x ,y ) = L (x , y ) - L o = EEL# (x -z 1 ,y - y ► ) h ( x ► , y 1) + e. ( x ,y )	 (9.70)a I ri
This states that the ground contribution is a convolution of atmospheric PSF and the ground

upward radiances plus a noise term e. (x ,y) If the PSF h (x l ,y,) is known, Lo (x ,y) can be

retrieved by deconvolution (Andrews and Hunt, 1977).

The above expression is for an individual pixel. For an image, using the lexicographic form

we can express a two-dimensional array as a vector by stacking columns for g , L and e„ . Also,

we can construct a matrix H from the PSF h such that the size of H is comparable to that of g,

L and e„ vectors. Then for the above relation over the entire image, we have

V	 g=HLs+e„	 (9.71)

This is a system of linear equations. When the noises e„ (a ,y ) are 0, the ground upward radiance

is given by an inverse filter:

Lg _ (H ) -' g
	

(9.73)

Fourier transform techniques are often used in this inverse filtering (Andrews and Hunt, 19771. In

the current investigation, we use another technique, the "constrained least squares" algorithm

(Hunt, 19731, to handle nonzero noise with the aid of the Fourier transform. When the inner pro-

duct of e,,, i.e. en  e,,, is estimated based on the mean and the standard deviation of the signal-

to-noise-ratio of the sensor, this technique results in an estimation of ground upward radiance Lg

that gives the smoothest solution for given e„ T e,,. In other words, minimize L6T C T C i sub-

ject to (g - H LsJ T (g - HL g) = en  e,,. The matrix C is produced from a two-dimensional

Laplacian operator and is of the same size as matrix H. By Lagrangian method, the solution is

Li =(H T H+7CT C) - ' H r g	 (9.73)

-y is the Lagrangian factor that need not be solved explicitly.

M
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9.2. Example — Atmospheric Effects in Landsat Thematic Mapper Images

In this section we analyze the values of the three radiance components for six Thematic

Mapper (TM) bands in visible and near-infrared regions, and we display the point spread function

used for atmospheric correction of TM band-I images. Finally, an image of expected ground

upwelling radiances is retrieved from the remotely sensed TM band-1 image using that point

a )read function.

Three Radiance Components for a Standard Atmospheric Profile

We chose the U.S. Standard Atmosphere 119761 with a 13-layer structure as the input atmo-

sphere for our model because it represents an average condition for the mid-latitudes. The major

properties and parameters of this atmosphere are shown in Table 6. The sun is assumed at the

average sun-earth distance with the solar zenith angle at 53.7 ". The sensor is at the nadir posi-

tion.

Under such conditions, the three components L, , Ld , and L O are calculated for different

albedoes (1.0, 0.8, 0.5, 0.2, 0.0). For a given atmosphere L o depends on the incident solar condi-

tion only, whereas Ld and L, depend on the albedo. However, for a homogeneous Lambertian

surface the ratios 6, =L, /L, and 0 1 =Li /L, remain constant no matter what the albedo is. In

the visible wavelength range we find that for each wavenumber interval of 300 cm-1 the relation

that T,1 (0,6;r) = Td (r,fl;0) holds quite well, because the absence of molecular absorption make

those individual wavenumber intervals close to monochromatic cases. But in the near-infrared,

the wide wavelength bands do not allow the monochromatic reciprocity relation to be applied,

since the complexity of strong CO 2 and 02 absorption makes it completely unsuitable to approxi-

mate such bands by monochromatic wavelengths. The difference is caused by the change of spec-

tral distribution of the radiation within the wavelength interval concerned, after passing through

the atmosphere once. For the purpose of atmospheric correction, the term Td (O,d;r) instead of

Td (rfl) is used, since that term mimics the upwelling transmission better.

In Table 6, the t-.rms L O, a, p„ and At for the 6 TM bands in the reflective solar spectrum

are listed. These values are wavelength averaged, with the involved radiance values weighted by

sensor response function T X and wavelength interval.

f La Tx d 

L =X

	
(9.74)

f T ), d X

X

Ai
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From Table 6, it is obvious that for shorter wavelengths, the terms L o and #d have larger

values than those in the longer wavelengths. Since #d represents the total contribution of the

diffusely transmitted ground radiation to the sensor-received radiance for a uniform Lambertian

surface, it is an indicator of the magnitude of the adjacency effect. In TM bands 5 and 7, Od and

the ratio or—& /0, are small, and the adjacency effect may be neglected even for nonuniform,

anisotropic surfaces.

Point Spread Functions

The shapes of point spread functions of six bands of Thematic Mapper are shown in Figure

9.4. The integrals of the point spread function for shorter TM bands (1-4) are close to their

+Qd sums (let 0 +Od and note that _ (L -Lo)/Lo ). This shows: (1) the results of

Monte Carlo procedure are comparable to those from adding/doubling; (2) the reciprocity princi-

ple holds for each narrow spectral interval. However, for some wavelengths within TM bands 5

and 7, the integrals of point spread function even for narrow intervals differ considerably from the

value when both values are comparatively small. The reason for this is that for such intervals,

the monochromatic assumptions are no longer valid because of the complexity of molecular

absorption. Our point spread function for each narrow interval is simulated by downward track-

ing, starting with a smoothed solar spectrum, but the 0 values are calculated based on spectrally

averaged upward transmissivities for each interval. The upward reflected photons have experi-

enced longer atmospheric paths; therefore a higher portion have high penetration in the atmo-

sphere than do the original downward spreading photons. Under such circumstances, a desirable

point spread function cannot be obtained without renormalization. Fortunately, the effect of

scattering at those two TM bands is negligible. A simpler atmospheric correction using Lo and a

will produce a good approximation for the radiance at ground level.

Image Restoration

Figure 9.5 shows the original images and the equivalent images restored by the "constrained

least squares" technique. The resulting images in TM bands 1 and 2 are much sharper than the

originals. Figure 9.6 also shows a set of restored images using a simpler technique in which the

averaged neighborhood radiance values are used in association with the Qd value. A comparison

shows that for TM band 2 the two restoration techniques give little difference.

^N
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O.S. Notation

BI T) Planck function at temperature T (W m" 2um-Isr 1)

Ea molar constant (W m-2um'1)

Ed4(r,1')
i

downward diffuse irradiance at optical depth r, location y' (W m-Jim-)

upward diffuse irradiance at optical depth r, location ? (W m -2 "m-t)

E. (r) downward direct irradiance ;.t optical depth r (W m 2um`1)

an lexicographic noise vector
I

a* (x ,y) noise term at pixel located at z ,y

Quo;,UA BRDF	 (bidirectional	 reflectance-distribution 	 function)	 for	 incidence

angle cos-Ipo, reflection angle co3" 1 u, and reflection azimuth ¢, meas-

ured from azimuth of illumination (sr -1)

MAO) BRDF vector for incidence angle cos' luo (rr-1)

F,j Fourier cosine coefficient
t

F,j Fourier sine coefficient

g lexicographic vector of radiances measured by sensor

p (z ,y) radiances measured by sensor

H lexicographic vector of point spread functions

b (a ,y) element of point spread function at location a ,y

L 1 r vector of downward radiances at level i	 W m -2Pm- I sr- 1

L I(r) vector of upward radiances at level i (W m gum-'sr ')

Lb i( rK) vector of downward radiances over a black and nonemitting surface

(W m gu m-'sr- )

fs vector of expected or estimated ground radiances (W m -2um-1 sr 1)

L (r,SI) radiance at level r along direction 0 (W m-zpm-'sr i)

Lo pure atmospheric radiance (W m" gum 1sr 1)

L4 diffusely transmitted ground radiation at sensor's level (W rn-2um- 1sr"1)

L, ground upwelling radiance (W m -2 PM- I sr 1)

L, attenuated signal at sensor's level (W m-2um-1sr"1)
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1

L-

P

P (r,,' )

R

Ra

RA

r

To

T

T (0,11;r,r' )

T (r,i'' ;0,11)

T,d (0,1$;rj? )

Td (0,1 ;r,7)

T,(O,l;r,r^,l 	 )

Ti (O,r ,O;r,*' fi t )

Ti (r,*' X01 ;0j ,11)

Tj (r,i"• ' ;0,11)

Td (rf0)

Td (04;r)

T. (U)

T,„, (U)

averaged upward radiance from nonuniform Lambertian surface at

ground level ^W m -2pm- 'sr')

matrix of phase functions

phase function at optical depth r, from direction ll to Ill

reflectance matrix

surface diffuse reflection matrix

reflection of atmosphere looking from the bottom

horizontal position rector

temperature of the surface ( 'K)

transmittance matrix

hemispherical-directional upward transmittance from a point r at bot-

tom to sensor

directional-hemispherical downward transmittance from sensor to it

ground point at location r

upward plane - to-point bidirectional diffuse transmittance function

upward point- to-point lie mispherical -directional diffuse transmittance

function

AM invariant upward point-to-point bidirectional diffuse transmittance

function

upward point-to-point bidirectional diffuse transmittance function

downward point-to-point bidirectional diffuse transmittance function

downward point-to-point directional-hemispherical diffuse transmittance

function

downward beam diffuse transmission at ground level

total upward plane-to-point hemispherical-directional diffuse transmis-

sion coefficient

molecular transmittance for given absorber u

molecular transmittance for a set of absorbers U

t	

y

ii. _t
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i

U a set of molecular absorbers composed of (v 1 ,	 ,VN )

a ratio Ld /L,

P ratio (L -LO)/LI

Od ratio L d ILI

0, ratio L, I LI

7 emissivity vector

6 delta function •

q(NO;P 'O) anisotropic	 reflectance	 factor,	 defined

It fr(NO;PA
2r 1	 -

,I f N'	 fr(No;N'	 du'	 d 0►
06

7 Lagrangian factor

X wavelength (µm)

µ cosine of zenith angle B

6 directional vector in three-dimensional space

d 0 differential of solid angle in direction d (sr)

w single scattering albedo

scattering azimuth angle measured in new coordinates

m azimuth angle, normally measured from direction of illumination

pop directional specular rellectivity

E l downward internal source vector (W m -2µm-Isr-1)

E t upward internal source vector (W m -2pm- 'sr 1)

ri optical depth at level i , measured from top

8 scattering angle between incident and scattering directions

B zenith angle

B, observation zenith angle

7 sensor response function

.4i
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9.4. Tables

Table 9 1 Comparison of Reflectance Results for a Two-Layer Model %vith Exact Calculatwns from Ozwik

and Shouman 11980

'w,	 %IS	 r,	 rx	 4-stream	 8-stream	 16-stream	 exact

08 095 025 025 02292 02251 02252 0 2,52

0.8 0.7 0.25 025 01987 01938 01939 01939

0.6 0.5 0.25 025 01316 01278 01278 01278

05 03 025 025 00963 00930 00930 00930

0.8 0.95 0.5 05 03066 03057 03056 03056

0.8 07 0.5 05 02687 02662 02662 02662

0.6 0.5 05 05 0.1682 01662 01661 01661

0.5 03 05 0.5 01241 0 1219 01219 01219

0.8 0.95 1 1 03518 03509 0 "W9 03509

0.8 0.7 1 1 03184 03172 03172 03172

0.6 0.5 1 1 0.1891 01877 01877 01877

0.5 03 1 1 0 14L 0.1398 0.1398 01398

0.8 0.95 1 2 0.3797 0.3786 03786 03786

0.8 0.7 1 2 03247 0.3234 0.3234 0.3234

0.6 0.5 1 2 0.1907 0.1892 01892 0.1892

0.5 0.3 1 2 0.1417 0.1403 01402 01402

0.8 0.95 2 1 03451 0.3438 03438 0.3438

0.8 0.7 2 1 03373 0.3362 03362 0.3362

0.6 0.5 2 1 0.1951 0.1937 0.1937 0.1937

05 0.3 2 1 0.1471 01458 0 1457 0.1457

4.
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Table 9 2 Comparison of Transmittance Results for a Two-Layer Model with Exact Calculations from

	 ll

Ozi4ik and Shouman (1980)

Lo t	 i y	 rj	 I's	 4-stream	 8-stream	 16-stream	 exact

08 0.95 026 025 06461 06604 0 6503 06603

08 0.7 0.25 025 0 6001 06053 0.6051 06051

0.6 0.6 0.25 026 0.6424 06476 06474 06474

0.5 0.3 0.26 0.26 06077 0.5131 06128 0 5128

O A 0.95 06 O'S 04581 04597 0.4597 04697

0.8 0.7 0.5 0.5 03922 0.3926 0.3927 03927

0.6 0.5 0.5 0.5 03218 0.3205 0.3206 03206

05 0.3 05 0.6 02858 0.2834 02835 02835

08 0.95 1 1 0.2481 02476 0.2476a 02476

08 0.7 1 1 01758 01745 0.1745 01745

00 05 1 1 01184 01164 0.1164 0 1164

0.5 0.3 1 1 00953 00930 00930 00930

08 0.95 1 2 01603 01600 0.1600b 01600

0.8 0.7 1 2 0.0749 00745 00745 0.0745

0.6 0.5 1 2 0.0422 0.0420 0.0419 0.0419

0.6 03 1 2 00302 00301 0.0301 00391

0.8 0.95 2 1 01209 0.1205 01205 01205

08 0.7 2 1 00850 00846 00846 0.0846

06 0.5 2 1 00457 0 0454 0.0454 00454

05 0.3 2 1 0.0340 00338 00338 0.0338

x0.2477 in Stamnes and Conklin (1984)

b0.1601 in Stamnes and Conklin (1984)

+0 1
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•	 Table 93	 Comparison of Reflectance Results for a Two-Layer Model above Specularly Reflecting Surface

with Exact Calculations from Otioik and Shouman 119801 (p„ — specular rAectance at bottom)
1

L; j Lis p„	 4-stream 8-stream 16-stream exact

02 00467 00461 00461 00461

02 05 00	 00513 00500 00506 00506

0.8 00590 00582 00582 00582

0.95 00653 00644 0.0644 00044

02 00502 00498 00498 0 049P,

02 0.5 0.5	 00562 00557 00557 00557

08 00674 0.0666 00666 n 0666

0.95 00781 00769 00769 00769

0.2 00531 00529 00529 00529

0.2 06 C 9	 00605 00601 00601 00601

0.8 00762 00752 00752 00752

0.95 00937 00920 00921 00921

P

E
y

11
f
t

F

a
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Table 9 4	 Comparison of Transmittance Results for a Two,-Layer Atmosphere above Specularly Reflecting

Surface with Exact Calculations from Oagik and Shouman 1 1080 (p„ _ specular reflectance at bot-

tom)

rv, zoe POP	 4-stream 8-stream 16-stream exact

0.2 00760 00728 00727 00727

0.2 06 00	 0.0899 00877 00876 00876

0.8 01171 0.1146 0.1146 01146

0.95 0.1408 01380 01380 01380

0.2 00383 00371 00371 00371

02 0.5 05	 00480 0.0467 00467 00467

08 00678 00663 00663 00663

0.95 00879 00858 00858 00858

0.2 00078 00076 00076 00076

0.2 0.5 09	 01016 00099 00099 00099

0.8 01561 01521 0.1522 01522

0.95 02209 02150 02151 02151

a

^1
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Table 9 5 Comparison of Upward Radiance at Top of U S Standard Atmosphere aC Night with Same Cal-

culations from LOWTP.AN6 Wavelength 3-4Nm, To — 300 K, Surface Albedo 0 05

I

model	 LI(114')	 L1(261')	 L1(403')	 L1(537')	 L1(659')

t

ours	 03499	 03478	 03434	 03355	 03214

ours, no	 0.3415	 03387	 03331	 03232	 03056

scattering
I

LOWTR.AN6	 0.3411	 -	 -	 -
a

u

i

Table 9 6 Parameters Describing Atmospheric Effect on Radiances of Landsat Thematic Mapper bands, for

U.S Standard Atmosphere with 53 7 ' Incident Solar Angle

F
P

TM band	 wavelengths	 Lo

(P M )	 Wm -2pni-11 1	 A /0.)	 (Lj I L,)	 (L. I Li)

TM l	 0 45-0 52	 34 483	 031744	 066129	 0 20992	 f

TM2	 0 53-0 61	 16 989	 023198	 072016	 016706

TM3	 062-0,69	 9 5651	 017438	 078447	 013680

TM4	 078-090 	 3 4237	 0 11675	 084371	 0098501

TM5	 1 57-1 78	 0.11340	 0031436	 0.91439	 0.028745

TM7	 2.10-2 35	 u 025956	 0023439	 093095	 0021820
I

A

`e
s

.	 r
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9.6. F'ASurw

Figure 9.1. Three components of sensor-measured radiance. L O contains both pure atmospheric

scattering radiation and atmospheric thermal emission. L, carries target information. Lg is
	 41

mainly composed of the contribution made by the surrounding pixels.

// I\
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Figure 9.2. Relation between T's and L 's. (a) Definition of T4 (O,P,(;r,r' ,11' ). (b) Definition

of Tg (r.1' ,f? ;O,F,11). (c) By integrating T fl' ) over entire hemisphere and

entire ground plane, T (OJI;r) is obtained. (d) Definition of T (r,11). (a) and (b) are a

reciprocal pair, and (c) and (d) are another reciprocal pair.

(C)
	

(d)
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Figure 9 . 3. M assumed anisotropic reflectance pattern in which the anisotropic reflectance factor

depends on reflection zenith and azimuth only, and is independent of location. The gravel-

shaped feature at each point represents a forward -peaked anisotropic refelctance pattern.

The size of the feature indicates the magnitude of the surface albedo at that point. The

similarity among the features shows the location independence of the anisotropic reflectance

pattern.

I)
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TMI-TM4, TM5 andFigure 9.4. Cross section of point spread function for Thematic MapperB	 P	 P	 (

TM7). The pixel size is 28m by 28m. The horizontal axis is the number of pixels from the

central pixel. The vertical axis is logarithmically transformed. (a-d) Visible and near- 	 k

infrared bands (TNII-TM4). (e-f) "Shortwave infrared" bands (TM5 and TM7). 	 1

(a)	 TMl
	

(b)	 TM2
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Figure 9 . 5, Images before and after restoration by deconvolution using point spread function. In

the right column are the restored images and in the left column are the original ones. The

upper row is for the TM! images, whereas the lower row is for TM2 images. The point

spread functions are produced for the U.S. Standard Atmosphere.
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• Figure 9.8. Images restored using simpler algorithm va. those by deconvolution procedure. Now

the images produced by simpler algorithm using locally averaged radiance values appear in

the right column.
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10. Texture Analysis of the Sp+tlal Contiguity of Snow Cover

10.1. Introduction

Snow hydrologists have come to rely on satellite imagery for accurate estimates of snow

cover over widespread and inaccessible areas. Prior to the advent of satellite data, snowmelt

runoff models were based on point measurements, usually of snow water equivalent at index sites

(Rango and Itten, 1978). Subsequently, many studies have concluded that satellite measurements

of an w-covered area (SCA) have a significant statistical relationship to seasonal streamflow

[Rango et al., 1979; Rango and Martinec, 1979; Shafer and Leaf, 1979]. This relationship has

been used for long-term volumetric flow forecasts [Thompson, 1975; Rango et al., 19771 and for

determining the timing of daily runoff (Martinec, 19751.

The relationship between SCA and runoff depends on the time frame in which runoff is

viewed. For daily predictions during the ablation period, SCA is directly related to runoff. The

Martinec runoff model that has proven useful for many mountain basins (Rango and Martinec,

19811 expresses the relationship

Qt = c (E X SCA X (1-k) + kQ t-1 )
	

(10.1)

Here Q, is runoff at time t , c is a runoff coefficient, E is energy, usually in degree-days, SCA is

snow-covered area, and k is the recession coefficient.

In the longer term, it is known that the rate of snowline retreat is inversely related to snow

water equivalent and to runoff (Rango and Itten, 1976). Furthermore, the relationship between

SCA and depth is quite variable: snow covering the same areal extent can vary 200 percent in

depth [Martinec, 1980]. In fact, Martinec found that SCA is better related to the ratio of the

current water equivalent to maximum seasonal water equivalent. This agrees with Thompson's

(1975) earlier finding that SCA is more strongly related to the percent of total seasonal runoff than

to runoff itself. Thus the behavior of the SCA parameter in runoff models beyond those for

short-term forecasts becomes complex; it is best represented in a form differentiated with respect

to total accumulation (Martinec, 19801. Alternatively, for long-term forecasting, the more direct

relationship between snow depth and total water volume may be preferable. From the analysis of

a large random field sample, Adams and Roulet (1982) found a broad similarity in patterns of

depth and water equivalent both in terms of quantity and distribution. They suggest that depth

may be a good indicator of water equivalent and therefor-, of runoff.

i
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Snow depth cannot be directly determined from a single satellite image but the pattern of

snow distribution at various overall depths is readily apparent. In fact, expert snow observers

have used the appearance of surface features to estimate depth during aerial overflights (Rango

and Itten, 19761. The notion that snow depth can be inferred from snow cover patterns implies

that accumulation patterns are stable over time due to the control of underlying physical vari-

ables of terrain and exposure. During the accumulation period snow cover patterns are event

related and result from irregular deposition influenced by elevation, wind and local topography.

On the other hand, overall patterns that form during the snowmelt period are quite predictable

since melt rates are strongly controlled by altitude and exposure. Palmer (19811 found over a

three year period in the Rio Grande watershed of Colorado that snowline recession patterns were

repeated; Lichtenegger and Seidel (1981( reviewed images of the Dischma valley in the Swiss Alps

over an eight year period and concluded that a typical snow cover pattern forms each year during
I

melt season. Moravec and Danielson [1979] and Martinec [1980] have also reported that yearly

'	 repeating contour patterns of snow-covered regions occur during the ablation period.

The analysis of snow cover patterns has generally been conducted as part of research into

mesoscale (100-1000m) areal differentiation of snow cover such as those based on identifiable

landscape units [Adams and Roulet, 1982] or hydrologic response units (Thomsen, 19801. The

purpose of these investigations is to develop regional generalizations about snow conditions from

sites stratified by similar combinations of environmental variables. By inversion, it can be

reasoned that the snow patterns themselves are meaningful expressions of the sum effect of the

controlling variables. As Palmer (19811 points out, the position of the snowline acts as a natural

integrator of the long-term effects of snow accumulation, slope, aspect, temperature, radiation,

and wind. In a one-dimensional approach to the problem of quantifying snow patterns, Palmer

developed regression relationships between percent snow cover and snowline v ovation along a

series of index baselines for the purpose of predicting SCA for an entire basin especially at times

when it is partially obscured by clouds. This method requires that the network of baselines in a

basin include all areas of significant snow cover but ignore detached patches of snow. It would

`

	

	 stem more appropriate to use a two-dimensional characterization of the spatial contiguity of snow

cover to predict snow-covered area.

Objectives

In this study it is proposed that two-dimensional descriptions of snow cover obtained by

means of texture analysis, a set of statistical pattern recognition techniques, serve as predictor

.4i
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variables in a linear relationship for predicting snow-covered area. This is undertaken as a prel-

iminary step to assess the feasibility of predicting in the same manner another hydrologic parame-

ter, snow depth, which may have a more direct and consistent relationship to the total volume of

water stored in a melting snowpack. Operationally, the estimation of snow coverage itself on the

basis of two-dimensional statistics may be useful along transition zones of the pack and during

melt season when snow cover in highly dissected and difficult to inventory by manual or digital
F'

means. At this time, when short-term forechsting occurs the SCA variable is a direct, useful pred-

ictor of daily runoff. Snow depth data at the scale an l extent necessary to conduct pattern

analysis were not available for this study, however it may be possible in future studies to photo-

grammetrically determine snow depth at a scale appropriate to the analysis (Cooper, 1965; Rawls

and Jackson, 19701.

As an initial stage in the investigation, the effect of sensor resolution on detectable "tex-

ture" is studied to determine whether the large improvement in spatial resolution provided by the

Landsat Thematic Mapper (TM) sensor over existing Multispectral Scanners (MSS) translates into

equally improved spatial information when analyzed using standard texture analysis methods.

Study Design

Digital images from the Landsat-4 satellite were available at 30 meter resolution (TM) and

at 80 meter (MSS) resolution. Four matched sets of TM and MSS subimages (Figures 10.1 and

10.2) were selected and registered. For one set (image A), texture statistics were calculated over

the entire image in order to closely investigate the behavior of the statistics at both resolutions.

In the next step, two sets of texture features were calculated from windowed samples over each of

the four image pairs. The relative distance between sample texture features was assessed by three

different metrics. In the last stage, binary classifications of snow were made at both resolutions

for image pair A. From these SCA was calculated by window and regressed against the two sets

of sample texture features calculated above. Model efficiencies were calculated both internally

using a jackknife regression technique and through time by cross-prediction between images of the

same site having undergone significant snow recession.

10.2. Texture Analysis

Satellite images are two-dimensional projections of the three-dimensional landscape below.

Frequently, such images are used to supply point data about scalar quantities like brightness,

temperature and elevation or used in combination with other images to provide vector

.o t
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information such as color (Abuja and Schachter, 1981[. In doing so, the higher order relationships

inherent in the image are effectively ignored. However, in one area of image processing, texture

analysis, the study of spatial relationships is well developed. In general, the aim of texture

analysis is to apply pattern recognition techniques to an image in order to segment and discrim-

inate between scene regions or to aid in classification of cover types; the task is to quantify an

invariant, non-labile characteristic of a scene object. Characterization of changing epatiai pat-

terns has not been well explored. The objectives of the present study are to use texture analysis

in the traditional sense to quantify resolution-dependent differences in texture and to explore a

new possibility of using extracted texture features as meaningful parameters in a functional rela-

tionship for the prediction of a physical variable.

Texture Analysis Methods

Texture analysis, the image processing term for pattern analysis, originates from empirical

efforts to recognize and duplicate the elusive perceptual concept of texture. Visual analogies have

held sway so long in this field that only recently have formal image models emerged on the level

of abstraction found in other spatial disciplines [e.g. Pielou, 19771. Within the sizable battery of

empirically developed methods [reviewed by Haralick, 19791, no single approach has proven to be

universal, in large part because the visual hierarchies involved in perceiving spatial structure work

in a complex manner not easily duplicated by simple methods [Julesz, 1975). As Haralick 119791

has noted, the organization of tonal primitives or local regions can be viewed as structural, proba-

bilistic, or functional depending on relative resolution. Whether stochastic pixel-based models or

deterministic region-based models are the most suitable texture descriptors depends on the coarse-

new, homogeneity and periodicity of the texture.

Statistical approaches range from simple first-order measures like grey tone differences and

run lengths [Galloway, 1975] to more complex joint and conditional second-order co-occurrences

[Haralick et al., 19731. One-dimensional autoregressive models (McCormick and Jayaramamurthy,

1979; de Souza, 19821 are only partially successful at describing spatial patterns while two-

dimensional autoregression (Tou, 19801 becomes a complex task.

Image patterns can be analyzed in terms of spatial frequency but Fourier analysis has had

limited application to texture analysis. The Fourier transform must be computed over large win-

dows and comparison of power spectra between different sized regions is difficult [Chen, 1979].

More importantly, local information is scattered in the frequency domain so that similar peaks

may be caused by a nearly periodic texture or a single strong edge (Nevatia, 19831. Recently

A*. IN



.50-

T

Chen (1982) and Jernigan and D 'Astous (198 .1) have successfully developed local and size invariant

texture features based on the Fourier transform that overcome some limitations of the method.

findings from perceptual experiments (Pratt et al., 1978; Juleez and Caelli, 1979 1 have cast doubt

on the efficacy of Fourier analysis for texture discrimination. Patterns having identical power

spectra and thus identical autocorrelation functions, can be discriminated effortlessly by eye.

Translated into the spatial domain, Fourier analysis is simulated by a series of convolutions

(Faugeras, 1978; Laws, 19801. Convolution mask q which enhance high frequency information act

as edge detectors that approximate mathematical gradient operators (Ballard and Brown, 1982).

Once obtained, the edge structure of an image can be reported simply in spatial averages or used

to form high level primal sketches (Marr, 1982 1. Related to edge analysis are methods that quan-

tify local maxima and minima by row (Mitchell et al., 1977 1 or which construct more complex

relational trees of one-dimensional intensity profiles expressed a.., nested or concatenated peaks

(Ehrich and Foith, 1978).

When the elements of a texture become much larger than the resolution cell of an image,

pixel-based stochastic models break down and are supplanted by structural methods which iden-

tify primitives, measure their attributes and determine their spatial relationships (Wang et al.,

1981; Matsuyama et al., 1982; Tomita et al., 19821. In highly regular patterns, primitives can be

described syntactically using tree grammars (Lu and Fu, 1979).

There have been few studies undertaken to rigorously compare texture analysis methods.

Frequently cited works by Weszka et al. 119761 and Conners and Harlow ( 1980) have led to the

widespread use of Haralick's second -order statistical features: the moments of the grey-level co-

occurrence matrix (GLCM). Indeed, co-occurrence statistics Dave been very useful for image seg- 	 "^ J

mentation (Chen and Pavlidis, 1979; Conners et al., 19841 and for image classification (Hallada et

al., 1982; Vickers and Modestino, 1982; Holmes et al., 198 .11. Julesz's 119751 finding that human

texture discrimination operates finding that human texture discrimination operates at the level of

second order relationships has lent such support for the GLCM approach that less costly first

order methods reported to perform equally well for classification purposes (Weszka et al., 1976;

Mitchell and Carlton, 1978; Pietikiiinen et al., 19831 are not implemented as often. Because the

GLCM serves as the standard of comparison for testing the performance of texture analysis

methods, it was chosen for use in this study along with a newly reported local method: Laws'

(1980) texture energy measures.
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Carey-level Co-occurrence Matrix

The grey level co-occurrence matrix (LLCM) is an array of joint frequencies whose dimen-

sion is equal to the number of grey levels in the image. Each entry in the matrix is the frequency

with which brightness i co-occurs with brightness j when separated by distance d in the direction

0. Frequencies, often normalized to probabilities, are reported in both directions for a joint pixel

pair making the matrix symmetric. As a first step towards data reduction, the number of grey

levels is decreased to 84 or less, and the four directional matrices can be averaged into one. To

compress the data further, several statistics are calculated that express either the distribution of

matrix values around the main diagonal or the degree of correlation between matrix rows and

columns. Seven statistics proposed by Haralick et al. (1973) are given in the Appendix; these

include energy, correlation, homogeneity, entropy, inertia and information correlations 1 and 2.

Energy and homogeneity are measures that emphasize low contrast transitions; entropy and iner-

tia increase with texture coarseness. Correlation statistics measure the degree of association

between marginal and total values expressed either as frequencies or entropies.

An elegant solution to the problem of choosing an optimal combination of dist ince and

orientation to beat describe the structure in a texture was proposed by Zucker and :erzopoulos

(1980). They developed a chi-square statistic burled on maximum likelihood estimates of the mar-

ginal matrix probabilities to test the independence of rows and columns. The unnormalized co-

occurrence matrix is thus viewed as a contingency table in which intensity pairs are samples

obtained from a two-dimensional random process. Notationally:

z
X2 =N 	 z" )- 1 )ri ci

N is the total number of samples. Degrees of freedom v = ( tit -1)(n -1), s;i is the co-occurrence
w	 m

matrix entry, r; _	 z;i , and ci	 Zq .

In the present study of snow texture, an automated system was developed to calculate the follow-

ing for each subsample of an image- your unnormalized directional matrices, the chi-square value

for each, the normalized matrix for the maximum chi-square angle, and the seven co-occurrence

statistics. Only the final statistics from the most structured matrix were concatenated into an

output file. This process was repeated for each of four distances (1,3,5,10 pixels) and four quanti-

zations (8,16,32,64 grey-levels) for image pair A.

(10.2) ..
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Texture Energy Measures

Dc.bpite the shortcomings of Fourier analysis outlined above, texture analysis methods that

characterize special frequency are very useful if implemented locally in the spatial domain. This

is accomplished by a sequence of boxfilter applications which are faster and simpler than a single

convolution using the fast Fourier trane,form (McDonnell, 1981). In his dissertation, Laws (1980)

derived a series of one. dimensional operrtions of center-weighted local averaging, symmetric first

differencing (edge detection) and second differencing (spot detection) (Pietikiinen et A., 19831.

When convolved together these vectors form nine 3 x 3 masks (see Appendix) some of which are

recognizable as standard gradient operators like the pair of vertical and horizontal Sobel operators

(f il l, / 0 3),  and the Laplacian second difference operator (fil l). Note that all but J d e r the low

pass smoothing filter, are zero-sum filters.

Texture features are obtained from each of the nine separately convolved images by calcu-

lating local statistics such at the sum, the mean or the standard deviation over small windows.

McDonnell 119811 along with Laws have found that the variance or standard deviation of filtered

windows are very powerful measures of image texture. In a zero mean field produced by convolu-

tion with a zero-sum mask, variance is the average of the squared values which makes it a meas-

ure of total energy within a window. Laws claims that the average absolute Yalu#. is a fast

approximation to the standard deviation; he referb to both the average and the standard deviation

as measures of texture energy. Pietikiinen et al. 119831 tested two other texture energy features,

the sum of the absolute values and the maximum value within a window, and found that the local

maxima performed just as well ai the sum. In this present study three features were compared:

the sum, average and the standard deviation of values within windows sized 16 x 16 on the MSS

image and 32 x 32 on the TM image. Following Laws' convention, these features are referred to

as SUM, AVG and SD. As was done for GLCM analysis, an automated system was developed to

cycle through all nine filters, convolve the image, compute the local statistics by window and con-

catenate them into an output matrix. Window size was based on Laws' finding that classification

accuracies were nearly perfect using 32 x 32 window but dropped rapidly below 15 x 15. Accord-

ing to Hallada et al. (19821, this sample size is also adequate for co-occurrence analysis. They

found that class separability increased logarithmically and then leveled off as window size

increased from 3 x 3 to 13 x 13.

Texture energy measures are distinguished from Fourier methods by their local nature.

Phase relationships within each window are measured without reference to a global origin (Laws,

001
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19801, whereas Fourier frequency components contain global information from across an entire

image at the neglect of local information (Jernigan and D'Astous, 1989). In addition, gradient

filters can be tailored to various textures by increasing the ditferencing distance to overcome noise

but keeping it small enough so that local gradient remains a good representation of local changes

(Ballard and Brown, 1982).

Parallel work by Faugeras and Pratt 119801 lends support to the Laws energy approach.

Because the autocorrelatiou function has proven insufficient for texture discrimination (see above)

these authors sought ways of characterizing the decorrelated texture field which would yield useful

texture measures. Decorrelation can be accomplished by a whitening operator based on adjacent

row and column correlations; if correlations are perfect this operator becomes the Laplacian

operator. Alternatively, gradient operators like the Sobel filter can replace the whitening opera-

tor. Note that these are three of the nine Laws convolution masks.

Using a distance metric criterion, Faugeras and Pratt 11980) found that the first four

moments of the first-order histogram of the decorrelated field provided good separability between

similar natural textures. The first two histogram moments of the decorrelated images are exactly

equivalent to the average and standard deviation of texture energy planes convolved with the

same gradient operator. In accord with perceptual findings, inclusion of jhape measurements

taken from the autocorrelation function improved separability but alone were weak discrimina-

tors. The Sobel operator, a directional filter that does not zero out the mean or create unit vari-

ance, gave the best separability while the non-directional Laplacian was the worst. This implies

that Law's choice of average and standard deviation features is well founded since all but the

smoothing and Laplacian filters are non-symmetrical.

Pietikainen et al. 119831 have confirmed that local statistics of convolved images yield better

classification results than co-occurrence statistics. In the following analysis of snow cover patterns

the two methods are compared for relative powers of separability and utility in characterizing

spatial distribution for the purpose of predicting area.

10.3. Data Processing

Registration and Sampling

The imagery used in this study was taken by Landsat-4 Thematic Mapper (TM) and Mul-

tispectral Scanner (MSS) sensors. TM imagery was available for two dates, December 10, 1982

and Jaruary 18, 1983, in which images overlapped along adjacent paths; identical MSS imagery

7
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was available only for the December date. The images are centered on the Kern and Kings river

basins in the southern Sierra Nevada which are adjacent watersheds on the order of 4,500 square

kilometers (see Rango et al. (1979) for a complete geographic description). Four subimages of

varying textural complexity sized 256 pixels in dimension were selected from the December TM

image. Corresponding MSS subimages, 128 pixels in size, were located and registered to the TM

sites. Registration was a simple matter of enlarging the MSS subimage two-fold and translating

the image to line up with the TM subimage. Resampling was unnecessary because geometric

rectification po firmed by the NASA Goddard LAS system left MSS resolution almost exactly half

the TM resolution. This level of registration accuracy was adequate for comparison of textural

differences between resolutions. For the second stage of regression analysis a single site in the

Kern basin was selected from both December and January TM images that showed evidence of

substantial snow recession between scenes. These subimages were also co-registered using simple

translation without initial resampling.

The texture study sites are about 65km2 , comparable in size to several small experimental

watersheds [e.g. Rango and Martinec, 1979[. For an initial comparison of the behavior of texture

features at the two resolutions, co-occurrence matrices wei c calculated over the entire scene. For

the purpose of separability measurements and regression analysis image pairs were subsampled

using 32X32 sized windows for the TM image and 1(3X16 sized windows for the MSS image.

This non-overlapping samplit:g strategy yielded 64 samples per subimage each covering about one

square kilometer. At this scale, the analysis remains wit%in the realm of mesoscale studies and is

equivalent in scale to NOAA AYl{R.R imagery at nadir.

Background Effects

Much of the experimental work done in texture analysis has been carried out on homogene-

ous texture fields which are assumed to be consistently specified by either parametric or deter-

ministic models derived solely from the relationships of the texture primitives. Texture analysis

of natural terrain must take into account external variables such as topography and vegetation

that act as forcing functions on the pattern of surface cover. Shadows, topography and plant

cover become part of a scene spec sic textural characterization of the overlying snow cover.

Topographic effect and shadowing can be reduced if digital elevation d ita are available,

making it possible to map radiance values into a a synthetic brightness image using lambertian or

non-lambertian models of surface reflectance [Justice et al., 1981]. Digital elevation data are

available for the southern Sierra Nevada only at 90 meter resolution and according to Seidel et al.

r	 ,
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(1983) elevation data on a scale greater than the Landsat sampling distance are inadequate for

producing a satisfactory synthetic brightness image. Band ratioing, a method for canceling out

multiplicative effects of topography was rejected because of its tendency to enhance differential

noise between bands giving rise to spurious or confounding signals of high frequency texture.

Without the possibility of digital terrain correction, images were selected in which shadowed areas

were a small proportion of the image. This unfortunately limited the method of analysis to

larger, open areas of mountain basins which may not be truly representative sites. Since all com-

parisons in this study were scene specific, it was assumed that the texture signal caused by under-

lying factors would hold constant between resolutions and between dates. More importantly, the

chosen texture analysis methods, co-occurrence and energy statistics, are sensitive measures of

contrast and of edge structure and should thus reflect the distribution of very bright, high-

contrast snow patches rather than dark, low contrast background features. To emphasize con-

tract and edge deta-1 all texture features were derived from visible bands TM 2 and MSS 9 in

which snow is very bright.

Pre-Processing

Texture measures, like co-occurrence statistics that are based on grey-level transitions, are

sensitive to shifts in overall scene brightness or contrast. To standardize images so that mono-

tonic changes in illumination are not used to discriminate textures, the first order grey-level distri-

butions of all the textures were normalized to uniform distributions. At the same time, images

used for GLOM analysis were reduced in quantization to make the co-occurrence matrices reason-

ably aized. Histogram equalization was carried out using a procedure outlined by Pratt (1978).

This process can be considered a monotonic point transformation in which the input cumulative

probabilities are equal to the output cumulative probabilities for a given input index. The histo-

gram equalization function is expressed:

g = ( g m. — g min) P/ (f ) -4- g min	 (10.3)

Here g is the output grey value, 9 min is the minimum output grey value, g max is the maximum

output grey value, and P1 (f ) the cumulative distribution function of the input variable f .

Note that the output number of grey levels is controlled by the g max — g min range, so that

images are simultaneously equalized and reduced in quantization by a single transformation.

1
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10.4. Snow Clawification

Spectral Characteristics

Snow has a very distinct spectral signature. It ;.s extremely bright in the visible bands, fre-

quently saturating sensors calibrated for vegetation refiectances and at the same time is quite

dark in the shortwave infrared bands like TM bands 5 and 7 (Dozier, 19841 Few scene elements

are confused with snow cover except for white clouds that often are indistinguishable in the visi-

ble and near infrared spectral range. With the advent of TM shortwave IR data (1.57-1.78pm

and 2.10-2.35pm) discrimination between the two classes has become possible because clouds are

significantly brighter than underlying snow in these bands (Dozier, 1984). This suggests that

given visible and shortwave IR data, satisfactory snow classification could be achieved with only

two spectral bands.

A successful two band snow classification using MSS visible and near infrared data is

already in use; Haefner [1979] found that snow cover could be classified into three found that

snow cover could be classified into three categories, snow-free, transitional and snow-covered,

using only MSS bands 5 and 7. Although it was necessary to further subdivide classes during

training site selection, the visible and near infrared bands were sufficient for discriminating the

three snow categories except in the presence of concrete, white rocks or snow under dense coni-

ferous forest. (Mixed classes of snow under forest canopy can be discriminated with the addition

of MSS band 4). For complex classifications which distinguish various stages of snow metamor-

phism all four MSS bands have been used to identify up to ten classes of snow and seven classes

of ice (Thomas et al., 19791.

Classification Approach

Considering the simerior resolution and spectral discrimination of the TM sensor, it was

presumed that a two band approach using TM bands 2 and 5 would be an improvement over MSS

two band methods and sufficient for a binary classification of snow-covered and snow-free areas.

In the visible range DI band 2 was selected because of its larger dynamic range and therefore

lower tendency to saturate over snow compared to TM band 1 and yet remain relatively insensi-

tive to metamorphic changes in grain size compared to TM bands 3 and 4 (Dozier, 1984). TM

band 5 had several reasons to recommend its use; besides cloud discrimination properties, this

band is generally a high information channel. Price (1984) found that the TM band 5 information

rate expressed in bits/pixel is higher than shorter wavelengths and is also relatively uncorrelated
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• Because anow is spectrally distinct, very bright and relatively homogeneous it is amenable to

thresholding approaches to classification. In fact, Rango and Itten ( 1978) found that snow

classification results differed little between histogram parallelepiped and maximum likelihood
f fA

classifiers. For this study, rather than use a parallelepiped scheme, methods were investigated to

find a single data plane for thresholding which combined critical spectral properties of visible and

shortwave infrared wavelengths and also reduced variance.

Table 10 . 1 gives summary statistics for a single snow cover training site from TM image A f

0=315) using two approaches, ratioing and principal component analysis. 	 Ratioing the two

adjacent bands, TM 2 and TM 3, reduced variability and range when compared to TM band 2

alone.	 Presumably, variation due to topography was reduced by canceling out multiplicative

effects. This reduction is greatest for adjacent bands in which surface reflectance ranges are Simi-

lar (Holben and Justice, 1981). 	 Although the narrower threshold of the ratioed class was an

improvement, it did not include important shortwave IR spectral information. 	 A ratio of TM

bands 2 and 5 reduced the threshold range but not the variability with respect to the single visi-

ble band.

On the other hand, snow patches were clearly discernible on principal component images.

As Figure 10.3 shows there is virtually no difference between the first principal component using

TM bands 2,3,4,5 and 7 and the first component using bands 2 and 5 alone (see discussion below).

The two band component was selected for thresholding since it was computationally less costly

and because it had a lower coefficient of variation than either TM band 2, the TM2/TM5 ratio or

k	 the five band principal component image. A single threshold range applied to the two band prin-

9

cipal component image yielded a satisfactory classified image (Figures 10 . 4 and 10.5).

Classification Results ^II

The spectral and spatial advantages afforded by the TM sensor are evident from comparing
4

TM and MSS snow classifications for the .,ame scene (Figure 10.4). 	 The MSS scene was also

classified by thresholding a single data plane, the first principal component of bands 4,5,6 and 7,

which was selected by the same process of comparing training site statistics. 	 Percent snow cover

in the MSS subimage was 30% higher than in the matched TM subimage. 	 This discrepancy

partly stems from the poorer spectral discrimination provided by the MSS data and the inexact,

subjective nature of thresholding, but its major cause is the far coarser resolution that blurs tran-

sition zones and leads to systematic overclassification. At the same time, isolated, small groups of

snow-covered pixels identified on the TM image were omitted from the MSS classification.

I
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Principal Component Analysis

Principal component analysis is a linear orthogonalizing transformation that yields a vector

of coefficients, the eigenvector, used in linear combination with the variables of the input vector

to align the variables along an axis of maximum variation that is statistically uncorrelated and

geometrically orthogonal to a., seeding components (Cooley and Lohnes, 19711. A principal com-

ponent image is obtained from the original image, p , having p spectral bands by the transforma-

tion (Moik, 1980:

9' = T (D — m)	 (10.4)

Here g' is the principal component image, T = pxp is the matrix whose rows are the normalized

eigenvectors of the spectral covariance matrix C of g , and m is the mean vector of the p spectral

bands.

The eigenvalues X P and the eigenvectors to of C are obtained by solving the equation

C iv = X P f 
	

(10.5)

The principal component transformation isolates non-random information from noise while also

decorrelating the transformation axes to eliminate redundancy (Anuta et al., 1984). The resulting

scalar eigenvalues and set of eigenvectors can be interpreted directly for some insight into the

sources of variation. The ratio of each eigenvalue to the sum of all eigenvalues gives the percent

of total variance explained by the corresponding tigenvector. The eigenvectors are comprised of

coefficients or loadings that correspond to the cosine of the angular distance through which each

input band must be rotated to be aligned with the principal axis of variation. The larger

coefficients represent smaller angular distances and thus greater influence on the component

(Anuta et al., 1984). The loadings can be viewed as weights corresponding to the relative contri-

bution made by each band.

Component loadings for TM and HISS subimages are given in Table 10.3. Clearly, the visi-

ble bands dominate the first principal component derived from five TM bands; visible and near IR

bands all carry about equal weight while the shortwave IR bands contribute far less. Only in the

second component does the near IR band behave independently of the visible bands. The load-

ings of the first principal component using only two bands reflects this same pattern and provides

the same level of explained variance ns the five band first component. Apparently redundancy

among the five TM bands with respect to the first axis of maximum variation was effectively elim-

inated by using only two bands.

f
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Loadings for the first component derived from four MSS bandit are not clearly divided into

two classes. Visible bands show a pattern of increasing relative contribution into the IR which

then tapers off again; MSS bands 4 and 7 alone were unable to represent this combination of spec-

tral information. In reviewing the component images, it is apparent that TM snow classification

was achieved using essentially a reduced-variance visible image augmented slightly by shortwave

IR information whereas MSS classification relied on a nearly equal mix of visible and near IR

bands.

10.6. Methods

Distance Measures

In the language of statistical pattern recognition, the texture statistics used in this study are

features which detect sufficient statistical (non-random) variability between patterns to allow

classification. The task in feature selection is to find an evaluation function that will assess how

well a set of features discriminates between classes. Generally, there are three types of evaluation

rules (Ben-Bassat, 1980): information measures (uncertainty), distance measures (separability), and

dependence measures (association). Each of these measures distribute objects into feature space

which can be divided into classes by a discriminant function. Alternatively, each measure can

stand as a figure of merit such that a large measurement difference implies low classification error.

Evaluation by figure of merit rather than by classification has the advantage of being independent

of any particular discriminant function and may additionally include error analysis (Faugeras and

Pratt, 19801. Distance metrics were deemed most appropriate to the aim of quantifying

resolution-dependent textural differences rather than for discriminating between them.

Distance measures used in pattern recognition for statistical evaluation of separability

operate on sample pools. Accordingly, the large TM and MSS images were divided into 64 square

samples covering comparable areas. Distances were calculated between these samples and then

reported in sum or average.

Three distance measures were chosen to evaluate the separability of TNI and MSS texture

features. Initially Euclidean distance was calculated between sets of statistics that were first re-

scaled between zero and one in order to preserve a consistent metric for variables originally meas-

ured on different scales. The Euclidean distance between columns of the TM and MSS feature

matrices was calculated as follows:

d (),k ) _

	

	 (x(i ) —xx
(ik 	

(10.6)
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The Euclidean distance between image pairs was the sum total of distances between all texture

features (matrix columns). Because it was necessary to re -scale the data, this metric accommo-

dated comparisons between unnormalized variables such as sums and counts.

To be able to easily compare the degree of similarity among data sets, the average Cower

Similarity Coefficient !Cower, 19711 was calculated between each feature k:

S ( i , j ,k )	 1 — :(i,k)._z(^.k)I	 (10.7)
m ;	 R(k)

R (k ) is the range of a given texture feature k over both sets of data. The similarity between

image pairs was the overall average similarity between texture features. Like Euclidean distance,

the similarity coefficient is sensitive to magnitude. When ap p lied to inherently normalized

features such as the standard deviation or the average, the range is sufficiently comparable

between data sits for the coefficient to work well. Unsealed data sets ranging widely in value will

have low similarity though correlation between the two may be high.

The last distance metric considered, Bhattacharyya distance ,is a more sophisticated meas-

ure theoretically based on a scalar function of the probability densities of the two feature sets

IFaugeras and Pratt, 19801: For Gavissian densities Bhattacharyya distance is calculated [Davis,

19811:

E E2
-^

B ( S 1,S 2) = 8 (u t - u2)	 ^ 2 	( ll^- u2)T

2
+

	 ( E'+ E2)
loft	

I El I	 I E21

Here u; is the mean vector for class i , E; is the covariance matrix for class i , and I E; I is the

determinant of E;.

By taking variability into account, this metric distinguishes between feature sets that might

have identical means but a different spread of values around the mean. In addition, Bhatta-

charyya distance is theoretically linked to the Chernoff error bound applied to Bayesian

classification error [Faugeras and Pratt, 1980]. If texture features are normally distributed these

error bounds can be applied to Bhattacharyya measurements. As is true of the other metrics,

Bhattacharyya distance is most successfully used on normalized variables.

(10.8)
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Regression Techniques

As a first step in regression analysis, all variables were screened for asymmetrical distribu-

tions. If histograms and quantile plots of the sorted data against quantiles of the standard normal

d istribution (Q-Q plots) were skewed, the variables were transformed using power functions

(Tukey, 19771 that gave the beat approximation to symmetric and, if possible, normal distribu-

tions. This was done to better satisfy least-squares assumptions of normality and homoscedastic

error.

For each of the twelve models, the beat subset of predictor variables was selected using a

leaps and bounds regression method available from the S interactive data analysis package

(Becker, 1984) in which Mallow's C. statistic served as Ji ,. criterion for goodness of fit. This

method is a generalization of stepwise regression methods that examines all possible subsets of

predictor variables rather than the effect of a single addition to or deletion from the predictor set.

The Co statistic, closely related to the adjusted coefficient of determination, (Draper, 19811 is:

RSSP
Co 

= s2— ( n 
`Zp)	 (10.9)

RSSo is the residual sum of squares from a model containing p parameters and a 2 is the residual
i

mean square from the largest equation possible containing all the variables.

The term a 2 is taken as the unbiased estimate of the error variance 0 2 . Since the expected

value of the CP variable is approximately p , the best, least biased equations are those in which

the Co statistic is equal to the number of parameters. In each case, the equation with the smal-

lest number of parameters and least biased fit was chosen for the regression model.

Standard least -squares multiple regression was then run on the transformed variable: using a

set of programs from the S package. The significance of the regression coefficients was checked

with a t -statistic and the overall regression significance with an F-statistic. The residual stan-

dard error and adjusted coefficient of determination (R 2) were calculated for comparison of

models. Regression residuals were plotted against the fitted values, and a locally weighted

smoothed line was drawn through the scatterplots to detect departures from the zero mean line.

+
In addition, the sorted residuals were plotted against quartiles of the standard normal distribution

u
F+ to check for normality. Finally, a robust, iterated, weighted least-squares regression was run.

Observations that received low weight were examined and the effect of deleting these samples was

determined by repeating the least squares regression on the trimmed data set. If the least squares

and robust regressions agreed well in coefficients and residuals, it was presumed that the least-
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squares assumptions had been sufficiently met and that the tests of significance stood.

Without a large, longitudinal data set at a given site it is difficult to to test the predictive

power of a model. In the case of the TM/MSS image pair, regression models were used for com-

paring the effect of resolution on the scene model, not for cross -predictive purposes. Instead, for

each model, a jackknife technique was used , ,o verify internal stability and to test internal predic-

tability. In this technique, each observation was deleted in turn, the regression repeated and the

new coefficients used to predict the deleted value. The stability of each regression coefficient was

measured by the coefficient of variation and any observations with highly deviant coefficients were

examined for error. The predicted and ohsei ved values were plotted in sample sequence and as

scatterplots. Prediction residuals were also plotted to check for any systematic patterns. The

overall prediction performance was measured using a model efficiency statistic (Rango and Mar-

tinec, 1979) which is a non -dimensional "goodness of fit" function:

maw.

1 	 (Yr — Y )2 — 1 ^; (Yr — Yr )^
R z 	 n	 na	

n L (Yr —Y)'
r—I

(10.10)

Here yr is the observed snow-covered area, y is the mean snow-covered area, and yr , is the

predicted snow-covered area. Similar to the coefficient of determination, this statistic is a meas-

ure of the proportion of variance explained by the model.

The purpose of independently deriving regression models for December and January images 	 i

at a given site was to test the generality of each set of extracted parameters by means of a cross-

prediction test. This technique determines how well one set of parameters predicts the snow

cover at the same site but under an altered snow cover pattern. The data for the two dates were

then pooled to obtain a general equation for the scene. As before, predictions and prediction resi-

duals were plotted and model efficiencies calculated.

10.4. Results

Texture Characteristics

Gray level co-occurrence matrices (GLCM) are joint probability tables for a specified rela-

tionship between pixels. A comparison of matrices constrained by different joint relationships

should reveal information about three fundamental texture properties: periodicity, directionality,

and information content. Thus, a good starting point for analyzing the effect of resolution on
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texture was to compare various co-occurrence matrices and the statistics extracted from them at

both TM and MSS resolutions.

Using image pair A, co-occurrence matrices were tabulated over the entire TM and MSS

scenes for a range of displacements (1, 3, 5, 10 pixels), a range of angles (0 ', 45 ', 90 ', 135 ') and

a range of quantizations (8, Id, 32, 84 grey levels). The chi-square statistic was used as the cri-

terion to choose the best combination of specifications. Plots of chi-square values for all quantiza-

tiona and distances (Figure 10 .8;+ show that the maximum chi-square angle (in this case vertical)

was identical at all grey levels and displacements. Chi-square values from the two resolutions

were consistently parallel in behavior; most information was found at a displacement of one pixel

and, by definition, at the highest number of grey levels (64).

When TM and MSS images were divided into samples (for the purpose of metric analysis) it

was possible to compare the X2 selected angles for each image by sample. Table 10.3 gives the

correlations between selected angles for each image pair; only image D had a correlation better

than O . S. For all images, horizontal and vertical directions were dominant perhaps because the

diagonal distance is actually 1.4 times longer than the distance to adjoining horizontal or vertical

pixels. In the TM image the selected angle oscillated between the two orientations more rapidly

than those of the comparable MSS image. This divergence in directionality is the most distinct

textural difference between TM and MSS images. Although this may be interpreted simply as

increased noise, it has elsewhere been reported that directionality is critical for distinguishing very

similar cover types )llallada, 1982). This implies that the tendency of investigators to reduce

computation by averaging the various directional co-occurrence matrices is probably an unwise

economy in classification studies. However, averaged matrices are useful for deriving rotation-

invariant measures of texture; statistics computed from averaged matrices are the most useful

features for predicting SCA since they hold for various orientations of the terrain image.

Figure 10 .7 is a graph of chi-square values for one angle plotted against distance. The

exponential drop in chi-square beyond a distance of one corresponds to the sharp drop -off in the

autocorrelation function observed in any natural texture (Laws, 19801. Also note that large

differences in information content due to greater quantization are only significant for distances

less than five, beyond that, low quantization yields the same information. The large chi -square

difference between MSS and TM images is due to the four-fold greater sample size used in the TAI

image to cover a comparable sample size at MSS resolution, not a reflection of a far greater infor-

mation content. Regular artificial patterns will have additional peaks in the chi-square/distance

'#i



1

1

plot at displacements corresponding to the periodicity of the pattern. No such underlying periodi-

city was detected in these images using displacements that covered up to 80%' of the linear

dimension of the sample.

By definition the X2 statistic increases in magnitude as the information content climbs with

increasing quantization. The computational costs of carrying out the analysis at 64 grey levels

were too high to be considered in this study since each doubling of the grey scale increased all cal-

culations four-fold. Sixteen grey levels were chosen as a compromise between information content

and efficiency based in part from the analysis of co-occurrence statistics that follows.

GLOM Statistics

Plots of each cc-occurrence statistic against angle for image pair A revealed that in each

case the maximum chi-square angle was that which produced a matrix dominated by small grey-

level transitions. This is a diagonally dominant matrix indicative of a relatively coarse texture

(see Figures 10.8a,b). In short, the preferred textural orientation corresponded to the highest

autocorrelation.

The i, ertia statistic was minimal at the X2 selected angle because it is designed to give most

weight to infrequent, large, high contrast, transitions. And because the grey level differences act

Oo weight the statistic, most differentiation between angles was achieved at the highest quantiza-

tion level. A1SS and TM responses were parallel but HISS values were consistently higher at each

grey level, the expected behavior for a coarser texture.

Another statistic that varied inversely to the chi-square evaluation was entropy. This is the

case because the negative log of small probability transitions is much greaser than the negative

log of high probability transitions. That entropy should he minimized where structure is greatest

is intuitively correct. Entropy also dropped with decreasing quantization due to the increased

probability per transition. Entropy values were Treater for MSS than for TM at all grey levels,

again indicating the relative coarseness of the MSS texture.

Dominance of low "contrast" transitions was best detected by the homogeneity statistic.

Because the gradient between joint pixels appears in the denominator of the homogeneity for-

mula, the largest homogeneities for both TM and XISS w-re found at the lowest quantization level

at the X 2 selected angle. Yet this statistic is relatively insensitive to quantization giving good

differentiation between angles at the highest number of grey levels. As expected, the TM image

had higher homogeneity than the coarser MSS image.

as I
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Highly correlated with homogeneity, the energy statistic was also maximized at lowest

quantization for the X2 angle. Energy is simply the square of the transition probabilities as the

probability per bin drops with increasing quantization, the square gets increasingly smaller. Thus,	 's

energy is very sensitive to an increase in quantization such that no detectable difference exists

between angles at 84 grey levels. At this quantization the statistics would have to be scaled to

remain compatible with other GLCM statistics. Energy wns higher for the TM scene because the

higher probability of low contrast transitions dominated in the finer resolution image.

Both TM and MSS images produced positive correlation (COR) statistics on the order of

p — 0.8, an indication of a strong association between rows and columns of the GLCM. As the

co-occurrence matrix becomes less diagonally dominant the COR value increases. Accordingly,

the highest correlations coincided with the X2 angle and with the TM scene at all levels of quanti-

zation. Unlike the energy statistic, COR, a standardized statistic ranging between zero and one,

is useful at all grey levels.

Two other correlation measures based on matrix entropy are strongly associated with the

COR statistic. Information correlation 2 (ICOR2) behaves exactly like COR although the value

of the correlations is on average 0.1 below COR values. ICOR2 is maximal when the difference

between total matrix entropy and the row or column entropies L smallest i.e. when values are

more evenly spread throughout the matrix. Conversely, the itiformat.ion correlation 1 (ICORI)

statistic assigns highest negative correlations to matrices in which this entropy differential is smal-

lest making ICOR1 inversely related to COR and ICOR2. TM matrices generally have lower

ICORI values than do MSS matrices since the difference. between total and marginal entropies is
,.

smaller for the for the finer texture.

It can be concluded from examination of the co-occurrence statistics that many are inter-

correlated. Those statistics that emphasized low contrast transitions, energy and homogeneity,

were positively correlated with each other (p = 0.82) and negatively correlated (p = -0.87) with

entropy and inertia which give weight to high contrast transitions. The correlation statistics,

COR, ICORI, ICOR2 were highly correlated with each other either directly or inversely. If this

redundancy is removed, the seven co-occurrence statistics are reduced to three: measures of low

contrast., high contrast and correlation.

While some co-occurrence statistics are equally effective at all levels of quantization some

are more sensitive with fewer grey levels, others with more. A good middle ground of 18 grey lev-

els coincides with the same choice made for tl ► e sake of computational efficiency.
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All GLOM statistics were normalized by sample size making direct comparisor of TM and

MSS textural features valid. The statistics in all cases are sensitive to differences in resolution

between the scenes. MSS features consistently show a relatively coarser texture in which high

contrast transitions form a larger proportion of co-occurrences thua in the TM image.

Filter Statistics

A survey of TM and MSS filter statistics showed that averages and sums (per unit area) are

very close in value for the two resolutions but that the standard deviation of the TM images is

consistently higher indicating that filtering brings forth more edge detail in the higher frequency

TM data. In the next step of analysis, various metrics were used to quantify the resolution

dependent differences detected by both the local statistics of the filtered images and by the co-

occurrence statistics.

Metric Analysis

For each of the four sets of registered TNI and MSS imagery, the distance between features

was measured three ways. Results from using Euclidean distance, Cower Similarity, and Bhatta-

charyya distance are given in Table 10.4. Distances between SUM feature sets are reported only

in the case of Euclidean distance as this was the only analysis for which all variab;r p were normal-

ized to a (0,1) range. The SUM variable alone is strictly dependent or, :ample size; left un-scaled,

SUM values distorted feature space making valid Gower similarity or 13hattacharyya distance

measures impossible. By contrast, the GLCM statistics, based on probabilities rather than fre-

quencies and calculated from histogram equalized images are standard statistics; likewise AVG

and SD values are inherently normalized. A clear picture of texture separability was obtained

despite the omission of SUM variables from Bhattacharyya distance and Cower similarity

analysis.

Based on mean Gower Similarity, TM and MSS textures are 91% similar when GLCM

features are used, 96% similar with AVG features but only 71 (Po' similar with SD features. The

same pattern is repeated by Bl ► attacharyya distance measurements: SD features produce twice the

separability of the AVG filters, while the CLCM features fall in between. This implies, not

surprisingly, that the ratio of within scene to between scene variance is greater for :.verages than

for either standard deviations or moments of the co-occurrence matrix.

Euclidean distance! .i jeed with the other two metrics by singling out the SD features as Of-

most sensitive indicators esolution dependent textural differences. In Euclidean space, AVG

and SUM are nearly ideno , a) and somewhat superior to GLCNI features for texture separability.



Though not strictly consistent, all three metrics indicate that image pairs A and B are closer than

images C and D.

It can be assumed that resolution differences between TM and MSS image pairs are rela-

tively constant since the images were taken under identical conditions. That the distances

between pairs are not constant can be attributed to differences in registration, saturation, and sur-

fact properties between sets of images. However, if all metrics were in accord, the coefficient of

variation among the features should be fairly constant. This is the case for Euclidean distance

and Gowpr similarity measures but is not for Bliattacharyya distance values, a result most likely

due to the incorporation of the variance into the calculation of distance.

The Bhattacharyya distance measure may also be inconsistent because it was applied to

GLCM and filter variables that in some cases were clearly non-norm J whereas it is defined only

far Gaussian distributions. Likewise, the error bounds reported in Table 10 . 4 are not statistically

significant but serve as rough limits on the accuracy of calculated distances.

Metric analysis supports the conclusions gathered from inspection of individual co-

occurrence statistics: there is a consistent, detectable difference in texture between TM and MSS

images. This difference is on the order of 5% to 10% when characterized by GLCM statistics or

AVG statistics but as much as 30% when the variance of the filtered images is used. Clearly, the

difference in textural information represented by these texture features is far less than what the

human eye perceives and what would be expected by a two-fold improvement in resolution.

Translation of textural information into joint probabilities or into selectively filtered enhance-

ments and subsequently into summary statistics involves a loss in information that dampens out

distinctions between textures that are much more pronounced at the original level. It is not

surprising that an improvement or degradation of resolution should correspond to a concomitant

increase or decrease in image variance detectable by SD filters, but it is unexpected that the co-

occurrence statistics are so relatively insensitive to these changes.

Regression Analysis Results

An initial task before undertaking regression analysis was to survey the distributions of both

dependent and predictor variables. Summary statistics for snow-covered area (SCA) are given in

Table 10.5. In general the standard deviations are roughly equal to 
4 

the range th • ^ i suggesting

non-normal distributions. For a normal distribution three standard deviations on either side of

the mean contains almost all cases making the standard deviation approximately 
6 

the range

1
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(Arkin and Colton, 19701. This was confirmed by strongly skewed histograms of SCA for each

image; low cover samples occurred far more frequently than high cover samples. This is typically

the case for data that are counts or amounts because of a taxed zero boundary and a high or
	 <k i

unlimited upper bound (Chambers, 1983). Excessive skewness often implies a correlation of varia-

bility with mean level which can produce non-constant variance and heteroscedastic error in a

least-squares regression (Bartlett, 1947). Non-normality invalidates the usual significance tests

and heteroscedasticity reduces the precision of the estimates. Fortunately, transformations that

stabilize variance also tend to normalize the data; this is usually accomplished by power functions

(Chambers, 19831:

yj1	 0 < 0	 for right skew

logy;	 0-0

- y; 0	 0 > 0	 for left skew

The best transformation was chosen by plotting sorted transformed data against quartiles of

the standard normal distribution. The square root transformation (0 = 0.5) turned out to be best

for the December and January data while a log transform was necessary for the MSS and TM

image pairs.

The predictor variables were surveyed in a similar manner for asymmetrical distributions.

The purpose was to gain insight into the behavior of variables and to determine whether transfor-

mation of skewed variables to symmetric improved regression models. Distributions of all the cc-

occurrence statistics show a preponderance of small transitions which is expected for a relatively

coarse texture measured at a single pixel displacement. The inertia statistic, which compensates

for this typical situation by giving more weight to less frequent, large transitions, is symmetric.

Energy and homogeneity statistics are right skewed because the probability of transition term

dominates inversely; entropy is left skewed since the term dominates directly. By contrast, the

response of the filter variables is scene specific; for TM and MSS images the AVG, SD and SUM

statistics are generally symmetric while for the December and January images they are skewed

left.

Skewed predictor variables were transformed using power functions and then entered into

the leaps an-! bounds regression for subset selection f raasformed variables do not simplify or

improve the models. In many cases, a muc of symmetric and skewed variables have the best

explanatory power. In final fo. n, TM/MSS regressions are semi-log functions and the
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December/January are "semi-square root" functions.

Regreulon Significance

A summary of the regression models is given in Tables 10.6a,b. The equations are grouped
	 101

by image and type of summary statistic used for filtered samples. It is clear from these results

that snow-covered area can be successfully , -egressed on a combination of texture statistics. While

the models vary in size betm „ .' ree and seven parameter:, the best results are obtained with

four or five predictor variables. Alt regression coefficients are significant at the 0 .005 level or

better and the least-squares coefficients are on average within 5% of those estimated by robust

regression. The proportion of explained variance measured by the adjusted coefficient of determi-

nation is in all cases at least 0.95.

Analysis of the residuals was hampered by the log transform of the dependent variable. In

log units the residuals are homoscedastic and close to being normally distributed, once corrections

were made for negative log values ( antilog values between zero and one). The residuals in real

values are log-normally distributed, showing larger variance for low snow cover values. The resi-

duals from December and January models, in square root units, were evenly spread around the

zero mean line and close to normal on a Q-Q plot.

Least squares linear regression assumes that regressor variables are independent, random

variates and that errors are not autocorrelated. When regressor variables and errors are positively

autocorrelated, the true variance of regression coefficient estimates is underestimated leading to

overestimation of t and F significance tests and inflated R 2 values (Cliff and Ord, 1981). A basic

property of geographic data is its spatial autocorrelation. It can be assumed, therefore, that the

texture features used as predictors are autocorrelated to some degree.
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In order to check for residual first-order autocorrelation Durbin-Watson statistics were cal-

culated for all models:

E 
(ti t _ ur -t) 2

DW =
E tit 2

Here ut is the regression residual at location t .

(10.11)

A Durbin-Watson value close to 2 indicates no autocorrelation, a value of zero implies per-

fect positive autocorrelation and a value of 4 implies negative autocorrelation. Durbin-Watson

statistics for all models, given in Table 10.7, are consistent: all but the December models show no

postive first, -order autocorrelation (significant at the 0.01 level). Statistics for December models

e
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are inconclusive; the null hypothesis of no positive autocorrelation can neither be rejected or

accepted. Overall, it can be concluded that the sampling interval de-emphasized adjacent

influences and failed to coincide with any large periodicities of the image function. However, in

the general case, depending on sampling frequency and site-specific texture pattern, it may be

necessary to include autoregressive terms for some models.

Regression Models

Models derived for TM and MSS images that used a cor;r'oination of co-occurrence statistics

and AVG filter values were very similar in composition and coefficient values. The two leading

variables were symmetrically distributed co-occurrence statistics followed by a smoothing filter

and a Sobel gradient operator. When AVG statistics were replaced with SUM or SL statistics,

the models diverged in number of variables, composition and coefficient values; SD models were

more dissimilar than AVG models. In general, the AVG/GLCM model characterizing scene tex-

ture in the MSS image was unaltered for the TM image despite the two-fold improvement in reso-

lution. Major differences became apparent with the use of SUM variables and were quite pro-

nounced veith SD variables.

As can be seen from December and January imagery (Figures 10.5), the snow cover receded

substantially in one month from 33% to 19% snow cover. Nevertheless, one pair of models

resulted which were quite similar for both images. When GLCM and AVG features were com-

bined, only three parameters were required and of these two were shared in common by the

separate models but produced very different coefficients. By contrast, the use of SUM filters

meant a large increase in the number of parameters to seven without a corresponding improve-

ment in R 2 . Of these seven parameters only three were in common and the coefficients were

quite dissimilar. On the other hand, SD models for each date had five parameters; three of which

were identical (ICOR1, f do, /de) and two of which were highly correlated between dates. All

five coefficients were quite similar but no formal test for the equality of regression coefficients

through time could be made because the model specifications were not identical. The degree of

similarity between models was inferred from the results of forecasting the snow cover at one date

using model coefficients derived from the other.

In an effort to get a k, neral equation applicabl. t_. l,:,th December and January scenes, the

data were pooled and re-submitted for regression analysis. The resulting models, though

significant and predictive (see Figure 10.9) tended to be over-parameterized ranging from six pred-

ictors using AVG filters to eight using SUM filters. Again no conclusions could be drawn about
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the similarities of the regression relationships between pooled and individual data sets because the

model specifications varied so widely.

Regression Variable Selection

Co-occurrence statistics that are designed to reflect second-order relationships did not out-

perform the first-order filter statistics. No model was composed exclusively of co-occurrence

statistics while the smoothing filter appeared in almost all models. Perhaps the simpler statistics

were more suitable for use in a functional relat unship because snow-covered area is a high con-

trast, low variance target easily captured by first-order statistics. The complicated heterogeneous

cover of, say, an urban scene may require second-order statistics for purposes of discrimination

and classification.

The most significant and predictive equations were those that had four or five parameters.

Examination of variables selected by the leaps and bounds method suggests that there are six

categories of texture features that contain most of the texture information in a scene: low-contrast

GLCM moments, high-contrast GLCM moments, GLCM correlations, the low pass filter U do),

vertical edne detectors and horizontal edge detectors. It is possible that a generic equation com-

posed of variables drawn from each category but with scene specific coefficients could be generally

applied to snow-covered watersheds.

Prediction Results

The significance of the regressions and the proportion of variance explained by the equations

were all uniformly high. These models are anni-ttedly scene-specific and calibrated with a limited

data set. The only means of testing model predictability was to perform jackknife regressions

summarizing internal predictability with model efficiency scores (see Table 10.8). These results

are reported in both transformed and actual units. Clearly, the type of transformation applied to

the dependent vari ble had a strong effect on the outcome of prediction. In log units, the

efficiency of TM and MSS regressions was on average about 15% r than R 2 values. When

predictions were converted to actual values (number of snow-c. -ed pixels) thf efficiencies

dropped to zero due to excessive overshooting for the top 8% of a values. If the domain of

prediction is limited to low and mid-range values the efficiencies return to those measured in log

units. The coefficients proved to be quite stable, varying on average 2.5% but in no case more

than 6.5%. Log transformation linearized the model making possible a highly significant regres-

sion, but because small log residtials for high values converted exponentially into much :arztr

actual residuals, the domain for accurate prediction of real values was limited to 25% SCA.
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The over-pr ediction problem inherent in log transformed data was not encountered when the

data were square-root transformed. Jackknife efficiencies in square root units were quite high: 5%

lower than ff Z values and when measured in real values only 10% lower than P. Figures

10.10a,b and 10.11a,b show the results of jackknife regression for the December scene in both

actual and real values using AVG filters.

Regressions for December and January that involved SD filter; differed from each other by

two variables. Two edge filters in the December equation were replaced by edge/spot filters in

the January model. The coefficients wEre on the whole quite similar. So it is not unexpected that

when each model was applied to the other scene that model efficiencies, in transformed terms,

differed by only 5%. More importantly, both models turned out to be surprisingly efficient at

prediction: 91% and J5% of the variance was explained by the models (see Table 10.8). Figures

10.12a,b and 10.13a,b are plots of cross-predicted versus actual values for the two dates.

By contrast, the AVG models for the two dates were poor predictors even though the indivi-

dual regressions had high R Z. The December AVG model predicted January SCA with 44%

efficiency and the reverse was only 40% efficient. °UM models for both images were so large

(p=7) that no attempt was made to test predictability. In general, predictive analysis re-

emphasized what was found from jackknife regressions: standard deviations of filtered samples

were by far the best predictors.

The remarkably good predictability between scenes that differed in snow coverage by 15%

implies that scene dependent parameters are robust enough to encompass recessional pattern

changes. It may be possible to derive general parameters for moderately sized basins for use in

the melt season when patterns of snow 'recession are duplicated year to year.

10.7. Discussion and Conclusion

Texture Characteristics

When an image is considered to represent a random field, the co-occurrence matrix becomes

an estimate of the joint probability density function for pixels separated by given row and column

shifts. The autocorrelation at this spatial lag is deOrmined by the matrix transition probabilities.

In the images of snow cover, the joint pixel correlations at a single pixel lag were high (p=0.85)

located along the slope of the central peak of the autocorrelation function. A comparison of co-

occurrence statistics from different resolutions is really a matter of comparing the rate of change

in the initial slope of the autocorrelation function; steep slopes correspond to fine textures, gentle

14
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slopes to coarser textures.

Detecting texture periodicities at far outlying joint positions is likely only for regular,

artificial patterns. For natural scenes it is most appropriate to carry out GLOM analysis over

relatively small windows at the minimum displacement. Judging from the results of this study,

quantization level is most critical when using small joint displacements because it acts to enhance

or dampen the differences in slope of the autororrelation function. Beyond five pixels large quant-

izations are only marginally more informative. It should also be noted that if textures are to be 	 i

analyzed over immediately adjacent neighborhoods then directional differences between textures

become more acute and rotationally averaged measures will overlook an important feature for dis-

tinguishing closely related textures.

The GLCM features are moments of the joint probability distribution that describe the

spread of values away from the central diagonal, a feature equivalent to the autocorrelation peak

reduced to two dimensions. As such, they are descriptors of contrast and correlation; low contrast

transitions are close to the diagonal, high contrast transitions are more distant and the correla-

tions reflect the degree of difference in transition values. When MSS and TM co-occurrence statis-

tics !'corn the same site were compared, the MSS image was coarser both in terms of contrast, and

correlation.

Metric Analysis

The above result only served to verify the self-evident. 	 It was necessary to use metric

analysis to find the magnitude and variability of these texture differences. 	 The dissimilarity
F

between the two resolutions measured between the four image pairs using the standard GLCM

statistics or AVG/SUM statistics was only five to ten percent, but this increased to 30% when the i

standard deviation of the edge filtered samples was used instead. 	 That the variance (second

moment) of a local first order variable should be more informative than the mean (first moment)

is not surprising.	 What is unexpected is the much greater separability afforded by a first order

moment relative to the complex moments of the joint probability distribution.

Laws (1080) discovered that SD measures were best for discrimination but not necessarily for

segmentation.	 They acted as measures of local contrast tending to locate edges rather than

regions.	 The consistently higher SD's of the TM images no doubt indicate the greater edge detail

created by improved resolution. As measures of local contrast SD features encompass the variabil-

ity of an entire window whereas GLCM measures of contrast are compressed histograms of grey-

tone transitions over a distance of a single pixel. 	 The co-occurrence matrix provides information
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on the adjacent (or the joint) while the filter SD provides information on the local. Gagalowicz

(1981) and Julesz (19751 have found that texture discrimination is achieved locally, not globally so

that properties averaged over a local region may be more informative than those ascertained from

joint relationships. In other words, more information on texture structure may be lost by generat-

ing the aLCM and its moments than in filtering and calculating variance.

TM vs MSS Regressions

Metric analysis made it clear that the relationship between resolution and texture separabil-

ity is not one to one. In fact, it is likely that studies employing standard GLCM statistics or

SUM/AVG filters could well substitute MSS data for TM without considerable loss in information.

In keeping with distance metric results, the AVG and to a lesser extent SUM regression models at

the two resolutions agreed while SD models differed considerably. When regressions were worked

out for two dates at TM resolution, both AVG and SD models were similar in composition and,

for the latter, in coefficient values. Any conclusions that might be drawn about resolution depen-

dent textural differences from cowparing the two sets of regression models are confounded by a

lack of control on the SCA variable. Snow cover varied 30% between the resolutions due to limi-

tations of thresholding and spectral/spatial disparity between resolutions, while snow receded only

14% between sequential images of the same resolution.

Judging from jackknife regression results, the relationship between SCA and texture meas-

tires was of comparable strength at the two resolutions. TM model efficiencies were only 5%

better than MSS efficiencies. But without actual ground data to both calibrate and test the

models it can only be said that they were both internally consistent.

Regression and Prediction Results

In general regression of snow area onto parameters describing its distribution was successful.

All twelve models were highly significant and explained a large proportion of the variance. For

December models, these results should be viewed cautiously in light of positive spatial autocorre-

lation effects leading to underestimation of coefficient variance. Nevertheless, some of these

models were highly predictive. At 90 - 95% efficiency the semi-square root models using SD vari-

ables were especially good predictors. Operationally, they could be used to obtain snow over

estimates when snow patterns are very discontinuous making manual or digital snow classification

difficult.

The domain of accurate prediction is limited by the transformation chosen for the depen-

dent variable. Transformations that stabilize variance and symmetricize distributions should be

"J
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selected with the scale of the predicted variable in mind. For these models a square root

transform was preferable to taking the log. In real rather than transformed values, log models

began to seriously overshoot at 25% snow cover while square root models were stable up to 70 or

80% SCA. Using linear modeling and a moderate sample size this inherent problem will alwayA

limit the domain of prediction to some degree because the uneven distribution of sample points

over the range of prediction results in greater uncertainty for under -represented points.

The aim of this study was not to successfully predict SCA per ee but to establish the metho-

dologies for eventually predicting snow depth, a more direct indicator of snowmelt runoff. To

that end, it was learned that parameters of the texture regression models are scene and pattern

specific but are fortunately robust enough to accommodate considerable latitude in the actual

snow pattern formations, making them useful through time as the snowline recedes.

It may be possible, after further studies of models derived at a variety of sites, to construct

a standard model based on all six or some set of the six categories of texture features used here.

Without question the smoothing filter ( /ito) would be a necessary parameter. Among the twelve

models studied it was nearly ubiquitous. Correlations between f do statistics and SCA ranged

between 0.72 and O.95 (see Table 10.9) making it the single most predictive variable. Obviously,

local summary statistics of the smoothed image are highly correlated with coverage because snow

is such a singularly bright, high-contrast target within the scene. In most models thiE low fre-

quency information was augmented by high pass filter variables and some mix of GLCM statistics

that contributed information on contrast and correlation in the immediate neighborhood of each

pixel. In gene; al, it was found that GLCM and texture energy features are well suited for detect-

ing bright, high-contrast snow cover patterns because they operate in the first case by measuring

contrast differences or in the latter by detecting edge structure.

The high R 2 values of the regression models were not good indicators of predictive power.

Using a cross-prediction test only models based on a majority of SD variables were useful under

different conditions. Thus the results of metric and regression analysis were in accord: separabil-

ity coincided with predictability. The standard deviation was superior for both purposes because

it reflected the level of high frequency information consistently both within and between scenes.

Depending on the site, AVG and SUM statistics could be highly intercorrelated or quite unrelated

while SD values remained at a consistent level of intercorrelation at different sites. It should be

noted that filtered images retained full quantization while GLCM images were necessarily

reduced. The power of SD statistics may in part be due to the greater infornation inherent in

1
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higher quantizations. It appears that breaking down texture structure into joint relationships for

a limited number of grey tones involves a loss in information greater than that involved in taking

local statistics of filtered images.

Conclusion

The difference in resolution between MSS and TM images which is so dramatic to the eye

was critical for classification accuracy. Snow classifications from TM images were far more

detailed and complete than MSS classifications yet principal component analysis revealed that

spectral information did not. play a large part in this disparity. The data plane used for thres-

holding snow cover in the '111 Images was essentially a reduced-variance visible band somewhat

augmented by shortwave IR data for cloud discrimination purposes. TM near infrared data were

redundant to visible data and could be eliminated from the data plane. The MSS data plane was

also in effect a reduced-variance visible image supplemented by near IR data which, as in TM

component analysis, supplied mostly redundant information with respect to the first axis of max-

imum variation. In short, for binary classifications, snow is easily detected in the visible range

but may require shortwave D2 data to aid in distinguishing cloud cover from snow.

Measures of joint grey-tone relationships and local statistics of high frequency enhanced

images do not duplicate perceptual sensitivity to textural detail apparent with greater resolution.

It is not surprising that these methods do not parallel those used in complex, non-linear, hierarchi-

cal visual processing. if the texture measures failed to achieve the sensitivity of human percep-

tual capabilities they successfully served as descriptors of mesoscale spatial distribution in func-

tional relationships betwec-i snow-covered area and areal distribution. Despite inherent data

problems of skewed distributions and autocorrelated samples, linear relationships making use of

the standard deviation of convolved images were 91- 969i efficient in predicting snow-covered

area for a given site under two snow cover patterns.

Exploratory and particular rather than generalized, the regression analyses presented here

were undertaken as a feasibility study they did yield some general observations on the nature

of natural textures. Texture models are a subset of image models which Ahu1a and Schachter

[1981] have grouped into the stochastic and pixel-based or the deterministic and region-based.

Global two-dimensional stochastic models specified by a particular random field can be described

variously by the autocorrelation function, variograms, means, gradients or spatial dependencies

(Ahuja and Schachter, 1981). Specified in this manner, a global model can be viewed as a combi-

nation of the ideal data modified by a point spread function plus additive noise. For example,

'k16 _11
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Faugeras and Pratt 119801 successfully decomposed global textures into measures of the autocorre-

lation function and moments of the histogram of the decorrelated white noise field. This descrip-

tion is not unique in all cases; global models breakdown when the mean and autocorrelation func-

tion are no longer stationary. It becomes necessary to include a set of means and a spatial func-

tion to modify the symmetric autocorrelation function. In other words, with inhomogeneities glo.

bal models become local models.

If global properties do not hold or if an image model cannot be formulated, s texture must

be described empirically at the pixel or local level. Determining joint and conditional probabili-

ties is one such approach but as Ariuja and Schachter warn, a joint probability density function

may be an overspecification lacking in abstraction. Since neither over-generalized Iobal models,

or highly detailed joint relationships are entirely successful descriptions of natural texture it

becomes necessary to describe image statistics as local spatial averages.

On the basis of perceptual experiments, Gagalowicz 119811 found that where local second

order statistics differ from global ones, the eye is able to detect a textural difference; visual

discrimination is thus a local process. In addition, Julesz 119751 has speculated after years of per

ceptual testing that visual discrimination may require only local first-order statistics of simple,

pooled feature extractors. The results of analyzing snow cover texture support the notion that

texture is a local property. Local standard deviations were more effective for separating textures

and more reliable for linear prediction. Measures of local variance appear to be quite informative

yet general enough to avoid over-sensitivity to noise. Moreover, local statistics taken from a

series of edge enhanced images do a better job at capturing edge structure than most stochastic

models which have been criticized for failing to account for real-world spatial structure 1Modes-
	 i.. _,l

tino et al., 19811. In conclusion, the results of this study confirm those recently reported else-

where 1Pietikainen et al., 19831 that Laws texture features are powerful and efficient descriptors of

natural textures.

10.8. Appendix

Co-occurrence Features

p (i , j ) = matrix entry of the normalized co-occurrence matrix.

Ng = number of grey levels.
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Information Correlation 1

ICOR 1 HXY - HXY 1
max (HX ,HY )

where

IIXY m ENT

No NO

IIXYI	 - E E P( i ,J) log (P.(i)P,(1))0-11-1

NO

HX — E i log ( P. ( i ) )

Nj

IIY	 1 log ( Pr (!) )

No

P. ( i ) = ^. D ( i .1 )

No

Dr(1) = ^, 0J)

Information Correlation 2

ICOR2 (1-exp1-2.0 (HAT 2-HXY)))
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Convolution Masks
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1 2 1	 -1 0 1	 -1 2 -1

	Smoothing Filter	 Vertical Sobel



-1 -2 -1 11 0 -1 1 -2 l
0 0 0 Jil4 0 0 0 Ji/s 0 0 0
1 2 1 1-1 0 1 -1 2 -1

zontal Sobel
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1 -2 1
J d o= 2 4 2	 Jilt _ -2 0 2	 Jilt _ -2 4 -2

-1 -2 -1	 1 0 -1	 1 -2 1 j

Laplacian Filter

10.0. Symbols

AVI:	 Average of the absolute value of pixels within a specified window in an image con-

volved with a Laws filter.

COR Correla'ion co-occurrence statistic

ENG Energy co-occurrence statistic

ENT Entropy co-occurrence statistic

J do Laws convolution filter 0 : smoothing filter

J il l Laws convolution filter 1 : vertical Sobel filter

Jilz Laws convolution filter 2

J i/ 3 Laws convolution filter 3 : horizontal Sobel filter

Ji1 4 Laws convolution filter 4

J it b Laws convolution filter 5

f de Laws convolution filter 0

Jd 7 Laws convolution filter 7

J ile Laws convolution filter 8 : Laplacian filter

GLCM	 Grey-level co-occurrence matrix

N

4

4;
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HOM	 Homogeneity co-occurrence statistic

ICOR1	 Information correlation 1 co-occurrence statistic

ICOR2	 Information correlation 2 co-occurrence statistic

INR	 Inertia co-occurrence statistic

MSS	 Multispectral Scanner

SCA	 Snow-covered area

SD	 Standard deviation of pixels within a sp ,cified window of an image convolved with a

Laws filter.

SUM	 Sum of the absolute value of pixels within a specified window of an image convolved

with a Laws filter.

TM	 Thematic Mapper

' .-, j1
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Table 10 1 Snow Classification Training Site Statistics, DN values

Band	 Mean Std Dev. CV Min Max Range

'VI I

TM2	 117

TM2/TM3	 58

TMz/TM5	 91

PCI (TM2,5)	 128

PCI (TM2,3,4,5,7)	 130

Table 10 2. Loadings of Principal Components

12	 10% 42 140 98

2	 4% 53 70 17

9	 10% 34 112 78

11	 9% 100 :M 120

15	 12% 101 226 125

Band Principal Component

PCI

-0.52

Pct. Var

98 2%

PC2

-0.46

Pct

'. 3%TM2

TM3 -066 -0.32

TM4 -0. ES3 0.82

TM5 -010 014

TM7 -0.05 0.01

MSS4 -0.47 983% -0.55 1.3%

MSS5 -0.54 -0.39

MSS6 -0.60 0.46

MSS7 -035 0.57

TM2 -088 99 1% -0 15 09% 

TM5 -015 0.88

MSS4 -0.80 97.5% -0.59 2.5%

MSS7 -0.59 080

r
2

^S

r.



Table 10.3. TM vs MSS X2 Angle

Correlations

A B C D

p 0.50	 0.48	 0.74	 0.47

Table 10.4. Distances Between TM and MSS Texture Features

F.ulcidean Distance

Image GLCM AVG SD SUM

A 7.22 833 7.96 8.30

B 8.98 8.19 10.47 8.04

C 1020 11.56 13.89 11.46

D 11.73 13.00 14.84 13.05

Mean 953 10.27 12.29 10.21

SD 1.91 2.39 3.72 2.45

CV 20% 23% 30% 24%

Gower Similarity

.83-

1

AI

a
K

Filter Statistic

Image GLCM AVG SD

A 0.90 0.97 0.72

B 0.90 0.96 0.72

C 0.92 0.95 0.68

D 0.91 0.95 0.71

Mean 091 0.96 071

SD 0.009 0.012 0.020

CV 1.1 1.2 2.7
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k9

Bhattach.Nryya Distance

P'
Filter Statistic

approx prox.
Image LLCM error	 AVC ror

A 0 90 0.20	 1.28

FrD

.04
B 087 0.23	 1 04

.04

C 1.32 0.15	 1 39
04

D ' 26 0.03	 1.48
05

Mean 1.59 1.30 2;9

SD 1,13 0.19 0.19

CV
r

71% 14% 7%

Table 10.5. Snow- Covered Area

MSS TM DEC JAJAN
f

# of Pct. # of Pct. # of Pct. # of Pct
Pixels Cover Pixels Cover Pixels Cover Pixels Cover

Mean 23 9% 70 7% 340 33% 199 19%Std. Dev 24 10% 82 8% 262 26% 249 24%
CV 107% 107% 117% 117% 77% 77% 125% 125%Range4 0-92 0.36% 0. 3,14 0-34% 0-1014 0-99% 0-992 0-97%

s

mow



Table 10.6a. Regression Models

-85-

Image Filter Coefficients t value K2 F value DF Resid

SE

MSS AVG INR 0113 5.58 .946 280 4,60 .285

ICOR1 -5.030 -8.36

f ilo 0011 10.87

f il 3 -0.019 -9.39

M` SD HOM 1.760 2.38 .955 316 4,60 .269

ENT 0 668 3.54

f it o 0.034 9.47

f i12 -0.019 -3.88

MSS SUM INR 5.79e-2 3.75 .963 310 5,59 .244

ICOR2 3.400 6.80

f do 8.53e-5 1368

f it I -4.33e-5 -3.79

f i1 3 -4.68e-5 -3.90

TM AVG INR 0 299 7.05 962 410 4,60 .315

ICOR1 -6.86 -8.91

f ilo 0.017 11.65

f it [, -0.030 -9.98

TM	 SD	 f ilo 0.064 15.73	 .982	 834	 4,60	 .223

f is 2 -0030 -2.47

f it e -0.027 -2.16

f i1 8 0.051 6.75

TM	 SUM	 INR 0.258 6.01	 .965	 a42	 4,60	 .304

1COR1 -3.909 -5.42

f ilo 4.48e-5 13.17

f i1 4 -2.34e-5 -808

11



Table  10 6b. Regression Models Continued

-go-

Image Filter Coefficients l value F2 F value DF Resid

SE

DEC AVG ENG -7.25 -291 .981 1057 3,61 2165

COR -0484 -2.75

DEC SD ICOR1 -2688 -4.91 .991 1352 5,59 1.787

f it a 0.102 3.49

DEC SUM COR 4503 8.75 .986 582 7,57 2 295

HOM -32.44 -12.10

JAN AVG ENG 44.26 7.03 .950 410 3,61 3.141

HOM -21.86 -7.91

JAN SD ICOR1 -19.26 -5.45 .988 1036 5,59 1.560

f it p 0.117 4.32

JAN SUM COR 16.59 580 .972 969 7,57 2.484

HOM -60.06 .985

DJ `/ SL COR -12.19 -3.89 .987 1446 7,121 1.836

JAN ENT 2.47 2.47

Table 10.7, Durbin-Watson Statistics

Image AVG SD SUM

DW p DW p DW p

TM 1.66 0.17 2.19 -0.09 1.76 0.12

MSS 161 0.20 1.66 0.17 1.86 0.07

DEC .1.39* 0.30 1.61* 0.20 1.60* 0.20

JAN 1.64 0.18 1.68 0.16 2.00 -0.002

* cannot reject or accept null hypothesis of no positive autocorrelation. All other values show no positive

autocorrelation at the 1916 level.

8
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Table 10 S. Prediction Results

Model Efficiencies

Jackknife	 Cross-Prediction

Transformed Actual N Transformed Actual

MSS	 AVC .76 .82 61

TM	 AVG 81 .68 59

DEC	 AVG .90 .87 64 .40 .36

SD .95 .91 64 .91 .84

JAN	 AVG .89 .85 64 .44 .39

SD .97 .94 64 .96 .91

Table 10.9. SCA and Fit U Correlations

SCA AVG SD SUM

TM .72 .91 .83

MSS .73 .87 .84

DEC .95 .80 .90

JAN .89 .9v .96

I i. _' 11
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Figure 10.1 Snow texture study sites: Thl image C (upper left), TM Image A (upper right), HISS

image C (lower left), SISS Image A (lower right).
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Figure 10.2 Snow texture study sites: ThIl image D (upper left), Tr1 image B (upper right), A1SS

`	 image D (lower left), NISS image Q (lower right).
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Figure 10.3 First principal component of TM bands 2, 3, !, 5 and 7 (upper left), first principal

component of TM bands 2 and 5 (upper right), snow-covered area (lower left) and TAI band

2 (lower right).
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Figure 10.4 MSS band 4, image A (upper left), TAI band 2, image A (upper right), MSS snow-

covered area (lower left) and TAI snow-covered area (lower right).
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Figure 10.5 January TTl band 2 (upper left), December W band 2 (upper right), January snow-

covered area (lower left), December snow-covered area (lower left).
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Figure 10 . 0 TM u,d MSS chi-square values versus co-occurr •nce displacement distances at four

quantization levels.
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a !

ano MSS chi-square values versus co-occurrence, displacement angles for all dia-

1 quantizations.
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Gray Level Cc-occurrence Matrix, Mee Image A

Quant1zation-16, Vertical Exaggeration-20

Gray Level Cc-Occurrence Matrix, Quantization- 16

TM Image A. (Vertical Exaggeration- 20)
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Figure 10.9 December predictions using pooled data in transformed units (square root).
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December AVG model jackknife predictions by sample and plotted against

ill transformed units (square root).
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Figures 10.11a , b December AVG model jackknife predictions by sample and plotted against

actual SCA in real units (a ,,ow-covered pixels).
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Figures 10.12a ,b December cross predictions using January coefficients by sample and plotted

against actual values in real units (snow- covered pixels).
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Figures 10.13a,b January croo&prediceions using December coefficients by sample and plotted

against actual values in real units (snow-covered pixels).
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