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Tbis is the first Semi-Annual status report describing research on molecular

processes in a high temperature sbeck layer.

I. Introduction

Models 1.2 of the shock layer encountered by an Aeroassisted Orbital Transfer

Vehicle require as input accurate cross sections and rate constants for the atomic

and molecular processes that characterize the shock radiation. From the estimated

atomic and molecular densities 2 in the shock layer and the expected residence time

of 1 asec1 . it can be expected that electron-ion collision processes will be

important in the shock model. Electron capture by molecular ions followed by

dissociation. e.g. OZ + e	 0 + 0 . can be expected to be of major importance

since these processes are known to have high rates (e.g. 10 -2ca3/sec) at room

temperature. However. there have been no experimental measurements of dissociative

recombination (DR) at temperatures 01200WC) that are expected to characterize the

shock layer. Indeed, even at room temperature. it	 is often difficult	 to	 perform

experiments that determine the dependence of the translational energy and quantum

yields of the product atons on the electronic and vibrational state of the reactant

molecular ions.	 This report presents ab initio quantum chemical studies of DR for

molecular ions that are likely to be important in the atmospheric shock layer.

II. Summary of Prior Research

A theoretical study of DR involves the determination of potential energy

curves  for the molecular ion and the dissociative states of the neutral molecule.

In order to determine dissociative recombination rates and cross sections one must

calculate the electronic probability for electron capture given by Fermi's Golden

Rule,

t=2M<PVIHiQS>I

where t is a multicoufiguration wave function and P and Q are Feshbach projection
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operators  that project onto the terms in ! which represent the molecular ion plus

a free electron and the terms that represent the autoionizing state respectively .

In the usual Feshbach4 projection operator formalism an eigenvalue equation is

derived for P9 which is difficult to solve since it contains an energy dependent

optical potential. However. I have developed a new technique in which P O can

easily be determined by solving the usual configuration interaction (CI) problem.

Writing the total wave function as 9 = PT + Qi we can write the Schroedinger

equation in matrix form as

HPP	 HPQ	 P !	 P
	= E 1	 (1)

HQP	 HQQ	
Q9	 QV

where HPP= PHP, HQP= QHP, etc. Multiplying the matrices in (1) leads to:

HPPP ! + HPQQ I = EP P	 and	 (2)

HQPP Y + HQQQ I = EQ 4.	 (3)

From (3) we have,

QT = HQPPW(E - HQQ ).	 (4)

Substituting (4) into (2) leads to a matrix optical potential for Pk

1.

(HPP + HPQHQP /(E - HQQ )) P ! = EP It.	 (5)

Since E is on both sides of Eq.(5) it is difficult to solve directly for PIP.

However PV can be easily determined by simply diagonalizing the full H matrix in

(1) aad retaining only the coefficients of the Pf configurations. In order to

divide by E - HQQ in (4) and to be certain that Q does not mix into the PAY that is

determined by diagonalizing the H matrix in (1) it is necessary to first solve for

the Q* roots by diagonalizing HQQ . The low energy Q IY roots are then projected out

of the HQQ portion of the H matrix in (1). P IP is then determined by diagonalizing



the transformed H matrix. The free electron is represented by a "erg orbital

with a high principal quantum number. Successive i! 's are determined for a series

of increasing principal quantum numbers. The widths obtained by this procedure are 	 1

then extrapolated to the continuum to yield the free electron capture width.

III. Cosoarison of Ab Initio and Experimental Results

During the past six months these techniques have been tested on the NO

molecule where there are experimentally derived  interaction matrix elements for

the A and L 2 ® repulsive states of NO. These states are expected to play an

important role in the DR of the ground state of NO Using the approach outlined

above for calculation of the entrance and exit channel wave functions and the

widths, the importance of correlation of the NO 3 a and 4a orbitals has been

investigated in the context of a full valence space CI. These orbitals correspond 	 !

to the atomic 2s orbitals of N and 0 at large internuclear separation. Inclusion

i

of valence correlation of the 3a and 4a orbitals in the repulsive or autoionizing

states increases the B state width and decreases the L state width by about 10% and
I

40x respectively. In the P space entrance channel the 3 a and 4 a correlation
i

decreases the B and L state widths by 12% and 39% respectively. This inner shell

correlation is unimportant for the B state but very important for the L state

width. Inner shell correlation has therefore been included in the NO width

calculations.	 I

Gallusser and Dressler 5 have reported width matrix elements for the lowest NO

2 II Rydberg states. Even though the procedure outlined above uses the high (na7,8)

Rydberg states for extrapolation to the continuum width it is nevertheless

instructive to compare our calculated matrix elements for the lowest Rydberg states

to the experimentally derived results. For the B 2 11 repulsive state Hamiltonian

m^Lrix element with the 3p n C 2 II Rydberg state the calculated and experimental 5	#

1

results are 1229cm 1 and 1382.6cm 1 while for the 4p x K 2 II Rydberg state the results

ti'
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-1 -1are	 714.2cmand	 803.9cm respectively	 and	 for	 the	 5pn	 Q 2 11	 Rydberg	 state	 the

.	 results	 are 484.8cm 
1
and 594.6cm

-1
	respectively.	 The difference of only about	 11%

between	 theory	 and experiment	 for	 the	 lower	 two levels	 is	 quite	 encouraging

considering that	 the matrix elements	 are	 quite small and	 only	 small	 valence	 space

CI wave functions have been used. Ga?lusser and Dressler point out that the Q

state matrix element is not as reliable as that for the C state which has the

largest matrix element. The experimental Q state matrix element deviates by about

15% from the value predicted from an n* 
3/2 

behavior. For the L 2 11 repulsive state

the :alculated and experimental matrix elements with the C state are 546.7cm -1 and

549.Ocm
-1
 respectively while for the K state the results are 320cm-1 and

-250+50cm-1 respectively and for the Q state we have 218.2cm -1 and (200cm-1).	
II

Gallusser and Dressler 5 have indicated that the Q and K state results are not as	
y

reliable as the C state matrix elements with which we obtain excellent agreement.

The NO calculations have been performed wit!! a [3s,2p,ld] basis set for the

valence orbitals supplemented by a set of 18 diffuse 2pn x Gaussian primitives

(centered at the midpoint) for the Rydberg orbitals. The calculations give the

contribution of only the 1 =1 partial wave to the width matrix element. 	 An

additional contribution to the Rydberg 211 state widths can be expected from the 1=2

partial wave. The 1 = 2 contribution has been calculated by adding to the above

basis a set of 12 3d
xz 

Gaussians centered at the midpoint. The 1=2 functions

increase the B state width by 3.4% and the L state width by 1.7% . Therefore the

1 = 2 wave makes only a minor contribution to the NO 2 D widths.

IV Application to 02+

Using the above procedure for calculation of the width matrix elements

combined with previously calculated potential curves  and the quantum defect theory

of Giusti6 . cross sections and rate constants have been determined for the DR

0 2+ leading to 0( 1 S), the upper state of the important atmospheric green ]
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emission. The calculations include the effect of autoionization, i.e. ejection of

the electron after capture and before dissociation occurs. The calculations do not

include the effect of indirect recombination through intermediate Rydberg states.

Indirect recombination is expected to be important for 0( 1 S) generation and is the

subject of current work.

Fig.	 1 shows the calculated rates for particular ion vibrational levels.

Clearly, the rate is very sensitive to ion vibrational population. The rates for

v =2, 3, and 5 are more than two orders of magnitude greater than the rate for v=G

at low electron temperatures.

Fig. 2 shows the calculated rates as a function of vibrational temperature.

As expected from Fig. 1, the rates are sensitive to vibrational temperature at low

electron energies but insensitive at high electron energies where Franck-Condon

factors become small and autoionization is important. 	 Note that the electron

temperature at which the rates become insensitive to vibrational temperature is

highly dependent on the shapes of the potential energy curves.

DR calculations over a wide range of temperatures for the remaining

dissociative routes of 0 2 are currently in progress.
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