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RESTRUCTURING THE ROTOR ANALYS!S PROGRAM C-60

P.G. Phelan and F.J. Tarzanin, Jr.

Boeing Vertol Company

Philadelphia, Pennsylvania

Abstract

The continuing evolution of the rotarv wing indus-
try demands increasing analytical capabilities. To
keep up with this demand, software must k-
structured to accominodate change. The approach
discussed in this paper for meeting this demand is
to "restructure” an existi:.g analysis. The motiva-
tional factors, basic principles, application tech-
niques, and practical lessons from expcrience with
this restructuring effort are reviewed.

Introduction

As the rotary wing industry matures it is getting
increasingly difficult to extract the next significant
technological advanc: . Improved understanding of
the »hysical phenonena of rotary wing aircraft
requires more complete analytical representations.
Advances in computar technology are allowina
larger more sophisticated analyses than were
previously practical. As a result. t:» demand for
complex analysis capability s .o n ~apidly,
with  increasing emphasis - TR ‘plinary
analysis. The changing and ::. vir. .. *nds of
rotary wing analysis necessitate '“ou -oftware be
structured to quickly and efficiently accommodate
change if it is to take advantage of cantinuing
developments in this dynamic environment.

Software may be designed with structure einphasiz-
ing maintainability and modifiability. Software
structured toward this goal provides reducsd
modification and maintenance costs, reduced time
delay for adding new capabilities and impioved
reliability through a reduction in the number of
undetecied errors. This may be accompiished
through judicious partitioning of softy are into
functional modules, provision «f well-defined paths
of data flow, and adherence to a control
hierarchy.

The proposed approach !> obtaining a wall struc-
tured rotor loads program is to '"restructure" an
existing analysis. Restructuring can bw a t.ne-
saving and cost-saving alternative 1o dewvsioping
new structured software. It consists essentially of
reorganizin: the code of an axisting analysis to fit
& structured design, while maintaining the theo-
retical basis for the aralysis.
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Mesting on Rotorcraft Dynamics, AHS/NASA Ames,
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A Boeing Vertol rotor analysis program (C-60) is
currently being restructured. Large complex
blocks of multi-functional code are veing broken
down and reorganized into succinct functional
modules. Related pieces of code, previously
scattered throughout the program, are being
gathered to form functior:al modules. S.andardized
formats for variable definitions, input d:ta, output
data, and documentation are being implemented.
Even though the restructuring process is not yet
complete, code performing a given task is now
easier to find, u:derstand, isolate, and modify.
Variabies, input data, and output data are also
now easier to identify, understand, and modify =s
needed. The ovaera!' resuit is that new capabilities
may be implemented in less time, at lower cost,
and with improved reliability.

Background

- t2ivaticn for More Capable Analyses

Physical understanding is expanding rapidly in
areas related to analytical modeling of nonuniferm
downwash, rotor/fuselage coupling, vibration,
noise prediction, rotor airloading, and composite
material behavior, among others. There is 2
corresponding demand for improved analytical
capability to reflect these advances More sophis-
ticated designs, such as JVX and LHX, and ex-
panded flight envelopes push many analyses
beyond their present bounds of applicatiorn, into
regions where simplifying assumptiorn, such as
small angles, linearity, and iow coupling break-
down.

Compounding these demands for expa.dea analyti-
cal capabilities is the pressing need for more
accurate analytical predictions to facilitate finely
tuned multi-variable decign benefit trade-off
studies. Many of the straight-forward one or two
dimensional design problems have been soived.
The largest potantial rotorcraft Iimprovements
require conolex trade-offs involving different
technolugies having a consistent level of complexi-
ty. As incremental isciated technology design
benefits become smaller, the need for more com-
plete, complax inter-disciplinary models increases.
This view is supported by Kerr, Potthast, anc
Anderson'. Eventually, the requirements of more
demanding interdisciplinary tradeoffs will increase
to the point where 3pecialized analyses in isolated
disciplines w!'l become inadequate and possibly
even misleading.
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Advances in computer technology and software
development add tuel toc the movement for more
capable analyses. These adva.ices provide ex-
panded resources and/or reduced cost in terms of
CPU time, memory usage, and 1/0 (input/output)
capacity and sophistication. Approaches which
were previously beyond practical resource limita-
tions are now viable current or near-future op-
tions. Curr:nt computer systems now allow pro-
gram structure to be independent of .memory
constraints, in contrast to the memory overlay
structure restrictions of the past. Increasing
sophistication of computer tools (such as shown in
Table 1) alc~ m-tivate more capable analyses.

- Practical Limitations of Current Programs
The development of more capable analyses is easier
said than done. There is a history of difficuities
with the development and upgradine of complex,
multi-disciplinary analyses, and the prospect of
developing even more sophisticated prcgrams with
the requirement for continuos updating, projects
an image of long development time, high costs ard
guestionable results.

The primary, factor contributing to the difticuity of
analy.is development today is the tendency of
large multi-user multi-analyst programs to >vo've
and grow in complexity beyond the comprehe: sion
of any single user/developer. It is as if such
analyses follow a speclalized law of entropy, tena-
ing toward ever increasing disorder until reaching
"saturation of comprehensibility". Program mainte-
nance and modification become increasingly difficult
as clarity and understanding are gradually re-
placcd by obscurity and misunderstanding.
Beryland2 presents two observations w cn summa-
rice this beravior of large programs .. "The Law
of Continuing Change" ard "The L : of Un-
structuredness" as show*. in Fiqure 1.

Eventually, at least on. toc ny irreversible or
untraceable revisions is made. Correlation and
reliadility falter suddenly. Previous anaiytical
predictions car no longer be reproduced. Things
that "worked" now mysteriously fail and the anal\ -
sis "dies" suddenly. If a reliable bac.:up versicn
exis.s the analysis may enjoy a temporary reprieve
but eventually it is likeiy to follow the path to
extinction. Therefore, the program with chronic
“saturation of comprehensibility” will eventually
reach the point at which no further cost-effective
growth is possible because revisions can no longer
be fully understood or d-*ugged.

The tendency toward disoroer causes serious
- roblems long before the analysis actually reaches
complete "saturatic 1 of comprehensibility", that is,
the point at wnich revisions can no longer be
made. Complexity grows with each expansion of
capability, as change is added to change without
an overall plan or globa! structure. The atalysis
evolves gradually via the work of a variety of
programmers, analysts, and engineers, with a
corresponding variety of individual styles and
preferences, (sec Table 2). Cumplexity and
apparen’ disorc'er re-uit as the natural subtle
accumulation of the «ffects o/ melding individual
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styles. These trends are compounded by a lack of
adequate, accurate, current documentation and the
growing innate complexity of the analysis due to
expanding requirements. Excessive complexity
reveals itself in highly unpredictable and often
excessive person-hour costs for program main-
tenance and modification, and time delays tor new
capabilities.

As analytical capability is expanded, additions are
made to program input and output. Additions for
expansions of cagability are often made quickly
and without thorough coordination. Additions to
input and output are often made more expediently
than analytical revisions, and are sometimes left ir
"“temporary version" form. The result is input and
output which are not clearly defined, are possibly
redundant, are not well organized, and are prone
to error. This situation results in the expense of
extra user-hours for preparation of program input
and ‘iterpretation (sometimes aeciphering) of
progiam output, and an increased probability of
undetected input error and/or output misinter-
pretation.

Gther symptoms of saturation of comprehensibility
are less obvious, but have the same root cause.
For example, poor correlation may be an indication
of undetected errors within the analysis, un-
detected misuse (such as input error), or un-
detected misinterpretation of analysis cutput.
Compromised reliability is ai.other w. rning sign of
excessive comolexity. An analysis which behaves
very wel; soiaetimes and very badly other times is
providing a warning. Growth of analytical com-
plexity is often accompanied by increased depen-
dence upon the specialized experience of experts
associated with specific analy'ses (described by
Kerr, Potthast, and Anderson' as "Sam's Program
Syndrome"). This development implies poor or
nonexistent documentation and very complex code,
so that others are unable to understand the
analysis.

- A Sclution: Structured Program Design

The sclution to this problem is the development of
analysis programs which will start out and remain
clear and understandable throughout a long life-
cycle of maintenance and modification. This may
be achieved by using "Structured Program Desigg"
techniques to design software for maximum maifi-
tainability and modifiability.

Structu, 2d program design is a formal methodology
for software design which was developed in an
attempt to deal with the rapid expansion of soft-
ware associated costs which began in the 1970's.
Bergland2 provides some historical perspective in
"A Guided Tour of Program Design Methoaologies"
in which the author outlirss general trends in
software development from "Cottage Incustry
Programming" of the 1950's through "Heavy Indus-
try Programming" of the 1050's to the birth of
"Seructured Programming" i the 1970's. At one
point, over one percent cf the GNP (gross national
product) was being spent on software2., This
stimulated early attempts at formulatien of design
criteria and programming techniques.
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Today, a great deal of effort is being expended in
attempts to formalize and standardize software
design procedures to yield more maintainable,
modifiable, and user-friendly programs. Struc-
tured program design is being applied in the
rotorcraft field, including a government deveiop-
ment program named 2GCHAS (Szcond Generation
Comprehensive Helicopter Analysis System).
Documentation has become a large part of most
program development efforts. Efforts are being
made to standardize, streamline a ! nearly autc-
mate the generation of both code and documenta-
tion. Some examples of this are specification of
FORTRAN coding standards3, development of a
“generic" architecturet, development of programs
which generate diagrams directly from code®, and
the proposai of formal program design procedures
such as data flow design or programming cal-
culus2.

An_Approach to Structured Program Design

- Development Strategy

Structured program design is a general term
referring to an application-dependent design
procedure. It may be defined as "design for the
best solution". The key to this approach is a well
chosen definition of "best"; one that is well
matched to the specific applicacion. The pro-
cedure begins with the selection of a general
goal, followed by a trade-off of benefits to
prioritize different design criteria. A variety
of terms have been defined to serve as design
criteria. Terminciogy varies, as illustrated by the
list of terms provided as tables 3 and 4, but
similar concepts are defines in references 1, 2, 4,
and 6. Design criteria used in the present study
are efficiency, generality, maintainability, .jod-
ifiability, reliability, & utility as defined in table 5.

The general goal (or measure of goodness) chosen
for the software design discussed here is mini-
mum total lifecycle cost. This lifecycle includes
development, checkout, release, operation/
maintenance/modification, and maturity, as shown
in Figure 2. Yourdon and Constantine® describe
the ideal program as "“cheap to develop, cheap to
operate, cheap to maintain, and cheap to mod.fy".
The relative cost and .mporta.ce of the different
phases of a program's lifecycle vary from appli-
cation to application. The resulting prioritization
of design criteria should vary accordingly. For
example, the strategy for development of a payroll
program might differ dramatically from that for a
technical analysis in a wvolatile field because of
different prioritizations for different aspects of the
program lifecycle (i.e., efficiency for operating
costs versus modifiability for modification costs).
As another example, execution time and reliability
might be most important for a real-time simulation.
In each case, the goal of minimization of total
lifecycle cost is reflected in th.a application-specific
prioritization of criteria.

For our design, maintainability and modifiability
were chosen as the most important design criteria,
This prioritization results from heavy weighting
applied to person-hour requirements for expansion
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of analytical capability and very-long-term ac-
cumuiation of maintenance costs. In addition,
coincident improvements in utility (i.e.:
user-friendliness) and computational efficiency
are anticipated from restructuring of input and
output functions and elimination of redundant
and repetitious calculations. However, improve-
ments in these attributes are to be achieved only
at no expense to maintdinability and modifi-

ability.

Two options exist for development of well struc-
tured analyses. These are (1) build a new analy-
sis from "scratch", or (2) restructure an existing
production analysis. Restructuring is reorganiza-
tion of an already debugged, validated, correlated,
“"mature" analysis. It is the impositicn of struc-
ture on an existing analysis. This approach
utilizes current analysis theory, including deriva-
tion of equations, and solution method, and keeps
current correlation intact. It utilizes informaticn
from current documentation in the new documenta-
tion. Checkout or validation consists of comparing
resuits of the current poorly structured analysis
with the new restructured analysis and implicitly
takes advantage of all prior validation and correla-
tion efforts. While restructuring does not, in
general, include provision of any new capability it
may be coincident with provision of new capability.
An additional benefit is that the program remains
operational and useful throughout the restructur-
ing process, thereby providing immediate gains.
in contrast, development of a new structured
analysis from scratch begins with approach deve!
opment and derivation of equations and thus may
include new capability. However, starting from
scratch does not utilize results of prior correla-
tion, documentation, etc., and the program does
not become useful wuntil the long validation/
correlation effort is complete.

Restructuring is the preferred approach if a
"mature" analysis is available which is minimally
organized and has been validated and correlated.
The most difficult, costly, and time-consuming
tasks to perform before a large program becomes
useful are validation and correlation. Validation is
assuring that the analysis program computes what
it is supposed to compute (as defined by the
equations and method of solution). Correlation is
comparison of the analysis results with the
"real-world". Validation and correlation require
substantial effort for a large sophistocated analysis
to exercise multiple-option combinations for multiple
configurations. Utilization of prior effort is
possible by direct comparison of restructured
modular input and output with the same guantities
from the poorly structured analysis. The trade-
off is the effort required to identify these inter-
mediate values in the poorly structured analy:is
versus the effort saved in validation ard correla-
tion. This potential savings is one of the most
significant benefits of the restructuring approach.

Utilization of information in existing documentation
provides another potentiai reduction of effort for
the restructuring approach. Since restructuring
utilizes the approach and derivation of the current
analysis, the documentation pertaining to theoretical
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development is still valid and may be utilized in
generation of new documentation. In addition, use
of an existing method allows the development team
to concentrate on the program structure. Thus,
restructuring is favored if the current anaiysis
approach is relatively well documented.

Another major benefit of restructuring is potential
implementation of improvements in the near-term.
Incorporation of at least partially restructured
modules into the original program prior to comple-
tion of restructuring is possible. Small changes
are simpler once a restructured module goes into
production. Errors in the existing analysis may
be uncovered and corrected, and new capabilities
may be implemented in the restructured modules
prior to completion of restructuring the whole
program. Any benefits which may be incorporated
into the new module are thus potential near-term
benefits as well.

Determination of the suitability of a currently
available analysis for restructuring requires an
examination of its structure. (Ail programs have
structure, though some have very bad structure
in terms of maintainability and modifiability). The
current analysis structure must be compared to a
desired analysis structure, which of course,
requires at least a first-cut design of a "good"
structure. The goal of the comparison is a map-
ping of functions, and the connections between
functions, from the poor structure to a good
structure. The mapping is not likely to provide a
one-to-one correspondence, but will provide an
indication of the effort needed and trade-offs
required for restructuring to be successful.

A functional mapping exercise indicates that C-60
is a good "target" analysis for restructuring. A
first-cut design of "good" structure and a first-
cut mapping of components from poorly structured
C-60 to "well" structured modules has been per-
formed. The first-cut design of "good" structure
with clearly defined functions is shown in Figure
3. The mapping of corresponding functions in the
current C-60 is illustrated by Figure 4 as a struc-
ture chart with functions distributed throughout
the analysis. While the structure of current C-60
is clearly in need of reorganization, the mapping
exercise indicated that validation, correlation, and
near-term improvement benefits of restructuring
should exceed the cost of efforts to identify,
isolate, remove, replace, and reconnect pieces of
analysis. In addition, the existence of relatively
complete and well-written documentation makes
program C-60 a good candidate for restructuring.

- Tihe Restructuring Process

The first task in the restructuring process is
deve!zonnt of a plan. A general outline of the
plan Jor restructuring program C-60 is provided as
Table 6. The initial tasks define desired attri-
butee for overall program stricture, data struc-
ture, and control -tructure, and provide (cding
guidelines and documentation standards. 'se
tasks lay the groundwork which Is esse.tial to the
restructuring design process, and thus merit long
and serious consideration. However, flexibility to
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allow and in fact plan for review and revision of
initial structural attrLuwes, coding guidelines, and
documentation standards is advisable to provide a
better final resuit. Initial testing (by examplie or
trial) of guidelines, particularly documentation and
coding guidelines, may provide answers to critical
questions such as 'Are the restrictions realistic?,
will they be complied with over a long program
life-cycle by a variety of programmers/analysts/
users?, Will the documentation be maintained? Is
it too cumbersome, or incomplete?, Will this struc-
ture still work if we add more coupling considera-
tions?*  Though not explicit in the plan outline,
flexibility for refinement of guidelines is assuned.

A first-cut "S.rawman" design of the overall
program structure begins the actual design pro-
cess. (This step was actually performed, as was
required, in the mapping exercise which illustrated
suitability of C-60 for restructuring. See Figure
3). A first-cut design of the Main Control Execu-
tive is nbtained by viewing the analysis as con-
sisting of only its top level '"global" functions
(e.g.: Velocity, Airloads, Trim, Response). The
main design loop may then be executed on a func-
tion by function basis until all global functional
modules have beer. designea, built, tested, and
documented. The restructuring process is com-
pleted by final refinement of the Main Control
Executive design, system integration testing, and
completinn of system documentation. Major stages
of the restructuring process as outlined above are
desc-ibed in more detail in the paragraphs which
follow.

Design principles were selected to wlace the de-
sired emphasis on high priority criteria. To
improve maii.tainability and modifiability, design
principies are seiected which minimize the human
effort required to identify anc correct program
errors, and to define and implement changes to
program requirements. Ycurdon and Constantine®
define desirable characteristics of the narts of a
system for maintainability and modifiability:

"....the cost of maintenance is minimized
when parts of the system arg:

- easily related to the application

- manageably smali

- correctable separate, '

"....the cost of modification uf a system will
be minimized when its parts are:

- easily related to the problem

- modifiably separately."

The design procedure should provide partitioning
or organization of the analysis into pieces which
are manageabl!y small (for human comprehension),
clearly defined, well documented, and which reflect
the '"real-world" partitioning of the problem.
Similarly, these pieces should be connected to one
another in ways which are clearly defined, well
documented, and which reflect only "real-wor!d"
relationships without extraneous links. Design
principles utilized in the present effort to build
such a program structure are functional decompo-
sition, hierachal control structure, and data trace-
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ability. These principles, which are described
individually in the following paragraphs, are used
to promote simplicity and clarity in the way the
program models the solution it represents.

Functional decomposition is a top-down approach
composed of repeated subdivisions from "big pic-
ture” functions to code level functions. It is the
judicious partitioning of a problem into cohesive
decoupled units or modules. (Detailed discussions
of intermodular cohesion and intramodular coupling
are presented in References 2 and 6). The tricki-
est aspect of this concept is determining ‘'func-
tional decomposition with respect to what?'. "The
choice of what to decompose with respect to has a
major effect on the goodness of the resulting
program and is therefore the subject of much
controversy."2 |f the definition of functions is
derived from a data flow diagram the result is data
flow design. If the design is built on the basis of
data structure it is data structure design.
Bergland? describes data flow cesign (pseudonyms:
transform centered design or composite design), in
its simplist form as "nothing more than functionat
decomposition with respect to data flow. Each
block is obtained by successive application of the
engineering definition of a black box that trans-
forms an input data stream into an output data
stream”. Ancther analogy is an engineering
system block diagram with transfer function reia-
tionships between input and output for each biock.
The art or magic of functional decomposition is in
definition of a model of the real world as func-
tions.

It is in regard to t\i.. task, of judiciously break-
ing an analysis into functions that model the
"real-wor'd", that the ro!e of engineer/analys: and
the role of programmer/analyst have a critical
interface.  Careful partitioning may reflect not
only the "state-of-the-art", but also the areas of
anticipated expansion of capability. Careful func-
tional partitioning should take care to explicitly
represent all functions, including simple approxi-
mations of functions. This is necessary if the
program structure is to accurately represent the
structure of the "real-world" problem, and be
easily identified and modi‘ied to improve the ana-
lytical model. The importance of good functional
decomposition makes the ergineer/analyst a criti-
cal, though often unused link in the software
development/maintance/modification chain.

Hierachal control structure attempts to define clear
traceable lines of decision-making power. This is
accomplished by requiring that decisions be made
only once, and by placing decisions immediately
above the highest level module effected by the
decision, thereby iimiting authority of ali lower
level functions. The result may be likened to a
humar organization, in whish ‘"decision-making"
pewer is graduated from top-ievel executives te
mid-level managers to “-...om level "number
crunchers”, as shown in Figure 5. A similar
concept is defined by the term "decision-hiding"4,
in which decision information is accessible on a
"need-to-know" basis. Hierarchal control struc-
ture tends to minimize extraneous control or deci-
sion connections, eliminate control redundancy,
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and guarantee consistency of all option selections.
Involvement of engineering personnel in definition
of the Control Hierarchy will provide additional
insight into anticipated future analytical options
and/or vehicle configuration.

Data traceability is the characteristic of having
clearly d=fined single-source paths of data flow.
This characteristic is desirable for maintainability
and modifiability because it eliminates redundant
and/or inconsistent variable definitions. This
characteristic also tends to minimize extraneous
connections by eliminating unnecessary and/or
misplaced calculation of variables. The debate
over transfer of information by argument Ilist
versus transfer by common "global" data is an
example of an issue of data traceability. Argument
list transfers can become cumbersome and may
consume extra prcgram execution time, but gener-
ally provide better data traceability. This issue is
addressed specificaily in definition of coding
guidelines.

The third step in the restructuring process (out-
lined in Table 6) is the definition of a data struc-
ture. This refers to the organization of data flow
from input parameters to output data. It consists
of the division of program input data, variable
parameters, and output data into categories and
subcategories which reflect ‘“real-world" defini-
tions. Data structure is reflected in the organi-
zation of  documentation, particularly  "data
dictionaries” which provide symbolic nomenclature,
physical definition, units, sign convention, and
FORTRAN name. The categories used for restruc-
turing C-60 input data are trim, structural prop-
erties, aerodynamics, geometry, downwash para-
meters, and controis. (Program control pa-ameters
are treated with a parallel structure (e.g.: trim
controls, input controls, etc.) under the topic of
Control Structure). Parameters which are com-
puted as functions of only input data, and which
could, in fact, be treated as input data in that
they remain fixed throughout the analysis are
grouped with inpu. data to form "extended data".
Exampies of additional parameters included in
"extened data" are lumped physical properties
derived from distributed physica! property curves.

Organization of variable parameters (i.e.: parame-
ters which change in value during the analysis) is
based on functional decomposition. Variables are
first defined either as "global" results of a speci-
fied function (e.g.: the results of the '"response
module" are deflections, slopes, loads, etc.) or as
local internal values appearing only in subordinates
of the specified function (e.g.: transfer matrix
elements, unsteady stall time delay, etc). The
resulting categories of variables thus reflect the
top-level global functions. Refinement to re-
peatedly lower level functions provides similar
organizatior. of local var'ables tu parallel data flow
through the analysis.

Output data structure duplicates the structure of
variable parameters, illustrating the concept that
any resulting variable quantity may be considered
an output. Highest level function output, or
global output is collected for summary information.
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The "output" function is otherwise distributed
throughout the analysis by activation or "calling"
of output utility routines or subfunctions. This
treatment provides standardization of formats,
simplified revision of standard formats, and simpli-
fied identification, tracing, addcition or deletion of
output parameters.

Definition of control structure refers to the organ-
iz tion of "decision-making" parameters or program
controls. The organization of control parameters
reflects the levels of decision-making defined by
the control hierarchy as well as the functional
breakup defined by functional decomposition.
Controls are "decomposed" first by global function
classifications: Input, Velocity, Airloads, Trim,
Response, and Output. Successive subdivision
from high-level decision-making to low-level
decision-making is performed on a "need-to-know"
basis to minimize coupling of program controls.

Coding guidelines are defined as the next step in
the restructuring ..ocess to provide standardiza-
tion, to improve clarity, tu enforce data trace-
ability requirements, and to maintain data and
control structures. Standardization is needed to
provide consistency across a variety of pro-
grammers/analysts/engineers with a corresponding
variety of programming styles, nomenclawure nref-
erences, etc. The attributes of this standard will
have a significant impact on future maintenance
and modification costs. The most tempting trade-
off in coding practices is short-term expediency at
the expense of long-term clarity. The provisions
made in coding guidelines may deter such prac-
tices. Standards of particular interest from the
perspective of maintainability and modifiability are
those which influence data traceability. These
standards are any rules or guidelines which pro-
mote the identification and understanding of a
source of information. Some examples of stanaards
which promote data traceability are prohibition or
restricted use of *“EQUIVALENCE" statements,
FORTRAN variable naming conventions which
reflect the meaning and source of the data and
restricted use of FORTRAN COUMMON blocks for
variable data storage.

Usage of common bilock data storage is a particu-
larly controversial issue because the trade-off of
benefits is significant. Two main drawbacks of
COMMON block usage are the difficuity in tracing
the origin of wvalues, and the danger of inadver-
tent and undetected redefinition or “over-writing"
of data. A major benefit of COMMON block usage
is the ease and simplicity of multi-point access to
information. Common blocks of information may
best be utilized as single-source, multi-destination
vehicles of information transfer and storage to
achieve major benefits and avoid main drawbacks of
usage, as illustrated by Figure 6.

Definition of documentation standards is one of the
most difficult and time-consuming tasks of the
restructuring process. Repeated review/revision
iterations involving parsonnel with different per-
spectives are essential to de..inition of useful
documentation. Insights from perspectives of
programming, analytical development, and pro-

duction usage are essential. Documentation must
provide enough information to provide needed
understanding without providing so much informa-
tion that needed information is obscured. in
addition, the inforriation must be structured so as
to be easily modified and quickly retricved and to
prevent conflicting or redundant information.

First-cut designs of overall structure and the Main
Control Executive reflect the interaction of global
functions. Refinement of the design is achieved
by iterative functional decomposition based pri-
marily on data flow. The top-level second-cut
design is shown in Figure 7. An essential eiement
of the design iteratiorn is that it involves in-
dividuals representing computer technology, the
engineering developer, and the user community.
The main design loop is then activated to design,
build, test and document functior.s on a module by
module basis. A second-cut deta’l design of the
Input function is shown in Figure 8.

For each module, requirements mi.st be defined in
the form of a first-cut modu’e specification or
"moduie spec” including ¢ first cut detail
"strawman" design. Discussion of a design is
much more fruitful when based on a strawman., It
helps to point out the more subtle and obscure
requirements and restrictions. It is also useful in
establishing, illustrating, and clarifying special
nemenclature.  However, too large a.a effort should
not be expended in putting together the
"strawman® spec, or natural reluctance to 'waste"
effort may compromise the design effort by dis-
couraging changes to the strawman. The itarative
design-change/review process, starting with the
strawman design is performed until a satisfactory
detail design results.

Steps of module-building, validation, and documen-
tation may begin upon completion of the module
design. A mapping of the module function to the
current analysis code is required to identify code
connections for validation. There generally wiil
not be a one-to-one mapping of new module code
and original analysis code. The original analysis
will contain duplicate code (possibly inconsistent
near-duplicate sections), have some functions
unrecoverably distributed (in practical terms), and
have some functions which do not exist as iunc-
tions at all. Coding guidelines define standards
for the module-building process, including specifi-
cation of the format for in-line documentation
which should be included as comment statements in
the code of the new module. The module is then
tested by comparison with the current analysis
intermediate and final calcuiation output. This can
be achieved by adding namelist or write statements
as temporary modifications to the origina! program.
(The required variables from the original analysis
were identified in the mapping step above).
Documentation of the gylcbal module, including
global function executive and all subordinae
functions is then finalized.

The Main Control Executive design is finalized after
completiun of design of all 3jlobal functions. This
is necessary because design ravisions of even
global level functions may occur during the itera-
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tive design loop process. Testing »f the main
control executive is performed by evercising all
combinations of global level control options with
“dummy"” global functions. Replacement of "dum-
my" functions with completed functional modules
constitutes system integration, which is followed
by integration testing, completion of system docu-
mentation, and finally, incremental release of the
restructured program for production use.

Current Status

We are in the process of executing this restructur-
ing plan for program C-60, and are presently in
the global function design loop. lestructured
functions which have been implemented in the
production program are Downwash (subcrdinate of
Velocity), Coupled Flap-Pitch Response (subordi-
nate of Response), Aerodynamic Coefficient Deter-
miration (bottom level subordinate of Airloads),
and various standard utilities of Input and Output.
Some general observations we have made during
this activity are (1) that no design is ever final
and therefore flexibility must be built in, (2)
review with other interested parties improves the
resulting design, (3) definition of documentation
standards is at least as difficult as the actual
desigri process, and (4) the potential near-term
benefits from implementation of restructured mod-
ules into production are extraordinary. A discus-
sion of these points is given below.

The program design structure, even at the top
global-function level, evolves during the design
process, and beyond. Top-level functions of the
current design, as shown in Figure 7, contrast
the ~riginal design which was shown in Figure 3.
Additional functions, such as nonlinear forcing,
summary report, graphics, and rotor-airframe
coupling, were added as a result of multi-person
review, anticipation of future needs and insights
from ongoing design refinement. Further revision
is anticipated.

Documentation standards evolve in the design
process, similar to the actual program structure
evolution. initial elements listed in Table 7 were
revised to a2 scheme employing three documents
with items listed 'n Table 8. The division, though
still in work, is similar to that suggested by Kerr,
Potthast, and Anderson': model formuiation,
user's manual, and programming manual. This
resulted from trial generation and revision of
documentation, which proved to be too cumbersome
in 1ts original form. Again, multi-person review
provided major insights. Documentation compl.ted
thus far, including the input data dictionary and
input structure definition, has been very useful
in reducing user errors in input preparation.

Restructuring c¢: ) improve efficiency as a side-
effect. Restructuring of the Aerodynamic Coeffi-
cien® Determination function, a bottom level sub-
ordinate of Airloads, revealed inefficient loop
structure resulting in unnecessary recalcu'ation of
values. Restructuring of the function io improve
clarity, maintainability and modifiabitity also pro-
vided more efficient operation. The end result of
implementing the restructured function In the

production program was reduction of total CFU
execution time by 17 percent for 3 typical
case.

Previously undetected program errors may be
uncovered in the process of wvalidating restruc-
tured modules. During the wvalidation process,
differences in answers provided by the restruc-
tured module and the original program wera found.
Usually, this was the resuit of 5 coding error in
the new module, which illustrates the primary
purpose of the validation effort. However, some-
times it was found that the original program was
incorrect. Most of the time these corrections were
not significant, but in at least one instance, the
error correction significantly improved correla-
tion. In the past, the vibratory hub Icad
calculations sometimes depended upon the accutacy
of the initial trim guess. After an error was
uncovered in the wake update routine, the depen-
dence of the hub loads on initial trim
was dramatically reduced. In addition, the correl-
ation with measured pressure data was sub-
stantially improved, as shown in Figure 9.

Another restructuring benefit is that it has been
significantly easier to incorporate new analytical
capability. A number of improvements have been
added. inciuding the addition of a nonlinear
multi-load path flex-beam capability, even though
the Response function was only partially
structured. Having a data map, control flow and
partial restructuring real'y reduced the effort
required. A number of similar improvements were
attempted in the lats 70's, but they had to be
abandoned since the change could not be checked
out with a reasonable effort. Restructuring of
the Response function made a similar contribution
to revisions to add nonlinear pendulum flap ab-
sorbers and consolidate calculations for load
and frequenry prediction capabilities.

Output capabilities have been expanded and made
more user-friendly. Restructuring has facilitated
development of flexible, centralized output modules
from which the user can select any of 152 output
~ecord names representing different output arrays
(each array is converted into one of three stan-
dard formats). Each of these arrays can be either
not output or cutput to paper, microfiche, on-line
printer plots and/or tape. The tape can then be
automatically transformed into the required form
for a number of display devices (both video and
hard copy plots). In addition, all output is
completely labeled with a description, units and
sign corvention,

Renrganizatior of input data and input processing
has reduced input errors and the time required for
user preparation of input data. This was accom-
plished by development of centralized input mod-
ules with options for using standard data files
established for each aircraft and the ability to
input either distributed or lumped physical proper-
ties. Scaling factors are provided for each of the
physical property characteristics. Finally, the
input data is printed out in both standard loader
format and logically grouped, annotated and for-
matted arrays, with description, units and sign
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converition to allow the user to easily check the
input.

Restructuring aids development of interdisciplinary
analysis by simplifying the incorporation of
analysis components from other technical areas.
This capability was demonstrated while performing
the restructuring of the Downwash function in the
C-60 program. The restructuring of C-60's non-
uniform downwash function resulted in the de-
finition of the functional data connections so that
any 'generic' downwash function (that used air-
ioads and geometry as inputs and provided velocity
distribution as output) could be used. Next, a
non-uniform downwash analysis from the L-02
program was restructured and then transplanted
into C-60. Currently a third downwash analysis
(from the B-65 performance program) is in the
process of restructuring for inclusion in C-60 by
vear's end. It should be noted that this tech-
nology interchange works both ways. Since the
C-60, B-65 and L-02 wake functions were re-
structured to the same criteria, these interface
boundaries are defined identically. Therefore, it
is possible for both B-65 and L-02 to use the C-60
downiwash function and each others' as well. The
value of this exercise is to show that it is reason-
able to transfer teci~nology from discipiine to
discipline and to demonstrate the value of good
(and consistent) program structure in aiding the
transfer. Other technologies olanned for near-
termi cross fertilization include unsteady aero-
dynamnics, free flight aircraft trim, and dynamic
flight <ontrols.

Another benefit of this technology interchang=2 is
that the three restructured Downwash functions in
C-60 will allow the ability to evaluate different
analytical >rmulations for the same function.
Different analytical models of such concepts as
shed wake, vortex sheet, roli up, lift/wake com-
patibility and wake convergence, etc. can be
investigated with identical external fo.mulations, (a
physical impossibility when these routines were
located in different programs). Using similar
strategy, functional structuring also allows multiple
levels of complexity for a single function. For
example, C-60 currently has three levels of com-
plexity for blade pendulum absorbers: .n ideal-
ized absorber (useable for preliminary design), a
linear absorber (with couplings and offsets), and a
full non-linear absorber (with large angles).

As discussed above, our experience to date shows
that restructuring works, and provides extensive
near-term benefits with production implementation.
It has been possible to develop a hybrid program,
partially structured and partially unstructured,
that can be utilized as a production analysis in
parallel with its restructuring, Of course, after
each significant restructuring effort, a new pro-
duction module is developed, which has the same
or improved capability of the previous version.
(A modification index is kept in the front of the
output to summarize each change, as shown In
Figure 10). When substantial differences in the
calculated results between versions occur, correla
tion is performed to show that the new version is
at |least as good as the original version. f this
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level of correlation cannot be reached, the old
version is not replaced.

Conclusion

Experience in the effort to restructure C-60 indica-
tes that restructuring a "mature" analysis is a
viable and worthwhile remedy for the maintenance
and modification prchlems of a current poorly
structured rotorcraft analysis. The success and
productivity of the restructuring effort in terms of
capability-gained for effort-expended depends to a
large degree on the organization and documentation
of the current poorly structured analysis. Many
near-term benefits are possible from incorporation
cf restructured functional modules into the pro-
duction program. Near-term benefits achieved
thus far for program C-60 are listed below.

- Reduction of program errors

~ Reduction of user errors (input and output)
- Reduced run-time

- Simplified incorporation of new capabilities
- Enhanced technology transfer

- Improved correlation

In addition, some important lessons were learned
concerning the procedure or process of re-
structuring, and are outlined below.

- No design is ever final, and therefore
flexibility must be built in.

- Reviews of design and documentation stan-
dards by representatives of programming,
computer technology, analytical develop-
ment, and user communities provide sur-
prising insights and better "final" results.

- The definition of standards for documenta-
tion is at least as diffirilt and as important
as thc actual design process.
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Table 1.

SOPHISTIC ATED COMPUTER TOOLS

Table 3.

SOFTWARE ATTRIBUTES AS DESIGN CRITERIA

— CLARITY — OENERALITY
— GRAPHICAL DISPLAY PACKAQGES
— COHESION - INDEPENDENCE
— OPERATING SYSTEMS
= COMFLEXITY = MAINTAINABILITY
- COMPILERS
= CONNECTIVITY = MODIFIABILITY
= DEBUGGING AIDS
— CONSISTENCY = MODULARITY
~ DATABASE MANAGEMENT SYSTEMS
= CONTINUITY - PORTABILITY
-~ FLOW DIAGRAM UTILITIES
~ CORRECTNESS - RELIABILITY
— CHART GENERATION PACKAQGES
— CORRESPONDENCE - REUSEARIL
— WORD PROCESSORS
- COUPLING = ROLE ADAPTABI’
- EFFICIENCY ~ TESTABILITY
- EXTENDIBILITY = TRANSPARENCY
- FLEXIBILITY = UTILITY
Table 2. Table 4.

INDIVIDUAL PREFERENCES IN PROGRAM DEVELOPMENT

NOMENCLATURE

FORMAT

VARIABLE NAMES

UNITS/NONDIMENSIONALITY
— 8IGN CONVENTIONS

IN-CODE COMMENTS
— ARGUMENT OR COMMON TRANSFERS

IMPLIED OR EXPLICIT LOOPS

EXPLICIT OR VARIABLE DIMENSIONS
INTEGER OR REAL PROGRAM CONTROLS

— VARIABLE PRECISION

SOFTWARE DESIGN PRINCIPLES AND TECHNIQUES

— ABSTRACTION

= BOTTOM-UP DESIGN

—~ COMPOSITE DESIGN

— DATA ENCAPSULATION

— DATA4 FLOW DESIGN

—~ DATA STRUCTURE DESIGN

- DATA TRACEABILITY

—~ DECISION HIDING

= FUNCTIONAL DECOMPOSITION
= HIERARCHY

= HIERARCHAL CONTROL

= HYBRID (TCP-DOWN/BOTTOM-UP) DESIGN
= INFORMATION HIDING

= PARTITIONING BY OBJECTIVE

= PROGRAMMING CALCULUS

~ STEPWISE REFINEMENT

= TOP-DOWN DESIGN

— TRANSFORM-CENTERED DESIGN
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Table 5.

DESIGN CRITERIA DEFINITIONS

EFFICIENCY — OVERALL COMPUTATIONAL
EFFICIENCY

GENERALITY -~ BROADNESS, SCOPE, OR
ABSTRACTNESS OF TASK
DEFINITION

MAINTA'NABILITY EASE OF DETECTION AND

CORRECTION OF PROGRAM
ERRORS

MODIFIABILITY — EASE OF ACCOMMODATING
NEW REQUIREMENTS

RELIABILITY — CONSISTENCY AND REPEATABILITY
OF CORRECT PERFORMANCE

uTiLITY — EASE OF USE OR
USER-FRIENDLINESS

Table 7.

ORIGINAL DOCUMENTATION REQUIREMENTS

MODULE SPEC (FOR EACH SUBROUTINE}
L. SUMMARY SHEET
(FUNCTION NAWE AN DESCRIPTION, SUBORDINATES

i LOCAL MODULE MAP (CIAGRAM)
{8HOWS SUBOROINATES, SUPERORDINATED,

AMOUMENT LIST 1/0, COMMON 170}
. MODULE STRUCTURE DIAGRAM
(SHOWS INTERNAL STRUCTURE SUBFUNCT. NS)
V. 8EQUENCE FLOW DIAGRAM
(CLABBICAL FLOW CHART)
Y. CONTROL DECISIONS

(PRESENTS OPTIONS AND TESTS MADE ON CONTROL
PARAMETERS)

VI. EQUATIONS
Vi, DERIVATION OF EQUATIONS
ViI. FORTRAN VARIABLES

(FORTAAN NAMES, SYMBOLIC REFEAENCES,
AND DEFINITIONS)

X, CODE (WITH COMMENTS)
{LISTING OF ACTUAL FORTAAN CODE WITH IN-LINE
COMMENTS)

X. ADDITIONAL NOTES

(ANY ADDITIONAL COMMENTS, A SUCH A¢ NOTING
EXCEPTIONS TO CODING QUIDELINES, AUSUMPTIONS
OR ANTICPATION OF FUTURE REVIIIONS)

~ ALPHABETIZED AND CROSS-REFERENCED

= PROVIDE 8YMBOLIC NOMENCLATURE, PHYSICAL
DEFINITION, UNITS, 8IGN CONVENTION, FORTRAN
NME, AND DERIVATION REFERENCE

AND SUPEROROINATES, INPUT AND QUTPUT PARAMETERS)

DATA DICTIONARIES - INPUT, VARIABLES, OUTPUT

Table 6.
PLAN rOR RESTRUCTURING G-60

1. PRIORITIZE DESIGN CRITERIA

= MAINTAINABILITY
« MODIFIABILITY

2. DEFINE DESIGN PRINCIPLES

= FUNCTIONAL DECOMPOSIT!ON
= HIERARTHAL CONTROL
« DATA TRACEABILITY

8. DEFINE DATA STRUCTURE

4. DEFINE CONTROL STRUCTURE

5. DEFINE CODING QUIDELINES

6. DEFINE DOCUMENTATION STANDAHRDS

7. DESIGN 18- 2UT OVERALL STRUCTUHE (*STRAWMAN®)
8. DESIGN *3!1~CUT MAIN CONTROL EXECUTIVE

9. GLOBAL FLNCTION DESIGN LOOP

Dt JIGN/REVIIW ITERATION

BUILD MODULE

TCST MODULE

COMPLETE MODULE DOCUMENTATION
(NEXT GLOBAL FUNCTION)

10. COMPLETE MAIN CONTROL EXECUTIVE
11. SYSTEM INTEGRATION TESTING
12, COMPLETE SYSTEM DOCUMENTATION

Table 8.

REVISED (2nd CUT)
DOCUMENTATION REQUIREMENTS

DERIVATION DOCUMENT

= CONTINUOUS/SEMI-CONTINUOUS DERIVATION
(NOT BROKEN INTO SUBRJUTINES)

~ CROSS-REFERENCED TO SUBROUTINES, INPUT
DATA, QUTPUT DATA, AND FORTRAN VARIABLES

PROGRAMMING MANUAL

- MODULE 8PEG*
1. SUMMARY SHERY
A LOCAL MODULE MaP
#l. MOOULR STRUCTURE DIAGRAM
1/, BEQUENCE FLOW DIAGRAM
V. CONTAOL DRCHIONR
Vi PORTAAN YARIABLEQ (WAS vin}
V. CODR WITH COMMENTS (WAS IX)
Vil ADDITIONAL NOTES (WAS X)
- REGARDNG CODE
= DATA DICTIONARY - YARIABLES
USER'S MAWUAL
= MOQDULE SPEC*
L BUMMADY SHEEY
N RQUATIONS (WAS V1)
il ADRITIONAL NQTHS (WAS X}
~ REQARDNG EQUATIONS

= DATA DICTIONARIES=INPUT AND QUTAUT

< ASREMOLED PAOM PIECES OF
ORIGINAL MODULE BP0 STANDARD
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Figure 1.

LAW OF CONT™LiNG CHANGE:

4 8YSTEM THAT 19 USED UNDERQOES CONTINUING
CHANGE UNTIL T 1S JUDGED MORE COST-EFFECTIVE
TO FRZEZE AND RECREATE (T.

LAW OF INCREASING UNSTRUCTUREDNESS:

THE ENTROPY (DISORDER) OF A 8VSTEM INCREASES
WITH TIME UNLESS SPECIFIC WORK 18 EXECUTE™ J
MAINTAIN OR REDUCE IT.

COMPUTER PROGRAM LIFE CYCLE

ERRORS
DISCOVERED
PER MONTH

1!

Figure 2.
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Figure 4.

FUNCTIONAL MAPPING FOR CURRENT C-60 PROGRAM
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TOP LEVEL OF SECOND CUT OESIGN

L e S T O $ T TR S R e .

Olmml. PAGE IS

POOR QuaLmTY

Figure 9.

IMPROVED VIBRATORY AIRLCAD CORRELATION

USING RESTRUCTURED C-80 DOWNWASH “IODEL
N TEST DATA
uam % . uAmomca 3aTo 0
1 2
— I 1 1
10
T I PETR R o B o R )
//,; 3 /%‘
e ;/"." ',/f;,’z, .,?Vw
aoToR narom o Y e
sysTEM ARFRAME
ANALYSIS couPrLING .
veLoery AMLOADS roncag " I noton REsPONSE "///'57,”/;7”/4, R
(OTHER) l AiM L, 4z !
/7, g1y
”“\\
-t
)
. i
Figure 8. Figure 10. i
i
H
INPUT FUNCTION ~ SECOND CUT DESIGN G-80 AUTO-HISTORY i
' i o it i
Hroa. 1 €8 MpIsICATIONS Tl
HI T A *
3 AGInED weoar PRinteut BEAH i
) j l l ’ l::,llll'.ll "lll 'AC'"I .Mlllll N
" LT ]
Do | | e | e | || [ ] [ n d *
1 {{
is " CONTREL X 4
il LU n H
A EEAL ER L | T P v TREeSe U
STARBARS CALECIATE e [ 11111} L1 ATURAL PRES, T _PARCED 8| I "
1l e H:%'Zl oo v G A G ;
l,,,,,,] - [.... ] Iu..... ] o [,,] N O
tonction ann et - - Vinants e i mewaw 2 anaLvare '
it HEH 1 76 adv/ece tap. . ;
- — o) | [ — _| i Hhulie” e |
ANALYIY | ereemem| " 216 ne sLer er THugLa 3
u“"-. — ng— i}l:‘s ‘2 ﬁ!éln’%nu !‘ GAII':::: u; . :
ﬁ‘:.‘.’t.m. esa H :5: H e il 1 g R & o i
e - B f e e i
— N T N '
!
I*

183

e - —— b ao— T t



o

e e = b e R

——— B e e -

AR
\\\"

,\\.r\ \,,,\. T . ‘*,

..._M vihvm—hth»‘ p— P N
DISCUSSION
Paper No. 12
RESTRUCTURING THE ROTOR ANALYSIS PROGRAM C-60
P. G. Phelan
and

F. J. Terzanin, Jr. ‘

Wayne Mantay, U.3. Army Structures Laboratory: [ have two questions that I think are related, I
hope you do too. When you restructured you said you uncovered at least one major problem. Was
it in fact that error 1in the downwash, was that the one?

Phelan: That showed one of them, yes. Part of the improved currelation was that. That wasn't
the total improvement in correlation: we also had improved capability.

Mantay: No, I understand about the correlation, but the error that you uncovered in C-60, was
that the major error you alluded [to]?

Phelan: Yes.

Mantzy: That was in the downwash?

Phelan: Yes, that was in the downwash.

Mantay: I didn't pick it up on your slide for that corruviation, but was that the high speed
case from Euan Hooper's data base that he had trouble with; was that the problem child that you
set straight?

Phelan: Yes.

Marty Schroeder, Soiar Energy Institute: Your presentation was [very good] and I think the work

in structured programming is sorely needed. I'm not familiar with C-60 though. What language
is it writien in?

Phelan: FORTRAN.

Shroeder: Have you considered looking at other languages like PASCAL or C for a structured
program? |

Phelan: We are working on restructuring ar existing analysis for a lot of reasons that I didn't
really get into, but are in the paper. We haven't looked at also changing languages, but yc.
could do that. We haven't looked at doing that.

Wendell Stephens, U.S. Army Aeromechanics Laboratory: I wanted to thank you for your paper,

also. 1 have noticed that your paper, the one previous to it by Bob Sopher, a related paper .
[on] DYSCO involving Kaman, [and] perhaps, even the paper by Gangwani at Hughes when he spoke

about a new program all have tended to go this direction which I applaud. My specific question

to you is when you begin restructuring this program have you come across any executive-type v,
utilities that you have had to build in FORTRAN that have helped your ability to transfer data W
from module to mcdule. It sort of relates to the previous question .iek here of perhaps going !
to a different language for certain structures for your executive functions. I was wondering if

you found that you had to develop any utilities for data transfers?

Phelan: We haven't yet, but I think part o>f that ig maybe tha. our final main control executive
design is . . . the first cut comes at the beginning of the process--the last final design comes
at the end after you have decided and really finalized what your global top level functions

are, So we've discussed different ways to impl:ment a main controi executive quite a bit, but
we have not implemented it as of yet. So, we will see.

Ed Austin, U.S. Army Applied Technology -aboratory: I think it's very interesti.g the approach
you have taken to conceive of restructuring an entire program and then to work from kind of the
bottom up. Do you have any speculations about what will happen on that day when suddenly the
master program is the onlv thing left to change ana yon have all these pleces and you haven't
designed apparently the final master program? It doesn't sound to me lik. you have anyway.

Phelan: You mean the main'control as Jar as the . . .

aus.in: I saw this incredible diagram of the program the way it wa= tiefore you startel =nd
wires go every which way. 1 saw your final version which is a vor- simple wiring diagre . [
guess I don't see how you plan to go from this complicated set down .7 just a few wires. It's
kind cf like the cime my wife decided to rewire our car and sht took wuil “he wires off the
distributor at the same time.
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Phelan: I do:'t see it as a big problem because the reason why che design is . . . we have done
a lot of work on laying out a first cut executive, but the problem 1s you cannot implement the
executive In a piecemeal way because that defines . . . on2 of the very last things is how you

are going to make th:ese common blocks all well structured. Well, when you start out with one

that is connected everywhere, yru can't do that first; you have to wait until you have consoli-
dated things. I can't take the connections from airloads that go cverywhere and eliminate the
connections until I've brought all the pieces together and once they are in one piece then you
have identified your single sourze. Do you see what I mean? Do you have a better explanatic-?

Frank Tarzanin: We have done =ome partial module restructuring and then we have done., actually
completing the downwash moJule restructuring and orce you connect those wires you ca.. 1solate
the downwash as a kind of structured subprogram. We're going to slowly build structured sub-
programs then build the total program on top. In fact we are learning and what we sZarted to dc
was take one thing in airloawus, in fact that routine tnat saved a lot of time was an experiment.
fan we grab a routine out of the middle of this mess and restrincture it and put ic back 1in and
iave it work. And it diu. You've go- to find the connections, and define the intertface.

Phelan: I think that another thing that is important {20 is when you do that the connections
are reduced Because what started out as a ball with a whole bunch of strings attached--you can
eliminate the strings. You have identified a single source that can go everywhere as you con-
solidate all through; they kind of connect.

Tarzanin: Each step makes it simpler.
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