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ABSTRACT

f

:f

It is shown that the numerical technique of Russell's momentum approach

can be derived by using Hamilton's principle and Vance's numerical scheme.

It results in a set of first order difference equations for solving the

angular velocities. The method is simple and easily programmed. The numer-

ical examples show that the method is also reliable.

The algorithm is modified next to perform the analysis of N-body sys-

tems with closed-loop topology. To increase the formulation flexibility,

the equations of motion are represented by using Cartesian coordinates and

Lagrange multipliers. The algorithm consists of two parts, Vance's scheme

and an unconstrained minimization. The Vance's scheme is used to find the

angular velocities, and the unconstrained minimization is applied to provide

the correct angular displacements.

The proposed scheme is further extended to find the design sensitivity

of an N-body system with closed-loop configuration, and to carry out the

design optimization as well. The numerical example of a small-scaled me-

chanical system is presented to verify the proposed formulation. 	 Some

aspects of future study are discussed to enhance the capability of the pro-

posed scheme.
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iFORMULATION AND APPLICATION OF kUSSELL'S METHOD

By

Jean Win Hou*

1. INTRODUCTION

The major thrust of the Russell's method [1] for the dynamic analysis

of multibody is twofold. Firstly, Russell constructed a set of first order

differential equations, uncoupled in terms of primed angular momentum.

Secondly, the constraint forces due to joints are eliminated in his formu-

lation. In general, the number of first order differential equations needed

to be integrated are less than the number of bodies. After integration, one

is left with a set of simultaneous equations for solving the angular veloc-

ities. Russell [2] recommended the SOR (Successive Overrelaxation Iter-

ation) scheme as a solver for angular velocities.

The Russell's method will be reformulated by using the Hamilton's

principle and the rule of Lagrange multipliers in this report. To derive

the Hamilton's equation for a constrained dynamic system, the variations of

generalized coordinates and generalized velocities are treated independently

and the constraints are introduced into the derivation through the rule of

Lagrange multipliers. The Lagrange multipliers can be identified as con-

straint forces. Note that the constraints for the revolute and spherical

Joints are holonomic. Then, in section 3, the Russell's formulations for

the N-body systems with open-loop topology are derived, and while deriving,

the Lagrange multipliers associated with constraints are eliminated. In

order to facilitate the development of a computer code, the equations are

*Assistant Professor, Department of Mechanical Engineering and Mechanics,
Old Dominion University, Norfolk, Virginia 23508.
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given in the matrix and vector forms. Numerical examples of a double and

triple pendulum are presented in section 4 to verify the aforementioned

algorithm.

For the N-body system with close-loop topology, the Lagrange multi-

pliers are no longer easily eliminated.	 Nevertheless, the concept of

Vance's scheme along with an unconstrained minimization scheme provides a

very simple algorithm which is capable of not only performing the analysis,

but also carrying out the optimal design of such a system. The detailed

formulation and application of this algorithm can be found in Appendix B.

2. HAMILTON'S EQUATIONS

For a N-degree holonomic system, the classical approach is to derive

Lagrange's equations

dt 
aqi
	

aqi

from the Hamilton's principle

tl
a	 L dt = 0	 (2)

to

where the Lagrangian function L is equal to the sum of kinetic energy T

and external work W, i.e., L = T + W, and a represents a contempora-

neous variation. During the derivation, however, it is assumed that opera-

tions a and 
d 

are exchangeable, i.e.,
dt

2	
{,

2h W	 4 V
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ddq i Inaq i ,	 i n 1,.6669N	 (3)
dt

In other words, the virtual velocity is obtained by taking the time

derivative of the virtual displacement. Therefore, Eqs. 2 and 3 show that

j Q q, q, t)dt is stationary in the family of configurations satisfying the
N differential equations

dqi
(4)

dt

To make q's and q's vary independently, the rule of multipliers asserts

that

t1I IL( q , q . t) + E A i (dqi • q i )^ dt
to	 1	 dt

is stationary for arbitrary variations of q's and q's, the A's being

certain functions of t which are to be determined. The necessary condi-

tions for a stationary value are given by the 2N equations

dai 
n aL , _LL  - A i ,	 i81,.609N.	 (5)

dt aq i	aqi

Note that q's and the time are fixed at to and t l , but not the q's. It

can be readily verified that A's correspond to the generalized momentum

defined in the Hamilton's principle.

The same procedure can be extended to obtain Hamilton's equations asso-

3



ciated with constrained dynamic systems. Supposing a dynamic system is

consistent with the following holonomic constraints

f ( q ,t) - 0,	 i n1,...,N	 6P 
1	 1 n1,...,M, NO	

( )

Then, according to the rule of multipliers, there should exist t functions

of a(t) such that the functional

Itl [L( g i , 4 1 . t) + E A i (dqi - q i ) + E at ft ( qi , t)] dt

to	1	 dt	 1

is stationary for arbitrary variations of q's and q's. The above condi-

tions yield

	

d=
	 a

i - aL + 
E at	

. ,
	 i-i,...,N	 (7)

	

dt	 aqi	
1	 aqi

and

Ai - 
IL 	 i-1,...,N	 (8)

aqi

The 2N unknowns q's and q's as well as M functions a's are to

be determined by solving Eqs. 6-8 together.

As to the system with nonholonomic constraints,

ft ( g i.Qi, t) - 0 i-1,...,N	 (9)
t-1,...,M M<N

4
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the kinematically admissible variation dq { has"to satisfy the following 	 z

equalities.

K , r

N of
E - aq i • 0 0	 t n199999N	 (10)

1 aqi

where d denotes a contemporaneous variation. It is evident that Eq. 2 is

no longer true for the nonholonomic system [3]. Instead one has to use the

following equation

fti6l dt n 0	 (11)

to

Considering Eqs. 3 and 10 as the variations of constraints, the Farkas'

lama [4] ensures that there should exist functions A's and a's such

that

fti[4L + E A  (= - aq { ) + E at (E aft 8q i )] dt - 0
to	 1	 dt	 1	 1 a•

q{

for arbitrar y variations of q's and q's. It follows from the above condi-

tion

ii • 
aL + E at aft
	

{,1,...,N	 (12)
dt aqi	 1	 aqi

and

5
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WF ,

Ai 
n n ,	 1-1,...,N	 (13)

141

Using the Eqs. 12 and 13 in conjunction with Eq. 9 9 the 2N unknowns, q's

and q's, as well as M fun;tion a's can be determined.

From the standpoint of computational efficiency and accuracy, formu-

lations like Eqs. 7-8 or 12-13, for the equations of motion, are desirable.

Note that only N first order differential equations appear in the above

formulations. Thus, not only the number of differential equations remains

as N, but the potential source of error of numerical integration is also

minimized. However, only limited numerical schemes associated with Eqs. 7-8

or 12-13 had been developed to solve the equations of motion for dynamic

systems. J. M. Vance [5, 6] replaced Eqs. 4 by a finite difference form and

derived a set of finite difference equations to solve Eqs. S.

Regarding the constrained dynamic systems, however, very few publi-

cations are available. Numerical difficulties arise in solving q's and

q's satisfying the constraints and in determining the corresponding multi-

pliers.

There are several techniques available currently for solving the

equations of motion consistent with constraints, such as, numerical

stabilization [7, 8] and coordinate partition [9]. These methods start with

the second order derivatives f z (q,t) - 0, or first order derivative fz
Y

(q, Q, t) - 0, so that q can be a variable. In other words, an extra

second order differential equation is generated from each constraint. Of

course, these approaches do not convey the original intention of using

Hamilton's principle which consists of first order differential equations

only. To avoid the above d i fficulties, a simple way would be to eliminate

6
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the multipliers from the formulation. This As exactly what Russell did in

his work [1] for a dynamic system with open-loop topology.

3. HAMILTON'S EQUATIONS AND RUSSELL'S METHOD

3.1 N-Body System with Cluster Configuration

A N-body system with cluster configuration is shown in Fig. 1. The

X I -Y I -Z I coordinate system denotes the inertial frame. The body-fixed

coordinate system, X i -tl i •Z i for body i located at its center.of mass.

For the sake of easy programming, a skew-symmetric matrix a

associated with a vector a is defined as

0	 •az	 ay

a a	 aZ	 0	 -ax

-ay	 ax	 0

such that a x b a b e where a is a unit vector parallel to a x ^.

It is easy to prove the following identities:

aT a	 (14)

4

ab n - ba	 (15)

(a^ n ab - b a	 (16)

Furthermore, if A is a transformation matrix such that a n A a' and w

is a vector of angular velocities, it can be shorn that

7
t

r



Cody i

,I

n MA	 (17)

	

n AA'AT	(18)

- ^ body i*I

l	 ^

Figure 1. N-Body Cluster Geometry

Generalized Coordinates

The position vectors of the mass centers of bodies and angular dis-

placements of the body-fixed coordinates are taken as the generalized coor-

dinates. The components of generalized coordinates are in terms of the

inertial frame.

Generalized Forces

As shown in Fig. 2, a force F i acts on the body i at the point P

with the position vector Pi:

8
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XI

Fi

11 ' Jt +

where a i is a vector measured from the center of mass to the point P.

Thus,

s

Pi ` Sli + ai

3i
+ wi ai

:gi _ ai wi

Figure 2. Generalized Forces

1

Replacing the differential notation d by a small increment e, one

has

9	 t!

A :;%, -W	
V .



, W-1

N
= =

 Ali - a
i wi

At	 et

or

eki = eqi i- 
i (Y-4 at)

N
=egi-aie8i

de
where the definition of Ni = -.-i is used. Finally, using the variational

dt

notation a, instead of e, the foregoing relation yields

TT	 TN
Li dPi = F i aqi - Li a i 68 i	(19)

= i agi + (Ai F i )TF 	 6ei

The term a F	 is the momentum at the mass center induced by the force—i —i

Li . Note that even though the angular displacement ei is not a vector,

but the infinitesimal angular displacement de i is still a vector.

Total Kinetic Energy

The total kinetic energy of the system is given as

T = NE 1 ( Ni gi gi + i wi J i wi )
0 2	 2

where J  is the inertia tensor of body i with respect to the inertial
frame. The Ji can be found equal to A iJiA T where JCi s defined as the

inertia tensor with respect to the body-fixed coordinate systan and A i is

the transformation matrix between the body-fixed coordinate system and the

10



inertial frame. Thus, the variation of the total kinetic energy is simply

written as

6T - NE1 (Mi ld 
6 -%

+ ( Jim )T d 4	 (20)
0

Constraints

There are two sets of constraints needed to derive the Hamilton's

equations for the constrained dynamic system.

The first one is a holonomic constraint which defines the nature of

connection between the bodies. In the following derivation, only a revolute

Joint (2 dimensional) and a spherical joint (3 dimensional) are considered.

According to Fig. 1, the spherical (or revolute) Joint provides a holonomic

constraint which can be expressed mathematically as

f

r^

3

	

+i - ai - 90 - di - ti - 0,
	 i-1,...9N-1	 (21)

Note that all the components of the vectors in the last equation are re-

ferred to the inertial frame.

The time derivative of • i yields

•
	 AO M
	 Ni -0-gi -- O 4 -Mi li

After replacing the differential notation 
d 

by incremental notation
dt	 At

and by multiplying each term with et, one has

(I

11



egi - ego + 1 
-0 

et + ,i i wi At = 0

Thus, the variation of the constraint 6# i - 0 will yield the relation

N	 N
611 - 6.30 + d i 8e0 + si ae i = 0

The second set of constraints corresponds to the relations between

displacement and velocity variations,

!!i = 6gi	 i=0,... ,N-1	 (23)
dt

and

ddgi
(24)

dt

Again note that 89 1 represents infinitesimal angular displacement which is

a vector.

For the variations of the systems, Eqs. 19, 20, 22, 23, and 24, Farkas'

Lemma asserts that there should exist u i (i=1,...,N-1), a i and si

(i=0,...,N-1) such that for arbitrary variations 6g i , dgi , dgi and 6wi:

0 = jtl f Nil [( Mi gi)T dji + W i wi )T 6wi l + 
1^

1[Fi '-%+ (ai F )T 691)
to 0	 0

+ 1 1 ai (63i _ 1
-90 

+ Z ide8 + 	 + ^ l ai [_I (6gi ) - dgi)
1 —	0	 dt

+ Ol 
B1 

[dt 
(69 1 ) - .dwi ]} dt

(22)

. ,

12



Analogous to the Hamilton's principle, &i and 8 i 
are assumed to be fixed

at time t = to and t » t l . That means aqi = ae i = 0 at t = to and

t = t l . After integrating by parts and collecting the corresponding terms,

the following identities can be obtained

Mi ^ = a i ,	 i=0,...9N-1	 (25)

J w = B	 i=0,...,N-1	 (26)

where a	 and B can be identified as linear momentum and angular momen-

tum (with respect to the mass center of body i), respectively. Furthermore,

one has

a - F - A = 0,	 i=1,...,N-1	 (27)

B	 a F+ A A= 0,	 i=1,...,N-1	 (28)

and

a -F + NE 1 A =0	 (29)"'0 ...p	1 i

B- a F + NE 1	 A	 0	 (30)
^ ^ 0 1

To reduce the number of degrees of freedom, two steps are necessary:

(1) eliminating the constraint forces A , and (2) substituting the con-
-i

straints of Eq. 21, into the formulation explicitly.

Center of Mass

The relations for the mass center of the whole system are defined here.

13
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a

.i

-W-4

It can be shown that

-^ NE1 Mi 
gi = M R, (31)

0

t t . Magi	 a i = M
Ol	 Ol

(32)

and
r

of Magi = % a i = M R = io F i (33)

where	 M	 and R	 denote the total mass and the position vector for the mass

center of the whole system.	 The	 second equality in Eq.	 32 follows the

definition of
a 
	 as given in Eq. 25 and the last equation is derived by

adding Eqs. 27 and 29.	 Further,

... ,N-1

or gi = R + r i ,	 i=0,...,N-1

where r 	 is the vector between the mass centers of body i and the whole

system. Eq. 21 can then be written as

ri - -0 - d i - , = 0,	 i =1 ,..., N-1	 (34)

Then multiplying Eq. 34 with Mi , summing over all the i and in view of

the fact that 
Nil 

Mi ^i = 0, it can be shown that
0

r0 = - 1 Nil M i (d i + 10.	 (35)
M 1

14



R

After substituting for 4. Eq. 34 can be rewritten as

1 Nf1 Mi (di + Vii ) + di + 11 	 i=1, ... ,N-1. 	 (36)
M 1

Furthermore, taking the time derivatives of Eq. 35 and 36, one gets

' - M 
1 

Mi (-0 di + ti Vii )	 ( 37)

•	 1	 -1 
and	 ri = - M NE Mi (w-0 di + wi ii ) + w-0 

d i + wi 
11
	 (38),

Note that so and _ri are functions of angular velocities only.

Constraint Forces Elimination

The constraint forces Ai can be eliminated from Eq. 28, by substi-

tuting Eq. 27,

B i +it i a i	(ai +it i ) F i ,	 i=1,...N-1

Combining the definition of a i and Li , as well as Eq. 33, one has

ai Migi

=Mi R+ Mi ri

M	 N-1
= i	

E Li + Mi Li.	 i=1,...N-1	 (40)
M	 0

Then Eq. 39 can be rewritten in terms of r i as,

4
15



i + OW (Mi r i ) _ (ei + ,^t i ) Fi - 
Mi !

i (E1 i	 i=1,...N-1
M	 0

Since 1, (M i ri ) _ T4 (Mi —` - Mi li Lis the above equation becomes

	

î	 ri)

N-

	

8 + M ,t r
	 Mi 	0 F i ) + Mi 1 i 	 (41)

i	 i _i —i
i=19...9N-1

where I  = ^i = w i ^i w i '̂ i ^i wi• and r i is a linear combination of

angular velocities as given by Eq. 36.

The term B i + M i !.i ri is called the primed angular momentum by

Russell. It is worthwhile mentioning that the right hand side of Eq. 41 is

a linear combination of angular velocities and the left hand side is a qua-

dratic function of angular velocities.

Since only N-1 equations are available in Eq. 41, one more equation has

to be established for angular velocity w0 of the central body. Making use

of Eq. 40, the constraint force can be obtained by

J► i = - °—̀i + Li

M N-1
E Fi ) + Mi	 + F i ,	 i=1,...,N-1

M	 0

Substituting the above equality into Eq. 30, one obtains

16



N-1

60 - 
1 M

i d i ri

N-1	 Mi N-1

to' _A4 F0 + 1 î ( Mi ri + M ( O Fi ) - Fil

N-1

N 1	
-0 FO	

1 ji 
(141 

ri)

- 
1E 1, (M 1 ri)

or

I

or

+ NE 1 ^i [M1 ( NE Fi ) - Fil

	

1	 M	 0

N-1
. 1
0  

+ E (Ii -0 _ ji)ri
1

+ N1 ^i [Mi ( N1

	

E	 E F i ) - F i b	 (42)

	

. 1 	 M	 0

The above equation uses the primed angular momentum of the central body to

calculate the angular velocity !0 . This approach is different from

Russell's formulation in that the angular momentum of the whole system is

established to calculate w-0.

3.2 N-Body System with Tree Configuration

An N-body system with tree configuration may be considered as many legs

appended to the central body as shown 4n Fig. 3. Note that a leg represents

a structure with open-loop topology and there is only a point Joint connect-

ing a pair of bodies.

So far, the equations of motion are derived only for an N-body system

with cluster configuration. However, the derivation of equations of motion,

discussed in the previous section, can be extended and applied to the N-body

system with tree configuration. The derivation procedure is illustrated

17
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best by deriving the equations of notion for a simple example as shown in
	 1

Fig. 4. It is shown that a leg which consists of four bodies is connected

to the central body through a single joint. In addition to the constraints

given in Eq. 21, the constraints associated with the generalized coordinate

of each of the legs can be expressed in terms of generalized coordinates of

the central body as given below. By investigating the kinematic relations

indicated in Fig. 4, one has

gi - g0 - di - si	
0

9
i-1,.009N-2	 (43)

and

qJ - go - dN_ 1 - h
j
 - 09	J-N-19...,N+2	 (44)

where

hN-1	 - !01

•h	 -!32 - ^3 +13-'^31 +^1'

=1+1	 - 	 13 !31 + !01'
and

h*+2	 - !34 " !A3 + !13 - !31 + 01

In Eqs. 43-44, gi and 
90 

are the position vectors of body i and the

central body with respect to the inertial frame.

Note that h is a function of angular displacements. Thus, the varia-

tions of h can be written as follows:

18
I





(45)

(46)

'I' M

ah* • . 12 % + r13 - L3 ) 6!1+1 - 101 b!N-1.'

6 1+1	 ' !a3 a!l+l + Q31 " -01 ) %-1'
and

%+2 . ' 134 6!N+2 + (43 - L3 ) 6!N+1
N	 N

+ (-31 '101 ) 6!M-1

With the application of Hamilton's principle	 rind Farka's lemma, the equa-

tions of motion for the system shorn in Fig. 4 can then be derived as

Mi gi - a1,

j 1 wi ' !i'

i-0,...,N+2

i-0,...,N+2

Furthermore, one also has

a1 -F1 -7► i -0,	 i-0,...,N+2
	

(47)

a1 -a1 F1+11711.0,	 i-09...,N-2
	

(48)

I-1 " 11-1 F1-1 +1 1 Z1-1 + -01 !l + ^^1 -01 ) !1+1

(131 . 101 ) !1+2 - 0'
	

(49)

•	 N	 N

^ 1I ^I + 12 ^I - 0'
	

(50)

^N+1 ' X1+1 X1+1 (13 ' 13) Z1 + '1' 3 JN+1 - ^:A3 - 13 ) :1+2 - 0, (51)

20
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I

4*2 - 102 4+2 + 134 !i+2 • 0'	
(52)

and

N+2

io- 
-0 + t a i n 0

9
	 (53)

1

N-2	 N+2

- 0 -0 + 134  
1 1 +!N-1 (41 1	

0.	 (54)

Comparing Eqs. 45-54 with Eqs. 25-30, they are essentially identical

except that there are extra Lagrange multipliers involved in Eqs. 45-54.

Center of Mass

The center of mass of the N-body system with tree configuration can be

derived in the same manner as the one done in the previous section for the

N-body system with cluster configuration. It is not difficult to show that

n+2	 n+2

0 o f • M R • 0 F i	(55)

where M and R, as defined before, denote the total mass and the position

vector for the mass center of the entire system. By A ntroducing the vector

Li 
for the relative distance between the mass center of body i and the

entire system and considering the constraints, Eqs. 43-44, the relation

between the displacements of translation and rotation can be obtained for

each body as

21



	

N-2	 N+2

LO • . M [ 1 Mi (di + ;i) + N-1 Mi (dN-1 + hi )J•	 (56)

N-2	 N+2
r i • . 1 [ t N i (d i + R i ) + t 141 (d4•1 + hi))

	

M 1	 N-1

+ Ti + 
l
i ,	 i•1,...N-29 	 (57)

and

	

r i .. 1 ( i 2	 N*2

	

141 (di + t i) +	 i (^1 + hi)1
M	 1	

M
N-1

+ dN-1 + hi•	 i•N-1,...,N+2	 (58)

Furthermore, taking the time derivative of the above equations, one gets

• - 1 
[ Nt2 

Mi ("w-0 
dA 

+ ŵ  ti) + t2 Mi (^^i dl 
+-4))
	 (59)

M 1	 N-1	 -

r i	 ro + !0 dl + wi t i ,	 i•1,.609N-2	 (60)

and

ri • jo + o dN-1 + hi'	 i•n•1,... N+2 	 (61)

where it is known that j is a given function of angular displacements and

velocities. As an example, Fi i is obtained as

hn+l • !X+2 L34 - J1+1 (W - 113) - &1 W1 - M1)

Constraint Force Elimination

Note that, among Eqs. 47-54, there are 02 Lagrange multipliers in

22
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total which can be completely replaced by S's using Eq. 47. Furthermore,,

those ; I s can be expressed in terms of ; I s, because it can be shown by

using Eqs. 40 and 55, that

Mi N+2	 ..
E Li + Mi r i ,	 i-1969.9N+2	 (62)

M	 0

In addition, it is indicated in Eqs. 58-60 that r i is a function of angu-

lar displacements and derivatives of angular displacements. Hence, both are

ready to be calculated in accordance with Eqs. 47 and 62, as long as the

values of R, e i , and A i are valid. The position of mass center of the

entire system R, can be integrated from Eq. 55. As to the angular dis-

placements and their derivatives, they also can be integrated based on the

equations associated with primed angular momentums. Since the derivations

of those equations are similar to the ones presented in the last section,

on 4 the primed angular momentum of the central body is derived here as an

illustration.

Substituting Eq. 47 into Eq. 54 for the Lagrange multipliers, one could

obtain

N-2	 N+2	 N-2	 N+2

to- 
aoFo - 1 ji Fi - 1+1 ( NE 1 ^) + i	 ai + -1 ( NE1 °_̀i ) s 0

Furthermore, the term a i can be replaced by r i with the application of

Eq. 62,

^' r
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N-2	 N+2	 N-2	 M N+2

to - eo- E U,-^1 (E F4 )+ E 1 (i E _)
1	 N-1	 1 M 0

N+2 M i N+2	 N-2	 «	 N+2	 «

+ ^1-1 E _ (E _4 )] + E Mi 124 ri + E Mi - 1 ^i ' 0
N-1 M	 0	 1	 N-1

Using the equality, uv = uv + uv, the above equation can be rearranged to

provide an Qquality for the primed angular momentum of the central body as:

	

N-2	 N+2
80 + E Mi^iri + E Mi !-lri

1	 N-1
N-2	 N+2

s aOFO + E I Fi + -1 ( E Fi)

	

1	 N-1
N-2	 M N+2	 N+2 M N+2
E di (i E Fi!N-1^ E i (E _)]
1	 M 0	 N-1 M	 0

N-2

+ E Mi (^iw0 - Vii ) ri1
N+2

+ E Mi @ -1 -0 - w-0 ]N-1)	 (63)
N-1

where the left side of the equality denotes the total derivative of the

primed angular momentum of the central body. Note that the preceding equa-

tion is a perfect form suitable for applying Vance's numerical scheme [5,

61. The numerical implementation of such a scheme for the dynamic systems

of concern is to be discussed in the next section.

ro°

4. NUMERICAL ALGORITHM AND EXAMPLES

The numerical implementation of Russell's formulation is discussed

P,	 r	 -,ir.
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hereafter. Numerical examples are also presented to verify the derived

formulation's and numerical algorithms.

For simplicity, Eqs. 33, 38, 41-42 and Eq. 63 'can be represented sym-

bolically by

^ k, P-, w) = G (e , E, w)
	

(64)

where angular velocity w = e and P denotes position vector such as t,

d or I defined with respect to the inertia frame. It is evident that P

depends on 8. Furthermore, the primed angular momentum h is a linear

function of w, and G. on the other hand, is a nonlinear function of w.

To implement Eq. 64 numerically, the major step is to approximate the dif-

ferential operator by a difference operator [6]. In the numerical examples

discussed below, the trapezoidal rule is used, i.e.,

n+1 
2 [G (e n , pn' wn) + G (^s+l' Pn+l' wn+l )]	 (65)

where the subscript denotes the time grid point. Since Eq. 65 represents a

set of nonlinear algebraic equations for wn+1 , an iterative scheme is

required to find wn+1 . The detailed numerical algorithm is described in

Fig. 5.

There are two examples, a double pendulum and a triple pendulum. The

results obtained according to the Russell's formulation are compared with

those calculated by directly employing Lagrange's equations of motion with-

out introducing Lagrange multipliers. The latter can be done when the mini-

mum set of generalized coordinates are selected to describe the system. For

25
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INITIAL CONDITION

n=0
^ i

Yes
n > NTOTAL
	

STOP

No

Predictor (Wn+1 ): wn+i = wn

en+1 = en + at (—wn + wn+l).

1n+1

hn+1 = Al [G (on, pn • wn ) + G(e n+1' -p-n+19 !n+1)]I2

Corrector w^+1• hn+1 = h (en+1, P	 w* )—n+1 ^+1

**
en+1 - an + nt (^ + wn+i)

2

2

3

*

wn+l Wn+1 " E

5n+1 a n+1	 < e

n=n+1,

Yes	
GO TO 2

No

*

wn+1 - wn+1.
GO TO 3

Figure 5. Flowchart for the Numerical Algorithm.
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the examples studied, the angular displacement of each pendulum is defined

as a generalized coordinate. The Lagrange's equations of motion constitute

a set of simultaneous second-order equations which are generally nonlinear:

LTdt
(aI) = 

aT + 
g (g. g. t)

1	 3

Note that the term	
aT
	is subjected to the total differentiation. 	 Thus,

ag

the Lagrange's equations of motion can be replaced by a set of finite dif-

ference equations which are used to solve	 g,	 following the same numerical

implementation as used in the Russell's formulation. 	 The detailed formula-

tion of Lagrange's equations of motion, as well 	 as the Russell's formula-

tion, for a double and a triple pendulum are give in Appendix A.

The mass, length and the moment of inertia at the mass center of each

pendulum are assigned as 	 1,	 1	 and 0.08333	 units, respectively.	 A two

unit force is applied at the free end of the systems and is always normal to

the pendulum.	 The initial configuration of the pendulum is straight in the

vertical position as shown in Figures 6-7.	 The numerical results calculated a'=

with	 at	 0.05	 seconds are listed in Tables 1 and 2 for the double and

triple pendulum, respectively. 	 The history of motion is depicted in Figures

6-7 as well.	 The algorithm performs well. 	 In general, it takes two to four

iterations for	 w	 and	 a	 to get convergence	 (E	 10-5 )	 at each time grid

point.	 For the examples studied, it is indicated that the Russell's formu-

lation and the Lagrange's equations of motion provide essentially the same

results.	 Nevertheless, the Russell's formulation requires more CPU time

because the introduction of joint reactions (Lagrange multipliers) and the

27	 1
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Figure 6a. Initial Configuration Figure 6b. Changes of Angular Velocities

• =i

Figure 6c. Changes of Positions

Figure 6. The Motion of a Double Pendulum.	 i
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Figure 7c. Changes of Positions

Figure 7. The Motion of a Triple Pendulum.
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a
Table 1. Numerical results for a double pendulum

a. Results based on the Lagrange's equations of motion

(CPU time - 1.17 sec. on DEC 10)

Time (Sec.)	 01 (Rad.)	 02 (Rad.)	 wl (Rad/Sec.)	 w2 (Rad/Sec.)

0.00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.10 -0.85545E-02 0.42832E-01 -0.11016E+00 0.85613E+00
0.20 -0.33358E-01 0.16995E+00 -0.31859E+00 0.16155E+01
0.30 -0.68293E-01 0.37174E+00 -0.36078E+00 0.23314E+01
0.40 -0.99210E-01 0.62794E+00 -0.23139E+00 0.27714E+01
0.50 -0.11053E+00 0.92259E+00 0.26391E-01 0.31194E+01
0.60 -0.89484E-01 0.12531E+01 0.40967E+00 0.34990E+01
0.70 -0.23541E-01 0.16261E+0l 0.92792E+00 0.39764E+01
0.80 0.10224E+00 0.20531E+01 0.16093E+01 0.45796E+01
0.90 0.30438E+00 0.25461E+01 0.24503E+01 0.52892E+01
1.00 0.59483E+00 0.31115E+01 0.33567E+01 0.60147E+01

b. Results based on the Russell's formulation

(CPU) time - 3.19 sec. on DEC 10)

Time (Sec.)	 01 (Rad.)	 02 (Rad.)	 wl (Rad/Sec.)	 w2 (Rad/Sec.)

0.00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.10 -0.85545E-02 0.42832E-01 -0.17076E+00 0.85613E+00
0.20 -0.33358E-01 0.16995E+00 -0.31859E+00 0.16755E+01
0.30 -0.68293E-01 0.37174E+00 -0.36078E+00 0.23314E+01
0.40 -0.99210E-01 0.62194E+00 -0.23739E+00 0.27714E+01
0.50 -0.11053E+00 0.92259E+00 0.26391E-01 0.31194E+01
0.60 -0.89484E-01 0.12531E+01 0.40967E+00 0.34990E+01
0.70 -0.23541E-01 0.16261E+0l 0.92192E+00 0.39764E+01
0.80 0.10224E+00 0.20531E+01 0.16093E+01 0.45796E+01
0.90 0.30438E+00 0.25461E+01 0.24503E+01 0.52892E+01
1.00 0.59483E+00 0.31115E+01 0.33567E+01 0.60147E+01
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position vector of mass center of the entire system complicates the compu-

tation.

5. DISCUSSION AND CONCLUSION

The Vance's scheme has been successfully applied to analyze the dynam-

ics ofmechanical systems. The same scheme is also extended to perform the

design sensitivity analysis and the optimum design. The proposed algorithm

is simple and easily programmed.

There is no need for this algorithm to evaluate the higher order deriv-

atives of equations of constraints. Moreover, if the acceleration of the

dynamics system is of no concern, it is also not necessary to find the time

derivative of the mass matrix. Thus, the proposed algorithm relieves, to

some extent, the complexity of formulation and computation of mechanical

system dynamics.

It is noted that the time increment, et, in this algorithm plays an

important role, not only for the numerical error and stability but also for

the convergence rate of the iterative scheme, because the extrapolation of

the current state variable with a smaller At provides a better estimate of

the new state variable for starting the iterative computation at the new

time grid.

The example of the slider-crank mechanism discussed in Appendix B shows

the success of the application of the proposed algorithm for solving a

small-scale problem. In order to analyze the large-scale problem, the pro-

posed algorithm can be upgraded by replacing the unconstrained minimization

scheme introduced in Eqs. 8.9-11 by a more efficient scheme designed for the

large nonlinear problem.	 As an example, the Fletcher-Reeves's conjugate

gradient algorithm could be a promising substitute.

32
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In order to fully develop Russell's momentum approach, the following

tasks are also proposed:

1. Extend the derivation to include flexibility, and to extend to

systems with 3-0 configuration.

2. Extend the derivation to include complicated Joint conditions, such

as Joint friction.

3. Investigate the application of the sparse matrix technique to

improve the computational efficiency of solving angular veloc-

ities.

In summary, while a simple strategy is proposed and successfully imple-

mented to analyze and optimally design a small-scaled mechanical system with

differential/algebraic equations, further study is required to enhance the

algorithm's rigorousness and versatility.
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APPENDIX A

EQUATIONS OF MOTION FOR DOUBLE AND TRIPLE PENDULUM
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A-2

A.I. Lagrange's Equations of Motion

Double Pendulum

Definitions of notations are given in Figure A.I.

A

Figure A.1. A Double Pendulum.

The equations of motion for a double pendulum are

a0 10 - 41 !Qb	 !AA- u1 ^ 	` mI4Mwl +

X91 MA W-1 ` m1a,il!w4 + d1F

and



IF F ,

Is;,-

t 1

t
,f

where J0 and J1 are the moments of inertia of pendulums 0 and 1 with

respect to points A and B, respectively.

Triple Pendulum

Definitions of notations are given in Figure A.2.

Figure A.2. A Triple Pendulun.

The equations of motion for a triple pendulum are

A-3

1 :•i



f

•

(ml+m2) ^ - ml^l^ 
i

!4% (m1a1M1 + m2 1 w-1 + m22A + .

i

J lwl - (mlal^-0 + m2 ) = - m2^iw1 • me-4.1212

= mlalwl^ dW4 + m2^t1w1 ( 	+ a.4 +

and

J2w2 - m aẐ -^^-
0-0 mz^,—

m22A QA + 1A ) + ! F

where JD , J1 and J2 are the moments of inertia of pendulums defined with
respect to the points A, B and C, respectively.

A.2. Russell's Equations of Motion

A.2.1. Double Pendulum

Definitions of notations are given in Figure A.3.

qpql ro

x CM

V, 

^. r i

R1

a i V

F

Figure A.3. A Double Pendulum.
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Russell's equations of motion for a double pendulum are

J
OIO

 
+ 11 (mlrl )	 m14m2

and

	

m	 •

	

(~ 0+^) F - 1	 F + m11.•r-1.

^ lwl + ^ (ml^)	
m1+M2

where

r1 = - ^ (~wadl + wu) + w0d1 + wLl'
m1+m2

and

=^=^,t1=w^l-awl

Triple Pendulum

Definitions of notations are given in Figure A.4.

too	 40

101
ro

R 0

r ti 'CL

F

Figure A.4. A Triple Pendulum.
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Russell's equations of motion for a triple pendulum are

JA+1242' ^ +
I

JA
	 +221°2'

• _	 s	 0-112 ) F + ZI0`1 - ^^2 ZI0)!'
J^1 + ^0 = -42:10 ) -°2

and

- N +^ a	 '00^ - ^^0+01)1-.^0+^1)1
J010 !0* ^Zo0 -01) ^- Q00+̂X1 )-a 2

-QOA1) F .

N
where	 40 ' m0 90 = ' MO!0!00'

2

MO	
m0

2

a2 = - m2 -
100 +	 m2 it + (m? + M2)

m0	
m0

and

700 = ig!00 = -VOO - -100-0'

701 a wie-01 ij01 - -10iw0'

!10 W w]L10 M w1!40	 Owl'

N	

Al'x-12 = "111!4 

=

]!12 wlll2 1-11A 9

!21 2 !e!21 = V21 - X1,2'

A-6
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01!i0-10-01+io'
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APPENDIX B

DYNAMIC ANALYSIS AND OPTIMIZATION
OF

CONSTRAINED MECHANICAL SYSTEMS*

*Submitted to the International Journal for Numerical Methods in Engineering
for the consideration of publication.



B.I. INTRODUCTION

For a complex mechanical system. it has been indicated in the literature

[1. 21 that the equations of motion may be presented by using Cartesian

coordinates and lagrangian multipliers, resulting in a system of mixed

differential and algebraic equations. This approach great ly increases the

formulation flexibility, because it does not rely on the engineer's intuition

to determine a set of independent variables.

Several numerical methods can be found in the literature [1, 21 to solve

these differential-algebraic equations. One method is to differentiate the

equations of constraints and append them to the equations of motion. This

expanded system of equations is solved for the lagrangian multipliers and

accelerations. The integrations of accelerations provide good predictions for

the velocities which must be subsequently corrected based on the equations of

constraints. The velocities and displacements can be treated in a similar

way.	 A large number of state variables is usually encountered in this

approach which may become a prohibitive problem to be solved. To overcome

this difficulty, a coordinate partition scheme [3] is implemented at each time

step to sort out the independent and dependent coordinates based on the

equations of constraints.	 Only the independent coordinates are to be

integrated.	 Recently, the singular value decomposition scheme has been

introduced [4, 51 to select a set of composite coordinates as independent

coordinates which constitute a hyperplane tangent to the equations of

constraints. The numerical study shows that the singular value decomposition

method is quite promising.

An easily programmed algorithm is presented in this paper. The algorithm

consists of two parts: (a) a scheme introduced by Vance [6, 11 and (b) an

i

-j

• \ I
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unconstrained minimization. Vance's scheme has been limited to solve

unconstrained equations of motion. However, in this study, Vance's scheme,

along with an unconstrained minimization algorithm is used to analyze the

dynamics of a constrained mechanical system. An ;inconstrained minimization is

implemented to correct the state variables by minimizing the constraint

violations. The proposed scheme is further extended to find the design

sensitivity of constrained mechanical systems by the adjoint variable

technique [8] and to carry out the problems of optimization as well.

B.II. DYNAMICS ANALYSIS

A mechanical system is defined as a system that consists of bodies with

inertias and elements without inertias such as control force, damper, etc. To

define a mechanical system, one may assign a body-fixed coordinate for each

body and introduce the equations of contraints to describe the kinematic

relations between the bodies. Each body has either three degrees of freedom

corresponding to a two dimensional configuration or six degrees of freedom

corresponding to a three dimensional configuration. In this way, the kinetic

energy and the external work of each individual body can be easily

established. Based on Hamilton's principle and the theorem of lagrangian

multipliers, the equations of motion of a whole system can then be derived as

a^
71 (IT
	 8T -	

T 
X 

Q (g. g. t)	 (B.1)

and a set of constraints as

t (q. t) - 0 .	 (8.2)

The total kinetic energy T, a quadratic form of velocities, is the sum of the

kinetic energy of each body. The terms g, i and Q denote the generalized
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coordinates, velocities and forces, respectively. 	 In this study, the

constraint vector, j, is limited to a set of holonomic constraints. Note

that the generalized coordinates 9 and largrangian multipliers X are the

unknowns in the above equations of motion. The numerical implementation of

this system of differential/algebraic equations is discussed next.

For simplicity, Eqs. B.1 and 8.2, can be represented symbolically by

bt T

M
- (- X = G (g. S. 	 t) (B.3)

3
where the momentum term Wbi	 is equal to Mg.	 At this stage,	 one may

introduce Vance's scheme to approximate the differential operation by a finite

difference operator. 	 As an example,	 if the trapezoidal method is employed,

Eq.	 8.3 can be replaced by a set of finite difference equations defined at

time	 (n+1) At	 and	 net:

M(1) i (n+1 = M(g) g (n +	 {[( ) T	 + G] In + [(n

bt  

T	 + GI In+l}•	 (8.4)

The preceding formula is usually a nonlinear equation with roots, 9n+1 and

!
+1 .	 To find them, the simple linear iteration is sufficient and

convenient. Let 9n(+O1) and - (0) be good initial estimates of solutions

+l and +1 .	 After rearrangement, Eq. 6.4 may be rewritten as the

following recursive form for 3th iteration:

M(	 ) (

J) T

	

^+1 . n+1)	

(

nl- (	 +	 ( 7 "n+1)

At aO T
= M (^)	 +	 [(^)n n + ^n^ +	 G(n+l	 (B.5)

Although the above equations become linear equations with g(n+i) and

at 
+1 , they are unable to solve both g, (^+i ) and -7 ^n+l. because the

i
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number of unknowns is larger then the number of equations. Nevertheless, with

the help of equations of constraints, one obtains the following identity by

differentiating Eq. 8.2,

	

b@	 50

	

" ( ,Fq) 	Sf

It may also be written in a recursive form defined at the time equal to to+l,

M	 (j)

	

C^ n+1 g(n+l) s " (fin+1
	 (8.6)

The last equation along with Eq. B.5 provides a matrix form to solve g(n+0
and At X (J+l) simultaneously.

" 7 — n+1

	M W)	 b^ (J)T	 •(3+1)

	

n+1	 " t n+1	 g n+1

	

[ a^(3)	
0	 At X(J+1)

	

n+1 	— n+1

bt T
(M 3) n + At [(^'^	 + G + et G(J)

g	 —fin —2 — n+1
• 	 1	 (B.7)

n+1

The leading coefficient matrix can be proved to be positive definite
bo

provided that the rows of no are linearly independent [3].	 Thus, the

existence and uniqueness of I n+1) and °i X ^+11) are ensured. The new

value 
of(j+1) 

can then be obtained by numerically integrating g(J+l),g n+i	 n+1

for instance, by using the trapezoidal method,

g ( n+1) ' 9n + °7 (9n + g( n+1) )	 (B.B)

v
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Since the generalized velocities g n+1 are not independent, the generalized,

coordinates g( n+1 ) obtained by integrating g (PI) are not kinematically

permissible.	 In other words,(J+I)

	

g n+1	 may not satisfy the equations of

constraints, i.e., 0 (g( J+1),t) f 00	 To find the %+1 consistent with the

equations of constraints, an unconstrained minimization scheme is proposed to

simply reduce the deviations of 0 ( (J+I) , t) i.e.,1 n+1

Min % 8 6(11  t)T O (g, t)

.%+1

(8.9)

F_.

where the design variable is gn+1.
	

The initial estimate of	 is

provided by the direct integration of 9 +,, Eq. B.B.

There are many methods available to carry out the unconstrained

minimization defined in Eq. 8.9. Numerical results presented in section 4 are

obtained by a recursive quadratic programming algorithm [9], called the

linearization method, which has been proved to be globally convergent. More

specifically, the new value of q is obtained by modifying the current value

of g in the following way:

where the parameter a is a step size determined in such a way that the cost

400 is always reduced for the improved value of g . i.e.,

yo (q) <4,0 (g) -at 11 ST .'III, 	
(BAD

where c is a given constant, usually defined ss 0.1, and the notation
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- 11 denotes the L2 norm.	 The computations of Eqs. 6.10 and 9.11

constitute an iterative process to be terminated whenever the value of

becomes very small. After the value of g(J+1) is updated by the

optimum solution of the unconstrained minimzation, Eq. 8.9, the iterations

between Eqs. 8.7-9 continue until both gn+l and ^+l reach the convergence

criteria:

1( n+1 ) g( n+i	 < e'

P+1) -	 P)	 < e.	 (B.12)

I ( 3+1) _	 X (j)	 < e
 n+1 — n+1

where the notation ( - i denotes the L' norm and the a is a given small

constant. Once the convergence is achieved, the computation moves to the next

step and the iteration starts again.

The numerical algorithm is summarized as follows:

Step 1: Start with initial conditions and	
X o 

n 0.

Step 2: Select the initial values for	 S(O+1- 1(n+1 and	 X(0)

Step 3: Solve the matrix equation (B.7) for	 g( n+1 ) and	 X(J1)

Step 4: Calculate the	 initial	 estimate	 of (J+l)g n+l by	 using a ua tion9	 q

B.B.

Step S:	 Update the value of	 (n+1)

	

g n+1	
by carrying out the unconstrained

minimization, Eqs. 8.9-11, in order to correct the constraint

<t



B.7

a

deviation.

Step 6:	 Check the convergence criteria defined in equation 8.12, if the
convergence is achieved, move to Step 2 with n a n+1; otherwise,

J s J+1, move to Step 3.

There are some remarks worthwhile mentioning here. First, if it is difficult

to find the initial conditions for all of the dependent g and g in Step 1,

the unconstrainted minimization scheme given in Step 5 with independent

variables fixed can be used to obtain accurate dependent g and g . Second,

the generalized acceleration g^ can be calculated directly by rearranging Eq.
8.3 as

9	 3 sq	 g 3

Compared to the method introduced in references 2 and 3, the proposed approach 	
y

avoids the complicated and time-consuming process of deriving the second order 	 s

t

derivative of equations of constraints, i.e.,

tM

B.III. DESIGN SENSITIVITY ANALYSIS

The design sensitivity analysis of a system with differential and

algebraic equations associated with mechanical system dynamics has recently

been a subject of study [103. Two approaches have been discussed in the

literature. One is the direct differentiation method [113. The other is the

adJoint variable technique [8, 123.

The differential/algebraic equations for the dynamics of a constrained

mechanical system can be rewritten as follows:

d (aT) _ 6T 4 + _ .T ^.
7 a, s	 q

0► 	 Ot
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and

I (Lb. g. t) • 0

with the initial conditions given as

g - SO(b) .	 at t n 0	 (B.13)

g-go (b).	 at t - 0 .

The kinetic energy T is given as a quadratic function of 9. i.e.,
T n 3 1T M (g, b. t) g fora symmetri c ma trix".

It is very common in the optimal design formulation to have the cost or

constraint written in a functional form as

It
4 • f F(b,g.g. t)dt

0

The task for the design sensitivity analysis is to obtain the design

derivative of 0 with respect to the design variable b. 	 The design
variation of d, dd is derived as

- Jt i aF	 * OF	 + aF •+) dt.
o ^ 3g g ag g

or after integrating by parts.

-1s{
 

5F 6b *[ • (aF) J g'}dt +aFq' ^o	 (8.14)
o	 gt	 g

where	 the	 terms	 with apostrophes	 denote the	 variations	 due to the

perturbations of design variables,	 bb.	 It is revealed in Eqs. 6.1 and 8.2

Ao-

4

Ok



that the relation between design variable b and state variable q is highly

nonlinear. Thus, it is difficult to find q' explicitly in terms of b.

Nevertheless, the adjoint variable technique provides an alternative in which

q' is not required to be defined analytically.

To begin the adjoint variable technique, one pre-multiplies two arbitrary

vectors µ(t) and At) to Eqs. 8.1-2, and integrates the products over the

time period (0, z) to get the identities:

fo	 T Mq- µT8T - µTQ-PT (0 )Ta]dt+PTMg10-0	 (6.15)

and

fl
 vT 0 dt - 0	 (B.16)

0

The design variation of Eq. 6.15 is derived as

f19 { - µT(M g) q'- µT (M _
q b a

b _ µT M S'

o	 'q	 '

	

-'J
 (^),q q^ _ µT (q),b	 _ µT .^ L), ^ q

g

-µTQ^gq' - µTIC bbb-µT

µT [ (	 )T -K ] q- µT I (.*	 )T T]
g	 .q	 1	 , b

0	

,y.

a

F

1
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- µT (0 q )' X - ) dt

+ µ
T (M4) s. 

J 'C  + µT 
(Mi) • 

i. I t

	

..S	 o	 'g	 o

+ µT (M g) b bb I T - 0

	

'	 o

where the subscripts denote derivatives and where the terms with a bar on top

are not subject to the differentiation. Integrating the terms with q' in

the preceding equation by parts, one obtains

TJo {g^T 
{^ (M µ) + [('r)T g µ],t + 

LQ 
g 

µ]^t

- (Mg) T 11 µ -(^)•gµ _Qg µ_[aT!,g],gµ}

- bbT { (M g) ,bT µ + () ,b µ + Q,b µ - [ KT ^,g] . b µ}

g µ)} dt

_ µT M g, 
i 
T_ µT (6T). • y T - 

1-T Q. _q 1 To	 fig' g o	 q o

+ µT (Mq),	 q'Io + µT M g'lo - µT (M g). t - bb^o - 0
q

Furthermore, the design variation of Eq. 6.16 provides
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f (VT 0,9 g' + VT S' b 8b) dt - 0.
S

0	 I

Adding the last two equations to Eq. 6.14 and grouping the corresponding terms

together, one is able to express the design variation of the given functional

i+ symbolically as

64, - fs (4T 
bb 

—AqT g' + µT 0T , X I )dt + boundary terms	 (B.17)
c	 —	 — g—

whereT# _ (M 3),b µ + (!F ,T	 T
b 

µ + Q,b  N

+ (a 'D,g), b µ + 'S,bT v + F.bT

and

Aq = d (M	 + [(IT).Tg µ]. t + [Q'qT µ]'t

- [ XT ^,g],g µ + O
,T9. 

v + F .^T - (F,q)^tT

It is noted that the design variation 64P is a linear functional of

variations, bb, g' and V, and that the vectors µ and v still remain

unspecified. One may then assign values for µ and v so that Aq - 0 and

!,q µ - 0.	 In rt.ier words, the adjoirt variables µ and v are defined so

as to eliminate the influence of unknowns g' and V in the formulation of

4.	 The condition A
-4 

- 0, along with 0,
g—

µ - 0, can be arranged and
—

written as follows:
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^.	
d (M µ) + m. T v = R (b. g. 9, l+, N, v , t)	 16.18)

and

ka µ = 0	 (s.19)

where R symbolically denotes the rest of the terms defined in A q .	 It is

evident that the adjoint equations 6.18 and 8.19 are linear functions in terms

of adjoint variables µ and v and they represent a mixed system of

differential /algebraic equations. fibre specifically, Eq. 8.19 provides a set

of linear constraints on 	 and v serves as a vector of lagrangian

multipliers.

Following a similar procedure one can investigate the boundary terms

shown in Eq. B.17 and determine the terminal conditions of the adjoint

variable µ -in such a way that the influence of design variations g' and g'

is eliminated from the boundary terms of 64P. 	 Note that the boundary terms

of by have the design variations g' and g' defined at both t = 0 and t =

z.	 If the initial conditions of all the independent and dependent

coordinates, as well as velocities, are given explicitly, for instance:

g= _O Ib)	 ,att = 0

g = go (b)	 , at t = 0,

then the design variations g' and g' at t = 0 are found without difficulty

as
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g, n (;^ bb,	 att =0.

Hence, the boundary terms of bd+ can be rearranged to obtain:

Boundary terms =

8
-{[µTM+1±T(V.g*µ Q,g-µT(Mg).g](BF)

	

µT M (	 ) - µT	 (M q) . b } • bb ) t=0

- {[µTM + µT (),q + µT Q,g ' µT (M g),g] q_ + µT M q }T

	

+ µ (M g),b 
b001
	 (6.20)

On the other hand, while the boundary conditions are known only for the

independent coordinates gl and velocities gi , i.e.,

	

gI = 90 (b),	 at t=o

(B.21)

	

gI - qo (b),	 at t=o,

the equations of constraints defined at two should be used in order to find

the. design variations of the dependent quantities. The design variations of

Eq. 6.21 and Eq. 8.2 at tro provide the following matrix equation
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+ SI 3r) ab
	

(8.22)

Which can be used to determine the design variation 90 explicitly in terms

of bb at t=0 Provided that the matrix b@/b_% is not singular. Further-

more, the design variations of *' and g'o can be obtained in a similar way

by constructing Eq. B.22 based on the design variation of 6 at t = 0.

Therefore, the boundary terms of b* are still able to be written in the form

of equation 8.20, although only the independent coordinates and velocities are

given at t=0.

Next the boundary terms of 4 defined at t=s are investigated. The

best way to avoid calculating the unknown variations f and g' at the

terminal time c is to specify the terminal conditions of adjoint variable

µ at t = c so that the terms associated with f and g, ' can be dropped. To

achieve this, it is sufficient to obtain the following identifies from Eq.

8.20,

M µ + [(TO g + QT ^g - (M g),g] T µ = 0, at t=s

r

i

_a

and

Mµ=0
	 , a t t=i

Because of the positiveness of the mass matrix M, it is simply concluded from

the above conditions that µ(s) = W (-0 = 0.	 Based on these two terminal

conditions, along with the adjoint equations, Eqs. 8.18-19, the adjoint

variables µ(t) and v(t) can then be determined uniquely in the entire period

of time (0, z).	 Note that the same numerical scheme used for dynamic

analysis, Eqs. 8 .1-2, can be applied here to solve the adjoint equation

i
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j

ttJ

1

i

numerically, though a better scheme could be implemented to take advantage of

the linearity of the adjoint equations.

Finally, with the knowledge of p, v, land x, the design variation of

the cost functional 6*, Eq. 8.14, can be expressed as a linear functional of

the perturbation of the design variable, bb,

S
bdr j AbT db dt + —b db l o + pT (M I sbbb ^oo

where Ab is defined in Eq. 8.17. While the initial condition of all the

independent and dependent coordinates, as well as velocities, are given

explicitly, the term lb is defined as

a
9T + µT (^) . g + µ Q. g - µT (M. g) .g] ( )

a
µT M O -µT IM q ) , b .

Otherwise, a similar form can still be obtained based on Eq. 8.22.

B.IV. NUMERICAL EXAMPLE

4

A modified slider-crank mechanism with one degree of freedom is studied

here as an example to validate the numerical algorithm presented previously.

This mechanism is composed of two linkages, the crank AB and the connecting

rod BC, as shown in Fig. 8.1. While each of the hinge Joints A and B

entertains two constraints, the joint point C is forced to slide along the x-

axis. With a torque H applied at the joint A, the system is subjected to a

planar motion.	 The definitions of body-fixed coordinates, as well as the

0



vectors !.i and di , are indicated in Fig. 6.2. The total kinetic energy of

the system is obtained as

8.16

2
T = 1

Y	
(M i Ri Ri 

+ Ii 
Wi)

The kinematic constraints for joints A, B and C are given as,

^1 +R 1 =0

'sR1 +d1 -A-R2 = 0 (B.23)

#3 =
 IT (R2

+ d2 ) = 0

where the unit vector J is parallel to the Y-direction of the inertia frame.

The constraint 4 3 means that there is no Y-component of Joint C's movement

at any time.

Analysi s

Based on Hamilton's principle and theory of lagrangian mul ipl iers, a

system of eleven equations can be set up in the form of Eq. 8.7 for the

slider-crank mechanism. The unknowns to be solved are the six degrees of

freedom, R1, !2- w1 and w2 , as well as the five lagrangian multipliers,

^4, 2 and X3 associated with the equations of constraints, Eq. B.23. The

diagonal components of the 6 x 6 mass matrix M are M 1 , Ml , M2 , M2 , J1 and

J 2 . The fifth component, equal to the given torque H, is the only non-zero

element in the forcing term S.	 The detailed formulation of the Jacobian,

ap
.917 , is given in the Appendix.

With the non-dimensional data: M1=M201, H-2, J1 = 0.08333, J2 - 0.33333,

IA1 1 -	 1 .11 1 = O . S. and	 I JL 2 1 - 112 1 - 1, the slider-crank mechanism	 of

.,

41 A

N1

R. r
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concern is analyzed on the DEC-10 system with double precision. The time step

at is set as 0.005 seconds. It takes 25.5 CPU seconds to simulate the

motion for the time period of one second. The convergence criteria, Eq. 6.12,

for the coordinates and velocities are set as 10 -5. It takes at most three

iterativns at each time grid to achieve the given convergence requirement. As

for the unconstrained minimization scheme for the coordinate correction, it

also takes at most three iterations at each time grid to achieve the

convergence given as

L,

I I * I I < 10-6

Some	 of	 the numerical results are	 listed in	 Table	 B.I.	 The	 last column

contains the deviation of the constraint, 03 ,	 regarding	 the	 sliding joint

C.	 Furthermore,	 the results, obtained	 by using a	 commerically	 available

program,	 DADS	 [13], are	 also listed	 in Table	 8.1	 for	 the	 purpose	 of

comparison.	 A	 good agreement between	 the	 purposed	 scheme	 and	 DADS	 is

observed.

Design Sensitivity Analysis and Optimization

The optimization of slider-crank mechanism studied here is to find the

control torque H(t) so that the motion of the sliding joint C can follow a

desired path n(t).	 This example falls into the category of inverse

dynamics. Nevertheless, an optimization foriaulation is set up to approximate

the best torque profile H(t) in terms of given functions. That is

Min 4+
0

 js [R + 12 - 1(t)] 2 dt

H(t)

where the control torque is expressed in terms of given functions N i (t) and

design variables bi as

OV
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H(t) n E b  N i (t).	 (8.24)

The function Ni (t) can be a polynominal or trigonometric function. 	 The

desired path, jL n [nx , TIy]T, is given as

li x(t) n a + 10 ( P-a) t3 - 15 (P - 4)t4 + 6 Wa) t5 , 0 t t < 1,

ny (t) n 0

Note that the path qx(t), starting from the initial position a to the final

position 0, entertains zero velocities and accelerations at both "0 and

tnc.	 The design variation of the cost function is derived as

61s0 
fs (jj) T 	6H dt

0

where the forcing term Q is given as (0, 0, 0, 0, H, 0) T , and where
1

6H n E Ni (t) • 6qi because of equation 8.24. Thus,
1

z

64'0 n E[f
0 

N5 • Ni (t) dt] • 6qi

:4_• e

1T 6Q
	

(8.25)

where I is defined as a sensitivity vector. The adjoint variable µ is the

solution of the following adjoint equations:

+ (,^ T v n " (k S µ).g + 2 (!2+ d2)T,.q • (R^ + d 2 - ?t)	 (6.26)
Mu

and

N11



(8.27)S^•0

with terminal conditions; l+(i)	 (t) n 0.	 The detailed formulation of the

terms in Eq. 8.26 can be found in the Appendix.

The accuracy of the design sensitivity- analysis is investigated next.

First, the control torque is fixed as H-2. The design sensitivity vector
calculated by the analytical equation is compared with the one calculated by
the direct finite difference method. The result plotted in Fig. 8.4 shows a

very	 good	 agreement	 between	 the	 aforementioned	 tmu methods when	 the

perturbation of the design variable is up to 10%. Second, the control torque

is	 described	 by	 a	 quadratic	 function	 H(t)	 n 	 ao + a l t + a2 t2 with	 three

coefficents as design 	 variables.	 The components of the design sensitivity

vector	 provided	 by	 Eq.	 B.25,	 as	 well	 as	 those calculated by the	 finite

difference method are listed in Table 8.2.	 The results are obtained based on

ao n al n a2 n 1 and 2f perturbation for each design variable. 	 It is

interesting to observe from the design sensitivity vector that to increase the

design coefficient ao is more beneficial in terms of the reduction of error in

the path generation than to increase a l and a2.

Once the accurate design sensitivity is produced, any gradient-based

mathematical programming can be used to generate the optimum solution

iteratively.	 The following numerical results are obtained by using a

recursive quadratic program called the linearization method [9]. The control

torque is assumed to have one of the following forms:

H(t) n ao,

H(t) n ao t alt,

H(t) • ao + a l t + a2t29

A
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H(t) • ^, sinxt + b 2 COW

where the coefficients, a o , a i , a 2 p bi and b2 are treated as design .variables.

Corresponding to differently prescribed torque functions, the optimum

solutions and their associated data are listed in Table B.3, and plotted in

Fig. 9.5 as well. Note that none of the trial torque functions are able to

establish a path pattern so as to make the terminal velocity and acceleration

approach zero. Finally. to demonstrate the stable performance of the optimum

algorithm, the convergence progressions of the cost function and the

convergence criteria. i.e.. L2 norm of the design gradient, are also plotted

in Fig. 8.6 only for the quadratic control torque.

iA
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Table B.I. Nwarical Results of Analysis
rr

Prop. Algorithm DADS
.; 43

F Time el (Rad) W1 el (Rad) W1

0.1 0.01499 0.29993 0.01697 0.29967 0.3240'19

0.2 0.05992 0.59759 0.06346 0.59698 0.144017

0.3 0.13410 0.88239 0.13822 0.88085 0.1340'16

0.4 0.23524 1.1324 0.23958 1.1294 0.4540`16

" 0.5 0.35865 1.3254 0.36317 16.3201 0.3840"16

0.6 0.49826 1.4578 0.50234 1.4522 0.2940"16

0.7 0.64877 1.5473 0.65248 1.5415 0.1440'17

0.8 0.80714 1.6189 0.81052 1.6136 0.35x10"16

0.9 0.97270 1.6946 0.97595 1.6906 0.1740"1Sr
1.0 1.1468 1.7927 1.1501 1.7908 0.3440"15
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Table B.2 Design Sensitivity Analysis of the Slider-Cranker Mechanism

With Quadratic Con tro Torque:
H(t) a ao + a lt + 42

Adjoint Variable	 Finite Difference	
(i)-(2 t

Technique	 Method
Design Gradients	 eq.	 [9(gl+oai) • *(ai)]/aai

r:

-0.22357	 -0.219	 2.048
ie

Sao	
-0.05845	 -0.059	 0.948

o

r&—
	 -0.02389	 -0.0245	 2.939
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ADDENDUM TD APPENDIX B
of

1. The Jacobian,

	

-1	 0	 0	 0	 Illy 	0

	

0 -1	 0	 0 -A ix	 0
	-1	 0	 1	 0	 dly	

-it 
2y

0 -1 0 1 -d 1x A 2

	

0	 0	 0 -1	 0	 -d2x

where the first subscript denotes the number of the body and the second

subscript represents the component along the specified direction.

2. The terms on the right side of Eq. 8.26,

(a)	 (XT 
ao

g
0
0
0

_	 0

tIx N5 "I + 1 l 112 + dlx "`5 h3 + 
dly 115 X4

- t2x % ''3 - t2y % 1`4 + d 2 1 6 x5

e a^

2(R	 +^d	 - T1 )
2x	 2x	 x

2(R	 + d )
2Y 

0 
2Y

-2 d 
2 

(R 
2x + d 2 - nx)

2 
d?x 

(R 
2y+ 

d2y)

:%	
._may
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