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Introduction

of the report. Fortunately many of the results from this investigation are available in the journal P
or conference proceedings literature — published, accepted for publication, or submitted for publi-
cation. For these we simply give the reference and the abstract. The papers themselves have
been separately delivered to NASA/GSFC. Those results that have not yet been submitted

separately for publication are described in considerable detail. !

correspond to the objectives of the revised propoaal.

1]

[2)

(3]

[4]
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The work undertaken during and this contract and its results are described in the remainder

The accomplishments duting this contract are summarized in the following list. They

Analysis of the snow reflectance characteristics of the Landsat Thematic Mapper, including 1'

spectral suitability, dynamic range, and spectral resolution.

Development of a variety of atmospheric models for use with Landsat Thematic Mapper

data. These include a simple but fast two-stream approximation for inhomogeneous atmo-

spheres over irregular surfaces, and a doubling model for calculation of the angular distribu-

tion of spectral radiance at any level in an plane-parallel atmosphere.

Incorporation of digital elevation data into the atmospheric models and into the analysis of

the satellite data.

Textural analysis of the spatial distribution of snow cover.




1. Snow Refleciance from Landsat-4 Thematic Mapper

This paper has been published. The reference citation is:

: Dozier, J., “Snow reflectance from Landsat-4 Thematic Mapper,” IEEE Transactions on Geosci-

ence and Remote Senaing, vol. GE-22, pp. 323-328, 1084,

Abstract. In California 75 peicent of the agricultural water supply comes from the melting ;
Sierra Nevada snowpack. Basin-wide spectral slbedo measurements from the Landsat-4 Thematic !
Mapper (TM) could be used to better forecase the timing of the spring runoff, because these data
can be combined with solar radiation calculations to estimate the net radiation balance. The TM
is better-suited for this purpose than the Multispectral Scanner because of its larger dynamic
range. Saturation still occurs in bands 14, but is severe only in TMI1 (0.45-0.52im). Snow
reflectance in TM2 (0.43-0.61uny) is typical of the visible wavelength regioi;, where reflectance is

almost insensitive to crystal size but sensitive to contamination. TM4 (0.78-0.80um) allows esti-

mation of eflective optical grain size and thereby spectral e *ension throughout the near-infrared.

TMS5 (1.57-1.78um) can discriminate clouds from snow.
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2. Registering Thematic Mapper Imagery to Digital Elevation Models

This paper has been published. The reference citation is:

Frew, J.,, “Registering thematic mapper imagery to digital elevation models,” in Proceedings,

" Tenth International Symposium on Machine Proccssing of Remotely Sensed Data, with Spe-

cial Emphasis on Thematic Mapper Data and Geographic Information Syatems, ed. M. M.
Klepfer and D. B. Morrison, pp. 432-435, Purdue University, West Lafayette, IN, 1984,

Abstract. Several problems arise when attempting to register Landsat Thematic Mapper (TM)

data to U.S. Geological Survey digital elevation models (DEMs). Chief among these are:

° TM data are currently available only in a rotated variant of the Space Oblique Mercator
(SOM) map projection. Geometric transforms are thus required to access TM data in the
geodetic coordinates used by the DEMs. Due to positional errors in the TM data, these

transforms require some sort of external control.

. The spatial resolution of T'M data exceeds that of the most commonly available DEM data.

Oversampling DEM data to TM resolution introduces systematic noise. Comion terrain

processing algorithms (e.g. slope computation) compound this problem by acting as high-

pass filters.
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3. Reflectance Measurements fron: Landsat Thematic Mapper over Rugged Terrain

This paper has been published. The reference citation is:

Dozier, J., “Reflectance measurements from Landsat Thematic Mupper over rugged terrain,” in
Proceedings, Tenth International Symposium on Machine Processing of Remotely Sensed
Data, with Special Emphasis on Themetie Mapper Data and Geographic Information Systema,
ed. M. M. Klepfer and D. B. Morrison, pp. 230-234, Purdue University, West Lafayette, IN,
1984.

Abstract. Spectral albedo measurements ‘rom the Lundsat-4/5 Themadc Mappers require that
spacecraflt upwelling radiances be corrected for atmospheric absorption and scattering und for
local surface illumination. A two-stream model is developed, with a lower boundary condition
that varies with incidence angle. TM data must be registered to digital terrain data. Reflectance
from points in shadows can be used to estitnate optical depth. Qur primary application is deter-
mination of the spectral albedo of snow. The TM is better-suited for this purpose than the MSS

because of its larger dynamic range.

T - - 1




-5-

4. Automated Basin Delineation from Digiial Elevation Data

This paper has been published. The reference citation is:

Marks, D., J. Dozier, and J. Frew, ““Automated basin delineation from digital elevation data,”

Geo-Processing, vol. 2, pp. 290-311, 1984.

Abstract. While digital elevation grids are now in wide use, accurate delineation of drainage ’

..—w’

basins from these data is difficult to efliciently automate. We present a recursive “order N " solu-

T

tion to this problem. No point in the basin is checked more than once, and no points outside the

{

basin are considered. Two appli.cations for terrain analysis and one for remote sensing are given

o el

to illustrate the method, using a basin with high relief in the Sierra Nevada. This technigue for
automated basin delineation will enhance the utility of digital terrain analysis for hydrologic

modeiing and remote sensing.
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5. Fleld and Laboratory Measurements of Snow Liquid Water by Dilution

This paper has been accepted for publication. The reference citation is:

Davis, R. E., J. Dozier, E. R. LaChapelle, and R. Perla, ‘“Field and laboratory measurements of

snow liquid water by dilution,” Water Resources Research, 1985. In press

Abstract. Field trials of the dilution technique for measuring snow liquid water content show
that the refined procedure is rapid and simnple. Measurements of the liquid water mass fraction !
with an absolute error of ~1.5% can be obtained by one operator at a rate of 10-15 ~amples per "
hour, but if the water content is low, 0-2%, the relative error can be high. Electrolytic ~onduc- d
tivity is the preferred method for measuring concentrations, using a stock sclution of 0.01 N HCI. .

The recommended amount of stock solution to add is 0.5-0.8 X the mass of the snow sample.

Extraction of the resulting mixture of stock solution and snow liquid water is best done with a

screened pipette, instead of by decanting,
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! 0. Orthographic Terrain Views Using Data Derived from Digital Elevation Models
E This papcr has been submitted for publication. The reference citations rre:

y
F

5 Dubayah, R. O., ‘“‘Orthographic terrain views using data derived from digital elevation models,”

M. A. Thesis, Department of Geography, University of California, Santa Barbara, CA, 1985.

‘ Dubayah, R. O. and J. Dozier, ‘‘Orthographic terrain views using data derived from digital eleva-

tion models,’’ Photogrammetric Engincering and Remote Senaing. (Submitted 1985)

Abstract. A fast algorithm is present for producing three-dimensional orthographic terrain views
using digital elevation data and co-registered imagery. These views are created using projective ’J
geometry and are designed for display on high resolution raster graphics devices. The algorithm’s ;

effectiveness is achieved by [1] the implementation of two cficient grey-level interpolation rou-

tines which offer the user a choice between speed and smoothness, end (2] a unique visible surface

determination procedure based on horizon angles derived from the elevation data sct.




7. Two-Stream Method for Radiative Transfer in Inhomogeneous Atmospheres over

Irregular Surfaces

This paper has tieen submitted for publication. The reference citation is:

Dozier, J. and R. F. Miliifl, “Two-stream method for radiative transfer in inhomogrneous atmo-

spheres over irregular surf-~cs,” Journal of Geophysical Researeh. (Submitted 1985)

Abstract. Two-stream a 1.roximations for solution to the radiative transfer equation in plane-
parallel media can be extended to inhomogeneous atmospheres over irregular surfaces. For a
homogeneous layer the two-stream equations are solved for an irregular bounda y condition,
which includes topographic effects and variation of reflectance with i..umination angle. Direct
and diffuse reflectances of this layer are then uscd as the boundary condition for the next upward
layer, continuing recursively to the top of the atmosphere. Accuracy of the method compares

favorably to more precise solutions, with standard errors of ~1.5%.
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8. A Component Decomposition Model for Evalating Atmospheric Effects in Ramote
Sensing

8.1. Introduction

Images acquired by radiometric sensors on satellites are somewhat degraded compared to
those from lower altitude platforms because of atmospheric effects. For better derivation of sur-
face propertics and classification of ground features, it is desirable to make constructive atmos-
pheric corrections and retrieve the ground reflectance. It is also desirable to better vnderstand
the relationship between the properties of the atmosphere and surface and the upwelling radiance
at the sensor’s level. An atmospheric model with wide wavelength coverage is also useful for
selection of optimal bands or band combinations in future remote sensing instruments. Here we '
describe an ultraviolet-through-infrared atmospheric component evaluation model for a plane-
parallel atmosphere-earth system with arbitrarily nonuniform albedo, either Lam'.ertian or aniso- 3‘

tropic. Such a model can be used for testing simpler atmospheric correction models and selecting !

new wavelength bands for future senrors.

Many researchers [Ueno et al., 1078; Otterman and Fraser, 1979; Dave, 1980; Kaufman and
Fraser, 1984] have noted that the radiance L received by a remote sensor is composed of three
components: (1) directly transmitted ground signature, (2) diffusely transmitted ground radiation
through the atmosphere, and (3) the atmospheric radiation that would occur even over a perfectly
absorbing and non-emitting ground. Different researchers use different terminologies for these
three components. Hereafter, we cal them L, (attenuated signal), L, (diffusely transmitted

ground radiation), and L, (pure atmospheric radiance). The physical meanings of these three

components are depicted in Figure 8.1.

L =L, +Ls+ Ly (8.1)

Aiunong thene three components, L, contains useful irformation that we want to retrieve
from the remotely sensed data, while the other two degrade the satellite measurement and need to

be removed.

L o is usually regarded as the result of scattering of sunlight. This is true for visible and
shorter wavelengths, but in the more general case we can consider this as caused by both scatter-
ing and emission. For accurate calculation of L, multiple scattering should be included [Uenc et

al., 1978].

E- L T QT 0,
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The L, term is difficult to calculate for a nonuniform surface, because radiation reflected \
from surface arcas that are not within the instantaneous field of view (IFOV) of the sensor can
arrive at the sensor by atmospheric scattering. Ueno et al. [1078] use the mean albedo of the
neighborhood of the target pixel to correct for individual values. Pearce [1977] takes a
backward-tracking Monte Carlo approach to solve this problem with given ground albedo pat-
terns. He also introduces the concept of a point spread function and points out its importance in
retrieving ground albedo by deconvolution. Otterman »:.. Fraser {1979) look into the significance :
of adjacency effects by a single scattering approximation. Dave [1U80] uses a more sophisticated
version of first order scattering, the “primary scattering source function’’ model, to invesiigate the

atmospheric eflect causrd by surface inhomogeneity. Kiang [1082] assesses the importance of

- 3

atmospheric spreading effects on Landsat Multispectral Scanner and Thematic Mapper measure-
ments using a procedure similar to Pearce’s. Mekler and Kaufman (1982] develop a two-
dimensional radiative transfer model in which a one-dimensionally varying surface can be han-

dled. Kaufman and Fraser [1984] use Pearce's results and investigate the effect of L, on

classification accuracy.

While all these investigations confirm the existence of neighboring area effects caused by L,
most of the approaches are forward models only, in that they caleulate the upwelling radiance at
the top of the atmosphere, given an atmospheric profile and surface albedo distribution, but they
cannot retrieve the surface albedo distribution, given the atmospheric profile and top-of-

atmospheric radiance. Kiang [1082] correctly looked into the physical meaning of the atmospheric

spread function, but he did not further investigate its possible usage in retrieving ground
reflectance. The method of Ueno et al. [1978] is an inverse method, but without support by the
atmospheric point spread function, it is somewhat empirical [Dave, 1980]. Moreover, their atmos-

pheric model was composed of only two layers and might be too simple.

L Pearce’s {1977] model is a forward one but can be used for the inverse problem in some spe-
;‘ cial cases. The wavelength range for his model is in the solar spectrum only; atmospheric emis-
sion is not considered. The only surface type handled is Lambertian, and the point spread func-
tion is derived only for » nadir-pointing monochromatic sensor. Diner and Martonchik 1984]
incorporate a spatial Fourier transform method and the standard one-dimensional radiative
transfer technique for solving *»e three-dimensional transfer equation for a vertically inhomogene-

ous atmosphere sitting on an inl. nogencous non-Lambertian plane surface. So far, this method

is a forward algorithm.

~ T i -
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The development of a model for a wider wavclength range, handling both Lambertian and
anisotropic surfaces and producing a point spread function for arbitrary sensor angles is the task
we consider here. Given infomation about the atmospheric profile, surface reflectance cun be
retrieved from top-of-atmospheric radiance. The model therefore achieves a partial step toward
solution of the surface remote sensing inversion problem — retrieval of surface reflection proper-

ties from upwelling radiance measurements alone.

8.2. Decomposition of Remotely Sensed Radiance

To understand the physical meaning of the components of the upward radiance, let us look
at the decomposition in a layer-structured plane-parallel atmosphere. According to the interac-
tion principle [Grant and Hunt, 1969] radiation is additive, and the upward radiance at the top of
a layer, bounded by unper level 7; and lower level r;, where j = ¢ +1, is the sum of three com-
ponents: reflection of top incident radiation, transmission of bottom incident radiation to the top,

and the upward internal source emerging at the top. In vector notation,
L'(r,) = R(r;,n) LY(r;) + T{:, 15 ) LY(r; ) + Z(; i) (8.2)

The L’'s denote the vectors of downward and upward radiances in different directions at different
levels 7, and r;. R and T are reflectance and transmittance matrices, and ' is the upward

internal source vector emerging at level 7; .

This equation is a statement. of radiation conservation. R, T, and L' are uniquely deter-
mined by the composition and status of the layer only; they are independent of the radiation imp-
inging on the layer from outside. The L terms or the right hand side represent radiation coming
from above or below the layer and can be caused by emission and reflection. They may include
any interactions between the layer concerned and the adjacent layers. The decomposition of the

transmittance term in (8.2) is a consequence of separation of direct from diffluse transmittance.

The first and third terms on the right hand side in (8.2) result in the L, term. For further
separation, we consider general expressions for L, and L, first. Then we derive equations for the
simpler cases. For an anisotropic inhomogeneous surface, the upward direct and diffuse com-

ponents at the sensor, which points in direction {} are:

Ly = L(r7 ) ™ (83)
Ly = [ To07 i7" G L7 3 ) dQY dA! (8.4)
A
al
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{1 is composed of nadir angle cos™'s and azimuth ¢. {} and {}' are directional vectors, and d Q is
the differential of solid angle in direction {I. Therefore f d} = ffdp d ¢. The horizontal
position vectors 7 and 7' are expre. «d by z,y and z' ,y’' for the horizontal positions of
emerging and incident radiation pencils, and dA' ==dz' dy' is differential area. The ‘“upward
point-to-point bidirectional diffuse transmittance function” is
\f
T07 M )= 4L10OP0 (8.5)
d[“' E"(f,?' )l

This defines the contribution to the top-of-atmospheric radiance increment at the horizontal posi-
tion ¥ in direction {1 made by an upwelling irradiance increment leaving from unit surface area in
direction {I' at the horizontal position 7' . For a plane-parallel atmosphere and surface it is

shift invariant: it depends on the difference (' - ¥) and not on their inaividual values.

The expression for L, (8.3) remains the same for simpler Lumbertian or homogeneous sur-
faces, so only L4 is discussed below. For simpler cases, we first define the i-llowing quantities.
The ‘‘upward point-to-point hemispherical-directional diffuse transmittance functicn’ from sub-

point ¥' to sensor is

T,(0,8;r7" ) = f T, 007" SV ) « (8.6)
n

The ‘‘total upward plane-to-poirt hemispherical-directiznal diffuse transmittance coeflicient’’ is

Ti0.8n) = [ T, 084r7" ) dA’ (8.7)
A'

For a Lambertian surface upwelling radiance at the surface is independent of viewing direc-

tion, i.e. L(r, 7' I ) = L(r,7' ), and (8.4) simplifies to

Ly = L,(0S5n7) = [ Ty (05507 -#) L(r,7' ) dA! (8.8)
Al

An averaged upwelling radiance for an atmosphere of total optical thickness 7 at the bottom

position ¥ for a Lambertian surface is

. j T,(08;r,7" -7)L(r,7' ) dA'
L(r7) =4 AT (8.9)

v, R -

o
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For a homogeneous Lambertian surface under unifora: llumination L (r,#! §¥ ) = L1(#).

Therefore

Ly = L'(1) T((0,8n) (8.10)

Now it is interesting to consider an opposite configuration. If a narrow beam with irradi-
ance E is incident on a unit area at the top of the atmosphere, in the same direction as the sen-

sor viewing axis, then o = p and the resulting diffuse radiance at the bottom is
L' §V 07 .80) = po Eo Tu(r,7! SV 0,7,80) (8.11)

and the diffuse irradiance at that location is

EMre' 07 8) = [Lin7 & 07.0)u dO
O

=pg Eq [Ty(r,7 (I 0704 4O (8.12)
o

From the reciprocity principle {van de Hulst, 1980, pp. 16-18] T,(0,8;r,7' ) = T,(r,7' :0,80).

Therefore

Edr 7! 0,7 ,51) = o Eo T4 (0,877 -7) (8.13)

The reciprocity relations among L , E', and T are presented in Figure 8.2.

Consider the convolution expression of L, in equation (8.4). If the coordinates are chosen
such that the zeros of ¥/ are at the viewing axis of the sensor each time the radiance of the con-

cerned pixel is recorded, then a new transmission function can be defined:

e~H

T(08;r,7 )= &7 )§a-0F )

+ Te(050;r, 7" ') (8.14)

where & is the delta function. Similarly, for a Lambertian surface, an integrated transmission

function is

TG )= [ TG 4 ) 40 (8.15)
Q

Substituting T for Ty, we have

L-Lo= [T@OFn7" )L (77" ) dA’ (8.16)

A'

Cm L s ets e ma e o m = m=-

s

.
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According to reciprocity again, T(0,{};r,F' ) equals the point spread function T (r,?' 0%
Knowing L and L, and the point spread function we can solve for L'(r,7?' ) by a &
dimensional deconvolution procedure [Andrews and Hunt, 1977|. This is the basis of applying a

back-tracking atmospheric point spread function in restoration of remotely sensed images.

For a homogeneous, anisotropic surface, when the pattern of L !(r,#' I ) is independent of

horizontal location 7/ , as is shown in Figure 8.3, we have the following expi ession for it:
L'(nF' f¥ ) =L} (7" )n(l) (8.17)

where 5 is an anisotropic reflectance factor. We define

te (08;n7" )= fT‘ (O,ﬁ;r,?' K3 Yo Yu' dQ (8.18) a
o
and
LIGF )= = [LY7 @ ) da (8.19)
n

We can substitute ¢; , for T, in equation (8.14), and L} (r,7' ) for L '(r,#' ) in equation (8.16).

Then solve L ! (r,#' ) in (8.16) by deconvolution.
For a simpler and somewhat empirical solution, go back to L, and L,. By estimating L, :

locally, the individual upward ground radiances can be solved by

LY r# ) =(L -Lo-Lg) e (8.20) f

Lg and 7 can be accurately calculated from a one-dimensional radiative transfer model, the
details of which are described in a following section. The value of L, can be estimated in the fol-

lowing way, by defining 8y = Ly /L, and 8= (L-Lg)/L, for a homogeneous Lambertian sur-

face:

L-L
L, ~ Ba(L-Lo (ﬂ o) (8.21)

8.3. Arzimuthally Dependent Plane-Parallel Atmospheric Radiative Transfer

Multiple Scattering

Tl e s R R T T
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Aszimuthally dependent radiance in an absorbing, emitting, and scattering layer is governed

by the radiative transfer equation {Chandrasekhar, 1960):

u L”‘—}Irﬂl + L(nil) = J(r0}) (8.22)

Here, the sign convention is that the downward direction is positive. r is optical depth, and
L (r,ﬁ) is the radiance at level r along direction {I, which is composed of zenith angle cos™'y and

azimuth ¢. The source function J is

J(r{1) = -:'; !P(r,ﬁ;ﬁ* L (r8) 40 + Q(r}) (8.23)

The phase function P (r,{3;{}' ) gives the distribution pattern of single scattering at r caused
by a pencil of radiation incident along direction {I' and scattered in direction {J. The first term
on the right hand side of (8.23) is then the total contribution made by radiation coming from all
directions to the radiance at a particular direction {. The phase function is calculated by rapid

Mie algorithms [Wiscombe, 1980).

The Q term in (8.23) represents an internal source. By separating direct from diffuse radia-

tion, it is convenient to consider the radiation scattered from the direct beam and the specularly

reflected direct beam as caused by some internal ‘“‘pseudo-source’” [Wiscombe, 1876a]. Then the

total internal source is
3 Q(rf) = Q(nd) + Q (n8) + @ () (8.24)

where @, is the thermal source and @, and Q,, are the direct and specular ‘“pseudo-sources.”

B[ T (7)] is the Planck function.

@i (n8) = (1<0)B[T () (8.25)
,, Q. (rfl) = b:;o P (r,{kiTl) ¢ "0 (8.26)
: le (T,ﬁ) = ‘2‘;‘ Pep (l‘o) P (T,ﬁ}ﬁop ) 4 _(2"' )/t (8.27)

o is the cosine of the solar zenith angle, E is the solar irradiance incident on the top of the
atmosphere (normal to the beam), p,, is the directional specular reflectivity at the surface

beneath the atmosphere, and 7,, is the total optical thickness from top to the specular surface.
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To resolve phase functions with strongly forward reaks using lower order polynomial
approximation, a delta-M transformation is performed for tine phase function moments, optical

depth, and single scattering albedo (Wiscombe, 1977].

Interaction Principle

One way to attack this integro-differential equation (8.22) uses the previously mentioned
“interaction principle’” (Grant and Hunt, 1969]. In vector form, its expression for both upward
and downward outward radiances from any arbitrary layer bounded by upper boundary r; and

lower boundary r;, appears as
Li(r;) = R(r;,r; ) L'(r;) + T(rj,r;) L¥(%;) + Z¥(ri 1)) (8.28)
L'(r) = R{r; ;) L¥(r;) + T(ri,7;) L(r; ) + E'(r; ,7) (8.29)

Radiances L!! are vectors of m X n elements on a discrete angular space composed of m zenith
and n azimuth angles at a given optical depth:

L (r!t”l»¢l)

Li(r) = L.(T':.t'f'.'éz) (8.30)

L (f,:tll,,. P )

12u;>: > uy, > 0 are a set of quadrature points on (0,1) and 0 < ¢, < ' -+ < ¢, < 27
are cqually spaced points in the interval 0-2x. The R’s and T’s are reflection and transmission
matrices, and X*' are internal source vectors. For a homogeneous thin layer, these quantities can

be derived by some initialization scheme [Wiscombe, 1976b).

Adding/Doubling Method

By applying the interaction principle to two adjacent layers, the reflection and transmission
matrices and the source vectors for the combined layer can be derived if the corresponding quanti-

ties are known for each of these two layers [Grant and Hunt, 1969).

Consider two adjacent layers with identical scattering properties bounded by planes at opti-
cal depths 7, 75, and r3. By the interaction principle, we have expressions for L)(r), L'(r),
L¥(r;), and L'(r,). Since 7, 7, 5 are entirely arbitrary, we consider a single layer bounded by r,
and 73, and we have new expressions for L!(r3) and L'(7,). Both old and new forms for L!(75) and
L'(r;) must be equivalent. Eliminating L}(7,) from the first set of expressions yields the reflection
and transmission matrices and the internal source vectors for the combined layer in terms of

quantities for the separate layers.
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R(rs,ny) = R(r,1,) + T(r,,7) I - R(ry,15) R(7,1)]™" R(rs, 1) T(ry,1,) (8.31) |
R(ri,75) = R(r,13) + T(r3,) (I~ R(r,,70) R(rs,72)]" R(r,,15) T(r,75) (8.32)
T(rs,n1) = T(r3,73) I - R(r), 1) R(7y,75)}™" T(rz,1y) (8.33)
T(r,73) = T(r,7) I - R(rs,7) R(r,,7)]"! T(rz,13) (8.34)

El(r,1s) = T(ra,ma) [ - R(ri,13) Rirs,)]" R(ri,m) B'(ryms) +

T(rs,72) [T - R(r,r) R(rs,)|™! Ti(ri,70) + E(ry,15) (8.35)
E'(r1,73) = T(r,m) (1 - R(ra, 1) R(n,m)]" Rirg,1) Eh(r,r5) +

T(r,r) (- R(rgyro) R(n,n)]™! EX(rz,15) + E'(ry,10) (8.36)

These are formulae for the “adding’” method. If the two layers have identical optical thickness,
the simpler ‘‘doubling” method results. If the initial layer is chosen such that
Ar = (t;,, - 7;)/2", where N is an integer and (i 41-7; ) is the optical depth of the layer in the
multi-layer system, then the reflection and transmission matrices and source vectors f - the homo-
geneous thicker layer can be built up quickly by “‘doubling” N times. Note that internal sources

are not constant with optical depth and need to be treated separately [Wiscombe, 1976a].

‘r Calculation of the Internal Radiance

Knowing the reflection and transmission matrices and source vectors for each layer in the

f‘ multi-layer system, we can build the internal radiance field in the atmosphere by the adding
| method. Using the formulae of the interaction principle, we have a set of simultaneous equations
. for levels 0<¢ <k, where k is the total number of layers in the system:

3 LY +1) = T(ri 4,7 ) LA% ) + R(5i 7 41) L1 01) + TY(r Ti41) (8.37)
L) = R(ris,n ) LY (% ) + T(ry ,7i41) L' 41) + E'(ri 7 41) (8.38)
'k The top and bottom boundary conditions that need to be satisfied are that LY(7,) must be
X specified and

) E

! L(n) = Ra Li(n) + ¢B[Tg] + £L20 o) (8.30

Rg is the surface diffuse reflection matrix, € is the emissivity vector, f,(uo) is the BRDF (bidirec-

tional reflectance-distribution function) vector for the incident beam, and T is the temperature

of the surface.

T .
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A method to solve this set of equations is given by Grant and Hunt [1968]. Its essence is
that the radiation is additive, so that we can first consider the case in which there is no radiation
from the bottom of the current layer to get a partial radiance, and then take in.o account the

remaining contribution caused by upward radiance from the bottom of each layer.

The method includes two passes. In the forward pass, the calculation starts at the top
layer, then goes down. For each layer, only the partial radiances are calculated, which include
the contribution made by the internal sources of the current layer plus that resulting from the
downwelling radiation. Also, the cumulative reflection matrix and transmission-reflection matrix
looking from the bottom are calculated for later use. This process is carried out until the ground
surface is reached. At this point, a downward radiunce over a nonreflecting, nonemitting surface

Ly'(7s ) has been obtained. For other surfaces the interaction between atmosphere and ground is

Hoklo
4

LY ) = (I-RA Rg|™ {Lb‘(n ) + Ry [ e VYt (no) + B(Tg) ]} (8.40)

where R, is the reflection of atmosphere looking from the bottom. The downward radiance can

then be calculated from the bottom boundary condition (8.39).

This is followed by the backward pass carried out upwards, in which the contribution from

the bottom of each layer is added to the previously computed partial radiances.

The upward radiance at the top of the atmosphere is
L'(r) = (R(n,7) + T(ro,7) R (I - R(ro,74 ) Ra]™ T(re ,70)} L¥(ro) +
E'(rom) + T(ro,m ) Rall - R(ro,7 ) Rg]™ X

(EHm) + Rl ) [ B(Ta) + 2220 ¢ g (1)) (8.41)

Fourier Transformation

In the azimuthally dependent case all vectors are organized in lexicographic ordering
[Andrews and Hunt, 1977]. The related square matrices are matrices with circulant blocks [Davis,
1979]. For simplicity, we call them local circulant matrices. The results of operations of addi-
tion, scalar multiplication and matrix multiplication of local circulant matrices are still local cir-
culant. Moreover if the inverse of a local circulant matrix exists, it is also a local circulant
matrix. For operations involving such matrices and vectors, the Fourier transform can be used to
save computation time. Since the matrices are only local circulant instead of complete or block

circulant, the Fourier transform is performed locally to take care of the azimuthal dependence,

— . apan - -




‘

-19-

and the resulting coefficients of each order of Fourier transform can also be organized as matrices.
The size of the resulting matrices and the length of the cosresponding vectors are equal to the

number of discretizations in the azimuth domain.

For Fourier transforms on discrete data, the general formulae to compute the coeflicients for

sine and cosiue transforms are [Scheid, 1968):

n-]
Fou(k+1)=h Y f(; +1)sin(2mjk /n) (8.42)
§=0
n-1
Fa(k+1)=h Y (5 +1)cos(2nsk /n) (8.43)
§m0
where £ =0,1,2, - - - ,-;—-n . For even functions, such as the phase function in the present work, all

the sine coeflicients are 0. The formula for the inverse Fourier transform is:
(5 +1) = d {Fa(1) + Fu(F+1)-1)7 + (8.44)

LA

2 %Y [Fu(h +1) cos(2mjk /n ) + Fo (k +1) sin(2msk /n )]}
ko]

The product of the coeflicients A and d in the above formulae should meet the relation
hd = 1/n. If we choose h =1, and d = 1/n, then for a unit matrix, the F,,'s are all 1 for the
diagonal subblocks and O elsewhere, i.e. the Fourier transform of an identity matrix is also an

identity matrix. For computation, the Fast Fourier Transform method is used.

With A =1, the Fourier transformation of a locally even circulant matrix is isomorphic. In
other words, the forms of the original formulae remain unchanged, with the order of the matrix
reduced. Under such transformation, the isomorphism covers the matrix operations of addition,
scalar muitiplication, multiplication, and inversion. This technique is equivalent to those used by
Hansen and Travis [1974] and Dave and Gazdag [1970]. The computation time is reduced
dramatically with the error introduced by the transformation of less than 107. Note that the for-
mula for the azimuthally averaged case is only the 0* order expression of tlie Fourier transform

of the azimuthally dependent case.
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8.4. Incorporation of LOWTRAN Calculations !

[ As described thus far, the model is for the monochromatic case only. To make the model
i work for the atmosphere, we need to know the atmospheric optical properties. Among them the ‘ -
most important are optical thickness, r, single scattering albedo, w, and the scattering phase func-

tions.

The first two are related to the direct transmittance of the atmosphere. Given an atmos-
pheric profile (temperature, pressure, water vapor density, ozone density, and the aerosol density
and distribution) the LOWTRAN codes [Kneizys et al., 1983] and Mie scattering calcnlations give
the atmospheric ‘ransmittance profile for wavelengths from 0.25-28.5 um for every 20 cm™
wavenumber interval. Unfortunately, the required r and w can not always be derived simply from ﬁ
the results of LOWTRAN, Lecause a simple derivation makes the relation between the vertical

optical thickness and slant optical length violate the cosine law that is essential for a one-

dimensional radiative transfer model. The reasoa for this is that LOWTRZ2.:< does not really give
monochromatic transmittance but instead averaged quantities over 20 cm™ wavenumber intervals.
This averaging causes violation of the Lambert-Bouguer-Becr law because of the complexity of
molecular band absorption in longer wavelengths, even in a narrow wavenumber interval like
20 cm™'. Since the total transmittance of a layer is the product of the average transmittances
owing to molecular band absorption, molecular scattering, aerosol extinction, and molecular con-
tinuum absorption, the problem resulting from molecular band absorption canses trouble in calcu-

lation of the total transmittance and single scattering albedo for each layer,

A solution to this problem is the “‘exponential-sum fitting”’ method [Wiscombe and Evans,
1977] for radiative transmission functions calculated from LOWTRAN. For each of the three
major absorbers (water vapor, ozone, and uniformly mixed gasses, which include CO,, N,O, CH,,
CO, Oy, and Nj) the exponential-fitting is performed to get equiva'ent absorption coeflicients &; ,

and weights g, in this model, such that transmittance T,,, for a given absorber u is

Tmo (“ ) ~ EMD a; ¢ e (8.-15)

fm]

When more then one major absorber exists, the combined effect, assuming randiom overlap

of absorption lines from different absorbers, is

N M
Tme (U) = H zﬁ a,, c-*” K (8.46)
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Here j represents one of N absoriers. U is a vector composed of w,, - ,uy. For che j*
absorber, th.e are M; expansion terms. Therefore, by expansion the total number of terms is
K =M, - My, with cach having its own weight and power coeflicient. The new weights and

coefficients are

N
6! = JTa; (8.47)
PR I
N
ky! = Yk (8.48)
=
for l;=1,- -+ ,M;, and mw==l, - K. For each of these terms in the expansion, the mono-

chromatic radiative transfer model can be used exactly.

9. Model Performance
Comparison with Osigik and Shouman (1080}

To verify our numerical code for a homogeneous lower houndary, we compare our results
with those obtained by different methods. Ozisik and Shouman [1080] presented exact solutions,
calculated by the Fy method, of hemispherical reflectance and transmittance values for isotropic
incident radiation on a two-layer mode! with isotropic scattering properties. Stamnes and Conk-
lin [1984] compared their discrete oidinate method with the same calculations. Now we use the
same calculations to verify our method over a variety of single scattering albedoes and optical
thickness combinations. We use 4, 8, and 16 discretizations in the zenith domain and analytically
integrate over azimuth for these comparisons. In Tables 1 and 2 we show the exact solutions and
the 4-, 8-, and 16-stream resulits produéed by different methods for reflectance and transmittance.
Tables 3 and 4 offer the comparison of reflectances and transmittances for the same model with
an underlying semi-transparent specular reflecting surface. It is shown that the 8- and 16-stream
results from our model agree with exact solutions up to 3 or 4 decimal places. For intensities
ac-yracy will be reduced by about one significant figure. Our results match thosc of Stamnes and
Conklin [1084] to 4 decimal places in all cases but two; these minor exceptions are noted in Table

2.
Comparison with LOWTRANGS

In Table 5, we compare our results with LOWTRANG for the spectral interval 3-4 um. The
resulting upward radiances from LOWTRANGS correspond to our results obtained when the con-

structive contribution of atmospheric scattering is intentionally omitted.
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Computation Speed

To evaluate efficiency of our code, we use a 100-layer atmospheric model with total optical
depth of 2 for computing radiance with 16 streams. Our model, coded in the C language, requires
80 sec CPU time on a Digital VAX 11/780 computer operating under the UNIX operating syster.
It is difficult to compare this value with other reported timss, because the run time depends on
the computational environment. But we can at least say that this speed is comparable with those
of Stamnes and Conklin’s [1084] discrete ordinate method, which takes 2 min 26 sec for the same
atmosphere on the same model computer. Their model’s computation time is independent of the
total optical depth, but in remote sensing applications we are usually interested only in atmo-
spheres with modest optical depths. Our code has the flexibility that the run time can be spent

only on changed layers as long as we save intermediate results.

9.1. Atmospheric Point Spread Function

For a detailed investigation of diffusely transmitted ground radiation, the validity of a
model using averaged ground albedo is open to challenge. Therefore, the atmospheric point
spread functi>n 3 studied. The PSF is the distribution pattern of the transimitted radiation of a
pin-narrow beam through a degrading system. It is equivalent to the transmission in a three-

dimensional model.

In the present model, the atmospheric point spread function is calculated by sparse sampling
at some specific radii and polar angles. Then the results of the sampling are smoothed by a
least-squares fitting procedure, and a rectangular PSF is produced from the parameters describing

the curve chosen.

Point Spread Function Sampling Procedure

The procedure starts by shooting photons from the receiver in a specified direction. The
PSF is then sparsely sampled on the ground in a polar coordinate system. For each sample ele-
ment, two distinct sampling procedures are performed. For a Lambertian surface only the total
number of photons that hit the clement is recorded. For an anisotropic surface, the angular dis-
tribution of transmitted photons is recorded for each discrete direction. The angular discretiza-

tion is exactly the same as for the radiative transfer model described in the previous section.
Single Scattering Approximation of Point Spread Function

For a thin atmosphere, multiple scattering is negligible, therefore a first order scattering

approximation is appropriate. The approximation is similar to Dave's [1980] primary scattering
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source function model except for the following three points: (1) Dave's approach is forward-
tracking while this mode) is backward-tracking [Pearce, 1977]. (2) Dave's is ground albedo pat-
tern dependent. (3) Dave does the complete integration over the entire ground surface in contrast

to our sparse sampling approach.

From a beam of N photons originating at the sensor, the number lost from the beam travel-

ing between r/u and (r+Ar)/p is

AN, (r,r+-Ar) = N [e/n - ¢-lr+8/n) {9.49)
Among these, the number lost by scattering is

AN, (r,r+Ar) = AN, (r,r+-4A7) Z:(?,r——+Ar-) (9.50)
The contribution of these photons to the ground sample element is

AN(r, 7.0 ) = AN, (r,r+A7) 947“ X

—r- Ar/2
P(r+%—’,ﬁ,ﬁ' ) exp [.,_'1__:7____’_/'_’_ ] (% 51)

where the exponential factor is due to the attenuation between the scattering location and the
sampling element. Af] is the solid angle increment covering the sampling element with respect to
the point r+ Ar/2. When {I={V' and AQ is almost 4, special care needs to be taken to avoid

exaggeration of the contribution because of the strong forward peak of the phase function.

For a Lambertian surface, the contributions made by different intervais for a particular sam-
pling element are added to get the total contribution of the beam at the location. For an aniso-
tropic surface, the contribution from different intervals are grouped according to the angular
discretization of the ticmisphere. In this way, the point spread function for a single scattcring

approximation is calculated.
Monte Carlo Method for Multiple Scattering

The essence of the Monte Carlo meuiiod is that the scattering and absorption of photon bun-
dle can be statistically simulated by a sequence of random collisions before finally the bundle is
exhausted by absorption or escape. After collision, some portion of the photon bundle is
absorbed, and the remaining portion may change the direction of motion by scattering. Each
scattering or absorption is a random collision event, but the general trend is governed by proba-

bility functions of the processes.
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In this approach, the atmospheric optical parameters are the same as in the one-dimensional
model. However, only the transmission problem is treated by Monte Carlo techniques, because
the pure atmospheric radiance distribution has already been solved for a plane-parallel atmo-
sphere. The problem is to find the contributions of the surface upwelling radiance to the signa-
ture of a certain pirel; included are e directly transmitted radiancz from the pixel and the
diffuse transmission of the ground upwelling radianc.. By the raciprocity principle, the pattern of
the contributions made by the ground radiation can be mimicked by a reverse process, in which a
beam of photons impinges at a given point at the top of the atmosphere and finally some of them
hit the bottom and make a spread pattern on it, which is the point spread function. According to
the interaction principle, the transmission of a layer depends only on its properties and has noth-
ing to do with the incident radiation. The radiation interaction between layers can only change
the amount of incident radiation, but can not change layer transmission functions. Therefore to
calculate the transmission or point spread function, we need only consider the case in which a

photon hits the ground once.

In this medel, the general procedures outlined by {louse and Avery [1069] are followed with
some improvements made by Pearce {1077} included: the concept of photon bundle and photon
fraction, and the separation between a real scattering and a sampling of the contribution made by
a scatterer. The photon bundle concept looks at a photon as a bundle of photons and allows the
investigator to deal with a fraction of the bundle instead of an unseparable whole photon each
time. In this way, an absorbing atmosphere can be easily dealt with. The real scattering simu-
lates the random walk process of a single photon in a scattering and absorbing layer. For each
scatt -ing event within the atmospheric layer the contribution to the point spread functicn is cal-
culated. In other words, the samgling is not made when the photon hits the ground, instead it.is
made when a scattering occurs, because the diffuse radiance can be more accurately calculated
from the integration of the source contributions along the given path than by direct sampling.

Such a sampling method requires many fewer incident photons.

To mimic the random walk process, we need the distance .raveled by the photon between
two random collision events, the direction of each path, the portion of the photon bundle remain-
ing after each collision, and the position of the photon in three-dimensional space. The following
sections give the mathematical expressions of these events and quantities. Similar descriptions
can be found in some representative papers [Cashwell and Everett, 1959; House and Avery, 1969;

Pearce, 1077].
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Free path length. The distance traveled by photon bundle between collisior.s is called the
free path length. Measured in the same manner as the optical depth, it is dimensionless and is
called optical distance. The probability density function of noncollision for an optical distance |
is

p(l)=¢"* (9.52)

Then the probability that no collisior occurs in the range of optical distance from 0 to [ is

[
r,-fp(l' Jdl! =1 ¢! (9.53)
°

where r| is a uniformly distributed random number between 0 and 1. This equation sets up a

unique relation between a random number and an optical distance /:
| = -In(1-r,) == |In(1-r,) | (9.54)

Direction of scattering. For each scattering event, two independent angular variables
can be obtained from the random process, the scattering angle © and the azimuth angle ¢ that is

measured in the plane perpendicular to the original direction 6,,0,.

The scattering angle © is determined in the following way. First define

e
P(8)= [ p(8 )sin® d6' (9.55)
0

where 8' is a dummy variable and p (6’ ) is the phase function for scattering angle ©' for the
current scattering sublayer. Because the integration of p (8' ) over the range from 0 to 7 is 2, we
need to multiply P(6' ) by 0.5 to ».urmalize it. Then we can relate such a normalized quantity

to a random number r; to determine the scattering angle ©:
The angle & is within the range from 0 to 2m; therefore

¢ = 2nr (9.57)

where r; is another random number. Knowing the original direction 0,,¢,, and the scattering
angle and azimuth © and ®, the direction for the next path 85,4, can be determined from analytic

geometry [Marchuk et al., 1980}:

cosfy == cosf, cosO - sinf; sin® cosP (9.58)
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tand cosd, sing, sin® cos® + cosg, sinO sind + sind, sing; cosO (9.50)
a == X
NP2 cosd; cosg, 5inO cosd - sing, sinO sinP + sind, cosg, cosO

The portion of a photon bundle remalning. After a collision, a portion of the photon
bundle is absorbed and the remaining portion changes direction by scattering. If the scattered
portion does not travel horizontally, some of it may escape from the medium. Therefore, if the
original portion before the scattering is f | and the scattering takes place at r within the medium

of the total optical depth r*, then the remaining portion that is subject to the next sca‘tering is

f2=z4),l(l—8_'/lcm‘gl) f0r02>1

2
fo=w /(1= ror0 <g, <X (9.60)
fa=w/, for Oy = —

The remaining portion f 5 will still travel within the medium. The travel distance related to ran-

dom number r; can be determined from a transformed version of (9.54):

| = 'ml:-r, _“ ”
| w/fy

Such a process is repeated until the remaining portion is too small to be of any significance.

(9.61)

Distance of penetration of photon in the slab. In terms of optical depth, the penetra-

tion is determined by
Ar = lcosog (962)
=1 + Ar ' (9.63)
where | is the optical distance, r; and 7, are the optical depths for the two successive collisions,
and Ar is the increment of optical depth between the two collisions. The height at which the
collision occurs can be calculated from the relation between the optical depth and the height

according to atmospheric profile. Suppose the heights for two successive collisions are &, and ko,

the distance traveled between collisions is
d =(hy-h,)/ costy (9.64)
Horizontal displacement. The horizontal displacement can then be calculated:
Az = d sinf; cos¢, (9.65)

Ay = d sinb; sing, (9.66)

oy
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where Az and Ay are the increments in Cartesian coordinates. The horizontal location z,,y,

can be derived given the location before traveling:
2= A4z + 1z, (9.67) »
va=A4ay +y, (9.68)
Sampling the PSF. The sampling procedures are the same as that for the first order
scattering except that the scattering can be of any order and can take place not only along the

path of the the direct beam but also any place outside that particular path. For the anisotropic

case, the direction of contribution can be over the entire upper hemisphere.

Point Spread Function Smoothing, Curve Fitting and Interpolation

ool

The point spread function produced from the Monte Carlo method is not perfectly smcoth
because of the statistical nature of the Monte Carlo procedure. Therefore, some curve fitting

should be performed to apply the results in radiance retrieval. 7

One form that might be used is the normal distribution curve and its two-dimensional
extension, for their wide vse in the statistics and easy calculation of integrals over infinite range.
However, we find that the normal curve gives low values on the outskirt of the PSF. A better
choice is to look for the best fitting curve over a wide range of curves. A formula suitable for this

purpose is:

1
(A+B|z|?)°

f (@)= (0.69)

where A, B, C, and D are the parameters to be determined in the fitting. This formula is
chosen is for several reasons: (1) When the parameters A, B, C, and D are positive, the value of

[ (z) decreases with increasing absolute value of z. In other words, the curve takes a bell or

near-bell shape. (2) When D is 2, A/R =2C-1. If A/B is an integer, it includes the ¢-
distribution curves, often used in statistics The ¢ -distribution curves, in turn, include normal dis-
tribution curves when the degrees of freedom approach infinity. Therefore, if a normal distribu-
tion curve or a t-distribution curve best fits the polar profile of PSF, then using this formula we |
can find it. (3) The integral of the volume under the bell surface for the z range 0-oco (which
represents the total point-plane directional-hemispherical transmittance function) is convergent

when C >1.

For an obliquely viewing sensor position, the PSF is not symmetric with respect to the verti-

cal axis and is polar angle dependent. Therefore, it is not appropriate to use a single curve to fit
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the PSF in all the polar angles. Instead, for each polar angle, a specific curve is fitted. Then the
volume of each piece of the PSF-bell for each polar angle, as well as the total volume of the non-

symmetric bell curve can be found.
Application of Point Spread Function in Image Processing

After removing L g, we have the following relation:

g(zy)=1L(zy)-Lo=YYL(z-21y-v\) h(z1.51) + ea(z y) (9.70)

nn
This states that the ground contribution is a convolution of atmospheric PSF and the ground
upward radiances plus a noise term e, (z,y) If the PSF A(z,,y,) is known, L,(z,y) can be

retrieved by deconvolution {Andrews and Hunt, 1977].

The above expression is for an individual pixel. For an image, using the lexicographic form
we can express a two-dimensional array as a vector by stacking columns for ¢, L and e, . Also,
we can construct a matrix H from the PSF & such that the size of H is comparable to that of g,

L ard e, vectors. Then for the above relation over the entire image, we have
g=HL;+e, (9.71)

This is a system of linear equations. When the noises ¢, (z,y ) are 0, the ground upward radiance

is given by an inverse filter:
Ly=[H["g (9.72)

Fourier transform techniques are often used in this inverse filtering {Andrews and Hunt, 1977). In
the current investigation, we use another technique, the ‘‘constrained least squares’ algorithm
[Hunt, 1973], to handle nonzero noise with the aid of the Fourier transform. When the inner pro-
duct of e,, i.e. e, e,, is estimated based on the mean and the standard deviation of the signal-
to-noise-ratio of the sensor, this technique results in an estimation of ground upward radiance I‘Jg
that gives the smoothest solution for given e,” e,. In other words, minimize I:‘T c’c f.‘ sub-
ject to [g -H I:‘/ T lg-HL,] =e,” e, The matrix C is produced from a two-dimensional

Laplacian operator and is of the same size as matrix H. By Lagrangian method, the solution is

Le=HTH+~C"C["H g (9.73)

~ is the Lagrangian factor that need not be solved explicitly.
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9.2. Example — Atmospheric Effects in Landsat Thematic Mapper Images

In this section we analyze the values of the three radiance components for six Thematic
Mapper (TM) bands in visible and near-infrared regions, and we display the point spread function
used for atmospheric correction of TM band-1 images. Finally, an image of expected ground
upwelling radiances is retrieved from the remotely sensed TM band-1 image using that point

s read function.
Three Radiance Components for a Standard Atmospheric Profile

We chose the U.S. Standard Atmosphere [1976] with a 13-layer structure as the input atmo-
sphere for our model because it represents an average condition for the mid-latitudes. The major
properties and parameters of this atmosphere are shown in Table 6. The sun is assumed at the
average sun-earth distance with the solar zenith angle at 53.7 °. The sensor is at the nadir posi-

tion.

. Under such conditions, the three components L,, L;, and L, are calculated for different
albedoes (1.0, 0.8, 0.5, 0.2, 0.0). For a given atmosphere L , depends on the incident solar condi-
tion only, whereas L, and L, depend on the albedo. However, for a homogeneous Lambertian
surface the ratios 8, =L, /L, and 84=L, /L, remain constant no matter what the albedo is. In
the visible wavelength range we find that for each wavenumber interval of 300 cm™ the relation
that T,(0,6};r) = T,(r,(3;0) holds quite well, because the absence of molecular absorption make
those individual wavenumber intervals close to monochromatic cases. But in the near-infrared,
the wide wavelength bands do not allow the monochromatic reciprocity relation to be applied,
since the complexity of strong CO,; and O, absorption makes it completely unsuitable to approxi-
mate such bands by monochromatic w;lvelengths. The difference is caused by the change of spec-
tral distribution of the radiation within the wavelength interval concerned, after passing through
the atmosphere once. For the purpose of atmospheric correction, the term T, (0,{};7) instead of

T4 (;92) is used, since that term mimics the upwelling transmission better.

In Table 6, the terms Ly, a, B,, and §4 for the 8 TM bands in the reflective solar spectrum
are listed. These values are wavelength averaged, with the involved radiance values weighted by

sensor response function T, and wavelength interval.

[L,7) d)
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From Table 6, it is obvious that for shorter wavelengths, the terms L, and 8, have larger
values than those in the longer wavelengths. Since g, represents the total contribution of the
diffusely transmitted ground radiation to the sensor-received radiance for a uniform Lambertian -
surface, it is an indicator of the magnitude of the adjacency effect. In TM bands 5 and 7, 8, and
the ratio a=g8, /8, are emall, and the adjacency effect may be neglected even for nonuniform,

anisotropic surfaces.

Point Spread Functions

The shapes of point spread functions of six bands of Thematic Mapper are shown in Figure
9.4. The integrals of the point spread function for shorter TM bands (1-4) are close to their
B, +B¢ sums (let =P, +8, and note that 8= (L-Lo)/L,). This shows: (1) the results of '!J

Monte Carlo procedure are comparable to those from adding/doubling; (2) the reciprocity princi- :

ple holds for each narrow spectral interval. However, for some wavelengths within TM bands 5

and 7, the integrals of point spread function even for narrow intervals differ considerably from the
B value when both values are comparatively small. The reason for this is that for such intervals,
the monochromatic assumptions are no longer valid because of the complexity of molecular
absorption. Our point spread function for each narrow interval is simulated by downward track-
ing, starting with a smoothed solar spectrum, but the g values are calculated based on spectrally
averaged upward transmissivities for each interval. The upward reflected photons have experi-
enced longer atmospheric paths; therefore a higher portion have high penetration in the atmo-

sphere than do the original downward spreading photons. Under such circumstances, a desirable

R s
- " = g

point spread function cannot be obtained without renormalization. Fortunately, the effect of

scattering at those two TM bands is negligible. A simpler atmospheric correction using L g and o

will produce a good approximation for the radiance at ground level.

Image Restoration

Figure 9.5 shows the original images and the equivalent images restored by the “constrained
least squares” technique. The resulting images in TM bands 1 and 2 are much sharper than the
originals. Figure 9.8 also shows a set of restored images using a simpler technique in which the
averaged necighborhood radiance values are used in association with the 3; value. A comparison

shows that for TM band 2 the two restoration techniques give little difference.

L .,
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9.3. Notatlon
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Planck function at temperature T (W m %um™'sr!)

solar constant (W m~2um™!)

downward diffuse irradiance at optical depth r, location # (W m2um™')
upward difluse irradiance at optical depth r, location 7 (W m%um™")
downward direct irradiance at optical depth r (W m2um™)
lexicographic noise vector

noise term at pixel located at z ,y

BRDF (bidirectional reflectance-distribution function) for incidence
angle cos 'ug, reflection angle cos'u, and reflection azimuth ¢, meas-

ured from azimuth of illumination (sr™!)

BRDF vector for incidence angle cos™'py (s5r7!)

Fourier cosine coefficient

Fourier sine coefficient

lexicographic vector of radiances measured by sensor

radiances measured by sensor

lexicographic vector of point spread functions

element of point spread function at location z ,y

vector of downward radiances at level ¢ (W m™>um™'sr™")

vector of upward radiances at level ¢ (W m~2um'sr!)

vector of downward radiances over a black and nonemitting surface
(W m%umsr!)

vector of expected or estimated ground radiances (W m 2umsr™!)
radiance at level r along direction {3 (W m~?umsr!)

pure atmospheric radiance (W m2um™'sr™")

diffusely transmitted ground radiation at sensor’s level (W m-%um™'sr™!)
ground upwelling radiance (W m=2um-"'sr"!)

attenuated signal at sensor’s level (W m~2um™'sr™!)
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Tg
T
T(0,r7' )

T(r,7 0,01)

T, (0,8;r,81 )
T‘ (O,ﬁ;r,‘i’)

T‘ (0,“;1’,7 ,ﬁ' )

T, (0,7 8;r,7' (1)
Ti(r, 7' S 07.0)

T‘ (T,?' ;O,ﬁ)

T, (1Y)
T, (O,ﬁ;r)

Tmo (u )
Tmo (U)
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averaged upward radiance from nonuniform Lambertian surface at

ground level (W m~um™'sr™!)

matrix of phase functions

phase function at optical depth r, from direction {3 to (¥
reflectance matrix

surface diffuse reflection matrix

reflection of atmosphere looking from the bottom
horizontal position vector

temperature of the surface ( 'K)

transmittance matrix

hemispherical-directional upward transmittance from a point ¥ at bot-

tom to sensor

directional-hemispherical downward transmittance from sensor to a

ground point at location ¥
upward plane-to-point bidirectional diffuse transmittance function

upward point-to-point hemispherical-directional diffuse transmittance

function

shif. invariant upward point-to-point bidirectional diffuse transmittance

function
upward point-to-point bidirectional diffuse transmittance function
downward point-to-point bidirectional diffuse transmittance function

downward point-to-point directional-hemispherical diffuse transmittance

function
downward beam diffuse transmission at ground level

total upward plane-to-point hemispherical-directional diffuse transmis-

sion coeflicient
molecular transmittance for given absorber u

molecular transmittance for a set of absorbers U

&

I .
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a set of molecular absorbers composed of (¥, - * * ,uy)

ratio L, /L,

ratio (L -L,)/L,

ratio L, /L,

ratio L, /L,

emissivity vector

delta function.

anisotropic reflectance factor, defined
7 f(noin 9)

)

[[ W tlpen' ¢ )du do

00

Lagrangian factor

wavelength (#m)

cosine of zenith angle ¢

directional vector in three-dimensional space

differential of solid angle in direction {1 (sr)

single scattering albedo

scattering azimuth angle measured in new coordinates
azimuth angle, normally measured from direction of illumination
directional specular reflectivity

downward internal source vector (W m2um™'sr-1)

upward internal source vector (W m~2um'sr!)

optical depth at level ¢, measured from top
scattering angle between incident and scattering directions
zenith angle
observation zenith angle

sensor response function
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9.4. Tables
Table 91 Comparison of Reflectance Results for a Two-Layer Model with Exact Calculations from Ozgik
and Shouman [1980] h
W, Wy n 13 4-stream 8-stream 16-stream exact
08 095 025 025 02292 02251 02252 0 2:52
08 07 025 025 01987 01938 01939 01939
06 05 025 025 01316 01278 01278 01278
05 03 025 025 00963 00930 00930 00930 1
08 0.95 05 05 0 3066 0 3057 0 3056 0.30%6
08 07 05 05 0 2687 0 2662 0 2662 02662 ‘
06 05 05 05 0.1682 0 1662 01661 0 1661 :
05 03 05 05 01241 01219 01219 01219
08 0.95 1 1 03518 0.3509 02509 0 3509
08 0.7 1 1 0.3184 03172 03172 03172
0.6 05 1 1 0.1891 0 1877 0 1877 0 1877
05 03 1 1 0141, 0.1398 0.1398 0 1398
08 0.95 1 2 03797 0.3786 03786 0 3786
08 07 1 2 03247 03234 0.3234 03234
06 0.5 1 2 0.1907 0.1892 01892 0.1892
0.5 03 1 2 0.1417 0.1403 01402 01402
08 095 2 1 03451 0.3438 0 3438 0.3438
08 07 2 1 03373 0.3362 0.3362 0.3362
: 06 0.5 2 1 0.1951 0.1937 0.1937 0.1937
} 05 ¢3 2 1 0.1471 0.1458 0 1457 0.1457

o afa L el e o ae mem e m = =&
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Table 92 Comparison of Transmittance Results for a Two-Layer Model with Exact Calculations from
Oziik and Shouman [1980]

w, AN n 1y 4-stream 8-streum 16-stream exact
o8 0.95 025 025 0 6451 0 6504 0 6503 06503
08 07 0.25 025 06001 0 6053 06051 0 6051
06 05 025 025 05424 0 5476 05474 05474
05 03 0.25 0.25 05077 0.5131 05128 05128
0e 0.95 05 05 0 4581 0 4597 0 4597 0 4597
08 0.7 05 05 03922 0.3926 0.3927 03927
06 05 05 05 03218 0.3205 0.3206 03206
05 03 05 05 02858 0.2834 0 2835 0 2835
08 095 1 1 0.2481 02476 02476* 02476
08 07 1 1 01758 01745 01745 01745
06 05 1 1 01184 01164 01164 01164
05 03 1 1 0 0953 0.0930 00930 0 0930
08 0.95 1 2 0 1603 0 1600 0.1600° 0 1600
08 07 1 2 0.0749 00745 0.0745 0.0745
06 05 1 2 0.0422 0.0420 0.0419 00419
05 03 1 2 0.0302 00301 0.0301 00301
08 0.95 2 1 01209 0.1205 0 1205 01205
08 0.7 2 1 00850 0.0846 0.0846 00846
06 0.5 2 1 00457 004%4 0.0454 00454
05 03 2 1 0.0340 00338 00338 00338

0.2477 in Stamnes and Conklin [1984)

b0 1601 in Stamnes and Conklin [1984]




Table 93 Comparison of Reflectance Results for s Two-Layer Model above Specularly Reflecting Surface ‘

with Exact Calculstions from Oumk and Shouman [1980] (p,, == specular :flectance at bottom)
=
AN we Pu 4-stream 8-stream 16-stream exact
02 00467 0 0461 00461 0 0461
02 06 00 00513 0 0506 0 0506 0 0506
08 0 0590 0 0582 0 0582 00582
095 00653 000644 00644 0 0644
02 00502 00498 00498 0 049°, i
02 05 05 0 0562 0 0557 0 0557 00557
08 00674 00666 0 0666 N 0666
095 00781 00769 00769 00769
02 00531 0 0529 0 0529 00529
02 05 c3 0 0605 0 0601 00601 00601
08 00762 00752 00752 00752
0.95 00937 00920 00921 00921
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Table 84 Comparison of Transmittance Resulta for a Two-Layer Atmosphere above Specularly Reflecting }
Surface with Exact Calculations from Ozigik and Shouman (1980 (p,, == specular reflectance at bot-
tom) -
W, AN Py 4-stream 8-stream 16-stream exact
02 00750 00728 00727 00727 !
02 05 00 0.0899 00877 00876 0 0876
08 01171 01148 01146 01146 f
095 0.1408 01380 01380 01380
L ?F
0.2 0 0383 00371 00371 0037]
02 05 05§ 0 0480 0.0467 0 0467 00467
08 00678 00663 0 0663 00663
095 00879 00858 0 0858 00858
0.2 00078 00076 00076 00076
02 05 09 01016 0 0099 0 0099 00099
08 01561 01521 01522 01522
0.95 02209 02150 02151 02151

e samass, R SIIEE: b i SRR . L= TIPS AT - -
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Table 95 Comparison of Upward Radiance at Top of US Standard Atmosphere ai Night with Same Cal-
culations from LOWTRANG Wavelength 3-4um, Tg = 300 K, Surface Albedo = 0 05
-3
model LY114°) L'(261°) L'(403°) L'(537°) L'(659°) ‘
t
ours 0 3499 03478 03434 0 3355 03214
ours, no 03415 0 3387 02331 03232 0 3055
scattering
LOWTRANG 03411 - - - -

Table 96 Parameters Describing Atmospheric Effect on Radiances of Landsat Thematic Mapper bands, for
U.S Standard Atmosphere with 53 7 * Incident Solar Angle

TM band wavelengths Lo a B, Be

(km) Wmnum-le-! (Ba/8,) (Le/L,) (L,/L,)
™I 0 45-0 52 34 483 031744 066129 0 20992
™2 053-061 16 989 023198 072016 0 18706
T™3 0 62-0.69 9 5651 017438 0 78447 0 13680
T™M4 078-090 3 4237 011675 084371 0 098501
T™S 1.57-178 0.11340 0031436 091439 0.028745
T™7? 2.10-2 35 v 025956 0 023439 0 93095 0021820
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9.5. Figures '

Figure 0.1. Three components of sensor-measured radiance. L, contains both pure atmospheric
scattering radiation and atmospheric thermal ¢mission. L, carries target information. L, is

mainly composed of the contribution made by the surrounding pixels.




- 40-

. GRS 4

Figure 9.2. Relation between T's and L's. (a) Definition of T, (0,7 ,{;r,#' ¥ ). (b) Definition |
of T,(r,?' SV ,0,7.81). (c) By integrating T (0,7 {};r,#' (I ) over entire hemisphere and
entire ground plane, T (0,{1;7) is obtained. (d) Definition of T (rfl). (a) and (b) are a @

reciprocal pair, and (c) and (d) are another reciprocal pair.
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:' Figure 9.3. An assumed anisotropic reflectance pattern in which the anisotropic reflectance factor
depends on reflection zenith and azimuth only, and is independent of location. The gravel-
shaped feature at each point represents a forward-peaked anisotropic refelctance pattern.
The size of the feature indicates the magnitude of the surface albedo at that point. The
similarity among the features shows the location independence of the anisotropic reflectance

pattern.
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Figure 9.4. Cross section of point spread function for Thematic Mapper (TM1-TM4, TM5 and

TM7). The pixel size is 28m by 28m. The horizontal axis is the number of pixels from the

central pixel. The vertical axis is logarithmically transformed. (a-d) Visible and near-

infrared bands (TM1-TM4). (e-f) “Shortwave infrared’’ bands (TM5 and TM7).
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Figure 9.4. (continued) ‘
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Figure 9.5. Images before and after restoration by deconvolution using point spread function. In
the right column are the restored images and in the left column are the original ones. The
upper row is for the TM1 images, whereas the lower row is for TM2 images. The point

spread functions are produced for the U.S. Standard Atmosphere.
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Figure 9.6. Images restored using simpler algorithm vs. those by deconvolution procedure. Now
the images produced by simpler algorithm using locally averaged radiance values appear in
the right column. ol
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10. Texture Analysis of the Spatial Contiguity of Snow Cover

10.1. Introduction

Snow hydrologists have come to rely on satellite imagery for accurate estimates of snow
cover over widespread and inaccessible areas. Prior to the advent of satellite data, snowmelt
runoff models were based on point measurements, usually of snow water equivalent at index sites
[Rango and Itten, 1976]). Subsequently, many studies have concluded that satellite measurements
of en w~-covered area (SCA) have a significant statistical relationship to seasonal streamflow
[Rango et al., 1979; Rango and Martinec, 1979; Shafer and Leaf, 1979]. This relationship has
been used for long-term volumetric flow forecasts [Thompson, 1975; Rango et al., 1977] and for

determining the timing of daily runoff [Martinec, 1975).

The relationship between SCA and runofl depends on the time frame in which runoff is
viewed. For daily predictions during the ablation period, SCA is directly related to runoff. The
Martinec runoff model that has proven useful for many mountain basins [Rango and Martinec,

1981] expresses the relationship

Here @y is runoff at time ¢, ¢ is a runoff coeflicient, ' is energy, usually in degree-days, SCA is

snow-covered area, and k is the recession coefficient.

In the longer term, it is known that the rate of snowline retreat is inversely related to snow
water equivalent and to runoff [Rango and Itten, 1976]. Furthermore, the relationship between
SCA and depth is quite variable: snow covering the same areal extent can vary 200 percent in
depth [Martinec, 1980]. In fact, Martinec found that SCA is better related to the ratio of the
current water equivalent to maximum seasonal water equivalent. This agrees with Thompson’s
[1975] earlier finding that SCA is more strongly related to the percent of total seasonal runoff than
to runoff itself. Thus the behavior of the SCA parameter in runoff models beyond those for
short-term forecasts becomes complex; it is best represented in a form differentiated with respect
to total accumulation [Martinec, 1980]. Alternatively, for long-term forecasting, the more direct
relationship between snow depth and total water volume may be preferable. From the analysis of
a large random field sample, Adams and Roulet [1982] found a broad similarity in patterns of

depth and water equivalent both in terms of quantity and distribution. They suggest that depth

may be a good indicator of water equivalent and therefor: of runoff.

ol
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Snow depth cannot be directly determined from a single satellite image but the pattern of
snow distribution at various overall depths is readily apparent. In fact, expert snow observers
have used the appearance of surface features to estimate depth during aerial overflights [Rango
and Itten, 1976]. The notion that snow depth can be inferred from snow cover patterns implies
that accumulation patterns are stable over time due to the control of underlying physical vari-
ables of terrain and exposure. During the accumulation period snow cover patterns are event
related and result from irregular deposition influenced by elevation, wind and local topography.
On ghe other hand, overall patterns that form during the snowmelt period are quite predictable
since melt rates are strongly controlled by altitude and exposure. Palmer [1981] found over a
three year period in the Rio Grande watershed of Colorado that snowline recession patterns were
repeated; Lichtenegger and Seidel [1981] reviewed images of the Dischma valley in the Swiss Alps
over an eight year period and concluded that a typical snow cover pattern forms each year during
melt season. Moravec and Danielson [1879] and Martinec [1980] have also reported that yearly

repeating contour patterns of snow-covered regions occur during the ablation period.

The analysis of snow cover patterns has generally been conducted as part of research into
mesoscale (100-1000m) areal differentiation of snow cover such as those based on identifiable
landscape units [Adams and Roulet, 1982] or hydrologic 1esponse units [Thomsen, 1980]. The
purpose of these investigations is to develop regional generalizations about snow conditions from
sites stratified by similar combinations of environmental variables. By inversion, it can be
reasoned that the snow patterns themselves are meaningful expressions of the sum effect of the
controlling variables. As Palmer [1981] points out, the position of the snowline acts as a natural
integrator of the long-term effects of snow accumulation, slope, aspect, temperature, radiation,
and wind. In a one-dimensional approach to the problem of quantifying snow patterns, Palmer
developed regression relationships between percent snow cover and snowline ¢ cvation along a
series of index baselines for the purpose of predicting SCA for an entire basin especially at times
when it is partially obscured by clouds. This method requires that the network of baselines in a
basin include all areas of significant snow cover but ignore detached patches of snow. It would
scem more appropriate to use a two-dimensional characterization of the spatial contiguity of snow

cover to predict snow-covered area.

Objectives

In this study it is proposed that two-dimensional descriptions of snow cover obtained by

means of texture analysis, a set of statistical pattern recognition techniques, serve as predictor

q
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‘ § variables in a linear relationship for predicting snow-covered area. This is undertaken as a prel-
iminary step to assess the feasibility of predicting in the same manner another hydrologic parame-
ter, snow depth, which may have a more direct and consistent relationship to the total volume of

water stored in a melting snowpack. Operationally, the estimation of snow coverage itself on the !

basis of two-dimensional statistics may be useful along transition zones of the pack and during
melt season when snow cover is highly dissected and difficult to inventory by manual or digital
means. At this time, when short-term forecasting occurs the SCA variable is a direct, useful pred-

ictor of daily runoff. Snow depth data at the scale an! extent necessary to conduct pattern

b
{
1
|
2,

analysis were not available for this study, however it may be possible in future studies to photo-

grammetrically determine snow depth at a scale appropriate to the analysis [Cooper, 1965; Rawls 'éi

and Jackson, 1979)].

As an initial stage in the investigation, the effect of sensor resoiution on detectable ‘“‘tex-

ture’’ is studied to determine whether the large improvement in spatial resolution provided by the

W8 bl . keddbad o

Landsat Thematic Mapper (TM) sensor over existing Multispectral Scanners (MSS) translates into

equally improved spatial information when analyzed using standard texture analysis methods.
Study Design

Digital images from the Landsat-4 satellite were available at 30 meter resolution (TM) and
at 80 meter (MSS) resolution. Four matched sets of TM and MSS subimages (Figures 10.1 and
10.2) were selected and registered. For one set (image A), texture statistics were calculated over
the entire image in order to closely investigate the behavios of the statistics at both resolutions.
In the next step, two sets of texture features were calculated from windowed samples over each of
the four image pairs. The relative distance between sample texture features was assessed by three
different metrics. In the last stage, binary classifications of snow were made at both resolutions
: ’ for image pair A. From these SCA was calculated by window and regressed against the two sets
1] of sample texture features calculated above. Model efficiencies were calculated both internally

,4 ! using a jackknife regression technique and through time by cross-prediction between images of the

3 same site having undergone significant snow recession.

10.2. Texture Analysis

Satellite images are two-dimensional projections of the three-dimensional landscape below.
Frequently, such images ar» used to supply point data about scalar quantities like brightness,

temperature and elevation or used in combination with other images to provide vector
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information such as color [Ahuja and Schachter, 1981). In doing so, the higher order relationships
inherent in the image are effectively ignored. However, in one area of image processing, texture
analysis, the study of spatial relationships is well developed. In general, the aim of texture
analysis is to apply pattern recognition techniques to an image in order to segment and discrim-
inate between scene regions or to aid in classification of cover types; the task is to quantify an
invariant, non-labile characteristic of a scene object. Characterization of changing spatial pat-
terns has not been well explored. The objectives of the present study are to use texture analysis
in the traditional sense to quantify resolution-dependent differences in texture and to explore a
new possibility of using extracted texture features as meaningful parameters in a functional rela-

tionship for the prediction of a physical variable.
Texture Analysis Methods

Texture analysis, the image processing term for pattern analysis, originates from empirical
efforts to recognize and duplicate the elusive perceptual concept of texture. Visual analogies have
held sway so long in this field that only recently have formal image models emerged on the level
of abstraction found in other spatial disciplines [e.g. Pielou, 1977]. Within the sizable battery of
empirically developed methods [reviewed by Haralick, 1979], no single approach has proven to be
universal, in large part because the visual hierarchies involved in perceiving spatial structure work
in a complex manner not casily duplicated by simple methods [Julesz, 1975]. As Haralick [1979)
has noted, the organization of tonal primitives or local regions can be viewed as structural, proba-
bilistic, or functional depending on relative resolution. Whether stochastic pixel-based models or
deterministic region-based models are the most suitable texture descriptors depends on the coarse-

ness, homogeneity and periodicity of the texture.

Statistical approaches range from simple first-order measures like grey tone differences and
run lengths [Galloway, 1975] to more complex joint and conditional second-order co-occurrences
[Haralick et al., 1973]. One-dimensional autoregressive models [McCormick and Jayaramamurthy,
1974; de Souza, 1982 are only partially successful at describing spatial patterns while two-

dimensional autoregression [Tou, 1980] becomes a complex task.

Iinage patterns can be analyzed in terms of spatial frequency but Fourier analysis has had
limited application to texture analysis. The Fourier transform must be computed over large win-
dows and comparison of power spectra between different sized regions is difficult [Chen, 1979].
More importantly, local information is scattered in the frequency domain so that similar peaks

may be caused by a nearly periodic texture or a single strong edge [Nevatia, 1983]. Recently
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Chen [1082) and Jernigan and D’Astous [1084] have successfully developed local and size invanant
texture features based on the Fourier transform that overcome some limitations of the method.
findings from perceptual experiments [Pratt et al., 1978; Julesz and Caelli, 1979] have cast doubt
on the eflicacy of Fourier analysis for texture discrimination. Patterns having identical power

spectra and thus identical autocorrelation functions, can be discriminated eflortlessly by eye.

Translated into the spatial domain, Fourier analysis is simulated by a series of convolutions
(Faugeras, 1978; Laws, 1980]. Convolution masks which enhance high frequency information act
as edge detectors that approximate mathematical gradient operators (Ballard and Brown, 1982).
Once obtained, the edge structure of an image can be reported simply in spatial averages or used

to form high level primal sketches {Marr, 1982]. Related to edge analysis are methods that quan- .’J

-

tify local maxima and minima by row [Mitchell et al., 1977] or which construct more complex

relational trees of one-dimensional intensity profiles exprcased as nested or concatenated peaks

[Ehrich and Foith, 1978).

When the elements of a texture become much larger than the resolution cell of an image,
pixel-based stochastic models break down and are supplanted by structural methods which iden-
tify primitives, measure their attributes and determire their spatial relationships [Wang et al.,
1981; Matsuyama et al., 1982; Tomita et al., 1082]. In highly regular patterns, primitives can be

described syntactically using tree grammars [Lu and Fu, 1979).

There have been few studies undertaken to rigorously compare texture analysis methods.
Frequently cited works by Weszka et al. (1976] and Conners and Harlow [1980] have led to the
widespread use of Haralick's second-order statistical features: the moments of the grey-level co-
occurrence matrix (GLCM). Indeed, co-occurrence statistics liave been very useful for image seg-
mentation [Chen and Pavlidis, 1979; Conners et al., 1984] and for image classification [Hallada et

al., 1982; Vickers and Modestino, 1982; Holmes et al., 1984]. Julesz's {1975] finding that human

texture discrimination operates finding that human texture discrimination operates at the level of

second order relationships has lent such support for the GLCM approach that less costly first

order methods reported to perform equally well for classification purposes [Weszka et al., 1976;
Mitchell and Carlton, 1978; Pietikidinen et al., 1983] are not implemented as often. Because the
GLCM serves as the standard of comparison for testing the performance of texture analysis
methods, it was chosen for use in this study along with a newly reported local method: Laws’

(1980| texture energy measures.
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Grey-level Co-occurrence Matrix

The grey level co-occurrence matrix (GLCM) is an array of joint frequencies whose dimen-
sion is equal to the number of grey levels in the image. Each entry in the matrix is the frequency
with which brightness i co-occurs with brightness j when separated by distance d in the direction
0. Frequencies, often normalized to probabilities, are reported in both directions for a joint pixel
pair making the matrix symmetric. As a first step towards data reduction, the number of grey
levels is decreased to 64 or less, and the four directional matrices can be averaged into one. To
compress the data further, several statistics are calculated that express cither the distribution of
matrix values around the main diagonal or the degree of correlation between matrix rows and
columns. Seven statistics proposed by Haralick et al. {1073 are given in the Appendix; these
include energy, correlation, homogeneity, entropy, inertia and information correlations 1 and 2.
Energy and homogeneity are measures that emphasize low contrast transitions; entropy and iner-
tia increase with texture coarseness. Correlation statistics measure the degree of association

between marginal and total values expressed either as frequencies or entropies.

An elegant solution to the problem of choosing an optimal combination of distince and
orientation to best describe the structure in a texture was proposed by Zucker and .erzopoulos
(1980]. They developed a chi-square statistic based on maximum likelihood estimates of the mar-
ginal matrix probabilities to test the independence of rows and columns. The unnormalized co-
occurrence matrix is thus viewed as a contingency table in which intensity pairs are samples

obtained from a two-dimensional random process. Notationally:

2
Ty

x’=N((§m3 i

o] Jum}

)-1) (10.2)

r C,'

N is the total number of samples. Degrees of freedom v = (m -1)(n -1), z;; is the co-occurrence

n m
matrix entry, r; = Y, z;;,and ¢; = ) z;.
i= =1

In the present study of snow texture, an automated system was developed to calculate the follow-
ing for each subsample of an image' :our unnormalized directional matrices, the chi-square value
for each, the normalized matrix for the maximum chi-square angle, and the seven co-cccurrence
statistics. Only the final statistics from the most structured matrix were concatenated into an

output file. This process was repeated for each of four distances (1,3,5,10 pixels) and four quanti-

zations (8,16,32,64 grey-levels) for image pair A.
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Texture Energy Measures |

Dcapite the shortcomings of Fourier analysis outlined above, texture analysis methods that
characterize sputial frequency are very useful if implemented locally in the spatial domain. This
is accomplished by a sequence of boxfliter applications which are faster and simpler than a single
convolution using the fast Fourier transform [McDonnell, 1981]. In his dissertation, Laws [1980]
derived a series of one- limensional operations of certer-weighted local averaging, symmetric first
differencing (edge deteci.on) and second differencing (spot detection) [Pietikainen et al,, 1983].
When convolved together these vectors form nine 3 x 3 masks (see Appendix) some of which are

recognizable as standard gradient operators like the pair of vertical and horizontal Sobel operators

(fdly, /d,), and the Laplacian second difference operator (filg). Note that all but fil,, the low

paas smoothing filter, are zero-sum filters.

Texture features are nbtained from each of the nine separately convolved images by calcu-
lating local statistics such az the sum, the mean or the standard deviation over small windows.
McDonnell [1921] along with Laws have found that the variance or standard deviation of filtered
windows are very powerful measures of image texture. In a zero mean field produced by convolu-
tion with a zero-sum mask, variance is the average of the squared values which makes it a meas-
ure of total energy within a window. Laws claims that the average absolute valur: is a fast
appraximation to the standard deviation; he refers to both the average and the standard deviation
as measures of texture energy. Pietikdinen et al. [1083] tested two other texture energy features,
the sum of the absolute values and the maximum value within a window, and found that the local
maxima performed just as well as the sum. In this present study three features were compared:
the sum, average and the standard deviation of values within windows sized 16 x 16 on the MSS
image and 32 x 32 on the TM image. Following Laws’ convention, these features are reforred to
as SUM, AVG and SD. As was done for GLCM analysis, an automated system was developed to

cycle through all nine filters, convolve the image, compute the local statistics by window and con-

catenate them into an output matrix. Window size was based on Laws’ finding that classification
accuracies were nearly perfect using 32 x 32 window but dropped rapidly below 15 x 15. Accord-
ing to Hallada et al. [1982], this sample size is also adequate for co-occurrence analysis. They
found that class separability increased logarithmically and then leveled off as window size

increased from 3 x 3 to 13 x 13.

Texture energy measures are distinguished from Fourier methods by their local nature.

Phase relationships within each window are measured without reference to a global origin [Laws,
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1980}, whereas Fourier frequency components contain global information from across an entire
image at the neglect of local information [Jernigan and D’Astous, 1984). In addition, gradient
filters can be tailored to various textures by increasing the diflerencing distance to overcome noise
but keeping it small enough so that local gradient remains a good representation of local changes

[Ballard and Brown, 1982].

Parallel work by Faugeras and Pratt [1980] lends support to the Laws energy approach.
Because the autocorrelation function has proven insufficient for texture discrimination (see above)
these authors sought ways of characterizing the decorrelated texture field which would yield useful
texture measures. Decorrelation can be accomplished by a whitening operator based on adjacent
row and column correlations; if correlations are perfect this operator becomes the Laplacian
operator. Alternatively, gradient operators like the Sobel filter can replace the whitening opera-

tor. Note that these are three of the nine Laws convolution masks.

Using a distance metric criterion, Faugeras and Pratt [1980] found that the first four
moments of the first-order histogram of the decorrelated field provided good separability between
similar natural textures. The first two histogram moments of the decorrelated images are exactly
equivalent to the average and standard deviation of texture energy planes convolved with the
same gradient operator. In accord with perceptual findings, inclusion of shape measurements
taken from the autocorrelation function improved separability but alone were weak discrimina-
tors. The Sobel operator, a directional filter that does not zero out the mean or create unit vari-
ance, gave the best separability while the non-directional Laplacian was the worst. This implies
that Law’s choice of average and standard deviation features is well founded since all but the

smoothing and Laplacian filters are non-sy mmetrical.

Pietikidinen et al. (1983] have confirmed that local statistics of convolved images yield better
classification results than co-occurrence statistics. In the following analysis of snow cover patterns
the two mcthods are compared for relative powers of separability and utility in characterizing

spatial distribution for the purpose of predicting area.

10.3. Data Processing
Registration and Sampling

The imagery used in this study was taken by Landsat-4 Thematic Mapper (TM) and Mul-
tispectral Scanner (MSS) sensors. TM imagery was available for two dates, December 10, 1982

and Jaruary 18, 1983, in which images overlapped along adjacent paths; identical MSS imagery
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was available only for the December date. The images are centered on the Kern and Kings river
basins in the southern Sierra Nevada whici are adjacent watersheds on the order of 4,500 square
kilometers (see Rango et al. [1979] for a complete geographic description). Four subimages of
varying textural complexity sized 256 pixels in dimension were selected from the December TM
image. Corresponding MSS subimages, 128 pixels in size, were located and registered to the TM
sites. Registration was a simple matter of enlarging the MSS subimage two-fold and translating
the image to line up with the TM subimage. Resampling was unnecessary because geometric
rectification p» rmed by the NASA Goddard LAS system left MSS resolution almost exactly half
the TM resolution. This level of registration accuracy was adequate for comparison of textural
differences between resolutions. For the second stage of regression analysis a single site in the ﬁ
Kern basin was selected from both December and January TM images that showed evidence of !

substantial snow recession between scenes. These subimages were also co-registered using simple

translation without initial resampling.

The texture study sites are about 65km®, comparable in size to several small experimental
watersheds [e.g. Rango and Martirec, 1979]. For an initial comparison of the behavior of texture
features at the two resolutions, co-occurrence matrices weice calculated over the entire scene. For
the purpose of separabiiity measurements and regression analysis image pairs were subsampled
using 32X 32 sized windows for the TM image and 16X 16 sized windows for the MSS image.
This non-overlapping sampling strategy yielded 64 samples per subimage each covering about one
square kilometer. At this scale, the analysis remains within the realm of mesoscale studies and is

equivalent in scale to NOAA AVHRR imagery at nadir.

Background Effects

Much of the experimental work done in texture analysis has been carried out on homogene-
ous texture fields which are assumed to be consistently specified by either parametric or deter-

ministic models derived solely from the rclationships of the texture primitives. Texture analysis

of natural terrain must take into account external variables such as topography and vegetation

that act as forcing functions on the pattern of surface cover. Shadows, topography and plant

cover become part of a scene sper dc textural characterization of the overlying snow cover.

Topographic effect and shadowing can be reduced if digital elevation data are available,
making it possible to map radiance values into a a synthetic brightness image using lambertian or
non-lambertian models of surface reflectance {Justice et al., 1981]. Digital elevation data are

available for the southern Sierra Nevada only at 90 meter resolution and according to Seidel et al.
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{1983] elevation data on a scale greater than the Landsat sampling distance are inadequate for
producing a satisfactory synthetic brightness image. Band ratioing, a method for canceling out
multiplicative effects of topogi'aphy was rejected because of its tendency to enhance differential
noise petween bands giving rise to spurious or confounding signals of high frequency texture.
Without the possibility of digital terrain correction, images were selected in which shadowed areas
were a small proportion of the image. This unfortunately limited the method of analysis to
larger, open areas of mountain basins which may not be truly representative sites. Since all com-
parisons in this study were scene specific, it was assumed that the texture signal caused by under-
lying factors would hold constant between resolutions and between dates. More importantly, the
chosen texture analysis methods, co-occurrence and energy statistics, are sensitive measures of
contrast and of edge structure and should thus reflcct the distribution of very bright, high-
contrast snow patches rather than dark, low contrast background features. To emphasize con-
trast and edge detail all texture features were derived from visible bands TM 2 and MSS 4 in

which snow is very bright.
- Pre-Processing

Texture measures, like co-occurrence statistics that are based on grey-level transitions, are
sensitive to shifts in overall scene brightness or contrast. To standardize images so that mono-
tonic changes in illumination are not used to discriminate textures, the first order grey-level distri-
butions of all the textures were normalized to uniform distributions. At the same time, images
used for GLCM analysis were reduced in quantization to make the co-occurrence matrices reason-
ably sized. Histogram equalization was carried out using a procedure outlined by Pratt [1978].
This process can be considered a monotonic point transformation in which the input cumulative
probabilities are equal to the output cumulative probabilities for a given input index. The histo-

gram equalization function is expressed:
g9 =[ﬂmu"9mln] Py(f)+ gmin (10.3)
Here g is the output grey value, g, is the minimum output grey value, gm. is the maximum

output grey value, and P, (f ) the cumulative distribution function of the input variable f .

Note that the output number of grey levels is controlled by the g mai - 9mia range, so that

images are simultaneously equalized and reduced in quantization by a single transformation.
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10.4. Snow Classification
Spectral Characteristics

Snow has a very distinct spectral signature. It is extremely bright in the visible bands, fre-
quently saturating sensors calibrated for vegetation reflectances and at the same time is quite
dark in the shortwave infrared bands like TM bands 5 and 7 [Dozier, 1984]. Few scene elements
are confused with snow cover except for white clouds that often are indistinguishable in the visi-
ble and near infrared spectral range. With the advent of TM shortwave IR data (1.57-1.78um
and 2.10-2.35um) discrimination between the two classes has become possible because clouds are
significantly brighter than underlying snow in these bands [Dozier, 1984]. This suggests that
given visible and shortwave IR data, satisfactory snow classification could be achieved with only

two spectral bands.

A successful two band snow classification using MSS visible and near infrared data is
already in use; Haefner [1979] found that snow cover could be classified into three found that
snow cover could be classified into three categories, snow-free, transitional and snow-covered,
using only MSS bands 5 and 7. Although it was necessary to further subdivide classes during
training site selection, the visible and near infrared bands were sufficient for discriminating the
three snow categories except in the presence of concrete, white rocks or snow under dense coni-
ferous forest. (Mixed classes of snow under forest canopy can be discriminated with the addition
of MSS band 4). For complex classifications which distinguish various stages of snow metamor-
phism all four MSS bands have been used to identify up to ten classes of snow and seven classes

of ice [Thomas et al., 1979).
Classification Approach

Considering the superior resolution and spectral discrimination of the TM sensor, it was
presumed that a two band approach using TM bands 2 and 5 would be an improvement over MSS
two band methods and sufficient for a binary classification of snow-covered and snow-free areas.
In the visible range TM band 2 was selected because of its larger dynamic range and therefore
lower tendency to saturate over snow compared to TM band 1 and yet remain relatively insensi-
tive to metamorphic changes in grain size compared to TM bands 3 and 4 [Dozier, 1984]. T™M
band 5 had several reasons to recommend its use; besides cloud discrimination properties, this
band is generally a high information channel. Price (1984] found that the TM band 5 information

rate expressed in bits/pixel is higher than shorter wavelengths and is also relatively uncorrelated

with visible and near infrared bands.
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Because snow is spectrally distinct, very bright and relatively homogeneous it is amenable to
thresholding approaches to classification. In fact, Rango and Itten [1976) found that snow
classification results differed little between histogram parallelepiped and maximum likelihood
classifiers. For this study, rather than use a parallelepiped scheme, methods were investigated to
find a single data plane for thresholding which combined critical spectral properties of visible and

shortwave infrared wavelengths and also reduced variance.

Table 10.1 gives summary statistics for a single snow cover training site from TM image A
(n==315) using two approaches, ratioing and principal component analysis. Ratioing the two
adjacent bands, TM 2 and TM 3, reduced variability and range when compared to TM band 2
alone. Presumably, variation due to topography was reduced by canceling out multiplicative
effects. This reduction is greatest for adjacent bands in which surface reflectance ranges are simi-
lar [Holben and Justice, 1981). Although the narrower threshold of the ratioed class was an
improvement, it did not include important shortwave IR spectral information. A ratio of TM
bands 2 and 5 reduced the threshold range but not the variability with respect to the single visi-
ble band.

On the other hand, snow patches were clearly discernible on principal component images.
As Figure 10.3 shows there is virtually no difference between the first principal component using
TM bands 2,3,4,5 and 7 and the first component using bands 2 and 5 alone (see discussion below).
The two band component was selected for thresholding since it was computationally less costly
and because it had a lower coefficient of variation than either TM band 2, the TM2/TMS5 ratio or
the five band principal component image. A single threshold range applicd to the two band prin-

cipal component image yielded a satisfactory classified image (Figures 10.4 and 10.5).
- Classification Results

The spectral and spatial advantages afforded by the TM sensor are evident from comparing
TM and MSS snow classifications for the vame scene (Figure 10.4). The MSS scene was also
classified by thresholding a single data plane, the first principal ccmponent of bands 4,5,6 and 7,
which was selected by the same process of comparing training site statistics. Percent snow cover
in the MSS subimage was 30% higher than in the matched TM subimage. This discrepancy
partly stems from the poorer spectral discrimination provided by the MSS data and the inexact,
subjective nature of thresholding, but its major cause is the far coarser resolution that blurs tran-
sition zones and leads to systematic overclassification. At the same time, isolated, small groups of

snow-covered pixels identified on the TM image were omitted from the MSS classification.
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Principal Component Analysis

Principal component analysis is a linear orthogonalizing transformation that yields a vector
of coeflicients, the eigenvector, used in linear combination with the variables of the input vector
to align the variables along an axis of maximum variation that is statistically uncorrelated and
geometrically orthogonal to s. :eeding components {Cooley and Lohnes, 1971]. A principal com-
ponent image is obtained from the original image, g, having p spectral bands by the transforma-

tion [Moik, 1980]:
9° =T (9 -m) (10.4)

Here g° is the principal component image, T = pzp is the matrix whose rows are the normalized
eigenvectors of the spectral covariance matrix C of g, and m is the mean vector of the p spectral

bands.
The eigenvalues A\, and the eigenvectors {, of C are obtained by solving the equation

Ci, =X\t (10.5)

The principal component transformation isolates non-random information from noise while also
decorrelating the transformation axes to eliminate redundancy [Anuta et al., 1984]. The resulting
scalar ecigenvalues and set of eigenvectors can be interpreted directly for some insight into the
sources of variation. The ratio of each eigenvalue to the sum of all eigenvalues gives the percent
of total variance explained by the corresponding cigenvector. The eigenvectors are comprised of
coeflicients or loadings that correspond to the cosine of the angular distance through which each
input band must be rotated to be aligned with the principal axis of variation. The larger
coeflicients represent smaller angular distances and thus greater influence on the component
[Anuta et al., 1984]. The loadings can be viewed as weights corresponding to the relative contri-

bution made by each band.

Component loadings for TM and MSS subimages are given in Table 10.2. Clearly, the visi-
ble bands dominate the first principal component derived from five TM bands; visible and near IR
bands all carry about equal weight while the shortwave IR bands contribute far less. Only in the
second component does the near IR band behave independently of the visible bands. The load-
ings of the first principal component using only two bands reflects this same pattern and provides
the same level of explained variance as the five band first component. Apparently redundancy
among the five TM bands with respect to the first axis of maximum variation was effectively elim-

inated by using only two bands.
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Loadings for the first component derived from four MSS bands are not clearly divided into
two classes. Visible bands show a pattern of increasing relative contribution into the IR which \
then tapers off again; MSS bands 4 and 7 alone were unable to represent this combination of spec-
tral information. In reviewing the component images, it is apparent that TM snow classification

was achieved using essentially a reduced-variance visible image augmented slightly by shortwave
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IR information whereas MSS classification relied on a nearly equal mix of visible and near IR

bands.

10.5. Methods

Distance Measures

ol

In the language of statistical pattern recognition, the texture statistics used in this study are
features which detect sufficient statistical (non-random) variability between patterns to allow

classification. The task in feature selection is to find an evaluation function that will assess how

well a set of features discriminates between classes. Generally, there are three types of evaluation
rules (Ben-Bassat, 1980]: information measures (uncertainty), distance measures (separability), and
dependence measures (association). Each of these measures distribute objects into feature space
which can be divided into classes by a discriminant function. Alternatively, each measure can
stand as a figure of merit such that a large measurement difference iraplies low classification error.
Evaluation by figure of merit rather than by classification has the advantage of being independent
of any particulai discriminant function and may additionally include error analysis [Faugeras and
Pratt, 1980]. Distance metrics were deemed most appropriate to the aim of quantifying

resolution-dependent textural differences rather than for discriminating between them,

Distance measures used in pattern recognition for statistical evaluation of separability

operate on sample pools. Accordingly, the large TM and MSS images were divided into 64 square
samples covering comparable areas. Distances were calculated between these samples and then

reported in sum or average.

Three distance measures were chosen to evaluate the separability of T™M and MSS texture

features. Initially Euclidean distance was calculated between sets of statistics that were first re-
scaled between zero and one in order to preserve a consistent metric for variables originally meas-
ured on different scales. The Euclidean distance between columns of the TM and MSS feature

matrices was calculated as follows:

d(j k)= E% Vig(i,5)- 2 (k)] (10.8) ' s
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The Euclidean distance between image pairs was the sum total of distances between all texture
features (matrix columns). Because it was necessary to re-scale the data, this metric accommo-

dated comparisons between unnormalized variables such as sums and counts.

To be able to easily compare the degree of similarity among data sets, the average Gower

Similarity Coefficient [Gower, 1071) was calculated between each feature k:

" LY (s
S(i,i k) EE:%_FEI _ lz(ﬁ:‘%(;3(l,k)l (10.7)
R (k) is the range of a given texture feature k over both sets of data. The similarity between
image pairs was the overall average similarity between texture features. Like Euclidean distance,
the similarity coeflicient is sensitive to magnitude. When applied to inherently normalized
features such as the standard deviation or the average, the range is sufficiently comparable
between data s:ts for the coefficient to work well. Unscaled data sets ranging widely in value will

have low similarity though correlation between the two may be high.

The last distance metric considered, Bhattacharyya distance ,is a more sophisticated meas-
ure theoretically based on a scalar function of the probability densities of the two feature sets
[Faugeras and Pratt, 1980): For Gaussian densities Bhattacharyya distance is calculated [Davis,

1981]:
1 - |
B(S,89) = '5'(71-'72) [*-1—2-—-2— ] (7, -wg)T

1
| 2 (Z+2 |

+ In6
| & 1% ] 5| ®

(10.8)

Here u; is the mean vector for class 1, X, is the covariance matrix for class ¢, and | E; | is the

determinant of ¥; .

By taking variability into account, this metric distinguishes between feature sets that might
have identical means but a different spread of values around the mean. In addition, Bhatta-
charyya distance is theoretically linked to the Chernoff error bcund applied to Bayesian
classification error [Faugeras and Pratt, 1980]. If texture features are normally distributed these
error bounds can be applied to Bhattacharyya measurements. As is true of the other metrics,

Bhattacharyya distance is most successfully used on normalized variables.

-~ el
—

.
N

).
o e b i e - v S e kAT e YA o D-«
: g k"%% e . AT 2 N . g
- s . 8



.y

bk k- i oot

= LU

- 61 -

Regression Techniques

As a first step in regression analysis, all variables were screened for asymmetrical distribu-
tions. If histograms and quantile plots of the sorted data against quantiles of the standard normal
distribution (Q-Q plots) were skewed, the variables were transformed using power functions
[Tukey, 1977] that gave the best approximation to symmetric and, if possible, normal distribu-

tions. This was done to better satisfy least-squares assumptions of normality and homoscedastic

error.

For each of the twelve models, the best subset of predictor variables was selected using a
leaps and bounds regression method available from the S interactive data analysis package
[Becker, 1984] in which Mallow’s C, statistic served as th: criterion for goodness of fit. This
method is a generalization of stepwise regression methods that examines all possible subsets of
predictor variables rather than the effect of a single addition to or deletion from the predictor set.

The C, statistic, closely related to the adjusted coeflicient of determination, [Draper, 1981] is:

RSS
C == 2"t )
L4 .2__(n~2p) (109)

RSS, is the residual sum of squares from a model containing p parameters and s is the residual

mean square from the largest equation possible containing all the variables.

The term #? is taken as the unbiased estimate of the error variance o%. Since the expected
value of the C, variable is approximately p, the best, least biased equations are those in which
the C, statistic is equal to the number of parameters. In each case, the equation with the smal-

lest number of parameters and least biased fit was chosen for the regression model.

Standard least-squares multiple regression was then run on the transformed variable: using. a
set of programs from the S package. The significance of the regression coeflicients was checked
with a ¢-statistic and the overall regression significance with an F -statistic. The residual stan-
dard error and adjusted coefficient of determination (R?) were calculated for comparison of
models. Regression residuals were plotted against the fitted values, and a locally weighted
smoothed line was drawn through the scatterplots to detect departures from the zero mean line.
In addition, the sorted residuals were plotted against quartiles of the standard normal distribution
to check for normality. Finally, a rcbust, iterated, weighted least-squares regression was run.
Observations that received low weight were examined and the effect of deleting these samples was
determined by repeating the least squares regression on the trimmed data set. If the least squares

and robust regressions agreed well in coefficients and residuals, it was presumed that the least-
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squares assumptions had been sufficiently met and that the tests of significance stood.

Without a large, longitudinal data set at a given site it is difficult to to test the predictive
power of a model. In the case of the TM/MSS image pair, regression models were used for com-
paring the effect of resolution on the scenc model, not for cross-predictive purposes. Instead, for
each model, a jackknife technique was used .o verily internal stability and to test internal predic-
tability. In this technique, each observation was deleted in turn, the regression repeated and the
new coefficients used to predict the deleted value. The stability of each regression coefficient was
measured by the coefficient of variation and any observations with highly deviant coeflicients were
examined for error. The predicted and obseived values were plotted in sample sequence and as
scatterplots. Prediction residuals were also plotted to check for any systemiatic patterns. The
overall prediction performance was measured using a model efficiency statistic [Rango and Mar-

tinec, 1979) which is a non-dimensional ‘‘goodness of fit’’ function:

S |-

_Z'Jl (W -7)- % ‘Z'}‘ (v -w' )V
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3 (10.10)
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i=1

Here y; is the observed snow-covered arca, y is the mean snow-covered area, and y;’ is the

predicted snow-covered area. Similar to the coeflicient of determination, this statistic is a meas-

ure of the proportion of variance explained by the model.

The purpose of independently deriving regression models for December and January images
at a given site was to test the generality of each set of extracted parameters by means of a cross-
prediction test. This technique determines how well one set of parameters predicts the snow
cover at the same site but under an altered snow cover pattern. The data for the two dates were
then pooled to obtain a general equation for the scene. As before, predictions and prediction resi-

duals were plotted and model cfliciencies calculated.

10.6. Results
Texture Characteristics

Gray level co-occurrence matrices (GLCM) are joint probability tables for a specified rela-
tionship between pixels. A comparison of matrices constrained by different joint relationships
should reveal information about three fundamental texture properties: periodicity, directionality,

and information content. Thus, a good starting point for analyzing the effect of resolution on
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texture was to compare various co-occurrence matrices and the statistics extracted from them at

both TM and MSS resolutions.

Using image pair A, co-occurrence matrices were tabulated over the entire TM and MSS
scenes for a range of displacements (1, 3, 5, 10 pixels), a range of angles (0 °, 45 *, 90 *, 135 °) and
a range of quantizations (8, 16, 32, 64 grey levels). The chi-square statistic was used as the cri-
terion to choose the best combinatiion of specifications. Plots of chi-square values for all quantiza-
tions and distances (Figure 10.6; show that the maximum chi-square angle (in this case vertical)
was identical at all grey levels and displacemenrts. Chi-square values from the two resolutions
were consistently parallel in behavior; most information was found at a displacement of one pixel

and, by definition, at the highest number of grey levels (64).

When TM and MSS images were divided into samples (for the purpose of metric analysis) it
was possible to compare the x? selected angles for each image by sample. Table 10.3 gives the
correlations between selected angles for each image pair; only image D had a correlation better
than 0.5. For all images, horizontal and vertical directions were dominant perhaps because the
diagonal distance is actually 1.4 times longer than the distance to adjoining horizontal or vertical
pixels. In the TM image the selected angle oscillated between the two orientations more rapidly
than those of the comparable MSS image. This divergence in directionality is the most distinct
textural difference between TM and MSS images. Although this may be interpreted simply as
increased noise, it has elsewhere been reported that directionality is critical for distinguishing very
similar cover types [Hallada, 1982]. This implies that the tendency of investigators to reduce
computation by averaging the various directional co-occurrence matrices is probably an unwise
economy in classification studies. However, averaged matrices are useful for deriving rotation-
invariant measures of texture; statistics computed from averaged matrices are the most useful

features for predicting SCA since they hold for various orientations of the terrain image.

Figure 10.7 is a graph of chi-square values for one angle ploited against distance. The
exponential drop in chi-square beyond a distance of onc corresponds to the sharp drop-off in the
autocorrelation function observed in any natural texture |[Laws, 1980]. Also note that large
differences in information content due to greater quantization are only significant for distances
less than five, beyond that, low quantization yields the sane information. The large chi-square
difference between MSS and TM images is due to the four-fold ereater sample size used in the TM
image to cover a comparable sample size at MSS resolution, not a reflection of a far greater infor-

mation content. Regular artificial patterns will have additional peaks in the chi-square/distance
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plot at displacemerits corresponding to the periodicity of the pattern. No such underlying periodi- ‘
city was detected in these images using displacements that covered up to 60% of the lincar {

dimension of the sample. *

By definition the x? statistic increases in magnitude as the information content climbs with
increasing quantization. The computational costs of carrying out the analysis at G4 grey levels
were too high to be considered in this study since each doubling of the grey scale increased all cal-
culations four-fold. Sixteen grey levels were chosen as a compromise between information content

and efficiency based in part from the analysis of co-occurrence statistics that follows.

GLCM Statistics

Plots of each co-occurrence statistic against angle for image pair A revealed that in each

s

case the maximum chi-square angle was that which produced a matrix dominated by small grey-

level transitions. This is a diagonally dominant matrix indicative of a relatively coarse texture
(see Figures 10.8a,b). In short, the preferred textural orientation corresponded to the highest

autocorrelation.

The i ertia statistic was minimal at the x° selected angle because it is designed to give most
weight to infrequent, large, high contrast, transitions. And because the grey level differences act
to weight the statistic, most diflerentiation between angles was achieved at the highest quantiza-
tion level. MSS and TM responses were parallel but MSS values were consistently higher at each

grey level, the expected behavior for a coarser texture.

Another statistic that varied inversely to the chi-square evaluation was entropy. This is the
case because the negative log of small probability transitions is much greater than the negative

log of high probability transitions. That entropy should he minimized where structure is greatest

is intuitively correct. Entropy also dropped with decreasing quantization due to the increased

probability per transition. Entropy values were greater for MSS than for TM at all grey levels,

i
|
|

again indicating the relative coarseness of the MSS texture.

Dominance of low ‘“‘contrast’ transitions was best detected by the homogeneity statistic.

Because the gradient between joint pixels appears in the denominator of the homogeneity for-

mula, the largest homogeneities for both TM and MSS were found at the lowest quantization level
at the x? selected angle. Yet this statistic is relatively insensitive to quantization giving good
differentiation between angles at the highest number of grey levels. As expected, the TM image

had higher homogeneity than the coarser MSS image.
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Highly correlated with homogeneity, the energy statistic was also maximized at lowest
quantization for the x? angle. Energy is simply the square of the transition probabilities; as the
probability per bin drops with increasing quantization, the square gets increasingly smaller. Thus,
energy is very sensitive to an increase in quantization such that no detectable difference exists
between angles at 64 grey levels. At this quantization the statistics would have to be scaled to
remain compatible with other GLCM statistics. Energy was higher for the TM acene because the

higher probability of low contrast transitions dominated in the finer resolution image.

Both TM and MSS images produced positive correlation (COR) statistics on the order of
p == 0.8, an indication of a strong association between rows and columns of the GLCM. As the
co-occurrence matrix becomes less diagonally dominant the COT value increases. Accordingly,
the highest correlations coincided with the x? angle and with the TM scene at all levels of quanti-
sation. Unlike the energy statistic, COR, a standardized statistic ranging between zero and one,

is useful at all grey levels.

Two other correlation measures based on matrix entropy are strongly associated with the
COR statistic. Information correlation 2 (ICOR2) behaves exactly like COR although the value
of the correlations ia on average 0.1 below COR values. ICOR2 is maximal when the difference
between total matrix entropy and the row or column entropies i smallest i.e. when values are
more evenly spread throughout the matrix. Conversely, the iuformation correlation 1 (ICOR1)
statistic assigns highest negative correlations to matrices in which this entropy differential is smal-
lest making ICORI inversely related to COR and ICOR2. TM matrices generally have lower
ICORI values than do MSS matrices since the difference bevween total and marginal entropies is

smaller for the for the finer texture.

It can be concluded from examination of the co-occurrence statistics that many are inter-
correlated. Those statistics that emphasized low contrast transitions, energy and homogeneity,
were positively correlated with each other (p = 0.82) and negatively correlated (p = -0.87) with
entropy and inertia which give weight to high contrast transitions. The correlation statistics,
COR, ICOR1, ICOR2 were highly correlated with each other either directly or inversely. If this
redundancy is removed, the seven co-occurrence statistics are reduced to three: measures of low

contrast, high contrast and correlation.

While some co-occurrence statistics are equally effective at all levels of quantization some
are more sensitive with fewer grey levels, others with more. A good middle ground of 16 grey lev-

els coincides with the same choice made for the sake of computational efficiency.
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All GLCM statistics were normalized by sample size making direct comparisor of TM and
MSS textural features valid. The statistics in all cases are sensitive to differences in resolution
between the scenes. MSS features consistently show a relatively coarser texture in which high

contrast transitions form a larger proportion of co-occurrences thua in the TM image.

Filltar Statistica

A survey of TM and MSS filter statistics showed that averages and sums (per unit area) are
very close in value for the two resolutions but that the standard deviation of the TM images is
consistently higher indicating that filtering brings forth more edge detail in the higher frequency
T™M data. In the next step of analysis, various metrics were used to quantify the resolution
dependent differences detected by both the local statistics of the filtered images and by the co-

occurrence statistics.
Metric Analysis

For each of the four sets of registered TM and MSS imagery, the distance between features
was measured three ways. Results from using Euclidean distance, Gower Similarity, and Bhatta-
charyya distance are given in Table 10.4. Distances between SUM feature sets are reported only
in the case of Euclidean distance as this was the only analysis for which all variables were normal-
ized to a (0,1) range. The SUM variable alone is strictly dependent or ample size; left un-scaled,
SUM values distorted feature space making valid Gower similarity or Bhattacharyya distance
measures impossible. By contrast, the GLCM statistics, based on probabilities rather than fre-
quencies and calculated from histogram equalized images are standard statistics; likewise AVG
and SD values are inherently normalized. A clear picture of texture separability was obtained
despite the omission of SUM variables from Bhattacharyya distance and Gower similarity

analysis.

Based on mean Gower Similarity, TM and MSS textures are 9195 similar when GLCM
features are used, 96% similar with AVG features but only 719 similar with SD features. The
same pattern is repeated by Bhattacharyya distance measurements: SD features produce twice the
separability of the AVG filters, while the GLCM features fall in between. This implies, not
surprisingly, that the ratio of within scene to between scene variance is greater for .verages than

for either standard deviations or moments of the co-occurrence matrix.

Euclidean distance= .1;reed with the other two metrics by singling out the SD features as th«
most sensitive indicators - iesolution dependent textural differences. In Euclidean space, AVG

and SUM are nearly idenc:-al and somewhat superior to GLCM features for texture separability.
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Though not strictly consistent, all three metrics indicate that image pairs A and B are closer than

images C and D.

It can be assumed that resolution differences between TM and MSS image pairs are rela-
tively constant since the images were taken under identical conditions. That the distances
between pairs are not constant can be attributed to differences in registration, saturation, and sur-
face properties between sets of images. However, if all metrics were in accord, the coeflicient o/
variation among the features should be fairly constant. This is the case for Euclidean distance
and Gower similarity measures but is not for Bhattacharyya distance values, a result most likely

due to the incorporation of the variance into the calculation of distance.

The Bhattacharyya distance measure may also be inconsistent because it was applied to
GLCM and filter variables that in some cascs were clearly non-normil whereas it is defined only
for Gaussian distributions. Likewise, the error bounds reported in Table 10.4 are not statistically

significant but serve as rough limits on the accuracy of calculated distances.

Metric analysis supports the conclusions gathered from inspection of individual co-
occurrence statistics: thcre is a consistent, detectable difference in texture between TM and MSS
images. This difference is on the order of 5% to 10% when characterized by GLCM statistics or
AVG statistics but as much as 307 when the variance of the filtered images is used. Clearly, the
difference in textural information represented by these texture features is far less than what the
human eye perceives and what would be expected by a two-fold improvement in resolution.
Translation of textural information into joint probabilities or into selectively filtered enhance-
ments and subsequently into summary statistics involves a loss in information that dampens out
distinctions between textures that are much more pronounced at the original level. It is not
surprising that an improvement or dcgradation of resolution should correspond to a concomitant
increase or decrease in image variance detectable by SD filters, but it is unexpected that the co-

occurrence statistics are so relatively insensitive to these changes.
Regression Analysis Results

An initial task before undertaking regression analysis was to survey the distributions of both

dependent and predictor variables. Summary statistics for snow-covered area (SCA) are given in
Table 10.5. In general the standard deviations are roughly equal to % the range th*:s suggesting
non-normal distributions. For a normal distribution three standard deviations on either side of

the mean contains almost all cases making the¢ standa:zd deviation approximately % the range
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[Arkin and Colton, 1070]. This was confirmed by strongly skewed histograms of SCA [or each
image; low cover samples occurred far more frequently than high cover samples. This is typically
the case for data that are counts or amounts because of a fixed zero boundary and a high or
unlimited upper bound {Chambers, 1983]. Excessive skewness often implies a correlation of varia-
bility with mean level which can produce non-constant variance and heteroscedastic error in a
least-squares regression [Bartlett, 1947). Non-normality invalidates the usual significance tests
and heteroscedasticity reduces the precision of the estimates. Fortunately, transformations that
stabilize variance also tend to normalize the data; this is usually accomplished by power functions

[Chambers, 1883):

' 0 <0 for right skew
iOg ¥ 6=0
- g >0 for left skew

The best transformation was chosen by plotting sorted transformed data against quartiles of
the standard normal distribution. The square root transformation (§ = 0.5) turned out to be best
for ihe December and January data while a log transform was necessary for the MSS and TM
image pairs.

The predictor variables were surveyed in a similar manner for asyminetrical distributions.
The purpose was to gain insight into the behavior of variables and to determine whether transfor-
mation of skewed variables to symmetric improved regression models. Distributions of all the cc-
occurrence statistics show a preponderance of small transitions which is expected for a relatively
coarse texture measured at a single pixel displacement. The inertia statistic, which compensat.es
for this typical situation by giving more weight to less frequent, large transitions, is symmetric.
Energy and homogeneity statistics are right skewed because the probability of transition term
dominates inversely; entropy is left tkewed since the term dominates directly. By contrast, the
response of the filter variables is scene specific; for TM and MSS images the AVG, SD and SUM

statistics are generally symmetric while for the December and January images they are skewed

left.

Skewed predictor variables were transformed using power functions and then entered into
the leaps an? bounds regression for subset selection iransformed variables do not simplify or
improve the models. In many cases, a mix of symmetric and skewed variables have the best

explanatory power. In final forn, TM/HMSS regressions are semi-log functions and the
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December/January are ‘‘semi-square root’ functions.
Regression Significance

A summary of the regression models is given in Tables 10.6a,b. The equations are grouped
by image and type of summary statistic used for filtered samples. It is clear from vhese results
that snow-covered area can be successfully regressed on a combination of texture statistics. While
the models vary in size betw  « ."ree and seven parameter:, the best results are obtained with
four or five predictor variables. All regression coeflicients are significant at the 0.005 level or
better and the least-squares coefficients are on average within 5% of those estimated by robust
regression. The proportion of explained variance measured by the adjusted coefficient of determi-

nation is in all cases at least 0.95.

Analysis of the residuals was hampered by the log transform of the dependent variable. In
log units the residuals are homoscedastic and close to being normally distributed, once corrections
were made for negative log values ( antilog values between zero and one). The residuals in real
values are log-normally distributed, showing larger variance for low snow cover values. The resi-
duals from December and January models, in square root units, were evenly spread around the

zero mean line and close to normal on a Q-Q plot.

Least squares linear regression assumes that regressor variables are independent, random
variates and that errors are not autocorrelated. When regressor variables and errors are positively
autocorrelated, the true variance of regression coeflicient estimates is underestimated leading to
overestimation of ¢ and F significance tests and inflated R? values [CIiff and Ord, 1981]. A basic
property of geographic data is its spatial autocorrelation. It can be assumed, therefore, that the

texture features used as predictors are autocorrelated to some degree.

In order to check for residual first-order autocorrelation Durbin-Watson statistics were cal-
culated for all models:

- Z(u —“¢-1)2

Dw SINE (10.11)

Here u, is the regression residual at location ¢ .

A Durbin-Watson value close to 2 indicates no autocorrelation, a value of zero implies per-
fect positive autocorrelation and a value of 4 implies negative autocorrelation. Durbin-Watson
statistics for all models, given in Table 10.7, are consistent: all but the December models show no

postive first-order autocorrelation (significant at the 0.07 level). Statistics for December models
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are inconclusive; the null hypothesis of no positive autocorrelation can neither be rejected or
accepted. Overall, it can be concluded that the sampling interval de-emphasized adjacent
influences and failed to coincide with any large periodicities of the image function. However, in
the general case, depending on sampling frequency and site-specific texture pattern, it may be

necessary to include autoregressive terms for some models.
Regression Models

Models derived for TM and MSS images that used a coribination of co-occurrence s'atistics
and AVG filter values were very similar in composition and coefficient values. The two leading
variables were symmetrically distributed co-occurrence statistics followed by a smoothing filter
and a Sobel gradient operator. When AVG statistics were replaced with SUM or SL statistics,
the models diverged in number of variables, composition and coefficient values; SD models were
more dissimilar than AVG models. In general, the AVG/GLCM model characterizing scene tex-
ture in the MSS image was unaltered for the TM image despite the two-fold improvement in reso-

lution. Major differences became apparent with the use of SUM variables and were quite pro-

nounced with SD variables.

As can be seen from December and January imagery (Figures 10.5), the snow cover receded
substantially in one month from 33% to 19% snow cover. Nevertheless, one pair of models
resulted which were quite similar for both images. When GLCM and AVG features were com-
bined, only three parameters were required and of taese two were shared in common by the
separate models but produced very different coeflicients. By contrast, the use of SUM filters
meant a large increase in the number of parameters to seven without a corresponding improve-
ment in B2 Of these seven parameters only three were in common and the coefficients were
quite dissimilar. On the other hand, SD models for each date had five parameters, three of which
were identical (ICOR1, fil,, fil,s) and two of which were highly correlated between dates. Ail
five coeflicients were quite similar but no formal test for the equality of regression co:fficients
through time could be made because the model specifications were not identical. The degree of
similarity between models was inferred from the results of forecasting the snow cover at one date

using model coeflicients derived from the other.

In an eflort to get a ;, neral equation applicabl. t< Loth December and January scenes, the
data were pooled and re-submitted for regression analysis. The resulting models, though
significant and predictive (see Figure 10.9) tended to be over-parameterized ranging from six pred-

ictors using AVG filters to eight using SUM filters. Again no conclusions could be drawn about
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the similarities of the regression relationships between pooled and individual data sets because the

model specifications varied so widely.
Regression Variable Selection

Co-occurrence statistics that are designed to reflect second-order relationships did not out-
perform the first-order filter statistics. No model was composed exclusively of co-occurrence
statistics while the smoothing filter appeared in almost all models. Perhaps the simpler statistics
were more suitable for use in a functional relay onship because snow-covered area is a high con-
trast, low variance target easily captured by first-order statistics. The complicated heterogeneous
cover of, say, an urban scene may require second-order statistics for purposes of discrimination

and classification.

The most significant and predictive equations were those that had four or five parameters.
Examination of variables selected by the leaps and bounds method suggests that there are six
categories of texture features that contain most of the texture information in a scene: l.ow-contrast
GLCM 1noments, high-contrast GLCM moments, GLCM correlations, the low pass filter (f /),
vertical edg= detectors and horizontal edge detectors. It is possible that a generic equation com-
posed of variables drawn from each category but with scene specific coefficients could be generally

applied to snow-covered watersheds.
Prediction Results

The significance of the regressions and the proportion of variance explained by the equations
were all uniformly high. These models are aani ttedly scene-specific and calibrated with a limited
data set. The only means of testing model predictability was to perform jackknife regressions
summarizing internal predictability with model efliciency scores (see Table 10.8). These results
are reported in both transformed and actual units. Clearly, the type of transformation applied to
the dependent vari ble had a strong eflect on the outcome of prediction. In log units, the
efficiency of TM and MSS regressions was on average about 15% r than R? values. When
predictions were converted to actual values (number of snow-c.  -ed pixels) the efficiencies
dropped to zero due to excessive overshooting for the top 8% ot .. e values. If the domain of
prediction is limited to low and mid-range values the efliciencies return to those measured in log
units. The coeflicients proved to be quite stable, varying on average 2.5% but in no case more
than 6.5%. Log transformation linearized the model making possible a highly significant regres-
sion, but because small log residuals for high values converted exponentially into much .arger

actual residuals, the domain for accurate prediction of real values was limited to 25% SCA.
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The over-prediction problem inherent in log transformed data was not encountered when the

data were square-root transformed. Jackknife efficiencies in square root units were quite high: 5%

o TEDTTREREET

lower than R? values and when measured in real values only 10% lower than R?. Figures

10.10a,b and 10.11a,b show the results of jackknife regression for the December scene in both 1

actual and real values using AVG filters.

- Regressions for December and January that involved SD filters differed from each other by
two variables. Two edge filters in the December equation were replaced by edge/spot filters in
the January model. The coeflicients werez on the whole quite similar. So it is not unexpected that
when each model was applied to the other scene that model efficiencies, in transformed terms,
differed by only 5%. 'More importantly, both models turned out to be surprisingly efficient at
prediction: 91% and 95% of the variance was explained by the models (see Table 10.8). Figures

10.12a,b and 10.13a,b are plots of cross-predicted versus actual values for the two dates.

By contrast, the AVG models for the two dates were poor predictors even though the indivi-
dual regressions had high R% The December AVG model predicted January SCA with 44%
efliciency and the reverse was only 40% eflicient. SUM models for both images were so large
(p="7) that no attempt was made to test predictability. In general, predictive analysis re-
emphasized what was found from jackknife regressions: standard deviations of filtered samples

were by far the best predictors.

The remarkably good predictability between scenes that differed in snow coverage by 15%

implies that scene dependent parameters are robust enough to encompass recessional pattern

: changes. It may be possible to derive general parameters for moderately sized basins for use in

the melt season wiien patterns of snow recession are duplicated year to year.

10.7. Discussion and Conclusion

Texture Characteristics

When an image is considered to represent a random field, the co-occurrence matrix becomes
an estimate of the joint probability density function for pixels separated by given row and column
shifts. The autocorrelation at this spatial lag is deiermined by the matrix transition probabilities.
In the images of snow cover, the joint pixel correlations at a single pixel lag were high (p=0.85)
located along the slope of the central peak of the autocorrelation function. A comparison of co-
occurrence statistics from different resolutions is really a matter of comparing the rate of change

in the initial slope of the autocorrelation function; steep slopes correspond to fine textures, gentle
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slopes to coarser textures.

Detecting texture periodicities at far outlying joint positions is likely only for regular,
artificial patterns. For natural scenes it is most appropriate to carry out GLCM analysis over
relatively small windows at the minimum displacement. Judging from the results of this study,
quantization level is most critical when using small joint displacements because it acts to enhance
or dampen the differences in slope of the autororrelation function. Beyond five pixels large quant-
izations are only marginally more informative. It should also be noted that if textures are to be
analyzed over immediately adjacent neighborhoods then directional differences between textures
become more acute and rotationally averaged measures will overlook an important feature for dis-

tinguishing closely related textures.

The GLCM features are moments of the joint probability distribution that describe the
spread of values away from the central diagonal, a feature equivalent to the autocorrelation peak
reduced to two dimensions. As such, they are descriptors of contrast and correlation; low contrast
transitions are close to the diagonal, high contrast transitions are more distant and the correla-
tions reflect the degree of difference in transition values. When MSS and TM co-occurrence statis-
tics from the same site were compared, the MSS image was coarser both in terms of contrast. and

correlation.
Metric Analysis

The above result only served to verify the self-evident. It was necessary to use metric
analysis to find the magnitude and variability of these texture differences. The dissimilarity
between the two resolutions measured between the four image pairs using the standard GLCM
statistics or AVG/SUM statistics was ohly five to ten percent, but this increased to 30% when the
standard deviation of the edge filtered samples was used instead. That the variance (second
moment) of a local first order variable should be more informative than the mean (first moment)
is not surprising. What is unexpected is the much greater separability afforded by a first order

moment relative to the complex moments of the joint probability distribution.

Laws [1980] discovered that SD measures were best for discrimination but not necessarily for
segmentation. They acted as measures of local contrast tending to locate edges rather than
regions. The consistently higher SD’s of the TM images no doubt indicate the greater edge detail
created by improved resolution. As measures of local contrast SD features encompass the variabil-
ity of an entire window whereas GLCM measures of contrast are compressed histograms of grey-

tone transitions over a distance of a single pixel. The co-occurrence matrix provides information
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on the adjacent (or the joint) while the filter SD provides information on the local. Gagalowicz
(1981] and Julesz [1975) have found that texture discrimination is achieved locally, not globally so
that properties averaged over a local region may be more informative than those ascertained from
joint relationships. In other words, morc information on texture structure may be lost by generat-

ing the GLCM and its moments than in filtering and calculating variance.
TM vs MSS Regressions

Metric analysis made it clear that the relationship between resolution and texture separabil-
ity is not one to one. In fact, it is likely that studies employing standard GLCM statistics or
SUM/AVG filters could well substitute MSS data for TM without considerable loss in information.
In keeping with distance metric results, the AVG and to a lesser extent SUM regression models at
the two resolutions agreed while SD models differed cousiderably. When regressions were worked
out for two dates at TM resolution, both AVG and SD models were similar in composition and,
for the latter, in coeflicient values. Any conclusions that might be drawn about resolution depen-
dent textural diflerences from comrparing the two sets of regression models are confounded by a
lack of control on the SCA variable. Snow cover varied 30% between the resolutions due to limi-
tations of thresholding and spectral/spatial disparity between resolutions, while snow receded only

14% between sequential images of the same resolution.

Judging from jackknife regression results, the relationship between SCA and texture meas-
ures was of comparable strength at the two resolutions. TM model efficiencies were only £%
better than MSS efliciencies. But without actual ground data to both calibrate and test the

models it can only be said that they were both internally consistent.
Regression and Prediction Results

In general regression of snow area onto parameters describing its distribution was successful.
All twelve models were highly significant and explained a large proportion of the variance. For
December models, these results should be vicwed cauticusly in light of positive spatial autocorre-
lation effects leading to underestimation of coeflicient variance. Nevertheless, some of these
models were highly predictive. At 90 - 95% efliciency the semi-square root models using SD vari-
ables were especially good predictors. Operationally, they could be used to obtain snow cover

estimates when snow patterns are very discontinuous making manual or digital snow classification

difficult.

The domain of accurate prediction is limited by the transformation chosen for the depen-

dent variable. Transformations that stabilize variance and symmetricize distributions should be
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selected with the scale of the predicted variable in mind. For these models a square root
transform was preferable to taking the log. In real rather than transformed values, log models
began to seriously overshoot at 25% snow cover while square root models were stable up to 70 or
80% SCA. Using linear modeling and a moderate sample size this inherent problem will always
limit the domain of prediction to some degree because the uneven distribution of sample points

over the range of prediction results in greater uncertainty for under-represented points.

The aim of this study was not to successfully predict SCA per se but to establish the metho-
dologies for eventually predicting snow depth, a more direct indicator of snowmelt runoff. To
that end, it was learned that parameters of the texture regression models are scene and pattern
specific but are fortunately robust enough to accommodate considerable latitude in the actual

snow pattern formations, making them useful through time as the snowline recedes.

It may be possible, after further studies of models Jderived at a variety of sites, to construct
a standard mode] based on all six or some set of the six cavegories of texture features used here.
Without question the smoothing filter ( f i) would be a necessary parameter. Among the twelve
models studied it was nearly ubiquitous. Correlations between [, statistics and SCA ranged
between 0.72 and 0.95 (see Table 10.9) making it the single most predictive variable. Obviously,
local summary statistics of the smoothed image are highly correlated with coverage because snow
is such a singularly bright, high-contrast target within the scene. In most models thic low fre-
queﬁcy information was augmented by high pass filter variables and some mix of GLCM statistics
that contributed information on contrast and correlation in the immediate neighborhood of each
pixel. In gene:al, it was found that GLCM and texture energy features are well suited for detect-
ing bright, high-contrast snow cover patterns because they operate in the first case by measuring

contrast differences or in the latter by detecting edge structure,

The high R? values of the regression models were not good indicators of predictive power.
Using a cross-prediction test only models based on a majority of SD variables were useful under
different conditions. Thus the results of metric and regression analysis were in accord: separabil-
ity coincided with predictability. The standard deviation was superior for both purposes because
it reflected the level of high frequency information consistently both within and between scenes.
Depending on the site, AVG and SUM statistics could be highly intercorrelated or quite unrelated
while SD values remained at a consistent level of intercorrelation at different sites. It should be
noted that filtered images retained full quantization while GLCM images were necessarily

reduced. The power of SD statistics may in part be due to the greater information inherent in
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higher quantizations. It appears that breaking down texture structure into joint relaticnships for
a limited number of grey tones involves a loss in information greater than that involved in taking

local statistics of filtered images.
Conclusion

The difference in resolution between MSS and TM images which is so dramatic to the eye
was critical for classification accuracy. Snow classifications from TM images were far more
detailed and complete than MSS classifications yet principal component analysis revealed that
spectral information did not play a large part in this disparity. The data plane used for thres-
holding snow cover in the TM images was essentially a reduced-variance visible band somewhat
augmented by shortwave JR data for cloud discrimination purposes. TM near infrared data were
redundant to visible data and could be eliminated from the data plane. The MSS data plane was
also in effect a reduced-variance visible image supplemented by near IR data which, as in TM
component analysis, supplied mostly redundant information with respect to the first axis of max-
imum variation. In short, for binary classifications, snow is easily detected in the visible range

but may require shortwave IR data to aid in distinguishing cloud cover from snow.

Measures of joint grey-tone relationships and local statistics of high frequency enhanced
images do not duplicate perceptual sensitivity to textural detail apparent with greater resolution.
It is not surprising that these methods do not parallel those used in complex, non-linear, hierarchi-
cal visual processing. If the texture measures failed to achieve the sensitivity of human percep-
tual capabilities they successfully served as descriptors of mesoscale spatial distribution in func-
tional relationships between snow-covered area and areal distribution. Despite inherent data
problems of skewed distributions and autocorrelated samples, linear relationships making use of
the standard deviation of convolved images were 91- 96% eflicient in predicting snow-covered

area for a given site under two snow cover patterns.

Exploratory and particular rather than generalized, the regression analyses presented here
were undertaken as a feasibility study yet they did yield some general observations on the nature
of natural textures. Texture models are a subset of image models which Ahuja and Schachter
[1981] have grouped into the stochastic and pixel-based or the deterministic and region-based.
Global two-dimensional stochastic models specified by a particular random field can be described
variously by the autocorrelation function, variograms, means, gradients or spatial dependencies
[Ahuja and Schachter, 1981]. Specified in this manner, a global model can be viewed as a combi-

nation of the ideal data modified by a point spread function plus additive noise. For example,
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Faugeras and Pratt [1980] successfully decomposed global textures into measures of the autocorre-
lation function and moments of the histogram of the decorrelated whit2 noise field. This descrip-
tion is not unique in all cases; global models breakdown when the mean and autocorrelation func-
tion are no longer stationary. It becomes necessary to include a set of means and a spatial func-
tion to modify the symmetric autocorrelation function. In other words, with inhomogeneities glo-

bal models become local models.

If global properties do not hold or if an image model cannot be formulated, 4 texture must
be described empirically at the pixel or local level. Determining joint and conditional probabili-
ties is one such approach but as Aunuja and Schachter warn, a joint probability density function
may be an overspecification lacking in abstraction. Since neither over-generalized ‘lobal models,
or highly detailed joint relationships are entirely successful descriptions of natural texture it

becomes necessary to describe image statistics as local spatial averages.

On the basis of perceptual experiments, Gagalowicz [1981] found that where local second
order statistics differ from global ones, the eye is able to detect a textural difference; visual
discrimination is thus a local process. In addition, Julesz [1975] has speculated after years of per
ceptual testing that visual discrimination may require only local first-order statistics of simple,
pooled feature extractors. The results of analyzing snow cover texture support the notion that
texture is a local property. Local standard deviations were more effective 'or separating textures
and more reliable for linear prediction. Measures of local variance sppear to be quite informative
yet general enough to avoid over-sensitivity to noise. Moreover, local statistics taken from a
series of edge enhanced images do a better job at capturing edge structure than most stochastic
models which have been criticized for failing to account for real-world spatial structure [Modes-
tino et al.,, 1981]. In conclusion, the results of this study confirm those recently reported else-
where [Pietikainen ¢t al., 1983 that Laws texture features are powerful and eflicient descriptors of

natural textures.

10.8. Appendix

Co-occurrence Features

p (1,7 ) = matrix entry of the normalized co-occurrence matrix.

Ng = number of grey levels.
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l Information Correlation 1 }

HXY - HXY ]
max (HX HY)

E ICOR | =
; where
i HXY = ENT

Ny Ny
HXY1 == - ¥ 2' puv. ) log (pu(i) py(s))

1 o] ) o

Ny
HX “.z-:l‘ log (pe (V))

Ny
HY = 221 Jlog(py (J))

Ny
puli) =X p(s.5)

1=l

Ny
p(j)= }_,:lp(i,i)

Information Correlation 2

ICOR2 = (1 -exp|-20 (HXY2-HXY)))¥

where R
N My
IIXY2==—Z]l Y p(i)py(s)log (pe() py(s))
1m=] p =]
Convolution Masks
121 -1 01 -1 2 -1
Jilog=|242| say=|202| ji,=|-24-2
1 21 -1 01 -1 2 -1

Smoothing Filter Vertical Sobel
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-1 -2 -} [lo-n 1 -2 1
1 2 1 [-1 01 -1 2 -1
-
Horizontal Sobel
[}
-1 -2 -1 1 0 -1 1-21"
Jilg= | 2 4 2 Jilg=]-20 2 Silg= | -2 4 -2
-1 -2 -1 1 0 -1 1-21]

Laplacian Filter

10.9. Symbols

AVG Average of the absolute value of pixels within a specified window in an image ron-

4 volved with a Laws filter.
COR Correlation co-occurrence statistic !
ENG Energy co-occurrence statistic :
ENT Entropy co-occurrence statistic
Sig Laws convolution filter 0 : smoothing filter .
I, Laws convolution filter 1 : vertical Sobel filter »
Sl Laws convolution filter 2 |
Sily Laws convolution filter 3 : horizontal Sobel filter
S, Laws convolution filter 4 g
filg Laws convolution filter 5
Silg Laws convolution filter 6
Sl Laws convolution filter 7
Jilg Laws convolution filter 8 : Laplacian filter
GLCM Grey-level co-occurrence matrix
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HOM Homogeneity co-occurrence statistic
ICOR1 Information correlation 1 co-occurience statistic

ICOR2 Information correlation 2 co-occurrence statistic

INR Inertia co-occurrence statistic

MSS Multispectral Scanner

SCA Snow-covered area !

SD Standard deviation of pixels within a sp:cified window of an image convolved with a |
Laws filter.

SUM Sum of the absolute value of pixels within a specified window of an image convolved 'f

with a Laws filter.

™ Thematic Mapper
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10.10. Tables \
Table 101 Snow Classification Training Site Statistics, DN values 1
R
Band Mean Std Devv. CV  Min Max Range
™2 117 12 10% 42 140 98
TM2/TM3 58 2 1% 53 70 17
{
TMz;TMS5 91 9 10% 34 12 78 ‘
PC1 (TM2,5) 128 1 9% 100 220 120
PC1(TM2,34,5,7) | 130 15 12% 101 226 125
1
Table 10 2. Loadings of Principal Components
Band Principal Component .
o
PCl  Pct.Var PC2 Pect *’ :
TM2 |-052 9829%  -046 13%
TM3 | -066 -0.32
T™M4 | -0£3 0.82
™S | -010 014
T™M7 | -005 0.01
. MSS4 | -047 983%  -0.55 1.3%
MSSSs | -0.54 -0.39
! MSS6 | -0.60 0.46
MSS7 | -035 0.57
T™2 |[-088 991% -015 0.9%
T™MS |-015 0.88
MSS4 | -080 975%  -0.59 25%
MSS7 | -059 080
*
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Table 103. TM vs MSS x° Angle

Correlations

A B C D

p |05 048 074 047

; ’ Table 10.4. Distances Between TM and MSS Texture Features

Fulcidean Distance

Image | GLCM AVG SD SUM

722 833 7.96 830
8.98 819 1047 8.04
1020 1156 1589 1146

o QO = >

11.73 1300 1484 1305

Mean 953 1027 1229 1021

: SD 191 229 372 245
F“ cv 20% 23%  30%  24%
§
£:
f Gower Similarity
& Filter Statistic
- Image { GLCM AVG  SD
L A 0.90 097 0.72
‘ B 0.90 096 072
C 092 095 068
D 091 095 071
Mean | 081 096 071
SD 0009 0012 0020
cv 1.1 1.2 2.7

F e
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Bhattacharyya Distance

Filter Statistic
approx approx approx.
Image | GLCM error AVG error SD error
A 090 0.20 128 015 287 0.04
B 0.87 0.23 104 018 286 0.04
C 1.32 0.15 139 3.14 294 0.04
D 226 0.03 1.48 015 2.51 0.05
Mean 1.59 1.30 279
sD 1.13 019 0.19
cv 1% 14% 7%
Table 10.5. Snow-Covered Area
MSS ™ DEC JAN
# of Pct. # of Pct. # of Pct. # of Pct
Pixels Cover Pixels  Cover Pixels Cover | Pixels Cover
Mean 23 9% 70 7% 340 33% 199 19%
Std. Dev 24 10% 82 8% | 262 26% | 249 24%
. cv 107%  107% | 17% 117% "% 1% | 125% 125%
‘ Range 0-92 0-36% | 0-3.4 0-34% | 0-1014 0-99% | 0-592 C-97%
.
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Table 10.6a. Regression Models l
Image Filter Coeflicients t valuee K® F value DF  Resd .
A SE
MSS AVG INR 0113 5.58 946 280 4,60 285
ICOR!1 -5.030 -8 36
fil, oot 10.87 1
fily 0019 -9.39
Mc SD HOM 1.760 238 955 316 4,60 .269
ENT 0 668 354 q
Silg 0.034 9.47 :
fily  -0019 -388
MSS SUM INR 5.79e-2 3.75 963 310 5,59 244
ICCR2 3400 6.80
fil, 853¢-5 1368
fil,  -4335  -379
fily  -468-5 -390

TM  AVG INR 0299 7.05 962 410 4,60 315
ICOR1 -686 -8.91
[ilg 0017 1165
filg  -0.030 -9.98
;
. ™  SD [l 0064 1573 982 834 460 223
. fi,  -0030 -2.47
" Jilg  -0027 -2.16
filg 0.051 6.75
b ™ SUM INR 0.258 601 965 142 4,60 304
ICOR1  -3.909 -5.42
¢ fily 4.48e-5 13.17

R RN

fil, -2.34e-5 -8.08

oo Bk b s LS
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Table 10 6b. Regression Models Continued
Image Filter Coefficients t value R® F value DF Resid -
SE
DEC AVG ENG -7.25 -291 Q81 1057 361 2165
COR -0.484 -2.75
DEC SD ICOR1 -2688 -4.91 991 1352 559 1787 f
E Il 0.102 349 t
' DEC SUM COR 4503 875 986 582 757 2205 i
HOM -32.44 -12.10 J
JAN AVG ENG 4426 703 950 410 361 3141 . '!
HOM  -2186 -791 i
JAN SD ICOR1 -19.26 -5 .45 988 1036 559 1560 :
Sl 0.117 432
JAN SUM COR 16.59 580 972 969 7,57 2484
HOM -60.06 <985
DI~/ SL COR -12.19 -3.89 987 1446 7,121 1.836
JAN ENT 247 247
Table 10.7. Durbin-Watson Statistics
Image AVG SD SUM

Dw P DW P DwW p

™ 166 017 | 219 -009 | 1.76 0.12
MSS 161 020 ] 166 0.17 1.86 0.07
DEC 1.39* o030 {181* 02 |1.60* 020

JAN 164 018 1.68 0.16 2.00 -0.002

* cannot reject or accept null hypothesis of no positive autocorrelation. All other values show no positive

autocorrelation at the 19 level.
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Table 108 Prediction Results

Model Efficiencies
»
Jackknife Cross-Prediction
Transformed Actual N | Transformed Actual
MSS AVG 76 82 6l ‘
™ AVG .81 .68 59 A
DEC AVG 90 87 64 40 36 r
sD .95 91 64 91 84 *J
JAN AVG 89 85 64 44 39 4
SD 97 94 o4 96 91 !
Table 16.9. SCA and Fil 3 Correlations

SCA AVG SD SUM

™ 12 91 83
MSS 73 87 84
DEC 95 .80 90
JAN .89 e 96
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10.11. Figures

Figure 10.1 Snow texture study sites: TM image C (upper left), TM Image A (upper right), MSS
image C (lower left), MSS Image A (lower right). -
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Figure 10.2 Snow texture study sites: TM image D (upper left), TM image B (upper right), MSS
image D (lower left), MSS image B (lower right).
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Figure 10.3 First principal component of TM bands 2, 3, 4, 5 and 7 (upper left), first principal
component of TM bands 2 and 5 (upper right), snow-covered area (lower left) and TM band

2 (lower right).
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‘5 Figure 10.4 MSS band 4, image A (upper left), TM band 2, image A (upper right), MSS snow-
covered area (lower left) and TM snow-covered area (lower right).
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Figure 10.5 January T™M band 2 (upper left), December TM band 2 (upper right), January snow-
’ covered area (lower left), December snow-covered area (lower left).
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Figure 10.6 TM and MSS chi-square values versus co-occurrence displacement distances at four

} quantization leve!s.
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Figure 10.7 TM ana MSS chi-square values versus co-occurrence displacement angles for all dis- y
tances and quantizations.
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Figures 10.8a,b TM and MSS co-occurrence matrices, 16 grey-levels,

R ol
b

Bray Level Co-occcurrance Matrix, Mss Imeage A

Quantizetion=i8, Vertical Exaggeration=20

b

Grey Level Co-Occurrence Matrix, Quantization= 16
TH Imeage A, (Verticel Exeggereation= 20)
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Figure 10.9 December predictions using pooled data ia transformed units (square root).
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POOR QUALIT
Figures 10.10a,b December AVG model jackknife predictions by sample and plotted against
actual SCA in transformed units (square root).
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Figures 10.11a,b December AVG model jackknife predictions by sample and plotted against ‘
actual SCA in real units (s*.ow-covered pixels).
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Figures 10.12a,b December cross-predictions using January coefficients by sample and plotted

against actual values in real units (snow- covered pixels).
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Figures 10.13a,b January croes-predictions using December coefficients by sample and plotted )

against actual values in real units (snow-covered pixels).
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