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ABSTRACT

It is shown that the numerical technique of Russell's momentum approach
can be derived by using Hamilton's principle and Vance's numerical scheme.
It results in a set of first order difference equations for solving the
angular velocities. The method is simple and easily programmed. The numer-
{cal examples show that the method is also reliable.

The algorithm is modified next to perform the analysis of N-body sys-
tems with closed-loop topology. To increase the formulation flexibility,
the equ;tions of motion are represented by using Cartesian coordinates and
Lagrange multipliers. The algorithm consists of two parts, Vance's scheme
and an unconstrained minimization. The Vance's scheme is used to find the
angular velocities, and the unconstrained minimization is applied to provide
the correct angular displacements.

The proposed -scheme is further extended to find the design sensitivity
of an N-body system with closed-loop configuration, and to carry out the
design optimization as well. The numerical example of a small-scaled me-
chanical system is presented to verify the proposed formulation. Some

aspects of future study are discussed to enhance the capability of the pro-

posed scheme,

i




TABLE OF CONTENTS

1. INTRmUcTIN.......l...............I..‘..0.................“..
2. WILTON.S EomTlmslb..lll....l.l....‘..........OO..‘.........
3. m‘LTO“.S EWATIMS mo RUSSELL.S "ETmD.........‘...l......!.

3.1 N-wy systa "1th c]uster conf1wr‘tion'.0'l....i..‘l.’ll
3.2 N-Body System with Tree Configuration.....cccceveenees cose

4. NUMERICAL ALGORITHM AND EXAMPLES...cccoeeeosscsssscscnrcscannss
5. DISCUSSION AND CONCLUSION....ccvovecvvvascsconnsccsonsscancnnns
REFERENCES. . eocesnerssnncrsnnncccsnnnaans ceseccne B e
APPENDIX A: EQUATIONS OF MOTION FOR DOUBLE AND TRIPLE PENDULUM....

APPENDIX B. DYNAMIC ANALYSIS AND OPTIMIZATION OF CONSTRAINED
"ECWKCAL SYSTE"S'..’........ ....... 80006060 0000080000

LIST OF TABLES

Table
1 Numerical results for a double pendulum............ tecsessssae
2 Numerical results for a triple pendulum,...coeveeceeccsncsnnnes
B.l Numerical results of analysiS..ccveeecccceccnccnccsocssocnnnne

B.2 Design sensitivity analysis of the Slider-Cranker mechanism...

8.3 Optimum control torques of the Slider-Cranker mechanism.......

LIST OF FIGURES

Figure
1 N-Body Cluster Geometry.....cocoeevsccssecs tescesssnssssasnseee
2 Generalized Forces......cccevececnencorenscnns Cesecsessesrenans
3 N-Body Tree Configuration.....ccceeeeeesses cesasessavesssssnies

4 An Example of N-Body Systems with Tree Configuration...........
5 Flow Chart for the Numerical Algorithm......ccoeeoeeeesansceces

114

£ -

—— N NN



TABLE OF CONTENTS - Continued

LIST OF FIGURES - Continued
Figure

6 The Motion of a Double Pendulum.....ccceeeveecnnesscnrsosnncses
7 The Motion of a Triple Pendulum....cceuiveecnnancecessscnsosess
A.1 A Double Pendulum....ccoceeeeoesaccencccsacsscssnassscnnse cesene
A.2

A.3 A Double Pendulum...cceceoeecoesccosoresssorssssorscacascsonasse
A4 A Triple Pendulum. .coceeseseresccccosasssosscscnsssnnncssssssss
B.1 A Modified Slider-Crank Mechanism...... cecssse ceseccsscstsanres
B.2 Definition of the Body-Fixed Coordinate.......ccveeeeeesencncss
8.3 The Motion of the Slider-Crank Mechanism........... cotestocnnas

B.4 :Design Sensitivity Analysis of the Slider-Crank Mechanism
with Constant Control Torque: H=2......... tesassecsssnarassesan

B.5 The Optimal Paths for Different Torque FunctionS.......cceeeees

B.6 Numerical Convergence History of the Slider-Crank
Mechanism (with quadratic torque)........... ceseree ceressreenne

iv

28
29
A-2
A-3
A-4
A-5
B-27
B-28
B-29

B8-30
8-31

B8-32



FORMULATION AND APPLICATION OF RUSSELL'S METHOD

By
Jean Win Hou*

1. INTRODUCTION

The major thrust of the Russell's method [1] for the dynamic analysis
of multibody is twofold. Firstly, Russell constructed a set of first order
differential equations, uncoupled in terms of primed angular momentunm.
Secondly, the constraint forces duc to joints are eliminated in his formu-
lation. In general, the number of first order differential equations needed
to be integrated are less than the number of bodies. After integration, one
is left with a set of simultaneous equations for solving the angular veloc-
ities. Russell [2] rei:omended the SOR (Successive Overrelaxation Iter-
ation) scheme as a solver for an_gular velocities.

The Russell's method will be reformulated by using the Hamilton's
principle and the rule of Lagrange multipliers in this report. To derive
the Hamilton's equation for a constrained dynamic system, the variations of
generalized coordinates and generalized velocities are treated independently
and the constraints are introduced into the derivation through the rule of
Lagrange multipliers. The Lagrange multipliers can be identified as con-
straint forces. Note that the constraints for the revolute and spherical
Joints are holonomic. Then, in section 3, the Russell's formulations for
the N-body systems with open-loop topology are derived, and while deriving,
the Lagrange multipliers associated with constraints are eliminated. In

order to 1acilitate the development of a computer code, the equations are

*Assistant Professor, Department of Mechanical Engineering and Mechanics,
01d Dominion University, Norfolk, Virginia 23508.



given in the matrix and vector forms. Numerical examples of a double and
triple pendulum are presented in section 4 to verify the aforementioned
algorithe. |

For the N-body system with close-loop topology, the Lagrange multi-
pliers are no longer easily eliminated. Nevertheless, the concept of
Vance's scheme along with an unconstrained minimization scheme provides a
very simple algorithm which is capable of not only performing the analysis,
but also carrying out the optimal design of such a system. The detailed
formulation and application of this algorithm can be found in Appendix B.

2. HAMILTON'S EQUATIONS
For a N-degree holonomic system, the classical approach is to derive

Lagrange's equations

e Y TS U (1)
dt 3:11 3q1

from the Hamilton's principle

t
§ [Ldt=0 (2)
to

where the Lagrangfan function L is equal to the sum of kinetic energy T
and external work W, i.e., L =T + W, and & represents a contempora-
neous variation. Ouring the derivation, however, it is assumed that opera-

tions § and d_:. are exchangeable, 1.e.,



Soq 283, fal...oN (3)
dt

In other words, the virtual velocity is obtained by taking the time
derivative of the virtual displacement. Therefore, Eqs. 2 and 3 show that

[ L(a, °q. t)dt 1{s stationary in the family of configurations satisfying the
N differential equations

dq‘ .
—_ g (4)
dt

To make q's and &‘s vary independently, the rule of multipliers asserts
that

b, N dy
f l[L(qo q, t) +1I Ai (""1 - qi)] dt
ty 1 ' gt

is stationary for arbitrary variations of q's and a‘s. the A's being
certain functions of t which are to be determined. The necessary condi-

tions for a stationary value are given by the 2N equations

s R = Xi. o 1sl, ... ,N. (5)

Note that q's and the time are fixed at t;, and t,, but not the a's. It
can be readily verified that A's correspond to the generalized momentum
defined in the Hamilton's principle.

The same procedure can be extended to obtain Hamilton's equations asso-



ciated with constrained dynamic systems. Supposing a dynamic system is

consistent with the following holonomic constraints

£ ant) =0, sl N
e tol,... M, NN (6)

Then, according to the rule of mu)ti'pliers. there should exist ¢t functions

of a(t) such that the functional

t . N dqy M
LU B 1) #E Ay (- §) *Ta, f, (g, t)] dt
L) 1 dt 1

is stationary for arbitrary variations of q's and i's. The above condi-

tions yield

Mooaf
adtar o, L, N (7)

and

Ay T — i=1,...,N (8)

The 2N unknowns q's and q's as well as M functions a's are to
be determined by solving Eqs. 6-8 together.

As to the system with nonholonomic constraints,

f C , t) =0 i=1,...,N
e (08 ) gall .l oM MO (9)




the kinematically admissible variation cq1 has‘“to satisfy the following

equalities.

@®»
-
o

Sq, =0,  tal,...,M (10)

-
@
Fell
|

where § denotes a contemporaneous variation. It 1s evident that Eq. 2 is
no longer true for the nonholonomic system [3]. Instead one has to use the

following equation

t
[ YL dt = 0 (11)
to

Considering Eqs. 3 and 10 as the variotions of constraints, the Farkas'

lenma [4] ensures that there should exist functions A's and a's such

that
[ [6L+T Ay (——-8Q) +T a (E—¢q,)] dt =0
to 1 dt 331

for arbitrary variations of q's and a's. It follows from the above condi-

tion
(o1} M of
—-‘.?-—L—+z Gz .—l. 1'1.0--." (12)
dt 3q1 1 aq,
and



Ai 8 ‘.l.ooo.“ (13)

Using the Eqs. 12 and 13 1n conjunction with Eq. 9, the 2N unknowns, q's
and q's, as well as M funstion a's can be determined.

From the standpoint of computational efficiency and accuracy, formu-
lations 1ike Eqs. 7-8 or 12-13, for the equations of motion, are desirable,
Note that only N first order differential equations appear in the above
formulations. Thus, not only the number of differential equations remains
as N, but the potential source of error of numerical integration is also
minimized. However, only 1imited numerical schemes associated with Eqs. 7-8
or 12-13 had been developed to solve the equations of motion for dynamic
systems, J. M. Vance [5, 6] replaced Eqs. 4 by a finite difference form and
derived a set of finite difference equations to solve Eqs. 5.

Regarding the constrained dynamic systems, however, very few publi-
cations are available. Numerical difficulties arise in solving q's and
El's satisfying the constraints and in determining the corresponding multi-
pliers.

There are several techniques available currently for solving the
equations of motion consistent with constraints, such as, numerical
stabilization (7, 8] and coordinate partition [9]. These methods start with
the second order derivatives ;z (q,t) = 0, or first urder derivative 1"l
(4, @, t) = 0, so that q can be a variable. In other words, an extra
second order differential equation {is generated from each constraint, Of
course, these approaches do not convey the original intention of using
Hamilton's principle 'which consists of first order differential equations

only. To avoid the above difficulties, a simple way would be to eliminate



the multipliers from the formulation. This is exactly what Russell did in
his work [1] for a dynamic system with open-1oop topology.

3. HAMILTON'S EQUATIONS AND RUSSELL'S METHOD
3.1 N-Body System with Cluster Configuration
A N-body system with cluster configuration 1is shown in Fig. 1. The
xx-vl-zl coordinate system denotes the inertial frame. The body-fixed
coordinate system, XY=y for body {1 1located at its center.of mass.
For the sake of easy programming, a skew-symmetric matrix E
associated with a vector a {s defined as

™ “

0 -2, [} y
aE | a, 0 -3
-ay a 0

such that a x b = ig’e where .; fs a unft vector parallel to a x b.

It {s easy to prove the following identities:

V-1 (14)
abe-ba (15)
(ip -3b-53 (16)

Furthermore, if A 1{s a transformation matrix such that a=Aa' and w

is a vector of angular velocities, it can be shown that



A=wA (17)

Tead A (18)

Figure 1. N-Body Cluster Geometry

Generalized Coordinates

The position vectors of the mass centers of bodies and angular dis-
placements of the body-fixed coordinates are taken as the generalized coor-

dinates. The components of generalized coordinates are in terms of the

inertial frame.

Generalized Forces

As shown in Fig. 2, a force Ey acts on the body 1 at the point P
with the position vector g,:



Byt Yy

where 3, 1is a vector measured from the center of mass to the point P.
Thus,

Figure 2. Generalized Forces

Replacing the differential notation d by a small increment A, one

has



Api A31 -

at st &

or
8y = &gy - 3w, ot)
=4, - 288,
dgi
where the definition of w e T is used, Finally, using the variational
t

notation &, instead of A, the foregoing relation yields

T T T~
F; 8p, = F, 8q, - F;: a, 80
Fi Py " Li09; -5 3499 (19)

T . T
= Fy8q; + (a; Fy)' 68y

The term :éi f‘i is the momentum at the mass center induced by the force

£i‘ Note that even though the angular displacement 8; is not a vector,

but the infinitesimal angular displacement 6&8; 1is still a vector,

Total Kinetic Energy

The total kinetic energy of the system is given as

N-1 .
. ‘ (‘ 131 9 ¢

N[o—l

"1 ;)

where J1 is the inertia tensor of body i with respect to the inertial
frame. The Ji can be found equal to AidsAI where Jﬁ is defined as the
fnertia tensor with respect to the body-fixed coordinate system and Ay s

the transformation matrix between the body-fixed coordinate system and the

10



.

1qertial frame, Thus, the variation of the total k;netic energy s sinp]y
written as

oT = "El (M, 8)7 63 + (3,w,)T &w (20)
o i 84 oY LR

Constraints

There are two sets of constraints needed to derive the Hamilton's
equations for the constrained dynamic system.

The first one is a holonomic constraint which defines the nature of
connection between the bodies. In the following derivation, only a revolute
joint (2 dimensional) and a spherical joint (3 dimensional) are considered.
According to Fig. 1, the spherical (or revolute) joint provides a holonomic

constraint which can be expressed mathematically as
.i -31-30-21 '!'-i = 0, i=l,...,N-1 (21)
Note that all the components of the vectors in the last equation are re-

ferred to the inertial frame.

The time derivative of ¢, yields
b= 028 -8 - %, 4 - F 1y

After replacing the differential notation .ai by incremental notation 2
t At

and by multiplying each term with At, one has

11




A_q*-ag°+ ) At+l1_1At'0
Thus, the variation of the constraint 601 =0 will yield the relation

- 630 + 60 +1, 80

2,088, =0 (22)

The second set of constraints corresponds to the relations between

displacement and velocity variations,

dqQ_ .
_a_t.*. - 83 120,...,N-1 (23)
and
dcg1
— 6! 1'0,..0."‘1 (24)
dt

Again note that “i represents infinitesimal angular displacement which is

a vector,
For the variations of the systems, Eqs. 19, 20, 22, 23, and 24, Farkas'
Lemma asserts that there should exist A (i=1,...,N-1), a; and B

(120,...,N-1) such that for arbitrary variations 68q;, 6q;, 685 and 8w;:

0 :[ {"(f)l (Mi g_i)T 631 + (Jiw‘) Gw] + “tl[FT 8g, + (ai_1 661]
to
=1 1 d .

+ Ngl [..- (684) --8w;]} dt

12



Mnalogous to the Hamilton's principle, g and 8, ore assumed to be fixed

at time t = t, and t = t,. That means g, =48, =0 at t=t, and
t = t,. After integrating by parts and col\ecting' the corresponding terms,
the following identities can be obtaineq

M te. 10N (25)

J ! = E_ [ 1'0,....“‘1 (26)
i i

where a and 8 can be identified as 1inear momentum and angular momen-
i i

tun (with respect to the mass center of body i), respectively. Furthermore,

one has
a -F -1 =0, t=1,...,N-1 (27)
I B
B -3 F +ix =0, f=1,...,N1 (28)
o T B B
and
e -F +%1, .0 (29)
e B
8 -3 F +Mlaa =0 (30)
D 070 1 i

To reduce the number of degrees of freedom, two steps are necessary:

(1) eliminating the constraint forces A , and (2) substituting the con-
i

straints of Eq. 21, into the formulation explicitly.

Center of Mass

The relations for the mass center of the whole system are defined here.

13




It can be shown that

SR STRLY (32
P ™ P o
and "5 My = 'E 3y sMR-EE (33)

where M and R denote the total mass and the position vector for the mass
center of the whole system. The second equality in Eq. 32 follows the
definition of a; 3 given in Eq. 25 and the last equation is derived by
adding Eqs. 27 and 29. Further,

L" = &i - 5’ i’O,...,N-l
or 9= R+r., i=0,...,N-1

where I is the vector between the mass centers of body i and the whole

system, Eq. 21 can then be written as

r, -

L !_-0 - 21 - _"_'[ =0, f=],...,N-1 (34)

Then multiplying Eq. 34 with Mys sunming over all the i and in view of

"il W, r, = 0, it can be shown that

0

the fact that

5-0"'1,7, "iil M, (11"£1)' (35)

14



After substituting for r,, Eq. 34 can be rewritten as

3|o—o

NE (94 + &4) + 24 + 54. 1‘1..0..“‘1. (36)
Furthermore, taking the time derivatives of Eq. 35 and 36, one gets

My (wg dy + w4 2y) (37)
and r, = - M, God ‘_1)*30511 +_;_1 Ly, (38)
1‘1-0-0."‘1

Note that '_Eo and i'.i are functions of angular velocities only.

Constraint Forces Elimination

The constraint forces A, can be eliminated from Eq. 28, by substi-
tuting Eq. 27,

E‘i +-l--'l g.‘ * (-6-1 +£i) _F_"' 1‘1....“‘1
Combining the definition of a; and r;, as well as Eq. 33, one has

'W&
-M1R+M11

M, N-1
B e 2 -F-1 + M1 ri, 1‘1.0--"'1 (40)
M 0

Then Eq. 39 can be rewritten in terms of L as,

15



My Nl
-i-" + ‘.' ("i ri) = (i + 11) F1 --"— l1 ( 2 -Fti) i‘l..o-“‘l

Since 11 (M; _1) ® e = M

i 1 1 the above equation becomes
I(m ry) =

M.‘ N-l
.m+z”1-ri(zF)+n

(41)

i b
1 l.OQO’N-l

By + Myt 1y

:-li. 't {\/ ~ ~ o~ .
where t. = _1_1 W L =W L, -t w,andr, is alinear combination of

angular velocities as given by Eq. 36.

The term B, + M, ;'_..1 _'r_1 fs called the primed angular momentum by
Russeil, It is worthwhile mentioning that the right hand side of Eq. 41 is
a linear combination of angular velocities and the left hand side is a qua-
dratic function of angular velocities.

Since only N-1 equations are available in Eq. 41, one more equation has
to be established for angular velocity LA of the central body. Making use
of Eq. 40, the constraint force can be obtained by

Ay = -9yt E

"1 N‘l
--__(2 £1)+M
0

[FPR T WS
M

i ot

Substituting the above equality into Eq. 30, one obtains

16



M
-" 3 M - F,) - E
3, F, +z [1r1+"(z ) ]

or
[ ] ~ »1 [ )
"HE- 3 dy (Mg 1y)
éO' £ 31 (M, 2y)
N-l_ M, Nl
+ 31[_1 (: £ -E]
1
or
[ ] ~ N.l -~ ~ [ ]
: "HE* I (dy g - ¥y 84)i
N-
Bo- 3 M p 9y £y

N-1 M1 N-1
+ 1ii[..-.(!: F)-F] (42)
The above equation uses the primed angular momentum of the central body to
calculate the angular velocity ¥y This approach is different from
Russell's formulation in that the angular momentum of the whole system is

established to calculate -

3.2 N-Body System with Tree Configuration

An N-body system with tree configuration may be considered as many legs
appended to the central body as shown ‘n Fig. 3. Note that a leg represents

a structure with open-100p topology and there is only a point joint connect-
ing a patr of bodies.

So far, the equations of motion are derived only for an N-body system
with cluster configuration. However, the derivation of equations of motion,
discussed in the previous section, can be extended and applied to the N-body

system with tree configuration. The derivation procedure is {1llustrated

17



best by deriving the equations of motion for a simple example as shown in
Fig. 4. It is shown that a leg which consists of four bodies is connected
to the central body through a single joint. In additfon to the constraints
given in Eq. 21, the constraints associated with the generalized coordinate
of each of the legs can be expressed in terms of generalized coordinates of

the central body as given below. By investigating the kinematic relations
indicated in Fig. 4, one has

ﬂi - % - -‘ - 5-1 = o’ 1'1,...."-2 (43)
and
gj - % - !“.1 - ﬂj s o’ j-"-l.oo.'mz (44)
where
b “lore
hy iy oty thscin i
et =137t o
and
Mz "34 ~ 234341t

In Eqs. 43-44, g, and g, are the position vectors of body 1 and the
central body with respect to the inertial frame.
Note that h 1s a function of angular displacements. Thus, the varia-

tions of h can be written as follows:

18
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Figure 3. N-Body Tree Configuration.

Figure 4. An Example of N-Body Systems with Tree Configuration.

19



Shy.y * - gy S0y g
Sy Ty e By, Ty ee,, - T e .
hyey " yg Wy ¢ (g - By esy s
and
ez " - Lgy Oy ¢ (Byg - Ty a0y,

With the application of Hamilton's principle and Farka's lemma, the equa-
tions of motion for the system shown in Fig. 4 can then be derived as

My g4 * 9y 1=0,...,N+2 (45)
Jy w8y, 1=0,...,M#2 (46)

Furthermore, one also has

&—1 - £1 ® _x_i . 0’ 1‘0.000."*2 (47)
é-i - 11 By ¢ 21 Ay =0, 1«0,...,N-2 (48)

- (E31 - £5)) Ayyp * O, (49)
LR TR (501
Bue - 21 By - (o3 - 430 Yt B3 dyy - (43 - Bypp) (51)

20



bue2 - Bue2 Bz * g ez = O (52)
and |
. M2
SRR (53)
y N-2 M2
Bo-Gp Bt T Yty (X A0 (54)

Comparing Eqs. 45-54 with Eqs. 25-30, they are essentially {dentical
except that there are extra Lagrange multipliers involved in Eqs. 45-54.

Center of Mass

The center of mass of the N-body system with tree configuretion can be
derived in the same manner as the one done in the previous section for the

N-body system with cluster configuration. It is not difficult to show that

n+2 - N2
I a,* MR= I -Ei (55)
0 0

where M and R, as defined before, denote the total mass and the position
vector for the mass center of the entire system. By .introducing the vector
£ for the relative distance between the mass center of body { and the
entire system and considering the constrainfs. Eqs. 43-44, the relation

between the displacements of translation and rotation can be obtained for

each body as

21



p N2 N2
Lo= -5l M (dyeaye T M ldyy byl

(56)
L% W (g e oM, ))
r®*~=|L M *+L,)+ L d +h
TR 11,...N-2, (57)
and
L% boe )]
Py 8 e = I M, (d, +0,)+ ¢ M (d + h
Lt (B Mgyt B Nyt
L 2 d4.1 L g h‘. 1'"’1..00."‘2 (Se)

Furthermore, taking the time derivative of the above equations, one gets

N-2 N+2
. 1 ~
Le-glim (% ¢, tu L) DN (% 4 +h)  (59)
AR AR R 1al,... N2 (60)
and
[N RN MR fon-1,...N42 (61)

where it is known that ﬁ, is a given function of angular displacements and

velocities. As an example, _&, is obtained as

Bael ® Y2 L34 = Mxey (43 = £13) - ¥ney (231 - 207)

Constraint Force Elimination

Note that, among Eqs. 47-54, there are MN+2 Lagrange multipliers in

22




[$

total which can be completely replaced by <§js using Eq. 47. Furthermore,
those é}s can be expressed in terms of ;'s. because it can be shown by

using Eqs. 40 and 55, that

F

_i + "1 i‘. 1.1.000’N+2 (62)

Qe
e

[ ]
3'3

e

N+2
I
0

In addition, it is indicated in Eqs. 58-60 that -Ei is a function of angu-
lar displacements and derivatives of angular displacements. Hence, both are
ready to be calculated in accordance with Eqs. 47 and 62, as long as the
values of R, 8 and Ay are valid. The position of mass center of the
entire system R, can be integrated from Eq. 55. As to the angular dis-
placements and their derivatives, they also can be integrated based on the
equations associated with primed angular momentums. Since the derivations
of those equations are similar to the ones presented in the last section,
on:y the primed angular momentum of the central body is derived here as an
11lustration.

Substituting Eq. 47 into Eq. 54 for the Lagrange multipliers, one could
obtain

L N2 N2 N-2 M2
L A R R A A R R

a,)so

Furthermore, the term éh can be replaced by i: with the application of
Eq. 62,

23



ap Ml o RGP N R
- - t - : + z —— :
0 1 =S Nl N-1 ~i 1 N 0 =

&'D‘

LI L
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Using the equality, w = Uv + uv, the above equation can be rearranged to

provide an equality for the primed angular momentum of the central body as:

N-2 w2 .
By * ﬁ My dgby + NEI My Gy qly
_ N-2 N+2
© Yfpr T RE 3, (2 E)
N-2 M W2 - [u+2 M, (N+2 -
- [ d; (— £ F;) - I — (¢ F,
1 M o 7 MLhagw o
N-2
* T oMy (@ - gl
N+2 ~ ~ L ]
M Ay ¥ - dy ) &y (63)

where the left side of the equality denotes the total derivative of the
primed angular momentum of the central body. Note that the preceding equa-
tion is a perfect form suitable for applying Vance's numerical scheme [5,
6]. The numerical implementation of such a scheme for the dynamic systems

of concern is to be discussed in the next section.

4. NUMERICAL ALGORITHM AND EXAMPLES

The numerical implementation of Russell's formulation is discussed
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hereafter. Numerical examples are also presehted to verify the derived
formulation's and numerical algorithm.

For simplicity, Eqs. 33, 38, 41-42 and Eq. 63 can be represented sym-
bolically by

_& (!_9 -1 _!) =6 (9_9 B !) (64)

where angular velocity w=6 and p denotes position vector such as g,
d or 3 defined with respect to the inertia frame. It is evident that p
depends on 6. Furthermore, the primed angular momentum h f{s a linear
function of w, and G, on the other hand, is a nonlinear function of w.
To implement Eq. 64 numerically, the major step is to approximate the dif-
ferential operator by a difference operator [6]. In the numerical examples

discussed below, the trapezoidal rule is used, i.e.,

LI A;t‘ [6 (815 Bps M) * 6 (20415 Brers ¥ay)! (65)

where the subscript denotes the time grid point. Since Eq. 65 represents a
set of nonlinear algebraic equations for Woepr A0 iterative scheme is
required to find LAY The detailed numerical algorithm is described in
Fig. 5.

There are two examples, a double pendulum and a triple pendulum. The
results obtained according to the Russell's formulation are compared with
those calculated by directly employing Lagrange's equations of motion with-
out introducing Lagrange multipliers. The latter can be done when the mini-

mum set of generalized coordinates are selected to describe the system, For
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the examples studied, the angular displacement of each pendulum is defined

as 2 generalized coordinate. The Lagrange's equations of motion constitute

3 set of simultaneous second-order equations which are generally nonlinear:

d T, _aT .
- | s | . 'Y 'Y t
it (3.‘1) 2 +3(g, 9, t)

Note that the term 2 is subjected to the total differentiation. Thus,
29

the Lagrange's equations of motion can be replaced by a set of finite dif-

ference equations which are used to solve i, following the same numerical

implementation as used in the Russell's formulation. The detailed formula-

tion of Lagrange's equations of motion, as well as the Russell's formula-

tion, for a double and a triple pendulum are give in Appendix A.

The mass, length and the moment of inertia at the mass center of each
pendulum are assigned as 1, 1 and 0.08333 units, respectively. A two
unit force is applied at the free end of the systems and is always normal to
the pendulum, The initial configuration of the pendulum is straight in the
vertical position as shown in Figures 6-7. The numerical results calculated
with At = 0.05 seconds are listed in Tables 1 and 2 for the double and
triple pendulum, respectively. The history of motion is depicted in Figures
6-7 as well. The algorithm performs well, <In general, it takes two to four
iterations for w and 8 to get convergence (é = 10-5) at each time grid
point. For the examples studied, it is indicated that the Russell's formu-
lation and the Lagrange's equations of motion provide essentially the same
results. Nevertheless, the Russell's formulation requires more CPU time

because the introduction of joint reactions (Lagrange multipliers) and the
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Table 1.

Numerical results for a double pendulum

3. Results based on the Lagrange's equations of motion
(CPU time -~ 1.17 sec. on DEC 10)

Time (Sec.) 0; (Rad.) 0, (Rad.) w, (Rad/Sec.) w, (Rad/Sec.)
0.00 0.00000€+00 0.00000€+00 0.00000E+00 0.00000€+00
0.10 -0.85545E-02 0.42832€-01 -0.17076E+00 0.85613E+00
0.20 -0.33358€-01 0.16995€+00 -0.31859€+00 0.16755€+01
0.30 -0.68293E-01 0.37174E+00 -0.36078E+00 0.23314€+01
0.40 -0.99210E-01 0.62794E+00 -0.2373%+00 0.27714€+01
0.50 -0.11053E+00 0.92259E+00 0.26391E-01 0.31194€+01
0.60 -0.89484E-01 0.12531E+01 0.40967E+00 0.34990€+01
0.70 -0.23541E-01 0.16261E+01 0.92792£+00 0.39764E+01
0.80 0.10224E+00 0.20531E+01 0.16093E+01 0.45796E+01
0.90 0.30438E+00 0.25461E+01 0.24503e+01 0.52892E+01
1.00 0.59483€+00 0.31115€+01 0.33567e+01 0.60147e+01

b. Results based on the Russell's formulation

(CPU) time = 3.19 sec. on DEC 10)

Time (Sec.) 0; (Rad.) 0, (Rad.) w; (Rad/Sec.) w, (Rad/Sec.)
0.00 0.00000E+00 0.00000E+00 0.00000€+00 0.00000E+0Q0
0.10 -0.85545E-02 0.42832£-01 -0.17076E+00 0.85613E+00
0.20 -0.333586-01  0.16995€+00  -0.31859€+00 0.16755e+01
0.30 -0.68293E-01 0.37174E+00 -0.36078E+00 0.23314E+01
0.40 -0.99210€-01 0.62794E+00 -0.23739%+00 0.27714E+01
0.50 -0.11053E+00 0.92259€+00 0.26391E-01 0.31194E+01
0.60 -0.89484E-01  0.12531E+01 0.40967€+00 0.34990E+01
0.70 -0.23541€-01 0.16261E+01 0.92792E+00 0.39764E+01
0.80 0.10224€+00 0.20531E+01 0.16093E+01 0.45796E+01
0.90 0.30438E+00 0.25461E+01 0.24503E+01 0.52892E+01
1.00 0.59483E+00 0.31115e+01 0.33567e+01 0.60147e+01
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position vector of mass center of the entire system complicates the compu-
tation,

5. DISCUSSION AND CONCLUSION

The Vance's scheme has been successfully applied to analyze the dynam-
ics of mechanical systems. The same scheme is also extended to perform the
design sensitivity analysis and the optimum design. The proposed algorithm
is simple and easily programmed.

There {s no need for this algorithm to evaluate the higher order deriv-
atives of equations of constraints. Moreover, if the acceleration of the
dynamics system is of no concern, it is also not necessary to find the time
derivative of the mass matrix. Thus, the proposed algorithm relieves, to
some extent, the complexity of formulation and computation of mechanical
system dynamics.

It is noted that the time increment, At, 1n this algorithm plays an
important role, not only for the numerical error and stability but also for
the convergence rate of the iterative scheme, because the extrapolation of
the current state variable with a smaller At provides a better estimate of
the new state variable for starting the iterative computation at the new
time grid.

The example of the slider-crank mechanism discussed in Appendix B shows
the success of the application of the proposed algorithm for solving a
small-scale problem. In order to analyze the large-scale problem, the pro-
posed algorithm can be upgraded by replacing the unconstrained minimization
scheme introduced in Eqs. B.9-11 by a more efficient scheme designed for the
large nonlinear problem. As an example, the Fletcher-Reeves's conjugate

gradient algorithm could be a promising substitute.
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In order to fully develop Russell's momentum approach, the following

tasks are also proposed:

1, Extend the derivation to finclude flexibility, and to extend to
systems with 3-D0 configuration.

2. Extend the derivation to include complicated joint conditions, such
as joint friction.

3. Investigate the application of the sparse matrix technique to
improve the computational efficiency of solving angular veloc-
ities.

In sunmary, while a simple strategy is proposed and successfully imple-

mented to analyze and optimally design a small-scaled mechanical system with
differential/algebraic equations, further study is required to enhance the

algorithm's rigorousness and versatility,
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APPENDIX A
EQUATIONS OF MOTION FOR DOUBLE AND TRIPLE PENDULUM




A.1. Lagrange's Equations of Motion

Oouble Pendulum

Definitions of notations are given in Figure A.l.

A Double Pendulum.

Figure A.1.

The equations of motion for a double pendulum are

Jo ¥ - ™ Loty Mo - ™ LodM " Migphy ¢
and

Iy = B B b = B AW+ OiF

=1 =0 0~1 =l=1-0-0 -=l-

A-2




where Jo and J1 are the moments of inertia of benduluns 0 and 1 with

respect to points A and B, respectively.

Triple Pendulum

Definitions of notations are given in Figure A.2.

LSS,

Figure A.2. A Triple Pendulum,

The equations of motion for a triple pendulum are



Iohg - (my*my) Tty - myfgdyey - mobodny - mplgthuy

= Tgwy (m3jw + mptiwy + mgow) + G,

Jpwy - (magty + mtts) w, "“2515.1!1 = ML3%
= mdnEow + mlw (Ewy + 2m) + 5
and

oty ~ Maloley - Mty

= mam, (Egwy +2w) + 1, F
where JO. J1 and .:l2 are the moments of inertia of pendulums defined with

respect to the points A, B and C, respectively.

A.2. Russell's Equations of Motion
A.2.1. Double Pendulum

Definitions of notations are given in Figure A.3.

Figure A.3. A Double Pendulum.




Russell's equations of motion for a double pendulum are

“ifo * m Gl b - Y EE ),

Joug + & (miy) "2
and
. .("+‘_!J)£- 1 zof_i»mﬁl_'_l
~ mqtm
I Y (my) 172
where
v S Gty + Tgay) + gy e
b b’ B -
and
Hriswmyswh -4y

Triple Pendulum

Definitions of notations are given in Figure A.4.

200

o2

Figure A.4. A Triple Pendulum.
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Russell's equations of motion for a triple pendulum are

and

0 - (oo )ay-(ng*loy)e,

<-4

where

and
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APPENDIX B

DYNAMIC ANALYSISOQND OPTIMIZATION
CONSTRAINED MECHANICAL SYSTEMS*

*Submitted to the Ir{ternational Journal for Numerical Methods in Engineering
for the consideration of publicatfon.



B.I. INTRODUCTION

For a complex mechanical system, it has been indfcated in the 1{iterature
[1, 2] that the equations of motfon may be presented by using Cartesian
coordinates and lagrangfan multipliers, 'resu'lting in a system of mixed
differentfal and algebraic equations. This approach greatly increases the
formulation flexibility, because it does not rely on the engineer's intuition

to determine a set of independent variables.

Several numerical methods can be found in the literature [1, 2] to solve
these differential-algebraic equations. One method is to differentiate the
equations of constraints and append them to the equations of motion. This
expanded system of equatfons is solved for the lagrangian multipliers and
accelerations. The integrations of accelerations provide good predictions for
the velocities which must be subsequently corrected based on the equations of
constraints. The velocities and displacements can be treated in a similar
way. A large number of state variables is usually encountered in this
approach which may become a prohibitive problem to be solved. To overcome
this difficulty, a coordinate partition scheme [3] fs implemented at each time
step to sort out the independent and dependent coordinates based on the
equations of constraints. Only the independent coordinates are to be
integrated. Recently, the singular value decomposition scheme has been
introduced [4, 5] to select a set of composite coordinates as independent
coordinates which constitute a hyperplane tangent to the equations of
constraints., The numerfcal study shows that the singular value decomposition

method is quite promising.

An easily programmed algorithm is presented in this paper. The algorithm

consists of two parts: (a) a scheme introduced by Vance [6, 7) and (b) an
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unconstrained minimization.  Vance's scheme has been limited to solve
unconstrained equations of motion. However, in this study, Vance's scheme,
along with an unconstrained minimization algorithm s used to’ analyze the
dynamics of a constrained mechanfical system. An unconstrained minimization is
implemented to correct the state variables by minimizing the constraint
violations. The proposed scheme {s further extended to find the design
sensitivity of constrained mechanical systems by the adjoint varfable
technique [8] and to carry out the problems of optimization as well.

B.II. DYNAMICS ANALYSIS

A mechanical system is defined as a system that consists of bodies with
inertias and elements without inertias such as control force, damper, etc. To
define a mechanical system, one may assign a body-fixed coordinate for each
body and introduce the equations of contraints to describe the kinematic
relations between the bodies. Each body has either three degrees of freedom
corresponding to a two dimensional configuration or six degrees of freedom
corresponding to a three dimensional configuration. In this way, the kinetic
energy and the external work of each individual body can be easily
established. Based on Hamilton's principle and the theorem of lagrangian

multipliers, the equations of motfon of a whole system can then be derived as

o)
d (T T =T )
-—] - - A= R R t B.l
Y.i (a-a) 3q (3§) A=0(q, 9, ¢ (8.1)
and a set of constraints as
(g, t) =0. (8.2)

The total kinetic energy T, a quadratic form of velocities, is the sum of the
kinetic energy of each body. The terms g, éand Q denote the generalized
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coordinates, velocities and forces, respectively. In this study, the
constraint vector, &, s limited to a set of holonomic constraints. Note
that the generalized coordinates g and largrangian multipliers A are the
unknowns in the above equations of motion. The numerical implementation of

this system of differentifal/algebraic equations 1s discussed next.

For simplicity, Eqs. B.1l and B.2, can be represented symbolically by
. ®»T .

" - (33) A=6(g, g t) (8.3)
where the momentum term bT/aé is equal to Mé. At this stage, one may
introduce Vance's scheme to approximate the differential operation by a finite
difference operator. As an example, if the trapezoidal method is employed,
Eq. B.3 can be replaced by a set of finite difference equations defined at

time (n+l) At and nAt:

. . »T
Ma) g |, =Ma) g In {[(r A+ B+ [(5.:) A+G) |l (8.8

The preceding formula is usually a nonlinear equation with roots, 41 and
jm»l' To find them, the simple 1linear iteratfon {s sufficient and

(0) be good initial estimates of solutions

convenient, Let gn(m and ﬂn
Q41 and §n+l' After rearrangement, Eq. B.4 may be rewritten as the

following recursive form for jth iteration:

N
(3 o(3+1) _
M(ghe1) 9 he (@nu (‘2 Aped)
. % T
=M ig) g+ (g 20+ &) + %3 at. gl (8.5)
. n
Although the above equations become 1linear equations with é‘g:i) and

(§+1) At

'A';ﬁm-l' they are unable to solve both _g n+l and '2’5n+1’ because the



B.4

number of unknowns {s larger than the number of equations. Nevertheless, with
the help of equations of constraints, one obtains the following fdentity by
differentiating Eq. 8.2,

% - 0
- (g 97w

It may also be written in a recursive form defined at the time equal to t,,;,

() (3
0 o0
o (§+1
(g da - el (8.6)

The last equation along with Eq. B.5 provides a matrix form to solve g(g‘&)

and % k(gﬂ) simultaneously:
[ 2 ()7
(J) - *(J+l)
"n+1 (35)“*1 9 n+1
% (J) At , (§+1)
- (@nﬂ 0 "2’5 n+l
L J

M3) A+G At .(§)
(" * [( -) =In * E(g-o-l
= (8.7)

The leading coefficient matrix can be proved to be positive definite
»

provided that the rows of are linearly independent [3]. Thus, the

=
existence and uniqueness of é%g:i) and %k ;,{I”

(g:{) can then be obtained by numerically integrating 3

are ensured. The new

(§+1)

value of ¢ n+l *

for instance, by using the trapezoidal method,

1
LEHURF IS TS P (5.9)
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*(J+1)

Since the generalized velocities q nel are not 1ndop0n§!cnt. the generalqized
coordinates .(gﬁ) obtafned by 1integrating ﬁ‘g:i) are not kinematically
permissible. In other words, g‘g:{) may not satisfy the equations of
constraints, f.e., & (g(g:i’.t) #0. Tofind the g ., consistent with the

equations of constraints, an unconstrained minimfzation scheme fs proposed to

simply reduce the deviations of & (g‘gﬁ). t), f.e.,

Min ¢, =2 (g, t) @ (g, t) (8.9)
In+1

where the design varfable fis 9n41 The initial estimate of dn41 is
provided by the direct integration of §n+1 Eq. B.8.

There are many methods available to carry out the unconstrained
minimization defined in Eq. B.9. Numeriéal results presented in section 4 are
obtatned by a recursive quadratic programming algorithm [9], called the
1inearization method, which has been proved to be globally convergent. More
specifically, the new value of g* ifs obtained by modifying the current value
of g 1n the following way:

* T

q "g+2® (8.10)

318

where the parameter a 1s a step size determined in such a way that the cost

¢, 1s always reduced for the improved value of g*. f.e.,

0
e
4 (@) <o, (a) -ac]| o ‘5 112 (8.11)

where ¢ 1{s a given constant, usually defined as 0.1, and the notation



|| « ]| denotes the L2 norm. The computations of Eqs. B.10 and B.11
constitute an {terative process to be terminated whenever the value of
|| @ || becomes very swall. After the value of g(gﬁ’ is updated by the
optimum solution of the unconstrained minimzation, Eq. 8.9, the {terations
between Eqs. B.7-9 continue until both 9h+y and §n+1 reach the convergence

criterdia:

1
|a‘311’ - a(ﬂlﬂ <e.

il - g ) <, (8.12)

At al e

where the notation | + | denotes the L” norm and the e is a given smal
constant. Once the convergence is achieved, the computation moves to the next

step and the fteration starts again,

The numerical algorithm is summarized as follows:

Step 1: Start with initial conditions and A = 0.

Step 2: Select the initfal values for 3(211. é(gll and 5(311'

Step 3: Solve the mtrix equatfon (B.7) for é(g:{) and l(g:i).

Step 4: Calculate the initial estimate of g(gzi) by using equation
B.8.

Step 5: Update the value of g(g:i) by carrying out the unconstrained

minimization, Eqs. B.9-11, in order to correct the constraint
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deviation.

Step 6: Check the convergence criteria defined in equation B.12, {f the
convergence 18 achieved, move to Step 2 with n = n+l; otherwise,
J = 3*1, move to Step 3.

There are some remarks worthwhile mentioning here. First, 1f it is difficult
to find the initial conditions for all of the dependent q and g in Step 1,
the unconstrainted minimization scheme given in Step 5§ with independent
variables fixed can be used to obtain accurate dependent g andj . Second,
the generalized acceleration q° can be calculated directly by rearranging Eq.
8.3 as

gewlhge (:%)Tpg (g, 3 t)]

Compared to the method introduced in references 2 and 3, the proposed approach
avoids the complicated and time-consuming process of deriving the second order

derivative of equations of constraints, 1i.e., é' .

B.III. DESIGN SENSITIVITY ANALYSIS

The design sensitivity amalysis of 2 system with differential and
algebraic equations associated with mechanical system dynamics has recently
been a subject of study [10]. Two approaches have been discussed in the
literature. One is the direct differentiation method [11]. The other is the
adjoint varfable technique (8, 12].

The differentisl/algebraic equations for the dynamics of a constrained

mechanical system can be rewritten as follows:

d (dTy _ aT T
g "R b



and
2 (2. ﬂo t) =0

with the inftfal conditions given as

9" 9, at t=0 (B.13)
3°g,®), atteo,

The kinetic enmergy T {s given as a quadratic function of j. 1.e.,

T -%§T M(g, b, t) q for a symetric mtrix M,

It 1s very common in the optima) design formulation to have the cost or

constraint written in a functional form as

<
o=/ F(b g g t)dt
(]

The task for the design sensitivity analysis s to obtain the design
derivative of ¢ with respect to the design variable b. The design

varfation of ¢, 8¢ {1s derived as
“'f(”ﬁ+ q + 33 ar,
o B T2 g
or after integrating by parts,
“-!{mﬂﬂl ( )]3‘}dt+ gl (8.14)
t

where the terms with apostrophes denote the wvarifations due to the
perturbations of design variables, &b. It is revealed in Eqs. B.1 and 8.2
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that the relation between design variable b and state variable gq f{s highly
nonlinear, Thus, it is difficult to find q' explicitly in terms of D.
Nevertheless, the adjoint variable technique provides an alternative in which

q' 1s not required to be defined analytically.

To begin the adjoint variable technique, one pre-multiplies two arbitrary
vectors u(t) and v(t) to Eqs. B.1-2, and integrates the products over the
time period (0, t) to get the identities:

t [ ]
f [-gTMa-uT%-gTQ-&T (@
0

.ﬂ)T Alat+p™wg|i=0 (8.5

and
T

[ yodt=0 (8.16)
(4]

The design variation of Eq. B.15 is derived as

- md  g-aTmg), e -i"wy
0 93 - Ll -
T (97T [ T ,37 T.,0T L)
L lgged Tk glp BTL g, 8
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T T,
-n (@ )T} at

T T (".) . ,T
+0 o q
RO

T .
M
+p (3)’9.3'

*ET (M E).b b

where the subscripts denote derivatives and where the terms with a bar on top

are not subject to the differentiation. Integrating the terms with g

the preceding equation by parts, one obtains

I @7 g B + (G g el + (2] o)y

-(M_q)Tﬂi-( ). .3 g'[fg.ﬂ]-gﬂ}

- 8p' {(Mg).b B+ (3 ).,,wo.b w-[iTe, b &l

T
- A o, dt
AT (@ w))

oT ' T ' ]
AT (§§).§3 ls -xTQ-ga Is

N YR NEUR T R

+sT M@, o9

Furthermore, the design variation of Eq. B.16 provides

in
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It(Te ' eVl @, . 6b) dt= 0 ‘
0 !.’33 !.’2- *

Adding the last two equations to Eq. B.14 and grouping the corresponding terms
together, one is able to express the design variation of the given functional
¢ symbolically as

T T T

T '
. T .
& fo (4, b -2 g +p @ 1q A )4t + boundary terms  (B.17)
where A = (M é) 'TB + (%) .TR b+ Q._T B
+ ROl r + @y v e Foy
and
- d . M T T
Aq'a'f(n u) +[(g’g"]'t+[2’q ﬁ]it
T o dT\T T
- (M ’ = » .
Ma) g~ (5ghg " Qg b
sl T T T
[_K_ 2'3}’3& +2' g_\: + Foa (qu),t

It 1s noted that the design varfation &¢ 1s a 1linear functional of
varfations, &b, o' and A', and that the vectors p and v still remin
unspecified. One may then assign values for u and v so that Aq = 0 and

2,, 8= 0. Incleer words, the adjoirt variables u and v are defined so

q
as to eliminate the influence of unknowns gq' and L' in the formulation of
p =0, can be arranged and

8¢, The condition A_=0, along with 2,3_

-q
written as follows:
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e MB) 42, v =R (B g &y Buys ¥ (8.18)
and

Q. = 0 .
LI (8.19)

where R symboifcally denotes the rest of the terms defined in Aye It s
evident that the adjoint equations B.18 and 8,19 are 1inear functions in terms
of adjoint varfables p and v and they represent a mixed system of
differential/algebraic equations. More specifically, Eq. B.19 provides a set
of linear constraints on u, and v serves as a vector of lagrangian

multipliers.

Following a similar procedure one can investigate the boundary terms
shown in Eq. B.l7 and determine the terminal conditions of the adjoint
variable p -in such a way that the influence of design variations q' and ﬁ‘
is eliminated from the boundary terms of &¢. Note that the boundary terms
of &¢ have the design varfations g' and ﬁ' defined at both t = 0 and t =
t. If the initfal conditions of all the 1independent and dependent

coordinates, as well as velocities, are given explicitly, for instance:

q=4g, (b ,att=0

,at t =0,

then the design variations q' and ' at t =0 are found without difficulty

ﬂ'-(;f-.i) &b, at t =0
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b.
q' -(sg-") 8b, at t = 0,
Hence, the boundary terms of &¢ can be rearranged to obtafn:

Boundary terms =

A RINR . AP PR F R
-gn(;—"-)-f (Mé).b} -52|t.0

T T (o7 T T g ¢ v T e
'{[_&H'fg(ﬁ.é*g g.ﬁ-g(ng).a]q_'fg Mma'l,

sl (M3, ob]7 (8.20)

On the other hand, while the boundary conditions are known only for the
independent coordinates gq; and velocities él' i.e.,

9 = 9, (b), at t=o

(8.21)

g =g, (),  atte,

the equations of constraints defined at t=0 should be used in order to find
the. design variations of the dependent quantities. The design variations of
Eq. B.21 and Eq. B.2 at t=0 provide the following matrix equation
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% 2g,
*331 -SE-) 52 (8.22)

13

e
BT

Which can be used to determine the design varfation 36 explicitly in terms
of &b at t=0 Provided that the matrix 32/3g, is not singular. Further-
more, the design variations of Qq; and j‘o can be obtained in a similar way
by constructing Eq. B.22 based on the design variation of é at t = 0.
Therefore, the boundary terms of &¢ are still able to be written in the form
of equation B.20, although only the independent coordinates and velocities are
given at t=0.

Next the boundary terms of &b defined at t=t are investigated. The
best way to avoid calculating the unknown variations gq' and Q' at the
terminal time =t 1is to specify the terminal conditions of adjoint variable
pmat t =t so that the terms associated with g' and §' can be dropped. To

achieve this, it is sufficient to obtain the following identifies from Eq.

8.20,
M+ [(%) .Ti + QT.é - (Mg 'S]T p=0, at tsr
and

Mp=0 , At t=t

Because of the positiveness of the mass matrix M, it is simply concluded from
the above conditions that u(t) = 4 (1) = 0. Based on these two terminal
conditions, along with the adjoint equations, Eqs. B.18-19, the adjoint
variables u(t) and v(t) can then be determined uniquely in the entire period
of time (0, 7). Note that the same numerical scheme used for dynamic

analysis, Eqs. B.1-2, can be applied here to solve the adjoint equation
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numerically, though a better scheme could be implemented to take advantage of
the 1inearity of the adjoint equations.

Finally, with the knowledge of 4, v, g and A, the design variation of
the cost functional &¢, Eq. B.14, can be expressed as a linear functional of
the perturbation of the design varfable, &b,

so =) aTosbdat+8 o) +u’ M3, obf°

o 2T R T Ty 2o
where Ab is defined in Eq. B.17. While the initial condition of all the
fndependent and dependent coordinates, as well as velocities, are given

explicitly, the term Bb is defined as

.Bbs[grn-o-&

3 .-
- (5-?-) -aMa,, .

Otherwise, a similar form can still be obtained based on Eq. B.22.

B.IV. NUMERICAL EXAMPLE

A modified slider-crank mechanism with one d'egree of freedom is studfed
here as an example to validate the numerical algorithm presented previously.
This mechanism is composed of two 1inkages, the crank AB and the connecting
rod BC, as shown in Fig. B.l. While each of the hinge Jjoints A and B
entertains two constraints, the joint point C is forced to slide along the x-
axis. With a torque H applfed at the joint A, the system is subjected to a

planar motfon. The definitions of body-fixed coordinates, as well as the
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vectors &1 and 31. are indfcated in Fig. B.2. The total kinetic energy of
the system is obtained as

2
Tezt 3MRIR + 3, 6d)
1

The kinematfc constraints for joints A, B and C are given as,

hE&l'}R = (

$HER ) -2 =Ry =0 (8.23)

=T =
¢35 (Ry+d)) =0

where the unit vector J {s parallel to the Y-direction of the inertia frame.
The constraint 03 means that there is no Y-component of joint C's movement

at any time.

Amn!sis

Based on Hamilton's principle and theory of lagrangian muliplfers, a
system of eleven equations can be set up in the form of Eq. B.7 for the
slider-crank mechanism. The unknowns to be solved are the six degrees of
freedom, 51. 52. " and Wy, 2S well as the five lagrangian multipliers,
Mo Xy and Aq assocfated with the equatfons of constraints, Eq. B.23. The
diagonal components of the 6 x 6 mass matrix M are M, M;, My, My, J; and
Jz. The fifth component, equal to the given torque H, s the only non-zero
element in the forcing term Q. The detailed formulation of the Jacobian,

R
1 is given in the Appendix.

With the non-dimensional data: My=My=1, H=2, J; = 0.08333, J, = 0.33333,
I4,| = dy] = 0.5, and  |2,| = |dy] = 1, the slider-crank mechanism of
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concern is analyzed on the DEC-10 system with double precis‘ion. The time step
At 1s set as 0.005 seconds. It takes 25.5 CPU seconds to simulate the
motion for the iime perfod of one second. The convergence criterfa, Eq. B.12,
for the coordinates and velocities are set as 105, It takes at most three
fteratives at each time grid to achfeve the given convergence requirement. As
for the unconstrained minimization scheme for the coordinate correction, it
also takes at most three {terations at each time grid to achieve the

convergence given as
el < 107

Some of the numerical results are listed in Table B.l. The Tlast column
contains the deviation of the constraint, 03 regarding the sliding joint
C. Furthermore, the results, obtained .by using a commerically available
program, DADS [13], are also listed in Table B.1 for the purpose of
© comparison, A good agreement between the purposed scheme and DADS is

observed.

Desiin Sensitivity Analysis and Optimization

The optimization of slider-crank mechanism studied here is to find the
control torque H(t) so that the motion of the siiding joint C can follow a
desired path n(t). This example falls 1into the category of inverse
dynamics. Nevertheless, an optimization formwulation is set up to approximate

the best torque profile H(t) in terms of given functions. That is

T
2
Min ¢, = fo (R, + 2, - n(t)]" dt
H(t)
where the control torque is expressed in terms of given functions N;(t) and

design varfables by as
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H(t) = £ by Ni(t). (8.24)

The function Nj(t) can be a polynominal or trigonometric function. The

desired path, n = [n., ny]T. 1s given as

n(t) =a+ 10 (B=a) t3-15@-a)td+6 (a)t] 0¢ctcl,
ny(t) =0

Note that the path “x(t)' starting from the {nitial position a to the final
position B, entertains zero velocities and accelerations at both t=0 and

t=t, The design variation of the cost function is derived as
T
4T,
84, = Io (gg) 2 ¢ 6Hdt

where the forcing term Q 1is given as (0, O, O, O, H, O)T. and where
1
&4 = f Ni(t) . 6q1 because of equation B.24, Thus,

T
Sty = z[fo bg * Ny(t) dt] « &q

s &T 6q (B.25)

where L {is defined as a sensitivity vector. The adjoint variable u {is the

solution of the following adjoint equations:

* (R, + dp- 1) (8.26)
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2hg

with termina) conditions; u(s) = 4 (1) = 0. The detailed formulation of the
terms in Eq. B.26 can be found in the Appendix.

The accuracy of the design sensitivity analysis fs {nvestigated next.
First, the control torque is fixed as H=2, The design sensitivity vector
calculated by the analytical equation is compared with the one calculated by
the direct finite difference method. The result plotted in Fig. B.4 shows a
very good agreement between the aforementioned tw. methods when the
perturbation of the design varfable is up to 10%. Second, the control torque
fs described by a quadratic function H(t) = a, + a;t + aztz with three
coefficents as design variables. The components of the design sensitivity
vector provided by Eq. B.25, as well as those calculated by the finite
difference method are 1isted in Table B.2. The results are obtained based on
8, = 33 * a3y = 1 and 23 perturbation for each design variable. It fis
interesting to observe from the design iensiti vity vector that to increase the
design coefficient a, is more beneficial in terms of the reduction of error in

the path generation than to increase a; and aj,.

Once the accurate design sensitivity is produced, any gradient-based
mathematfcal programming can be used to generate the optimum solution
fteratively. The following numerical results are obtained by using a
recursive quadratic program called the 1inearization method [9]. The control

torque is assumed to have one of the following forms:
H(t) = a,,

Ht) = ag + ayt + apt?,
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H(t) = b, sinxt + bz cosxt

where the coefficients, 8,5, ), 83, by and by are treated as design variables.
Corresponding to differently prescribed torque functions, the optimum
solutions and thefir assocfated data are listed in Table B.3, and plotted in
Fig. B.5 as well. Note that none of the trial torque functions are able to
establish a path pattern so as to make the terminal velocity and acceleration
approach zero. Finally, to demonstrate the stable performance of the optimum
algorithm, the convergence progressions of the cost function and the
convergence criterfa, {.e., L2 norm of the design gradient, are also plotted

in Fig. 8.6 only for the quadratic control torque.
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Table B.1. Numerical Results of Analysis

Prop. Algorithm DADS

Time 8, (Ra) " o, (Rad) “ ha

0.1 0.01499  0.29993 0.01697 0.29987 0.32x10"19
0.2 0.05992 0.59759 0.06346 0.59698 0.14x10717
0.3 0.13410 0.88239 0.13822 0.88085 0.13x10-16
0.4 0.23524 1.1324 0.23958 1.1294 0.45x10"16
0.5 0.35865 1.3254 0.36317 1.3201 0.38x10"16
0.6 0.49826 1.4578 0.50234 1.4522 0.29x10716
0.7 0.64877 1.5473 0.65248 1.5415 0.14x10°17
0.8 0.80714 1.6189 0.81052 1.6136 0.35x10"16
0.9 0.97270 1.6946 0.97595 1.6906 0.17x10°15

1.0 1.1468 1.7927 1.1501 1.7908 0.34x10"15
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Table B.2 Design Sensitivity Analysis of the Slider-Cranker Mechanism

With Quadratic Contro] Torque:
H(t) = ag + 4yt + &)

94, 2T -
Adjoint Varfable  Finfte Dffference (1)-(2) o
Technique Me thod
Design Gradients eq. [t(qlﬂn,) - 0(&,)]/6:1
=
e «0.22357 -0.219 2.043
0
o 0.05845 0.059 0.943
“T . . . .
ﬁ;
w, -0.02389 -0.0245 2,938
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ADDENDUM TO APPENDIX B

»®
1. The Jacobian, ﬁ:
-1 0 0 0 y, O B
0 -1 0 0 -t 0
;{- I T T S R N T
a 0 -1 0 1 -4 2
|0 0 0 1 0 g |

where the first subscript denotes the number of the body and the second
subscript represents the component along the specified direction.

2. The terms on the right side of Eq. 8.26,

1%
(a) ( Siﬁ)'g_
0
0
0
. 0
T T e T R TR R B T
Tl Mg Mg T Ay B Mgt dy e Mg
:
(b) 2 (Ry +85)sg * Ry +dp - 1)
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(a) The Motion of the Slider-Crank Mechanism
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(b) Angular Velocity of the Crank and Connecting Rod

Fig. B.3. The Motion of the Slider-Crank Mechanism
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