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4 _i Abstract _ - total inflow, _ = _0+_; also inflow i
mod_ in figures only i

The aeromechanical stability of a helicopter

in ground resonance was analyzed, by incorporating ll,llc,Ais - inflow variables
five different aerodynamic models in the coupled
rotor/fuselage analysis. _e sensitivity of the 6_ - unsteady wake induced perturbational
results to changes in aerodynamic modelling was inflow }
carefully examined. The theoretical results were
compared with experimental data and useful con- _ - modal frequency, imaginary part of s _i
clusions are drawn regarding the role of aerodyna-
mic modeling on this aeromechenlcal stability _ - rotor R.P2i.
problem. The aerodynamic model which provided the
best all around correlation with the experlmen_al _ - body roll mode #

_ data was identified.

:- _ - azimuthal angle or nondlmenslonal time

__ Nomenclature _ = _t

_ a - lift curve slope 0 - density of air

C - llft deficiency factor o - modal damping, real part of s

C1 - coefficient in inflow equations, C1 - _ - solidity ratio
0.5 or 1.0

O - body pitch mode

CT - Thrust coefficient
8 - collective pitch setting of the bladeC

CMx,CMy - moment coefficients in roll and pitch
_Ic,_Is - cyclic lag coordinates ,,

I [L] - induced flow matrix

_P'_R - progressing and regressing lag modes
- mass flow rate respectively

M - rotor aerodynamic moment i. Introduction

M I - apparent inertia Unsteady aerodynamics have a significant in- "
fluence on the aeroelastic and the aeromechanlcal

r - radial location of a typical blade stability characteristics of helicopters. The
; section mathematical sophistication of refined unsteady _

aerodynamic models is sometimes prohibitive to in-

R - rotor radius corporate in the aeroelastic analyses and therefore '
it is quite frequent that rotary-win, aeroelastic

s - eigenvalue a_mlyses ate based upon qua_isteady aerodyvamic
theory. Fortunately, there are some relatively

dT - differential thrust simple unsteady aerodynamic models, known as inflow
models, which can be conveniently incorporated in

_lc,81s - cyclic flap coordinates the aeroelastic and aeromechanical studies of hell- !
copters. These simple models are based upon the

_P'_R - progressing and regressing flap modes definition of certain inflow parameters which re-
respectively present essentially the unsteady wake-induced flow

through the rotor disk. A number of such inflow
y - Lock number models are available in the literature; however the

, applicability of a particular model to a given rotor
:. y - equivalent, reduced or effective Lock dynamic problem and the sensitivity of the stability

number boundaries to the choice of the inflow model and

comparisons with experimental data have not been

_0 - steady or mean inflow considered in detail in the literature. Bousman 1
has carried out an experimental study of the aero-

meche_ical stability of a hingeless rotor supported*This research was supported by NASA Grant NAG on a special gimbal which simulated the pitch and
2-209, funded by Ames Research Center, Moffett roll degrees of freedom. The availability of this

'#, Field, California high quality experimental data provides an
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opportunity;(a) to test the validity of mathemati- along the rotor blade, in the blade fixed, rotating

_ii_ i cal models representing the coupled rotor/fuselage coordinate system. On _he other hand, the inflow

• _ dynamics and (b) co OeLermine the influence of models represent the global effects of the un-
various aerodynamic moaels on this aeromechanical steady wake and therefore they are applicable to
problem. Bousman attributed some of the dlscrepan- the complete rotor. The various inflo_ models are

.| cies, found between the theoretical results presen_ described below. A
_.- x ed in his p_psr and the experimental results, to
_t dynamic inflow. This conclusion was examined by Perturbation Inflow Model

Johnson2, in a recent study, where the unsteady
aerodynamic effects on the rotor were represented Prior to describing the perturbation inflow

: by a dynamic inflow model3. Johnson's2 results model, it is useful to clarify certain aspects of
•I with _he dynamic inflow model3,4 indicated better the terminology used in the literature which deals•- . i

' i agreement with the experimental data than the w_th this subject. In some cases, the perturbation
_, results obtained using the quasi-steady aerodynamic inflow model is referred to as quasi-statlc inflow

model. Using the coupled rotor/body model5,6 with model2 and in other cases as quasi-steady inflow
simple quasl-steady aerodynamics, the authors7 model9.

,_ also obtained good agreement with the experimental
results generated by Bousman I. Based on the agree- The induced flow-fleld acting on a helicopter
ment with the experimental datat they concluded rotor affects both rotor equilibrium (trim load-

\ that the coupled rotor/fuselage model developed, inl;s)and rotor response (transient loading).
was reliable. Therefore, it is reasonable to assume that the

induced flow will also be affected by the oscilla-
The purpose of this study is to extend Ref. 7 tlons of the rotor. This assumption is the basis

and study the sensitivity of the results obtained of both the perturbation inflow models and dynamic
_- to changes in the aerodynamic assumptlcns used. inflow models. A detailed derivation of these
--__ To accomplish this obJectlve_ five different nero- inflow models can be found in Refs. 3 and 9.

_~ dynamic models were incorporated in the mathemati-
L. cal model representing the coupled rotor/fuselage In these models the total induced velocity on
2 dynamics and the sensitivity of the stability the rotor disk due to the w_ke is assumed to con-

boundaries tc changes in aerodynamic modelling was sist of two parts: (I) a steady inflow, _o, (for

determined. The theoretical results were compared trim loadings) and (2) a perturbation inflow, _).,
with the experimental data and based on this com- (for transient loadings). Therefore, the total
parison, conclusions are drawn regarding tea induced velocity norm/ to the rotor disk is ex-
selection of the para_,etersused in defining these pressed as
aerodynamic models.

:_ _ = 10 + 81 (I)
2. Aerodynamic Models Used in the Analysis

Assuming that the perturbation inflow, 6_, varies

The aerodynamic models, incorporated in this azimuthally as well as linearly along the radius,
aeromechanical stability study representing a the total inflow can be wrltten as
coupled rotor/fuselage system, were: (a) quasi-

r r

steady aerodynamics, (b) two different perturbation _ = _0 + _I + Xlc R cos_ + _is R sln_ (2)
inflow models and (c) two different dynamic inflow

models. A brief description of these aerodynamic where the inflow variables It, _Ic, _Is are func-
. models is provided below, tlons of time. These inflow variables are related

quasi-.s_eadyAerodynamic Mode.l to the perturbational thrust, roll and pltah
moment coefficients through the following relation. ,,

in the analysis, is based on Greenberg's8 formula-

tlon of unsteady aerodynamic loads on an oscillatory = '_
airfoil in a pulsating flow. Greenberg's theory [L]-I Xlc -CMy (3)
is a modified form of Theodorsen_s |
dynamic theory. The quasl-steady model is obtained P.A
by assuming C(k) = l and neglecting the apparent

mass terms (nonclrculatory terms). In this model, where P.A stands for perturbational aerodynamics.
the assumption of C(k) - 1 implies that t':_unsteady The elements of [L] can be obtained either theoret_

wake effects are totally neglecte_" cally, by using momentum theory3,9 or experi-
mentallyI0.

Inflow Models

In ground resonance type of aeromechsnlcal
The inflow models represent the unsteady wake problems, the inflow variable _i does not couple

effects in a simple form. In these models, the with the body and cyclic blade degrees of freedom
unsteady wake-lnduced flow through the rotor disk and hence it does not have to be considered in the

is defined by a set of inflow variables and these analysis. Thus only the equations for thq inflow

variables essentially provide a corr_:tion to the variables _ic and _Is are relevant to this specific
inflow assumed in the quasl-steady aerodynsmi problem and these can be written as

• theory. When inflow models ere used in the analysis

' be calculated from the quasi-steady aerodynamic
expressions. An importunt fact to be noted is that [L] "l = (4)
the quasi-steady aerodynamic model ts a two dlmen- _is} { CMx P.A
slonal local model and hence it is applied at a

typical cross section located at a spanwiee station ° _'
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For axial flow through the rotor, which cor- where the mass flow is defined with respect to the

respon_to the present case, the elem_ts of ILl total _duced velocity _, the inflow equations for
can be obtained by applying momentum theory9, _'e _1c and _Is become
differential thrust on an elemental area dA

(= rdrd_) of the dlsk Is related to the inflow by Ix: O] l_ic I I-CMyl

the equatic_
• = (13)

dT = m 2I_R (5) _0 (lls _ CMx]P.A 4

It should be mentioned that by relating the total Comparing Eqs. (ii) and (13), it is evident that
differential thrust (steady and perturbation) to depending on the definition of mass flow rate, i.e.
the total induced velocity (steady and perturba- i
tion) in the form, given in Eq. (5), it is ass,'ned Eq. (6) or (12), the coeffiGients of the elements
that the thrust-lnflow relation is the same for of [L]-I matrix differ by a factor of two.

steady as well as perturbational conditions. This Equations (Ii) or (13) are complete only after
basic assumption implies that the variation of the
forces on the rotor is sufficiently slow so that the identifying the right hand side. This is done by

classical actuator disk theory is valid for both obtaining expressions for the moment coefficients I
steady and perturbational inflow velocities, using blade el_t theory. Once these have been

obtained, a relation is established between the I
Therefore, this inflow theory is also recognized to
be a low frequency approximation te the unsteady inflow variables and rotor blade motion. It wasshown In Refs. 3, 9 and ii that _corporation of

aerodynamics of the rotor, a perturbational inflow model, as represented by

Following Johnson2, the mass flow rate in Eq. (ii) or (13), in rotor dynamic problems yields
a modification of the aerodynamic loads acting

Eq. (5) can be written as on the blade which can be represented by a reduced ,

m = p_0_RdA (6) or effective Lock number

It is important to note that the mass flow rate y = Cy (14)
is defined with respect to the steady or mean value

If Eq. (Ii) is used in the rotor dynamic problem,
of the inflow _0" the lift deficiency factor C becomes

The aerodynamic pitch _d roll moments on the
L

rotor disk, acting at the hub, can be obtained hy C i (15)
taking moments of the elemental thrust about the _a
hub center and integrating over the complete rotor ! + 8_--
disk. The pitch and roll moments are O

R/02_ This factor is found to be equal to the low fre-Mpitch = -r cos_dT (7) quency approximation of Loewy's lift deficiencyfunction for harmonic loadlngs3. On the other

hand, Eq. (13) produces a llft deficiency f_ctor

Mroll = r sin_dT (8) C = -l---l-- (16)

Substituting Eqs. (2) (5) and (6) in Eqs. (7) and 1 + 16%----_
(8) and integrating,the pitch and roll moments
become which is higher than that given in Eq. (15).

0R3_0_Ic(_R)2 (9) The two perturbation inflow models, u_ed in _,,_'
-Mpitch " _ the present analysis, can be written in a general ,

form as _ |

rMroii = _ (10)

Cl 0 0 Xlc -CMy

inflow variables and the perturbational aerodynamic CIXO _ his CMx P.Amoment coefficients becomes

0 llc -CMy when CI = 1.O it corresponds to Eq. (13).

= (ii) The concept of equivalent Lock number in the

_Is_ CMx P.A coupled rotor/fuselage type problems appears toinvolve a c_rtain inconsistency. The fuselage

equations of motion in pitch _d roll contain terms
On the other hand, if the mass _I_ rate m, is de- due to both aerodynamic hub moments and aerodynamic
fined as (following Peters and Gaonkar9) huh forces. When using the perturbation inflow,

one can make the observation that only the Lock
_i- 0A_RdA (12) number associated with the aero_ynamlc moment terms

is modified, however the Lock number associated
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with the aerodynamic force terms remains unchanged, model2
Of course, the reason for this inconsistency lies

in the formulation of the equations for the inflow Case (d): perturbation inflow model with CI=I.0
variables which are related only to the hub moments,

i as given in Eq. (4). Case (e): dynamic inflow model with Clffil.0and

MI=0._132
_amic Inflow Models 4

These aerodynamic models can also be viewed
The perturbation inflow model does not account as a special case of a general dynamic inflow

for the time lag between the aerodynamic load and model. When MI=0, the general inflow model be-
the time variation in inflow. The dynamic inflow comes a perturbation inflow mode] and when MI _ _,
models represent an extension of the perturbation the effects of inflow perturbations are totally
inflow model by taking into account the time lag eliminated and the resulting model is a quasi-_tea_
between the aerodynamic loading and the response, aerodynamic model.
When using the dynamic inflow model the equations

for %ic and lls can be written as 3. A Brief Summary of the Experiment

+ = up, used for simulating the fundamental aspects of

M1 _Als CIAO _Xls _ CMx } P.A t]e aeromechanical stability of a hingeless rotorhelicopter, was presented in Ref. i. The rotor

(18) consisted of three blades and five different con- J
figurations were tested. The different configure- * i

where M1 represents the nondimensional apparent tions represent different blade parameters char-
inertia associated with the inflow and the quantity scterized by the nonrotating natural frequencies i
C1 is either 0.5 or 1.0, depending on the definition of the blade in flap and lag, pltch-lag coupling
of mass flow rate. The value of M1 can be obtained and flap-lag coupling. The rotor was designed i
either theoretically or experimentally. Tuckerman12 such that most of the blade flexibility is concen-

evaluated the apparent inertia associated with an trated at the root by building in root flexures.

impermeable disk subject to an angular acceleration. The rotor assembly was supported on a gimbal

The nondimensional value of the apparent inertia which had pitch and roll degrees of freedom. In I
was found12 to be M1 = 0.I13_. This theoretical this paper the analytical results obtained are com-
value is also supported by parameter identification pared with the experimental results, presented by
studiesI0. In Ref. 13,it was noted that M1 can also Bousman, for rotor configurations I and 4, where
be influenced by the pressure distribution on the the designation of these configurations is consist-

rotor and hence M1 could be also assumed to be a ent with those in Bousman's paperI. A brief
function of rotor loading distribution. In Ref. description of these configurations is presented

! 14, the identified value of MI is found to vary for the sake of completeness, additional informa-
between 0.05 to 0.2. In the present analysis, the tion can be found in Refs. i, 2 and 7. Configura-

value of MI is assumed to be the theoretically tion i had different stiffnesses in flap and lag
evaluated value i.e., M1 - 0.1132. The implication respectively; the corresponding nonrotatlng flap
of using Eq. (18) in rotor dynamic problems 15, frequency was 3.13 Hz and that for lead-lag was

under harmonic loadlngs, can be shown to be equl- 6.;0 Hz. Configuration 4 was a matched stiffness i
valent to a modification of the Lock number, which case where the nonrotating flap frequency was 6.63

can be written as Hz and that for lead-lag was 6.73 Hz. The pitch-

[ ] flap and pitch-lag coupling for these two config- '_,

i urations was zero. For cases where the pitch

y* = y I - 16C_- 16Ml(i_) (19) Langle was nonzero, the experimental rotor was i
14----: U +--_ designed such that pitch changes were introduced _

_a _a outboard of the flexures and therefore the struc-
tural flap-lag coupling for these cases was zero.

" yC The blade was also designed to be very stiff in
torsion.

iEquation (19) indicates that addition of an apparent
inertia teE= to the perturbation inflow model intro- 4. Method of Solution
duces a phase lag between the aerodynamic loads and
the response. Furthermore the value of C is now The degrees of freedom considered in this
different from the previous values given in Eq. (15) aeromechanical stability analysis are: the funda-
and (16). mental flap and lag modes of the blade and the

pitch and roll degrees of freedcm of the body• In
The five aerodynamic models, described briefly this class of problems, it has been established

above, were selected for incorporation in this that the collective flap and lag modes do not
study. Using these theories, the sensitivity of couple with the body motion and thus, these modes
the aeromechanlcal stability problem to changes in are not considered. Since the inflow variable AI
the aerodynamic assumptions was investigated. For also has the role of a collective mode, it need
convenience, these five aerodynamic models are not be considered, Therefore, the total number of
concisely suz_artsed below_ degrees of freedom governing the aeromechanical

problem are six. They _re: cyclic flap (81c,81s),
Case (a)_ quasl-steady aerodynamics cyclic !eaJ-lag (_1_,(Is), body pitch (8) and

body roll (_). F_ the cases when the dynamic
Cna (b)_ perturbation inflow model with C1-0.5 inflow models are used, two additional degrees of

freedom, namely Alc and Als, are also present in
Can (c)z dynamic inflow modal with C1"0.5 and the problem.

Mi-0.i132 which corresponds-to _ohnson's •
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The solution of the coupled rotor/fuselage and absent in configuration 4. This root moment
problem follows essentially the procedure outlined acts as an exciting moment for the body pitch and
tn Refs. 6 and 7. The procedure for obtaining the roll motions.

i stability boundaries of the system consists of the

i following steps. The numerical data used in the analysis is
,I 1. Evaluation of the equilibrium position of theblade, presented in the Appendix. It should be mentioned

2. Linearizatinn of the nonlfnear equations of that the roll inertia used in the present calcu-
motion about the equilibrium position, lations is slightly higher than the value

3. Transformation of the linearlzed equations with (183 gm.m2) provided in Ref. I. The value for roll
periodic coefficients to equations with constant inertia used in our calculation is 194 gm.m2 which
coefficients by using a multiblade coordinate is 6% higher than 183 gm.m2. This value of roll
transformation, inertia was obtained by using the body spring

4. Evaluation of the eigenvalues of the llnenrlzed stiffness in roll, provided by Bousman16, such that
system with constant coefficients to obtain the the calculated nonrotating coupled roll frequency
stability boundaries, matches the measured frequency.

The eigenvalues appear in complex conjugate 5.1 Results for Configuration I
1 pairs, s = o+ i_. The real part of the eigenvalue

represents the modal damping and the imaginary part The results for Configuration I are presented
i modal frequency, respectively. The mode is stable in Figs. 1-8. The variation of various modal fre-

if o is negative and it is unstable if o is posi- quencies with _ are shown in Figs. 1-2, together
I tlve. with the experimental data, taken from Ref. i. It

can be seen from Fig. i that the analysis with
In the present problem, the n,mber of complex quasi-steady aerodynamics predicts the moda! ire- *

eigenvalue pairs depends on the type oE aerodynamic quencies which are in excellent agreement with

model used in the analysis. When quasl-steady the experimental results. Figure 2 presents the
aerodynamics or the perturbation inflow models are calculated modal frequencies for Case (b), pertur-
used, there are only six pairs of complex elgen- batlon inflow with CI-0.5 , and Case (c) dynamic
values, each one representing one of the six degrees inflow model with CI=0.5 and Mi=0.i132. With the
of freedom, namely, _Ic, Bls, _Ic, _Is, @ and _. perturbation inflow model, the predicted frequen-
The modes corresponding to the rotor degrees of cies for roll (_) end pitch (8) are over estimated

freedom (Blc, Bls , _ic, _Is) are referred to either in the range _ > 300 R.P.M.. On the otherhand,
progressing or regressing mode depending on the by incorporating a time delay in the inflow model,
numerical value of the rotating natural frequency. Case (c), the calculated pitch and roll frequencies
A more detailed description of this terminology are in good agreement with the measured values.
can be found in Refs. 3 and 7. When the dynamic However, the predicted pitch frequency is still
inflow model is used, the six elgenvalue pairs are slightly higher in the range _ > 300 R.P.M. A
augumented by one additional pair of eigenvalues similar trend was also observed in the results for

corresponding to the inflow variables. Since the Case (d), perturbation inflow model, with CI-1.0,

equations for the inflow variables Aic and %is are and Case (e) dynamic inflow model with CI-I.O and
given in first order state variable form, Eq. (18) MI=0.I132 ,
the stability analysis will yield only one pair of

eigenvalue corresponding to these two inflow vari- It was mentioned earlier that the analysis
ables. The _ode corresponding to this elgenvalue with dynamic inflow model produces an additional
pair Is designated as the "inflow mode", (_), elgenvalue corresponding to the inflow mode (_).
following Johnson's2 terminology. For Case (c), there are two elgenvalues with

frequencies below 0.6 Hz in the range _ > 200 R.P.H.
5. Results and Discussion as evident from Fig. 2. The frequency correspond-

ing to one mode remains almost constant (:0.5 Hz), @, j
In the present study, aimed at predicting the while the other decreases to zero and thcn increas- _¢

aeromechanlcal stability of a model helicopter, the es. It is difficult to identify which one of
behavior of the model is studied at various values these two corresponds to the flap regressing mode

of rotor speed _. Two rotor configurations are (_R) and which one should be associated with the Ianalyzed. Configuration i, in which the nonrotatlng inflow mode (_). The mode with the constant ire-

flap frequency is lower than the nonrotating lag quency, in Fig. 2, is identified as inflow mode ]

frequency, and conflgutation 4, in which these two (_) end the other mode is identified as flap re-
frequencies are almost equal, which corresponds to gresslng mode (_R). Johnson 2 also identified the
a matched stiffness configuration. These different mode wlth a constant frequency as inflow mode (_)
configurations have an influence on the dynamic and the second mode as flap regressing mode (_R)'
behavior of the coupled rotor/fuselage system. In Some additional comments on this identification
a matched stiffness configuration the structural pcocedure will be made later.
flap-lag coupling is eliminated. Furthermore the

root torsional moment due to the combined flap-lag Figure 3 presents the variation of damping in
motion, which is somewhat similar to an effective flap regressing mode (_R) and inflow modl (k) with
flap-pltch and lag-pltch coupling, is also elimin- R. It is evident from Fig. 3 that the damping in
ated. It should be mentioned however that these the flap regressing mode increases rapidly with
effective flap-pltch and lag-pitch couplings are not _ for the analysis with qua,l-steady aerodvnamlcs.
structural couplings. It was mentioned in the The introduction of the perturbation inflow model
previous section that the experimental model was with Ci-0.5, Case (b), drastlcally reduces the
designed so as to eliminate structural flap-lag damping in _R mode. This reduction in damping is
coupling, for these configurations. Therefore, the caused by reduced aerodynamic damping with pertur-
difference between these two configurations con- batlon inflow. For this case the relevant

slats of the root torsional moment due to combined quantities are: solidity ratio _ - 0.0494; llft
flap-lag motion which is present in configuration i curve slope a - 5.73 and steady inflow _0-0.014.
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Therefore the deflci_ncy function C, based on Eq. range _ < 500 R.P.M. and too high for the range
(15), is C=C.284. Hence, the effective Lock number _ > 600 R.P.M. Calculations with the dynamic in- '!
y*=0.284y. This shows that perturbation inflow f!cw model, with C1=1.0 and H1=0.1132 , Case (e), "
reduces the magnitude of aerodynamic forces by also overpredict the damping in the range _ > 700
approximately 72%. In the case of dynamic inflow R.P.M. It should be mentioned, that in the range
with CI=0.5 and MI=0.I132 , Case (c), the damping _ > 700 R.P.M., when using dynamic inflow models,
in the mode which is identified as the inflow mode the percentage increase in roll damping as a re-

(1) remains relatively low, but the damping in suitof increasing C1 from 0.5 to 1.3 is 5% to 12%.
flap regressing mode (8R) increases with _. These
results indicate that the damping in flap regress- Based on the results obtained for the damping 4
ing mode reverts to the value obtained in the in the pitch and roll modes, it appears that the
analysis with quasl-steady aerodynamics, as a con- theoretical results are quite sensitive to the
sequence of the time delay present in dynamic inflow value selected for CI. It is also evident that
model. This seems to contradict the earlier results introduction of a time delay In the inflow model
published in Refs. 9, lO and 17. It was mentioned seems to be an important factor. Based on the ovem
in Ref. 17 that flap regressing mode damping is all agreement with the experimental data, it ap-
substantially decreased by dynamic inflow for small pears that the dy_amlc inflow model with C1=0.5
values of collective pitch setting of the blade, and HI-0.I132, Case (c), seems to be somewhat

Furthermore, it was found in Ref. i0 that dynamic superior to the dynamic inflow model with CI-I.O
inflow reduces the damping in flap regressing mode. and Hi-0.I132 , Case (e).
This raises a question whether the inflow mode
identified in Fig. 2, and also identified as such Figure 8 presents the variation of regressing
by Johnson 2, is a flap regressing mode and the mode lag mode damping with _. The predicted damping
identified as the flap regressing mode is really levels are in good agreement with the experimental
an inflow mode. To ascertain the reliability of results in the range _ < 700 R.P.M. and _ > 900

this identification procedure, the elgenvectors R.P.M. for all the aerodynamic models used. For the ,
corresponding to these modes were also analyzed, cases analyzed with perturbation inflow models,

Table I shows the eigenvectors corresponding to Case (b) with Cl=0.5 and Case (d) with CI=I.0 , the i

the mode identified as the flap regressing (_R) and value of _ at which the resonant peak occurs is !
the inflow mode (A) at _ - 900 R.P.M. It can be shifted from 760 R.P.M. to 800 R.P.M. This shift
seen that in the flap regressing mode, the flap is associated with the fact that when using both
motion has a higher participation factor than the models the roll frequency predicted is higher than
inflow variables. In the inflow mode, the flap and the experimental result and as a consequePee, the _q

inflow variables have almost equal participation resonance is also shifted to a higher value of _.
factor. Also in this (_) mode, the pitch end roll Calculations with quasi-steady aerodynamics predict i

motions have substantial participation factors, correctly the value of _ at which resonance occurs,
However, from these results, one can conclude that however the stability of this mode is overpredlcte_

the flap regressing mode and inflow mode are highly In the analyzes wi_h dynamic inflow models, the
coupled modes, predicted damping levels are in excellent agreement i

with the experimental results, including the damp-
Figures 4 and 5 illustrate the variations of ing at resonance. The level of agreement with

damping in pitch as a function of _. Using quasi- experimental data found in this case is somewhat
steady aerodynamics, a higher damping, in the range be=ter than those shown in Refs. 1 and 2. This
200 < _ < 800 R.P.M. is predicted as evident from result seems to support the statement made in Ref.
Fig. 4. However when dynamic inflow, Case (c_, 7, that the coupled rotor/fuselage model derived

with Ci=0.5 and MI-0.I132 is used the damping is in Ref. 5 is a reasonably accurate model for the
predicted very well in the range 200 < _ < 800 configuration tested in Ref. I.
R.P.M., however the damping is somewhat under pre-
dlcted beyond _ = 800 R.P.M. Figure 5 shows that 5.2 Results for Configuration 4 _:_
using the dynamic inflow model, Case (e) with
CI=I.0 and MI-0.1132, the damping predictions are The results for Configuration 4 are presc_ted i'!

in very good agre ot with the experimental results in Figs. 9-16. Figures 9 and I0 show the variation _..{_
over the complete range of _. When the value of of mod&l frequencles as a function of _. It can
C1 is inc-eaeed from 0.5 to 1.0, in the dynamic in- be seen from Fig. 9 that all the frequencies except

flow models, one finds that the corresponding damp- the one corresponding to 0.7 Hz are predicted well
ing in pitch increases hy i0% - 25% for _ > 400 by the quasi-steady aerodynamic model. In the JR.P.M. It is also evident from Figs. 4-5 that range 250<_<350 R.P.M., the pitch, roll and flap
perturbation inflow models do not seem to predict regressing modes undergo a change in their charact-
the correct damping Jevels. eristics. The flap regressing mode (8R) becomes i

a roll mode (_) and roll mode (_) becomes a pitch
The variation of damping in roll mode is shown mode (8) and the pitch mode (8) becomes a flap

in Figs. 6-7. When ualng quasi-steady aerodynamlc_ regressing mode (gR). In this range of _, the pre-
the damping, in the range of _ • 500 R.P.H., is dtcted roll frequencies are higher than the measur-
over predicted as evideut from Fig. 6. Using the ed values. Quasi-steady aerodynamics is incapable
perturbation inflow model, with C1=0.5 , Case (b), of predicting a frequency close to 0.7 Hz in the
the damping in the range of _ < 600 R.P.H. is under range 300 < _< I000 R.P.M. Figure I0 illustrates
estimated, beyond this range of _, the predictions the results for the cases where the perturbation

are good. The damping levels predicted using the inflow model, Case (b) with CI=0.5 and dynamic
dynamic inflow model, wlth CI=0.5 and MI=0.I132, inflow model, Case (c), with CI=0.5 and MI=0.I132,
Case (c), are in good agreement with experimental were used. Although calculations based on the
data over the whole range of _, as shown in Fig. 6. perturbation inflow model are capable of predicting
It can be seen from Fi_. 7 that calculations with a frequency close to the experimentally measured
the perturbation inflow model, with Cl=l.0 , Case frequency of 0.7 He, the pitch and roll modes
(d), yield damping levels which are too low in the frequencies are overpredicted. With dynamic inflow
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'i model, all the frequencies are predicted well. c._mbin_tlonof the value_ of CI and MI, bettzr cor-
However, in the range 250 < _ < 350 R.P.M., the roll telethon _It'_the experimental results could have

mode frequency is still overpredict d. In this bee_ _chleve:,. However, among the aerodynamic

range of _, none of the aerodynamic models used in model_ _m[.',yedin the present study, the dynamlcthe present study, is capable of._orrectly predict- in_]cw with C!-O.= and MI-0.I132, Case (c),
ing the roll frequency, Johnson 1_ attributed this ylel_= _.st agreement with toe =xper£_ental

i discrepancy to either the oeficiency of the aero- resul_ than the other aeroay._emlc models.
4

dynamic model or the presence of some higher mode

I of the rotor or bod_. In any case, this problem The:v_rlacion of lag regressing mode damping

I remains unresolve_ In the range _ > 400 R.P.M., the with _,:_s shown in Fig. 15. The resonant frequency :
mode with a frequency close to 0.7 Hz is identified obtained ,"b tL,eperturbation %n_low models ex-

I as inflow mode (%) and the other mode with a ire- hlbits a _h"tt _',a hlg_er value of _ than the one
quency which is lower than 0.7 Hz is identified as observed in _:_ experiment. Calculations base6
flap regressing mode (8R). This identification is quasi-steady ae=odv1_mics predict the damping
based on the analysis of theeigenvectors correspond- levels and the re_:_ant f,,,que_cyvery we_l, ,
ing to the_e two modes. Table II shows the eigen- the mode is more stable a_ r,._o_ance, than tb_
vectors of the identified inflow mode and flap stability indicated _n t_c test, Calcu!_tlo_
regressing mode, for _ - 900 R.P.M. In this case, with the dynamic inflow model_ yield _a_ults ''_i'.,. I

as in Configuration I, these two modes are highly are in excellent Pgreement with the experim_ _ i
coupled. However, in the 8R mode, the flap data.
m(tion has a higher participation factor than the
participation of the inflow variables. In the _ Figure 16 shows the variation of regres_i:g 'ag ._

mode, the body pitch has the highest participation mode damping as a function of colleccl"e plt_in
factor, with the flap, body roll and Inflow having settlng of the blade, at _ = i000 R.P.M. Calcu- o
almost equal participation factors. As a result lations with the dynamic inflow model, using

of thls identification procedure one finds that Ci-0.5 and HI-0.i132, yields damping values which |
using the dynamic inflow modal the damping for the are in very good agreement with the measured values.
flap regressing mode is predicted to have a value
comparable to that obtained when using quasi-steady 6. Conclusions
aerodynamics. This seems to contradict some
results which have been published earlier in Refs. The aeromechanlcal stability of a helicopter
9, I0 and 17 where it was found that using dynamic in ground resonance is analyzed, using five differ-
inflow yields a substantial reduction in regressing ent aerodynamic models and the analytical results
flap mode damping, are compared with the experimental results. Based

on the comparison, the following conclusions can
The variation of roll damping as a function of be drawn:

is illustrated in Figs. 11-12. Calculations
based on quasi-steady aerodynamics overpredlct the (i) For the aeromechanlcal stability problem
damping in the range _ > 300 R.PM., as evident in studied here, .he perturbation inflow models do
Fig. II. Calculations based on the perturbation not predict correctly the modal frequencies and

inflow model, wlth Ci-0.5, under predicts the damp- damping.
ing in th_ range _ < 800 R.P.M. _he damping levels
predicted by using the dynamic inflow model, with (2) Quasx-steady aerodynamics p,edicts the modal

CI=0.5 and Mi=0.1132 , are in reasonable agreement frequencies very well for Configuration i, but is
with the experimental values. From Fig. 12, it incapable of predicting a frequency of 0.7 Hz
is evident that using the perturbation inflow model measured in the experiment, for Configuration 4. %
with CI-I.0, ylelds a damping prediction which is The damping in body roll and Ditch modes are over ti
too hlgh for _ > 700 R.P.M. Using the dynamic in- predlc_ed. The regressing lag mode damping is .

flow model, with Ci=1.0 and M1-0.1132, yields damp- predicted well. f
ing level predictions which are in reasonable agree- *_ *
menL with the experimental results. (3) The dy_amlc inflow models predict the modal

frequencies and damping values which are in very
The variation of damping for the pitch mode good egreement with the experimental results.

(O) and the mode wbich has bee,_identified as the This implies tha_ for the present problem the time
inflow mode (_) are presented in Figs. 13 and 14. lag is an important ingredient in the dynamic In-
It is evident from Fig. 13 that predictions based flow model.
on quasi-steady aerodynamics yield higher values
of damping than the measured values. Calculations (4) The predicted damping levels for the lag re-

based on dynamic inflow, with Ci=0.5 and MI-01132, gresslng mode, using dynamic inflow models, are in
predict the pitch damping well, but the _plng excellent agreement with the experlnental results
associated with the inflow mode (I) is lower _han including the value at resonance. Tt_l$indicates
the experimental values. Figure 14 shows t'_t t_at the mathematical model for the c_upled rotor'

using the dynamic inflow model, wlth Cl=l.0 and fuselage system is accurate.
Mi=0.I132 , yields a higher value of pitch damping
than measured In the test. The damping in inflow (5) From the cases studied with dynamic inflow
mode is _lso higher than the experimental values. _odels, it is evident that the predicted damping
From the results shown in Figs. 13 and 14, it is levels for the body modes, increase when CI is

evident that an increase in the value of C1 from increased from 0.5, Case (c), to 1,O, Case (e).
0.5 to 1.0 increases the pitch mode damping by For both rotor configurations, the pitch damping
about 25%. Therefore, It can be concluded that for increases by i0% to 25% and the roll damping In-
Configuration 4, as well as Configuration I, the creases by 5% to 12%.
predicted damping _evel_ in pitch and roll modes
are quite sensitive to the dynamic inflow model (6) Based on the comparison of results obtained
used in the analysis. By using a different wlth various ae_odynamlc models, it seems that the
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dynamic inflow model with CI=0.5 and MI=0.I132 is Helicopter Society, Washington, D.C., May 1971.
the most suitable aerodynamic model, for the speci-

fic aeromeehanical problem studied in this paper. 12. Tuckerman, L.B., "Inertia Factor of El]Ipsolds

for Use _n Airship Design", NACA Report No.

(7) Identification of the flay regressing mode 210, 1925.

and the inflow mode proved itself to be quite

complic_ ed. These modes were identified by using 13. Pitt, D.M. and Peters, D.A., "Theoretical

the frequency information together wl h a careful Prediction of Dynamic Inflow Derivatives",

examination of the eigenvectors. The results based V sertic______a, Vol. 3, No. !, 1981, pp. 21-34.
on this identification procedure seem to indicate

that when u_ing she dynamic inflow model the pre- 14. BanerJee, D., Crews, S.T. and Hohenemser, K.H.,

dieted values ef damping for the regressing flap "Parameter Identification Applied to Analytic

mode are comparable to those obtained with quasi- Hingeless Rotor Modelling", Journal of the

steady aerodynamics. American Helicopter Society, Vol. 24, No. I,

Jan. 1979, pp. 26-32. }
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DISCUSSIO_

P_per No. 14

INFLUENCE OF VARIOUS UNSTEADY AERODYNAMICMODELSON THE AEROMECHANICALSTABILITY
OF A HELICOPTER IN GROUNDRESONANCE

P. _. Frledmann
and

C. Venkatesan 4
!

BIll Bous_n, U.S. Army Aeromeehanlcs Laboratory: Jack Landgrebe put a perspective on dynamic
inflow _s not really contributing to the 'cads problem and I think that the conclusions from the

first two papers show that although it has a strong effect on the flapping degree of freedom, {
from tme designer's point of view, it Is not really important for the lag degree or freedom. I

guess my 4ue:_ton Is to all three of these guys. Are there applications for dynamic inflow In
som_thln_ llke the handling qualities area where simulation needs the speed of the model and has i
any work been done In here or are there paths that we should be going?

Fr._dm_nn: I'll tell you I was expecting this question so I have a slide. "Can I have the
slide, vlease?" The last slide [Fig. 3J Is something which in your experiment you might have
data, but it kasn't in your paper so I don't know whether you have data or not. It shows the
flap regressing mode damping with various kinds of aerodynamics. What It really shows you Is
that the damping with quaslsteady aerodynamics is here. It you put in the pertu-batlon inflow
it knocks down this damping In the flap mode very significantly. And when you put in the

dynamic lnflow with C1 of 0.5 it brings It up again to almost where the damping was with the ..
quasisteady a_rodynamics. You ran also see how the damping of in£1ow mode changes as a function

_-i of Q. So 1_ relation to the first question which you have asked I think that the better test "
• _ for how much global t-uth Is in dynamic inflow should really be based on the behavior of the

i flapping u_e as has teen indicated by both Dave Peter_ and [Gopal] Gaonkar. Haybe In the ::

future some ealeulatlo_s associated with that type oC examination could be revealing. _

Dave Peters, Washington University: On the q'_estlon about handling qualities, I think It
definitely has an effect. There was one figure In the paper we didn't show which shows the

pitch and roll moment on the rotor due to a roll osclilatlon or a pitch oscillation. As you go j
to an w of zero the slope of that curve then is the roll rate or piteh rate moment as a
function of e. or e_, like a control derivative. There's more than a factor of two

1 difference wlt_ or without dynamic inflow; almost a factor of three in one ease. I think If you _"
are going to do handling qualities, anything in the less than once per frequency range then the
dynamic inflow 1_ going to have importance. That's a great paper, Peretz. l think we snould
have an altar e_ll and everyone who wants to put dynamic inflow in their analysis should come
forward or something after a paper like that because it's really good. One question I had--on a J
model like yours, how much extra complexity does it take to put the dynamic inflow In? Is it 2_
or 10%? Naybe you can give us a feeling for that.

Frledmann: It may be 10_ additional work. It's not really very difficult to do. Particularly
Ir you have somebody as good as Venkatesan who does it. .'_;Y

Bob Loewy, Rensselaer Polytechnic Institute: Hy question pertains to the off-diagonal terms in
the L Batrlx and really takes up a little bit on Euan Hooper's earller q_estion on the earlier
paper. And that Is it seems to me that swirl would make those kind of terms nonzero and that _ _.: '
particularly In tilt rotors and high speed forward flight you would expect more swirl than we a_._
are used to. I wonder if you have thought about these things?

phrase this very carefully. I am essentially somebody who uses dynamic i
Frledmann: I have to

inflow. I am not a person who has ambitions of Improving dynamic inflow. I am a believer in
unsteady aerodynamics and as a consequence you might be aware a year ago one of my students
completed an arbitrary motion type of unsteady airfoil theory in which you can essentially do
the same things you do with dynamic inflow, but for hover and forward flight. It is based on
essentially an assumed wake. (It has) all the mathematical complexities and maybe mathematical
fundamentals which an unsteady aerodynamics theory provides you and you don't have to use the
assumptions which are embedded in dynamic Inflow and cannot be removed. We have used this
particular arbitrary motion theory to essentially extend the so-called Loewy llft deficiency I
function, which you might be tamlllar with, to arbitrary motions. In that AIAA paper which was
given last year we have not been very successful. But since then Dr. Venkatesan has managed to
do an arbitrary motion approximation to the theory and that theory can probably be used to
capture the same behavior which Is predicted by the dynamic inflow model and you might be able
to see whether based on such _ theory you do get off-diagonal terms or not.
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