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Abstract

In an effort to understand the vibra-
tion mechanisms of helicopters, the fol-
lowing basic studies are considered. A
coupled rotor-fuselage vibration analysis
including inplane degrees of freedom of
both rotor and airframe is performed by
matching of rotor and fuselage impedances
at the hub. A rigid blade model inc.uding
hub motion is used tc set up the rotor
flaplag equations. For the airframe, 9
degrees of freedom air< hub offsets are
used. The equations are solved by har-
monic balance. For a 4-bladed rotor, the
coupled responses and hub loads are calcu-
lated for various parameters in forward
flight. The results show that the addi-
tion of inplane degrees of freedom does
not significantly affect the vertical
vibrations for the cases considered, and
that inpliane vibrations have similar reso-
nance trends as do flapping vibrations.

Notation
a = slope of lift curve, rad™!
A = ratio of rotor mass to
moment of inertia,
M x R/I
Y
a = cosine and sine harmonics
b\F
of F
b = number of blades
éz = conventional thrust
coefficient,
thrust/p1Q2R4
Cx'cy'cz’CM'CL = vibratory portion of non-

dimensional longitudinal
force, lateral force,
thrust, pitch and roll
moment over ga

EM'E = steady portion

dy = offset between focus and
center of fuselage,
divided by R

ap = offget between focus and
center ~f pylon, divided
by R

4, = offset between hub and
center of pylon, divided
by R
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beam cross~section bend-
ing stiffness

vector of harmonics of
CM’CL'Cx’Cy'cz
nondimensioral accelgra-
tion of gravity, g/Q“R

plunge, lateral, pitch
and roll structur-l
damping, = 2z

offset between hub and
focus, divided by R

fuselage receptance
identity matrix

pitch inertia moment gf
pylon, divided by MpR

roll inertia moment of
pylon, divided by MpR

pitch inertia moment of
fuselage, divided by MFR2

roll inertia moment of
fuselage, divided by MFRZ

fuselage pitch-spring-
restraint stiffness,
N-m/rad

fuselage roll-spring-
restraint stiffness,
N-m/rad

length of the beam, m

mass per unit beam
length, kg/m

lumped mass on the center
of the fuselage, kg

mass of pylon, kg

mass of fuselage,

MC + m%, kg

mass of whole fuselage,
MC + mL + MP’ kg

first flap frequency
divided by R
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~m

radius of gyration of
pylon in pitch, roll,
divided by R

radius of gyration of
fuselage in pitch, roll,
divided by R

rotor radius, m

beam mass divided by
whole airframe mass,
mi/(me + Mo + Mp)

general matrices
transformation matrix

rotor stiffness
parameter

distance along fuselage,
tail to nose, or distance
along radius of rotor,
root to tip, divided by R

rotating coordinates
fixed on the blade

rotating coordinates if
flapping and lead-lag are
Zero

fixed fuselage coordi-
nates

dimensionless displace-
ments, X/R, Y/R, Z/R

dimensionless fuselage
elastic degree of freedom
in vertical and lateral
directions

rotor stiffness
parameter

rotor impedance

pitch angle of hub,
fuselage, positive nose
up, rad

steady hub pitch angle,
rad

roll angle of hub, fuse-
lage, positive advancing
sile down, rad
equi.'ibrium flapping
angle, By + Bgsiny +
Bocosy, rad

coning angle, rad

lateral cyclic flap
angle, rad

longitudinal cyclic flap
angle, rad

pre-cone angle

B
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Lock number

inflow ratio

advance ratio

ratio of mass of pylon to
mass of fuselage,

MP/(MR + MC)

ratio of lumped mass to

the uniformly distributed
mass, Mc/ml

:= ratio of mass cf pylon to

the uniformly distributed
mass, Mp/m2

rotor solidity

vector of control vari-
ables

equilibrium pitch angle,
by * Ogsiny + O cosy +

OB (6-ch) + ecz

collective and cyclic
pitch, rad

pitch-flap and pitch-lag
coupling ratios

azimuth angle, nondimen-
sional time,

natural frequency of
fuselage, divided by ¢

frequency of "y" motion
with "x" boundary condi-
tion, divided by :

y = 2z,y,m,L plunge,
lateral, pitch, roll,

x = c¢,f cantilevered,
free

rotor speed, rad/sec
a( )/dvy
d( )/dat

blade profile drag coef-
ficient

lag angle, positive
forward, rad

equilibrium lag angle, rad

small perturbation of
lag angle

small perturbation of
flapping angle

Introduction

Helicopter vibration reduction has

become more and more important in recent
years because of human factors and expand-
ed operational capabilities. Unlike the

[y
W on meaa e AP mo. . . -



——— 1 = e ')

. N et N R ‘5"'»‘\‘ S
% oakmex® R STRT T o

conventional fixed-wing aircraft, the
helicopter suffers an intrinsic, severe
vibration source - the main rotor. The
main rotor is connected flexibly to the
fuselage by a hub-pylon system which makes
the problem sophisticated. The fuselaye
motions due to rotor vibrations can cause
the hub to move in all degrees of freedom
which, in turn, can alter the hub loads
obtained for a fixed-hub condition. This
alteration can often be an order-of-
magnitude change. Therefore, what we are
studying is a feedback or coupled system.

The concept of performing a coupled
rotor/airframe vibration analysis by impe-
dance matching goes back about 20 years,
Reference 1. That reference points out
two important facts. First, a coupled
rotor/airframe analysis can be performed
in a rigorous manner by separate calcula-
tion of rotor and fuselage impedances
followed by a matching of forces and dis-
placements at the hub. Second, +he rotor
impedance need only be calculated for a
singl2 blade and then appropriately trans-
formed to apply to any number of blades.
In 1974, Staley and Sciarra treated the
vertical vibrations of a coupled rotor and
fuselage, inglud:ng the effect of vertical
hub motions.“ The,y used a riyid-body mass
as a model for rotor impedarce and showed
that hub motions could create order-of-
magnitude changes in hub loads. 1In
Reference 3, Honenemser and Yin further
investigate the effects of rotor-body
coupling. Their model for rotov impedance
is based on a iotor representation that
includes two masses (each equal to one-
half of the total rotor mass) connected by
a spring to reprresent the first flapping
frequency. Thus, Reference 3 contains a
more sophisticated rotor impedance than
does Reference 2. Reference 3 presents
some very interesting conclusions that
pertain -0 fuselage design. Particularly,
it notes that under certain conditions it
may be desirable to tune a fuselage fre-
quency to the blade passage frequency in
ordzsr to eliminate hub loads. Also, it
outlines a method of computing the com-
plete rotor impedance by finite elements
and transfer matrices. Other work on the
importance of hub impedance may be found
in keferences 4-6.

when one considers the rather crude
models that have been used for hub impe-
dance (rigid mass, no aerodynamics, etc.)
one might wonder why more sophisticated
models were not used. The answer is
straightforward. These were unly the
initial investigations intn thig effect.
Furthermore, although mcst analysts real-
ized Lhe impcrtance cof detailed blade
modeling (blade mudes, unsteady aero-
dynamics, periodic caefficients, etc.) for
fixed hwub lcads, it was rnot clear in the
beginning which of these effects would be
important for finding the role of hub
motion on loads. Because of the high
frequencies involved (4/rev, 8/rev), many
felt thal inertial terms would dominate.
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Reference 7 offers a sophisticated
(but linear) rotor flapping model that
allows for a detailed investigation of
both rotor loads and impedance (even in
the presence of periodic coefficients).
The method, generalized harmonic balance,
involves a computer-~based manipulation of
equations that allows many degrees of
freedom, many modes, and many harmonics.
In Reference 8, Hsu and Peters apply this
method to a flexible rotor and then use
impedance matching to include plunge,
pitch, and roll of the hub. This combined
solution technique proves to be very
efficient on two counts. First, the
calculation for only one blade can be used
for n-blades (as in Reference 1). Second,
wholesale changes in fuselage properties
can be made without a requirement to re-
calculate rotor properties. It is inter-
esting that other investigators who began
with a full-blown, coupled analyses later
changed to the impedance matching tech-~
nigue, References 9-10.

The next step, outlined in this
paper, is to add inplane loads and inplane
motions to the work of Reference 8. To do
this, we need to consider a model for the
inplane blade dynamics. Our plan is to
begin with a rigid-blade rotor analysis,
as outlined in Reference 11, and then to
add hub motions to it. Later, we plan to
do the same for the elastic flap-lag model
of Reference 12. The work reported here
is the former of these and is based on a
Master of Science Thesis by the first
author, Reference 13.

Rotor Model

The rotor model used here is that of
Reference 9 but with the addition of hub
motions. Fig. 1 shows the rotor model
used in this paper.

The equations of motion of this
system can be obtained from LaGrange'’s
method with appropriate linearization
about an equilibrium condition, 8. The
aerodynamic terms are obtained from
inviscid, linear, quasi-steady strip
theory with the small-angle assumptions.
Details of the derivation are given in
Reference 11, upon which this paper is
based. They can be expressed in matrix
form as follows.
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One can also derive a detailed set
of equations for hub loads (pitch moment,
roll moment, propulsive force, side force,
thrust) in terms of known paramecers,
unspecified hub_motions \uc,u ,X,Y,2), and
blade motions (B,a)
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The equations expressed by Egs. (1)
and (2) are systems of ordinary differen-
tial equations with periodic coefficients.
These can be solved for the pericdic
response by ti.2 harmonic balance method,
Reference 3. rhis method involves oper-
ator matrices [n] and [9] which can be
used to transform a system of periodic-
coefficient differential equations into a
set of linear, algebraic equations. For
example, the single equation

M(p)X + Chp)X + K(p)X = F(y) (3)

(where M, C, and F are periodic), can
be transformed into algebvaic equaticas
for the unknown Fourier coefficiants of x

N
x = a  + ;E‘ ancos(nw) + bnsin(nw)

(4)

a
n

2 2
(M) ] (0] ’ i + [ﬂ(C)][D]; i
tr b X bn X

n

an an
SRR N S P (5)

X

a a
ib“z = [7(M)0%+1 (C)o+T (K) 1"',b“§
n’x n’F

(6)

where [n] is a function of the Fourier
coefficients o7 "ts argument. The same
operations car be applied to Egs. (1) anc
(2) t: give equations for the unknown har-
monics of blade motions and loads,

{8}

(5,118} + Is,11z} (7

\F} [53]{6) + [541{2} + [35]{5} (8)
where {§} are the harmon.cs of 8 and ¢,
{F} are the harmonics of hub loads, {z}
are harmonics of hub motions, and {0} are
specifievd rotor parametecs.
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Equation (7) can be substituted into
Eq. (8) to remove the blade motions. This
gives rotor loads in the 1orm

{F} = [e + [71{z} (10)
where

[0] = [53] + [55][51] (1la)

[z} = [54] + [55][52] {(11b)

The matrix (0){6} represents the rotor
loads with a fixed hub (e.y., without
feedback due to hub motion), and the
impedance matrix [Z] represents the
effect of hub motion on rotor louds. The
calculation of [6]) and [2] in Eq. (10)
need be performed for a single blade only.
Subsequently, the corresponding ma rices
for a b-bladed rotor can be found by
simply eliminating all harmonics that are
not integer multiples of b. (Complete
details are in Reference 3.)

It should be noted here that the
present method of calrulation of rotor
impcdance has experimental verification
which can be found in Refexeice 8.

Fuselage Model

The mathematical cescription of the
flexible fuselage includes 7 degrees of
freedom. These are: 1) vertical rigid-
body, 2) rigid-body pitch, 3) rigid-body
roll, 4) rigid-body lateral, 5) rigid-
body longitudinal, 6) elastic vertical,
7) elastic lateral, 8) elastic pylon in
pitch, and 9) elastic pylon in roll. The
model also includes vertical offsets
between the fuselage center of mass, the
pylon focus, the pylon center of mass,.
and the rotor center., Fig. 2 illustrates
che vertical, longitudinal, and pitch
degrees of freedom. The plunge and
lateral model is the same as that of the
plunge model in Reference 8, which is a
uniform beam with a lumped mass Mc added
at the center. The mass and inertial
moment of the pylon ar~ separated from
tha fuselege. The offsets are shown in
Fig. 2. One can imagine thit the lateral
ana rvoll directions have a similar sche-
matic as that in Fig. 2 if X, ag and Sop
¢ve replaced by Y, ag and agpe
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The fuselage equations of motion are
obtained from Lagrange's Method and the

Rayleigh-Ritz Method.
nondimensional form below
elements are taken to be zero).
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They are given in
\where blank

in)

a2

Using the harmonic-balance method, Eq. (12)
can be easily solved as the form below.

,fz) = [H] (T] (F]
(2p)
Where: (%::} iF W
an)
= bﬂj?; L
Ll =i
o

olsp J

(13a)

(13b)
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4p, ¥p, acps ugp are elestic deflections
in plunge, lateral, pitch, roll directions
respectively.

[H] is receptance (inverse of impe-
dance) of the fuselage.

(T} is a transformation matrix which
is iefined as

(b Hs )
| fin -

4

=5

(14)

As before, only integer-multiple harmonics
of the blade number (b,2b,...) are re-
tained. Furthermore, higher harmonics may
be truncated as deemed appropriate.

The combined rotor/airfirame vibra-
tions may be perfc:med by the matching of
the impedances from Eq. (10) with those of
Eq. (13). This implies the matching of
harmonics of both loads {F} and displace-
ments {z} at the hub. Therefore, we have

{F}
{F}

[6)(8)} + [Z2[0)[H][T]{F}
[I-(2]0] [H) [T}] 210 {0}

It is noted that these loads include
vertical, inplane, and radial loads.

(15)
(16)

Coupled Response

We now calculate vibrations. To
begin, we look at the coupled rotor-
fuselage response of a sy.tem with the
following baseline parameters.

Rotor: 4 Liades, p = 1.09, weg = 0.7
(soft inplane) and wp = 1.4
(stiff inplane)
Yy = 6.0, C, = 0.0144,
CL—CM—EX—CY—Op
p = 0.3, ag = 0.7, ¢ = 0.07,
a=5,73
A = 0.0306, C, = 0.0058
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Fuselage: ?m = ,379, ?FL = .143
?pm = .,171, ?pL = ,148
G, = 1.45 ;cz, ;{L = 1.18 Bfm
Wen = 10.0 ;:m, BfL = 4.47 GCL
we, = 1.06, acm = 0.26

g, = gy =g, =9, = 0.02, 0.002
Frequencies with subscript "c" denote
cantilevered modes in which the hub
degree of freedom is constrained but the
remainder of the fuselage is free to move
elastically. Frequencies with subscript
"f" denote free mcdes for which neither
the hub ncr the fuselage is fixed. The
parameters above are very close to those
in Reference 8 (for comparison purposes)
except for the parameters of inplane
characters and offsets.

Results are presented for gy =gz =
0.02, 0.002, and gy = g, = 0.02,70.002.
Also shown are curves labeled "without
feedback", which give the fixed-hub
loads. As mentioned in Reference 8, for
the coupled response, the natural fre-
quency with the rotor is different from
the frequency without the rotor.

The C; curve (g, = 0.02) in Fig. 3
is nearly identical to thec corresponding
curve in Reference 8. Therefore, the
rigid, inplane degree of freedom does
not affect vertical vibrations very much
in the case considered. Figs. 4 and §
show the lateral and longitudinal forces
versus the fuselage bending frequency,
which is assumed to_pe equal for vertical
and lateral modes, w., = wcy- It is
seen that the 1aterai response is signifi-
cant. The lateral response, therefore,
can be an important consideration in
helicopter dynamic design. Figs. 6 and 7
show that pitch and roll loads are not
affected by the vertical vibration.

Figs. 8-12 show the hub loads as a func-
tion of fuselage vertical frequency with
a stiff inplane rotor and without offsets.
The response is a little bi* larger than
that of soft inplane mentioned above, but
the same conclusions hold.

Figs. 13-17 and
the hub loads versus
pvlon pitch and roll frequencies. Both
the soft inplane and stiff inplane cases
are shown. Because of aerodynamic _
coupling, all loads are affected by wgp
and wep. For the smaller damping, gp =
gr, = 0.002, mest of couplings are apparent
(two resonant per --), while at large
damping they are less noticeable (one
resonant peak).

Figs. 18-22 present
wem = wer/1l.18, the

Fig. 23 shows the effect of hub off-
sets on the vertical vibration. Compari-
son with Fig. 3 shows that there is little
effect of hub offsets for plunge. For the
pitch and roll modes, however, the effect

3N
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of offsets is very significant, as shown
in Figs. 24-28. (Compare with Figs.
18-22). 1In addition to the large change
in magnitude due to the offsets, one
notices that the resonance point is moved
;0 approximately w-m = 0.95. The reason
for this is that the rotor-fuselage
coupling due to offsets (h, dF) shifts
the fuselage natural frequency, so that
the resonance with 4/rev is moved.

This phenomenon is illustrated in
Fig. 29, which presents the fuselage
natural frequency (without the rotor) vs.
offsets h and dF. Similarly, Figs. 30--31
show fuselage natural frequencies without
the rotor vs. fuselage constrained verti-
cal and pitch frequencies, respectively.

One can further appreciate that the
rotor itself has an effect on the system
frequencies, therefore, the 4/rev reson-
ances in Figs. 29-31 do not exactly match
the 4/rev resonances of the coupled rotor/
btody system. (See Reference 13 for
cdetails.) More calculations have been
made, and one can find more figures in
Reference 13. A few of the more inter-
esting curves have been presented here.

Conclusions

The conclusions based on the assump-
tions and results of this study are:

1) Helicopter coupled rotor/fuselage
vibrations with inplane degrees of free-
dom of both rotor and fuselage can be
easily solved by harmonic balance and
impedance matching and a single-blade
analysis.

2) The addition of inplane degrees
of freedom does not significantly affect
the plunge vibrations for the cases con-
sidered, and these cases are for reason-
able configurations.

>) The lateral response is signifi-
cant, it should not be neglected in heli-
copter vibration analysis.

4) The hub offsets will signifi-
cantly affect the coupled response.
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DISCUSSION
Paper No. 21

COUPLED ROTOR-BODY VIBRATIONS WITH INPLANE DEGREES OF FREEDOM
Huang Ming-Sheng
and
David A. Peters

Dev Baner jee, Hughes Helicopters: Dave, I'm glad to see a concerted effort at doing impedance
matching at the hub and coupling the rotor with the fuselage. I think that's an important
contribution to determining hub loads and hence fuselage vibrations. 1I'd like to go back to the
1964 paper of Gerstenberger and Wood. [ think the displacement formulation approach that you've
taken would reguire adding additional hub motion as degrees of freeaom. However, if you take
the mixed form :ation approach as taken by Gerstenberger and Wood, that'll all come out as part
of the solutio In other words your 6X6 complex hub-impedance matrix which is the exact hub
coupling of the cotor with the fuselage would be included in the solution of the problem.

Peters: It would solve the whole problem at once.

Baner jee: Exactly.

Peters: There's nothing wrong with that, except you lose the advantage of making small changes
to the fuselage at a very cheap computational cost [since] you have to do the whole problem,
Another thing, remember the rotor impedance now is more complicated than normal rotor impedance
because of the periodic coefficients. Now you have four per rev due to 4 per rev, and four per
rev due to 8 per rev. If you had read Tom Hshu's original paper, he's got a whole section
dedicated to figuring out how all these sines and cosines and phases come together. 1It's a big
Job.

Bob Loewy, Rensselaer Polytechnic Institute: Dave, I want to add my voice raised in praise for
your work here. I think it's excellent and you're making a major contribution to helicopter
vibrations in this. Maybe I should stop there, but I can't resist the urge to play "Trivial
Pursuit.”" Just sort of really as a historical curiosity: the first time I ever saw a rotor
impedance derivation, it was in the work of Alexander Flax--some of you may remember--and this
was dated in the late UOs.

Peters: O©Oh, I'd love to have a copy of that or get the reference.

Loewy. it was never published as far as I know, and I wouldn't want you to think I was there,
but I found it in some of the old Piasecki Helicopter Company literature. What he did was, he
was solving a drive system vibration problem, and he derived 'the polar moment of inertia imped-
ance of a rotor. It's interesting that John Burkram, as far as I know, was the first one to do
an inplane impedance with a rigid hiInged blade, and if you took his impedance expression and put
it on a mass on a spring and then ran the equations out, you found that you got the ground
resonance equations., As a third point of this kind, Bob Yntema then took blades which were
flexible and derived impedances in all directions, for twisted blades as well as untwisted
blades. And I remember being amazed to see that in those expressions, even though you shook
inplane, you got flapping deflections of the blades, of course, because they were twisted. None
of those included aerodynamicc, but they were very early efforts in rotor impedance calculation.

Peters: Oh, I'd love to have those. Why don't you write them down on a piece ot paper for me
and let me go run them down?

Loewy: Sure will.
Don Kunz, U.S. Army Aeromechanics Laboratory: Dave, when you were doing your presentation,

1 was wondering if you were linearizing your equations. At the end you said you did--would you
explain what you did?

Peters: Yes, on the very first slide where I showed the blade equations, those were already
linearized. Since we're running a trimmed condiiion, that means there's no 8, and no Bgr We
linearized about a steady coning angle. So the very first flapping equations up there are
linearized, and that's why 8, that steady coning angle appears as a forcing function. Now, if
we weren't trimmed, then we'd have to linearize about a periodic equilibrium including the 8¢
and B,.

Bob Wood, Hughes Helicopters: Dave, [ just wanted to comment--I thought it was particu-

larly interesting, your fuselage model and the fact that you could study the parameters and
move that on. I wanted to add just one point to it, and that is what a number of us are look-
ing at right now, which tles your paper really together somewhat with Dick Gabel's [paper]). If
you think about it, if you're interested puraly in getting the forced response in detail for a
{production] helicopter, with dynamic NASTRAN now it's extremely simple to calculate that hub
impedance matrix, just by putting in the three-unit loads and the three-unit moments. [You can
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then] solve the combined problem and then [combine) by superposition the appropriate NASTRAN
responses.

Peters: And just match that to your rotor impedance and see what happens.

Wood: So in other words, a full dynamic NASTRAN model, such as Dick has, can be t 2ated
relatively easily.

Bob Taylor, Boeing Vertol: I'd just like to comment that I wouldn't want to use that in a

preliminary design study. I'd much rather depend upon something like Dave has here; but your
point is well taken, Bob.
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