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EMOTIVE GUM"AY

This study addresses the techniques and hardware required to extend the

useful life of SIRTF by on-orbit jervicing. Most of the work was directed

to replenishment of the superfl.uid helium cryogen, and special emphasis was

placed on assessing the impacts of serv'azing SIRTF at the Space Station.

Concepts were also developed for changing the instruments at the focal plane

of the SIRTF telescope, and mission operations and timelines were analyzed.

The overall conclusion of the study is that on -orbit cryogen replenishmen'.

and instrument changeout is feasible. The modifications to the baseline

SIRTF design are not major, and are likely to carry a dewar lifetime penalty

of only 7 percent. The operations can be based on either the Shuttle

Orbiter or on the Sp;,F,.-m. S tation, and the mission timelines are compatible

with either location.

Several possible concepts for replenishing the cryogen were examined, and

narrowed drawn to filling the SIRTF from an Airborne Support Equipment (ASE)

dewar launched full from the ground within 50 days of the operation. The

helium should be t^:tinsferred in the superfluid state near the SIRTF final

operating temperature of 1.8K to obtain the maximum cryogen life in SIRTF

after replenishment. For exaiple, transferring the helium in its normal

state at between 2 . 7 and 4.2K would leave between 15 and 40 percent empty

volume in the SIRTF dewar after cooling to 1.8K. Two viable pump types are

available: thermomechanical pumps (consisting of a porous plug and a heat-

er), and conventional centrifugal mechanical pumps. Because the choice of

pump has relatively minor impact on the overall SIRTF and ASE configura-

tions, the two types should be developed in parallel to minimize program

risk. Internal analysis effort at Ball Aerospace Systems Division has shown

that transfer at 1000 liters per hour is feasible using a 'rhermomechanical

pump, and is dt-scribed in an appendix to this report.

M
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The changer to the baseline SIRTF concept required to accommodate cryogen

replenishment consist of plumbing modifications to enhance rapid cooldown.

The fill and vent linen► must be enlarged f ?om 1.9 to 2.5 cm, and an addi-

tional heat exchanger, vein line, and large porous plug phase separator must

be added. The additional beat leak introduced decreases the dewar .Lifetime

by about 7 percent.

The ASE required for helium replenishment, consists of a large dewar carrying

electronics and a transfer line, plus a control console mounted in the Shut-

tle cabin or Space Station manned logistics module. The dewar is based on

the IUS/LOBE technology, and the configuration has been chosen to minimioe

the length of Orbiter bay used. Concepts for the smallest (5,300 liter) and

largest (11,750 biter) sizes potentially required have been developed. A

modified version of the MnItimission Modular Spacecraft Flight Support Sys-

tem (MMS/FSS) Cradle A is used to support SIRTF when servicing with the

Shuttle, The ASE required to service a still-wet SIRTF weighs 2,250 kg, and

that required to cool SIRTF prom 300K after instrument changeout (the worst

case) weighs 4,097 kg,

To snake on-orbit changeout of focal plane instruments practical, access must

be provided through the back end of the SIRTF telescope dewar. Contamina-

tio,, concerns require that SIRTF be warmed to near WOOK before being opened.

By using therwAl contraction joints in the vapor-cooled shields inside the

dewar, a concept for a one-piece swinging door that can be easily operated

by an astronaut has been developed. The impact on the instruments is

moderate, and consists of placing electrical and thermal strap interfaces at

the rear, talus adding handles and smooth outer covers for astroaaut safety.

The heat sinking function should be performed with demountable flexible

straps, and not be combined with the structural support and precise

positioning functions.

Detailed operational sequences and timelines have been developed for the

various servicing missions based on either the Shuttle or the Space Station.

The worst—case timeline is that for instrument changeout on the Shuttle; the

RP20AKB-2
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6,2 days estimated fits within the 7-day nominal Shuttle mission, and allows

for contingencies and normal crew rest scheduling. The principal safety

concern centers around damage to the astronauts' suits by contact with cold

surfaces or leaking cryogen. The principal operational uncertainty centers

around possible contamination of the STRIT instruments by parti culates or

water vapor emitted by the suits. A standalone summary of servicing STRTF

4	 at the Space Station is provided as an appendix,

4	 s
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Section 1

REPORT OVERVIEW AND SUMMARY OF RESULTS

This report presents the findings of the SIRTF Instrumant Changeout and

Cryogen Replenishment (STICCR) Study performed for NASA-Ames Research Center
(ARC) by Ball Aerospace Systems Division (BASD) under Contract Number NAS2-

` 11979. This section of the report +summarizes the study results. The suc-

ceeding sections present our analysis in detail; backup data and additional

information are contal • ,ed in the appendices.

The Space Infrared Telescope Facility (SIRTF) is a long-life space-based
telescope for infrared astronomy from 2 µm to 700 pm currently under, inves-

tigation by NASA-ARC, 1 and planned for launch in approximately 1995. Table
1-1 summarizes its overall characteristics, and Figure 1-1 shows what it

might look like.

SIRTF will operate as a multi-user facility, initially carrying 3 instru-

ments at the focal plane. It, will be cooled to below 2 K by superfluid

liquid helium to achieve radiometric sensitivity limited only by the statis-

tical fluctuations in the natural infrared background radiation over most of

its spectral range. The lifetime of the mission will be limited by the

lifetime of the liquid helium supply, and is currently baselined to be 2

years.

In order to maximize the scientific return for the total overall cost of the

SIRTF mission, it will be necessary to periodically replenish the liquid

helium cryogen to extend the life to 10 years or mare. It would also be
sr

highly desirable, to be able to replace the instruments in order to recover

from the failure of an instrument, to upgrade them to take advantages of

advances in the technology during the mission lifetime, or to adjust the

capabilities of the facility to better serve the evolving priorities of the

1 "SIRTF, Free Flyer Phase A System Concept Description," NASA-Ames
Research Center, Moffett Field ; CA, PD-1006 (May 3, 1984).

BP20AJ1-1
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Table 1-1

CHARACTERISTICS OF THE BASELINE SIRTF

PARAMETER	 BASELINE

TELESCOPE TYPE	 CASSEGRAIN, 85 CM APURTURE

WAVELENGTH COVERAGE	 1.8 - 700 µM

OVERALL LENGTH	 8.8 M

OVERALL MASS (FULL)	 7250 KG

ORBIT	 900 KM, 28'

CRYOGENIC SYSTEM

BASELINE	 4000 'LITERS SUPERFLUID HELIUM

ALTERNATE	 3280 LITERS SUPERFLUID HELIUM

1650 'LITERS SOLID HYDROGEN

LIFETIME (NOT REPLENISHED) 	 2 YEARS

a
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Figure 1-1 SIRTF as a Free Flyer
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scientific community. In addition, certain mission-critical mechanisms

located in the helium dewar, such as cryogen valves, the beam-switching

mirror, or the oscillating secondary mirror of the telescope, may need to be
serviced to achieve tho full mission life.

Scope of the STICCR Study

11

The principal tasks set out by the study Statement of Work, as augmented

during the study, were to:	 I

•

	

	 Define concepts for replenishing the SIRTF cryogen, and for the

required Airborne Support Equipment (ASE) required;

•

	

	 Define concepts for changing out the focal plane instruments, and

for servicing other cold mechanisms;

•

	

	 Analyze the mission implications of servicing SIRTF, based either

on the Space Shuttle or on the Space Station;

•	 Evaluate the impact on Space Station; and

m	 Develop a plan for demonstrating the required technology.

The bulk of the effort was to be directed toward cryogen replenishment, and
special emphasis was to be placed on analyzing the impacts of a SIRTF

servicing mission on the Space Station.

'	 Study Approach
E

We set for ourselves two principal goals: (1) to address the issues of

cryogen replenishment and instrument changeout with enough breadth to

address all of the realistic options; and (2) to perform the analysis in

BP20AJ1-2
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enough depth to give insight into the overall feasibility of the opera-

tions, and to assess their impacts on the rest of the mission.. The result-

ing conclusions will be useful in guiding overall SIRTF planning decisions,

even though much more detailed work must be done before hardware tradeoffs

can be completed.

rr^

R

i	 The approach that we have used starts with decision trees that list the

operation or design options. These trees are designed to organize the op-

11 Lions in a way that makas it easy to see if any reasonable ones have been

overlooked, and to guide us in performing analysis and tradeoffs at the

highest possible level.

The results attainable with the study resources available has been greatly

extended by work done on other studies or programs. much of the cryogenic

analysis has utilized a 35 node thermal model of SIRTF developed on the

Thermal and Cryogenic Study for SIRTF performed earlier for NASA-ARC by

BASD. Realism of the analysis has been enhanced by experience and test data

obtained by BASD on the ?RAS program, and by test data currently being ob-

tained in the completion of the COBB dewar.

The work currently under way at the National Bureau of Standards (NBS) in

conjunction with NASA-ARC on the development of centrifugal pumps has en-

abled us to direct more attention to an alternate technique based on the

peculiar properties of superfluid helium. The Cryogenic Fluid Management

Facility (CFMF) work sponsored by Lewis Research Center (LeRC) has greatly

simplified analyzing the impact of servicing a SIRTF which uses solid hy-

drogen as an auxiliary cryogen.

This study has also benefited from internally-sponsored theoretical and

experimental investigation of the critical element servicing SIRTF: the

transfer of superfluid helium at high flow rates in zero gravity. The in-

sight gained is summarized in the body of the report, and an appendix gives

some recent results of detailed simulation studies.

BP20AJ1-3
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1.1	 CRYOGEN EMPLENISENENT

The cryogen replenishment effort addresses the techniques to be used in

transferring superflui.d helium into SIRTF in space, the modifications to the

baseline SIRTF design that, would be required, and the design of the special

Airborne Support Equipment (ASE) that would be used. In addition, we ex-

plore the replenishmev,", of a dual-cryogen system that also uses solid hydro-

gen, and of a smaller helium-3 subsystem used to produce temperatures below

1 K in the SIRTF focal plane instruments.

1.1.1	 System-Level Tradeoffs

Two basic choices precede the development of the hardware and operations

needed for cryogen replenishment:

•	 The basic replenishment scenario, and

•	 The physical techniques used to transfer the superfluid helium.

We address these before going on to define the ASE hardware and operations.

Mission Concept Options

Figure 1-2 shows that the first decision is whether to fill SIRTF directly

from a tank filled on the ground, or to fill it from a permanently orbiting

cryogen storage facility. Given the baseline assumption of this study that

the servicing of SIRTF is the specific driving requirement, establishing a

pe rmanent storage facility cannot be justified. SIRTF is expected to re-

quire replenishment only every 2 years or more, implying that any permanent

storage unit would have to be refilled before each SIRTF replenishment.

Exploratory analysis also shows that the amount of helium consumed in cool-

ing down the permanent storage tanks would more than double the volume of

cryogen launched from the ground, adding to the cost of the resupply

tankage.
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For purposes of this study, we have therefore chosen to fill SIRTF directly

from the resupply tank launched from the ground, and treat the replenishment

of other payloads as secondary in our analysis.

The second basic choice to be made is the on-orbit storage time for which

the ASE should be designed. Thy; boiloff rate of a passive dewar based on the
IRAS/COBS technology is .low enoLgh that the volume penalty of designing for

2 months instead of 1 month is only 4 percent, with even lower mass and cost

penalties. The non-linear dependence of parasitic heat .leak on volume,

however, means that extending the on-orbit hold time to 12 months would

require ei°cher doubling the volume, or adding active refrigeration, with

substantial complexity, reliability, and cost penalties. Since it is likely

that 2 months is adequate to allow for launch scheduling and orbit transfer

windows, we have designed for a 2-month storage (plus 1 month of margin)

before filling SIRTF.

Replenishment Technique motions

The choice of the liquid helium transfer technique is guided by the decision

tree shown in Figure 1-3. First, we have chosen to transfer He II (super-

fluid helium, below 2.18 K) into SIRTF, rather than transfer He I (normal

liquid helium) and then cool it to convert to He II. Second, we have chosen

to use either a thermomechanical pump or a conventional centrifugal mechani-

cal pump to move the liquid from the ASE to SIRTF.

i
The choice of He II as the state in which to transfer the cryogen is driven

by the impact on the cost of the ASE and the cryogenic lifetime of SIRTF

after replenishment, and is supported by the knowledge that at least one,

and probably two, viable techniques exist for propelling the He II liquid.

Figure 1-4 shows that when He I is cooled from a temperature above 2.18 K to

the final SIRTF operating temperature of about 1.8 K, liquid is lost due to

evaporative cooling. The empty volume in the SIRTF dewar after conversion

represents additional lifetime that could be realized if it were filled at

RP2®AJ1-5

I

R

^$	
III

j

•	 -	 ,'.rmax•€	 A3	 -.	 ^ 
	 ^^ i



1-9

W

CD

w

cr

4J
a
aj
P
V)

CL
ai

IY

ai

(Ii
S-

00

;R
In

q.



STARTING
^°°--- •.^...,..,^„L„ 4.2K	 TEMPERATURE

40
	

PROBABLE

OPERATING
TEMPERATURE,

3.7K
30

a
	

1

us '

	
0

3.2K

20

2.7K

10	 ^ 2 2K

1.50	 1.60	 1.70	 1.80	 1.90	 2.00

FINAL, TEMPERATURE (K)

AM 5706

Fg4re 1-4 Volume loss in Cooling SIRTF After Transfer

1-10



k

V

^j

its final operating tejAperature. For instance, this amounts to a lifetime

(anal ASE voinme) advantage of 15 percent from transferring 1.8 K He II in-

stead of transferring He I at 2.7 K and then cooling it to 1.8 K.

Of the 5 potential techniques for transferring He II, we have baselined the

two highlighted ones because of their simplicity, and because their effect

on the overall replenishment system design is so similar that parallel

development would significantly reduce programmatic risk at minimal cost.

Table 1--2 lasts the possibilities, and summarizes the elements of the trade-

off - The mechanical pump is under development by NBS in conjunction with

NASA-ARC, and the thermomechanical pump is under development by BASH and

NASA-GSFC.

The thermomechanical pumping technique is somewhat exotic because it is

based on a physical phenomenon, the fountain effect, peculiar to He II. We

review it in this report because it is unfamiliar to most aerospace pro-

fessionals.

The basic phenomenon has been studied by physicists since 1038, and is

illustrated in Figure 1-5. If a porous plus (tightly packed jewelers' rouge

in 'the original experiments) submerged in He II is heated on one side,

liquid is observed to move through the tiny pores from the cold side to the

warmer side. This can produce either a suba^tantial volume flow rate, as

originally observed in the "fountain" illustrated, or pressures as high as a

few hundred torr at zero flow rate. This is the phenomenon that underlies

the operation of the porouu plug vents used successfully on IRAS and the Far

Infrared Sky Survey Experiment (FIRSSE).
i

Figure 1-6 shows the elements of a replenishment, system based on a thermo-

mechanical pump. The supply and receiver dewars are connected by a transfer

line with bayonet connections. The pump is connected directly to the supply

dewar, and both dewars are vented through porous plug vents. An electrical

heater on the downstream side powers the pump, and controls the mass flow

rate. The heat supplied boils off approximately 5 percent of the liquid

BP20AJ1-6
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Table 1-2
LIQUID TRANSFER TECHNIQUE TRADEOFF

TECHbrig ?	 ADVANTAGES	 DISADVANTAGES

Thermomechanical Simplicity, reliability 	 4.7; mass loss at 1.8 K
Pump	 due to no moving parts.

Mass loss occurs in ASE	 Requires large vent in
dewar, so high-flow vent not	 supply dewar.
needed in SIR'TF.

Easy to control flow rate. 	 Works with He II only.	 47

Static pressures up to
500 Corr attainable.

Under development by GSFC,
BASD.

Mechanical Pump Mass loss lesff than ther-mo- Reliability risk due to
mechanical pump abo,,, s 1.5 K cold bearings.

i
Familiar technology.

Works with He I, other
cryogens.

Under development bd	 p	 y
NBS/ARC,

Thrust Assist No pump required. Major impact on Shuttle/
Spare Station operations.

Low flow rates.

Limited pressure
available for cooldown.

Free Expansion No pump required. Driving pressure <38
tore may impede cool-

May be used for other down.
cryogens on Space Station.

Under development by LeRC. Unknown mass efficiency.
i

Joule Thomson Intercept heat leak or Requires second dewar
Expansion remove heat from receiver for supercritical He or

dewar.	 Used in combination He I.
with another transfer Subject to clogging of
tE hni.que. single small orifice.

i

4

m
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carried in the ASE, but the boiling takes place in the ASE dewar for reasons

that are explained in Section 2.1.8. The volume loss must be allowed for in

the design of the ASE, but does not prevent 100 percent fill of the SIRTF.

1.1.2	 Modifications to SIRTF

The LAseline cryogenic design of SIRTF requires some modification to permit

on-orbit replenishment of the cryogen. There are changes to the plumbing,

and modification of the aperture cover. The plumbing changes do affect the

lifetime of the SIRTT dewar.

Plumbing Modifications

The SIRTF fluid management system must be modified from its current baseline

to accommodate two new 'requirements:

To permit cooldown in an acceptably short time with minimum

cryogen consumption, and

•

	

	 To permit filling with Be II at a suitably high flow ;rate once

the SIRTF dewar has been cooled off.

Even if the servicing strategy adopted for SIRTF assumes it will be re-

plenished before it run„ dry and starts to warm up, including the appro-

priate hardware modifications to permit on-orbit cooldown is a wise pre-

caution to permit recovery if the tim.l:•t; of the servicing mission is not

ideal.

Analysis of our experience with the cooldown of IRAS led to the development

of a transient thermal model that successfully predicted the cooldown behav-

ior of CORE in its first filling at BASD. From this analysis we found that

the two principal factors in determining the cooldown efficiency are:

I

0

BP20AJ1-7
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•	 Thermal conduction between the dewaar and the telescope system,

and

•

	

	 Efficient heat transfer between the dewar and the incoming helium

gas.

To achieve an efficient on-orbit cooldown, we therefore require the addition

of a forced convection heat exchanger as part of the SIRTF fill line, plus

optimized thermal joints within the telescope package.

Figure 1-7 shows the modified fluid management system, which includes:

• An additional loop of the fill line before it enters the main

cryogen tank, acting as a forced ionvection heat exchanger during

the initial cooldown;

•	 A large additional porous vent plug to accommodate high flow

rates during the initial collection of He II liquid;

•	 A new short vent line to reduce backpressure during the initial

cooldown; and

•	 Increased line and valve orifices (2.5 cm instead of 1.9 cm) to

reduce backpressure during the initial cooldown.

The last two elements are definitely necessary to permit the use of a

thermomechanical pump. The driving pressure achievable with a centrifugal

pump and its design impact remain to be investigated.

Aperture Cover

A serious source of potential contamination for the SIRTF telescope optics

is likely to be products of the bipropellant propulsion system of the

Orbital Maneuvering Vehicle (OMV) that retrieves SIRTF from its orbit and

Y

-I-

4
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redeploys it after servicing. A shutter blade over the dewar aperture must

therefore be closed before rendezvous with the 0VV, and kept closed until

SIRTF is redeployed and the OIfV has departed.

Thermal radiation from this blade could impose a heatload on the dewar as

high as 13 W, which would prevent stabilization of the dewar after re-

plenishment. Active cooling of the shutter blade with cooling coils would

be excessively complex. A blanket of multilayer insulation would reduce the

radiation to 0.5 W, which would not perturb the dewar operation

unacceptably.

Impact on SIRTF Performance

The modifications to SIRTF for replenishment do introduce additional heat

leakage into the dewar, and therefore reduce its lifetime). The impact of

the additional vent line and the increase in diameter, of the fill line from

1.9 cm to 2.5 cm has been analyzed with the thermal model of SIRTF developed

by BASD under the Thermal and Cryogenic Stu4y l for NASA--ARC. We find that

lifetime will be reduced by 7 percent for the baseline 4000 liter configura-

tion, compared to the unmodified system.

1.1.3	 Airborne Support Equipment Design Conce+p

The Airborne Support Equipment (ASE) used to replenish the SIRTF cryogen

consists of two self-contained kits interconnected by the Shuttle or Space

Station data buss, as shown in Figure 1-8. The external kSE k-.t is dominat-

ed by the dewar, both in terms of mass and cost. The control and monitor

electronics box is mounted on the outside of the dewar, and the transfer

line is stowed on it when not in use. The internakl ASE kit consists of a

data and command console that interfaces with the Shuttle or Space Station

communications system. The overall characteristi,:s of the ASE are summar-

ized in Table 1-3.

00

k

a

BP20AJ1-9

1-18



AM 5708

^V

.0

I

41

Figure 1-8 Airborne Support Equipment Elements

1-19
i

mss:



. ............... .

Table 1-3

AIRBORNE SUPPORT EQUIPMENT PROPERTIES

PARAMETER	 VALUE

'•x

MASS (FULL)

	

	 21250 KG MINIMUM M

4,097 KG MAXIMUM(2)

HELIUM VOLUME

	

	 5,3,00 LITER MINIMUM(1)

11,750 LITER MAXIMUM(2;

rR	 POWER CONSUMPTION

EXTERNAL ASE KIT	 < 2 W DURING STORAGE

< 200 W ?LkXIMUM

INTERNAL ASE KIT

	

	 < 2 W DURING STORAGE

<100 W MAXIMUM

_	 THERMAL CONTROL SURFACE 	 ale = 0.2 - 0.3

MECHANICAL INTERFACE SIRTF KEEL FITTINGS, ON

WS CRADLE A ON SHUTTLE.

TBD ON STATION.

RMS/MRMS INTERFACE	 NASA GRAPPLE FIXTURE

(1) To refill SIRTF while still cold.
(2) To cool .SIRTF from 300 K and refill.

BP20AJ1-17
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Cryogenic Design

The overall cryogenic layout of the ASE when connected to the SIRTF for

replenishment is shown in Figure 1-9. The system design would be nearly the

same using either the thermomechanical pump taken as our baseline, or the

mechanical pump alternate. The fluid management system shown provides func-

tional redundancy for safety, but not component redundancy. If component

redundancy is ultimately required for handling even inert fluids on Space

Station, the plumbing system would have to be modified accordingly.

One of the first dewar design tradeoffs is how much design and manufacturing

cost should be devoted to a high-efficiency insulation. We explored three

different levels of insulation technology which would give cryogen loss

rates of 0.1, 0.2 and 0.5 percent per day, These span the range from IRAS-

level technology to commercial storage dewar technology. The assumed SO-day

hold time on orbit (plus 30 day margin) would require a volume as much as 50

percent larger using the commercial techniques rather than the best IRAS-

derived ones. We thezefore baselined an IRAS-type system with 4 vapor-cool-

ed shields„ at an assumed loss rate of 0.1 percent per day„ Detailed model-

ing of an interim system using this configuration showed an anticipated ,loss

rate of about: 0.07 percent per day, so the sizing used here is conservative.

The ASE dewar is designed with a special high flow rate vent to accommodate

the high bailoff rate which accompanies high-rate transfers using the

thermomechanical pump. Detailed simulations have shown 1000 liters per hour

to be feasible, so we are baselining this rate in our design and operational

timelines. The heat input from a centrifugal pump would raise the tempera-

ture of the liquid entering the SIRTF dewar, but would not place any unusual

requirements on the ASE vent lines.

Mechanical Design

Mechanical designs have been worked out for the two limiting cases for the

ASE:

BP20AJ1-10
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	 6300 liter capacity, for replenishing SIRTF before it runs dry,
and

•

	

	 11,750 liter capacity, for replenishing SIRTF after it has warmed

up to 300 K.

This larger version is the one that would be needed for a servicing mission

that includes instrument changeout.

A tradeoff on dewar shape led to the two cylindrical tank configurations

shown in Figures 1-10 and 1-11. This shape was chosen to minimize the

length of Shuttle bay required for launch, thereby minimizing overall mis-

sion costs. The total mass when full is 2550 kg for the small version, and

4097 kg for the large one. Weight relieving measures could be applied, but

may not be cost effective since the mass per unit length is near the 16.1

kg/,cm optimum Shuttle loading.

The special hardware which will be

servicing can be derived from that

Modular Spacecraft (MMS). Figure

Cradle A that provides an attachmen,

for launching SIRTF, plus stowage

ternal SIRTF electronics Orbital

required to dock SIRTF on Shuttle; for

developed by GSFC for the Multi-mission

1-12 shows a modified version of the

t for mating with the keel fitting used

for the focal plane instrument and ex-

Replacea,b'le Units (ORU's) . Figure 1-13

shows SIRTF docked to Shuttle using the MMS Cradle A. 	 E'

For servicing on the Space Station, we assume that hardware will exist for

docking various payloads using their Shuttle sill and keel fittings. Figure

1-14 shows SIRTF docked to the Station using a 3-point trunnion mount,

although a single-point mount such as shown in Figure 1-12 would probably be

adequate.

3
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Electrical Design

Figure 1-15 shows that the electrical subsystem of the ASE consists of two

parts: the sensor and control electronics mounted on the dewar, and the

control and data handling console located inside the Shuttle cabin or the

Space Station Logistics Module. The Data/Command Computer controls the

acquisition of data and permits partially or fully automated control.

sequences to be used during the transfer operation. Telemetry permits con-

trol from Ground Operations Control. Total peak power consumption would be

less than 200 W.

1.1.4	 Servicing Alternate Cryogenic Systems

After developing concepts for replenishing the baseline SIRTF He II cryo-

genic system, we briefly explored servicing two alternate systems: a dual-

cryogen version of SIRTF that uses solid hydrogen to intercept the bulk of

the dewar heat load at 10 K, and a small helium-3 subsystem used to provide

temperatures below 1 K for long-wavelength detectors in one of the focal

plane instruments.

Dual-Cryogen ; ystews

The dual-cryogen system described in the SIRTF Phase A Free Flyer Concept

has a 1650 liters of solid hydrogen that must be replenished. Using the

Cryogenic Fluid Management Facility (CFMF) study $ done for NASA-LeRC as our

guide, we have baselined free expansion (referred to as "thermodynamic fill"

in the CFMF study) as the technique for transferring liquid hydrogen into

SIRTF. The remaining questions to be addressed here are the ASE needed, the

method for cooling the hydrogen tank, and the method for converting the

liquid to solid in SIRTF.

One possibility for transporting the liquid hydrogen is to use six identical

copies of the CFMF 600 liter dewars. 	 A dual-cryogen ASE incorporating a

2,200 liter hydrogen dewar dedicated to SIRTF would be needed for a system	 j

40
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capable of replenishing SIRTF before it runs dry. For replenishment based on

Space Station, it may be possible to use the liquid hydrogen stored for

propulsion, rather than build a dedicated hydrogen dewar for SIRTF.

The two basic optiouv for converting the liquid hydrogen to solid are to

vent it to space ("blowdown"), or to cool it with coils vs'pglied with He II.

The blowdown technique is the simplest,, but results in about 30 percent

empty volume in the dewar. Thiz will be a severe impact on the SIRTF life-

time, unless SIRTF is initially designed with a correspondingly larger

hydrogen tank to compensate. Cooling the hydrogen with He II would require

an additional 5,600 liters of helium.

Helium-3 Subsystem

In order to explore the implications of servicing helium-3 subsystems, we

examined filling a 3 liter volume based on the heat loads presently base-

lined for the Multiband Imaging Photometer for SIRTF (MIPS), and also a

volume as large as 100 liters. The two basic options are to transfer liquid

directly, or to transfer gas and condense it inside SIRTF. Because the gas

transfer technique is well-developed and practical, there is no apparent

reason to incur the development costs and operational complexity associated

with transferring the helium-3 as a liquid.

The gas fill technique is the standard practice in low-temperature labora-

tories. The three limitations on its use are the size of the compressed gas

bottles required, the time it talkes the gas to flow through the capillary

into the dewar, and the volume of He II consumed in condensing it. The

small 3 liter system would require less than one full Type 1C (126 liter)

bottle of gas, and consume 150 liters of '*o II in condensing it to liquid.

The 100 liter system would require 3 bottles, and as much as 4,900 liters of

He II. (The He II consumption given here is a worst-case limit, using only

the heat of vaporization to cool the incoming gas. A counter-flow heat

exchanger would reduce the He II consumption substantially.) Total re-

plenishment and condensation time would be less than 2 hours for the smaller

system..

BP20AJ1-13
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1.2	 INSTRUMENT CHA.NGEOUT

The first question that arises in servicing the focal plane instruments or

other cold mechanisms inside the SIRTF dewar is whether the servicing can be

performed while the dewar is still cold, or whether it must first be warmed

to near room temperature. Then the two principal tasks remaining are to

develop a practical means of giving access to them, and to assess the design

impacts of providing for serviceability.

Opening the SIRTF dewar for servicing while it is still cold is essentially

ruled out by one overriding fact: the Extravehicular Maneuvering Units

(EMU's) used by the astronauts discharge massive amounts of oxygen that

would seriously contaminate the optics of the instruments and the telescope

if exposed at temperatures below about 170 K. Redesign of these suits to

eliminate this problem would constitute a major development cost. Other

practical considerations regarding alignment and lubrication of fasteners

lead us to recommend warming SIRTF electrically to near 300 K before rendez-

vous for servicing. The penalty in cooldown time and volume of cryogen

required do not seriously impact the servicing mission.

1.2.1	 Dewar Access

The two basic options for providing access to the focal plane instruments

are to either remove the complete telescope and instrument assembly from the

mouth of the dewar, or to provide an opening in the back end of the dewar..

Removing the complete telescope assembly is awkward, requires provisions for

stowing the 5.2 m assembly outside the dewar, and exposes the telescope

optics to serious contamination risks. Therefore we recommend modifying the

SIRTF dewar to provide for rear access.

Figure 1-16 shows a swing-open door concept that minimizes demands on the

astronauts servicing the instruments. Thermal contraction provides the

pressure to. lock the removable sections of the vapor-cooled shields to the

fixed parts with adequate thermal conductivity. All multilayer insulation

blankets are held captive, with their edgers controlled by a Kapton band.
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The principal impact on the cryogenic performance of the SIRTF dewar due to

this modification is the additional radiation leakage due to the gap of

about 3 mm at the joint in each MLI blanket. Our thermal modeling shows

that this will reduce the lifetime of the replenishable version of SIRTF

from 2.5 years to 2.0, a decrease of 20 percent.

1.2.2	 Servicing Cold Mechanisms	 H

After access is designed into the SIRTF dewar, several other requirements

must be taken into account in designing those mechanisms which are to be

serviced. The operation impacts of servicing then are discussed in a later
k

section.

Focal Plane Instruments

The modifications to the focal plane instruments to accommodate on-orbit

changeout amount to an extension of those design features which would sim-

plify their removal and replacement during ground integration. These fea-

tures are:

•	 Guide rails to simplify insertion,

•

	

	 Thermal strapping to eliminate the need for thermal gasket mate-

rial under the structural mounting points,

Handles with clearance for gloved hands,

•	 Round corners to protect astronauts' suits, and

•	 EVA-rated electrical connectors.

's

	

	 Non-black coatings or marks on outside of instruments and inside

M.IC to enhance visibility.

The space taken up by the handles and rounded corners will impose additional

packaging constraints on the design of the instruments, and therefore could

force compromises in their optical performance. The separation of the

structural mounting and thermal contact functions, however, amounts to good

instrument design prictice. One possible layout showing the locating pins

and thermal straps is shown in Figure 1-17.
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Figure 1-17 Instrument Mounting
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Other Cold Mechanisms

Because the SIRTF fine guidance sensor (FGS), rotating beamsplitter, and

chopping secondary mirror are essentially undefined at this time, analysis

of servicing them amounts to analyzing access to them. The FGS and rotating

beamsplitter are inside the MIC, so rear access into the dewar is enables

them to be reached conveniently. It is presently assumed that the FGS is

supported by the beamsplitter assembly, so the detailed design will deter-

mine whether it is practical to service them independently or whether they

should be combined in one replaceable module.

The baseline SIRTF design has the motor-driven cryogenic valves placed at

the front end of the dewar for ease of manufacturing. Modifying the dewar

for rear access to the instrum n  makes it practical to move the valves to

the rear, where they can also be serviced. Provisions for eliminating

thermoacoustic oscillations during ground operations would need to be made.

Designing the valves themselves for replacement introduces risks of leaks,

but designing the motor and gear head units for replacement would be

straightforward.

Servicing the chopping secondary mirror of the telescope poses serious de-

sign challenges because of its location inside the telescope baffles.

Replaceability using special long tools would become a driver on the design

of the mirror, and may be incompatible with the requirements for precise

positioning and high-conductance heat sinking. Including redundant solenoid

windings and position sensors may be the most practical way to ensure its

long-term reliability.

1.5	 MISSION ANALYSIS

In order to understand the operational aspects of on-orbit servicing of

SIRTF, we analyzed the following:

BP20AJ1-16
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•

	

	 Mission scenarios for cryogen replenishment and instrument

changeout, based on the Shuttle and on the Space Station.

•

	

	 Operational sequences and timelines associated with these

scenarios,

•

	

	 Interfaces, operational constraints, and requirements of the

hardware elements, and

•

	

	 Impacts of human interface, including EVA and safety

requirements.

The net conclusion is that servicing SIRTF is feasible from either the

Shuttle Orbiter or from Space Station. Table 1-4 shows that the timelines

for either cryogen replenishment alone or for instrument changeout followed

by cooldown and replenishment fit within the nominal 7-day Shuttle mission.

The times shown here allow for the normal crew rest period schedule with no

work scheduled while any of the crew are resting, and still permit some

flexibility, to deal with unexpected contingencies.

For purposes of this study, it was assumed that the servicing operations

would be human-tended, with minimum use of remotely operated equipment.

Plumbing connections and the electrical umbilical would be manually con-

nected and disconnected. A remotely operated shutter blade would be closed

over the telescope aperture before rendezvous with the Orbital Maneuvering

Vehicle (OMV), but an astronaut would manually apply and remove a cover

(possibly a flexible "shower cap") for the sunshade.	 Using the Remote

~ Manipulator System.(RMS) arm to remove the sunshade cover appears easy, and

would shorten the Shuttle-based changeout mission by about 7 hours. The

principal safety issue revolves around potential damage to the astronauts'

suits by cold surfaces or leaking cryogen, and the principal contamination

hazard comes from water and particulates emitted by the suits.

BP20AJ1-17
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Table 1-4
SUIUQY OF SERVICING MISSION TIIOJNBS

UN

TI6iE , WBE^pS TIME
BI

AS
MISSION (DAYS) (DAYS)

Cryogen Replenishment

SIRTF Still Cold 3.2 2 3.1 2

STRTF Warmed to 150 K 3.8 2 4.1 2

Instrument Changeout and 6.2 3 6.4 3
Cryogen Replenishment

(1) Includes two round trips by OMV to 900 km orbit.
(2) Includes Shuttle launch and return.

e

i
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Because of the n^ied for assessing the impacts on the Space Station, a sum-

mary of the Station-based servicing missions is included as a stand-alone

document in Appendix A. It focuses specifically on the Space Station activ-

ities, with mention of the Shuttle only as a means of transportation of the

ASE to and from the Station.

1.3.1	 Cryogen R. eRlenishment Operations

ff Before servicing SIRTF from the Shuttle, the OMV must be used to retrieve it

from its 900 km orbit. The total weight of the OMV and the ASE are well

within the capability, for Shuttle delivery to a 400 km orbit, so shared

Shuttle missions are possible. The RMS is used to capture SIRTF and mount

it on the modified Cradle A in the Orbiter bay. After covering the sunshade

and connecting the transfer line and 'mbilical, the cooldown cryogen trans-

fer takes place. If SIRTF has been allowed to run dry, it will have started

to warm up to its outer shell temperature of about 200 K. To assess this

impact, we have examined one timeline that allows for cooling SIRTF from

150 K before transferring helium. After disconnecting and removing the sun-

shade cover, the OMV is used to redeploy SIRTF. The RMS is used to capture

the OMV and return it to the Shuttle bay.

Replenishing the SIRTF cryogen at the Space Station is essentially similar,

with some hardware differences and relaxed crew scheduling constraints. The

Mobile Remote Manipulator System (MRMS) will be used to transfer the ASE

from the Shuttle delivering it to its storage location, and then from the

storage • location to the servicing area. Shuttle-style rail and keel mount-

ing fittings are assumed to be available at various locations on the Station

for attaching the ASE and SIRTF. Some sort of enclosure around the ser-

vicing bay is assumed. The Station data buss will be used to communicate

between the external ASE kit and the control console inside the manned

module.

i
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1.3.2	 Instrument ChanSeout Operations

Changing out focal plane instruments in addition to replenishing the cryogen

imposes the most severe time constraints on the Shuttle-based servicing

mission, A separate EVA is required for instrument changeout, and extra

cooldown time is required since SIRTF must be warmed to 300 K. It is pos-

sible to accomplish this mission in 6.2 days with some contingency time

available.

Figure 1-18 shows one possible arrangement of the hardware in tbt; Orbiter

bay, with a separate carrier for SIRTF instruments and servicing tools. It

may be possible to save space in the bay by carrying these items on the A

Cradle, providing that clearance for crew access can be worked out. The RMS

would position the Manipulator Foot Restraint (MFR) as a work platform for

*he astronaut for instrument changeout.

Instrument changeout on the Space Station is essentially similar, except

that the operation would be performed in a servicing bay tent, and much

greater schedule flexibility would improve the capability of coping with

unexpected difficulties. The contamination environment inside tae servicing

tent will need to be examined carefully to assess the impact of particulates

from the tent, and the effect of confining the water vapor from the suits.

t

I
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Figure 1-18 Instrument Changeout Configuration on arbiter

1-41



Y

Section 2

CRYOGEN REPLENISMENT

Thir erection discusses the airborne support equipment (ASE) hardware re-

quiYr,,i$ for cryogen replenishment, The baseline SIRTF for which it is de-

signook is an all -liquid helium system; the tradeoffs and designs are there-

fore developed on that basis. The impact of servicing a dual-cryogen SIRTF

that also employs solid hydrogen is addressed separately. Servicing a sm-_11

Helium-3 system used to produce temperatures less than 1 K in the SIRTF

focal plane is also discussed.

W.1	 SYSTFA -LEVEL TRADEOFFS

a basic decisions must be made before cryogen replenishment hardware and

operations can be developed or analyzed. These are:

What is the basic replenishment scenario, and

What technique will be used to transfer the cryogen into the

SIRTF dewar.

i

After addxessing these two questions, this section will review the thermo-

mechanical pump transfer technique because it may not be familiar, and be- 	 kk_>

cause it is a strong candidate for use in replenishing superfluid helium	 yg

systems in space.	 The replenishment of cryogenic systems that also use 	
w

hydrogen or liquid helium-3 will be addressed in Sections 2.5 and 2.6 below. 	 r

r
2.1.1	 Mission Concept Options

There are two basic :scenarios possible for a SIRTF cryogen replenishment
mission:

•

	

	 Filling SIRTF directly from a tank filled on the ground and

transported to orbit, and

BP20AI5-1
2-1	 ,



n

Filling SIRTF from a permanently orbiting cryogen storage facil-

ity, which is in turn filled from tanks launched from the ground.

Various possible concept choices are )shown in Figure 2-1, and the one chosen

as the study baseline is highlighted. Since the storage tank constitutes

the principal element of the airborne support equipment (ASE) defined in

this study, the basic choices regarding the mission concept will be addres-

sed here. The configuration chosen for the shady baseline is not the only

possible one, and some alternate possibilities are briefly discussed.

The most straightforward approach to replenishing SIRTF is to fill the ASE

dewar on the ground, launch it full, and fill SIRTF directly from it. The

alternative is to establish a permanently orbiting cryogen storage facility

that is periodically resupplied from the ground. The choice depends on the

expected replenishment frequency for SIRTF, and whether other cryogenic

payloads would share use of the replenishment facility.

SIRTF is baselined to have life of 2 years before requiring replenishment,

and a life as long as 5 years is believed to be possible. l Given such a

long period between replenishment operations, it is unreasonable to estao-

lish a permanently orbiting facility for SIRTF alone. The cost penalty of

this option is illustrated by exploratory calculations which show that a

total of 11,500 liters of helium would need to be transported to such a

facility to allow it to replenish a nearly empty SIRTF, compared to only

5300 ,liters for the highlighted option.

The next choice is the maximum time that the helium will he stored on orbit

before filling SIRTF. This time must be long enough to allow rendezvous

with SIRTF, taking, into account the launch windows set by the orbit dynam-

ics and the logistics o4"' scheduling Shuttle flights, plus recovery of SIRTF

from its operational orbit and redeployment with the OMV. Three possible

choices are ahown in Figure 2-1, and explored in Table 2-1.

BP20AL5-2
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Table 2-1

ASE ON-ORBIT STORAGE LIFE TRADEOFF

r
F>

E ,,

DESIGN STORAGE LIFE	 VOLUME* (liters)	 COMMENTS

1 MONTH	 5,100

2 MONTHS	 5,300	 SELECTED AS BASELINE

12 MONTHS

PASSIVE COOLING	 9,750

ACTIVE COOLING 	;5,100	 DEVELOPMENT/RELIABILITY

PENALITIES,

REQUIRED TO FILL 4,000 LITER NEARLY-EMPTY SIRTF.

i

i

I'

1
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COST EFFECTIVESIRTFREPLENISHMENT
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Figure 2-1 Replenishment Mission Options
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Storage of one or two months on orbit has little impact on the total helium

volume required, because of the low boil-off rate of a well-designed dewar.

Storage of a year or more would result in a significant helium loss if the

passive cooling technology of IRAS and COBB were used, and would therefore

require 84 percent greater volume, with attendant construction and launch

cost penalties. This could be avoided by using closed-cycle mechanical

refrigeration to intercept the heat leak into the dewar, but only at the

expense of refrigerator development costs and reliability risk.

r

For purposes of this study, we have therefore chosen to baseline an ASE that
A 

s filled on the ground and is designed, to hold helium for 60 days on orbit

(plus a 30 day mArgin). We explore the use of this ASE to service other

payloads, but have not allowed the tradeoffs to be driven by that

possibility.

Another intriguing possibility is to design a dewar, or family of dewars,

for use with more than one cryogen. This would entail trading the in-

evitable performance compromises against the system-level logistic benefits

of "generic" cryogen replenishment hardware, whose development costs would

be shared by many potential payloads. The results of some exploratory cal-

culations are given below.

2.1.2	 Replenishment Technique Options

The choice of the liquid helium transfer technique.is  guided by the decision 	 0

tree shown in Figure 2-2. The top-level choice between transferring He I or

He II, or replacing the empty liquid helium tank with a full one, is addres-
r

sed before going on to the choice of the liquid transfer technique itself.

The state in which the helium is supplied to the transfer process (He I,

He II, or supercritical) will probably be the one in which it is transported

to space, but could conceivably be otherwise. The two most likely replenish-

ment techniques, using either a thermomechanical pump or a centrifugal

mechanical pump to transfer He II, are highlighted.

r
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In this report, we will use the standard notation He I for "normal" liquid

helium above the lambda-point transition at 2.13 K shown in Figure 2-3, and

He II for superfluid helium below the lambda point. This will prevent con-

fusion when discussing the two-fluid theory of He II in which it is re-

presented as a mixture of "normal" and "superfluid" components. Super-

critical helium is the dense but compressible state that occurs at tempera-

tures and pressures higher than the critical point.

Transfer Medium

Because the SIRTF dewar operates near 1.8 K, the helium transferred into it

must be cooled to that temperature before astronomical measurements can

resume. This is done by venting the SIRTF dewar to space, so heat is car-

ried off by the boiling of the helium as the pressure of the vapor above it

is reduced. The higher the initial liquid temperature after transfer, the

greater the loss of liquid helium in cooling it to the operating

temperature.

The impact on the SIRTF mission lifetime after replenishment is seen in

Figure 2-4, in which the volume lost is shown as a function of final operat-

ing temperature for various resupply temperatures. (The volume loss is more

relevant than mass loss, because the empty volume represents He II at the

operating temperature that might have been loaded into the dewar, but

wasn't.) The huge specific heat of helium at the lambda point results in a

significant lifetime advantage in replenishing with He II rather than He I.

For example, filling SIRTF with 2.7 K He I would give 85% of the maximum

lifetime, while filling with 2.0 K He II would give 97 percent. Filling

SIRTF directly with He II at 1.8 K (or below) would, of course, give the

maximum mission lifetime permitted by the SIRTF dewar.

N

Yi

f',	
i

The possible option of replacing the empty SIRTF He II tank with a full one

would eliminate the need for a technique for transferring liquid helium from

one tank to another in zero gravity. It would require, however, redesigning

SIRTF from the ground up, with a probable penalty in dewar lifetime due to a
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degraded surface-to-volume ratio, and

over the multi-year SIRTF lifetime.

design to accommodate a plug-in helium

sion risk by eliminating the design

experience from IRAS and COBB.

reliance on dematable He II joints

The drastic alteration to the SIRTF

tank would also increase SIRTF mis-

heritage and the benefit of flight

This tradeoff is therefore concerned permanently with the lifetime of the

SIRTF dewar after replenishment. Table 2-2 shows that transferring die II

directly into SIRTF at near the final operating temperature is clearly to be

preferred. This produces the maximum possible lifetime, and permits the

Airborne Support Equipment dewar to use the flight-proven IRAS and COBS He

II technology. The only reason to consider transferring He I would be if a

suitable liquid transfer technique for He II could not be found. The fol-

lowiII¢ paragraphs show that two promising candidates are available.

b_igud Transfer Technique

Figure 2-2 shows 5 techniques available for transferring He II. Sufficient

data and experience already exists to suggest that the two highlighters are

adequate to the task, and we find that the choice between them will have

little impact at the overall system level. We therefore recommend that

these two be developed in parallel while cryogen replenishment as a whole is

developed, and that the final choice be made before committing to the final

replenishment hardware design.

0

The thermomechanical pump reliGs on the unique physical properties of He II,

and is therefore largely unfamiliar. It consists of a porous plug and a

heater, and therefore offers the advantages of simplicity and reliability.

Development efforts aimed at on-orbit transfer of He II using this technique

are currently under way at GSFC2 and at BASD. The next section discusses

this option in more detail.

BP20AI5-5
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Table 2-2

r	
TRANSFER MEDIUM TRADEOFF

TRANSFER MEDIUM SIRTF LIFETIME IMPACT OTHER IMPACTS

He II Less than 3 percent shrinkage Requires He II contain-
' if filled at 2K or lower. meat.	 Can be based on
k IUS, COBB experience with

porous plug.

r Offers possibility of
maximum life with 100%
fill at operating
temperature, no shrinkage.

c
He I 8.4% to 40% lifetime Requires He I contain-

_ loss due to shrinkage with porous plug.	 it
in cooling to 1.8 K. FSased on MSFC SL-2

xperience.

Task Replacement Unknown.	 Requires new Cost and mission risk
:a design, analysis. due to loss of IRAS and

COBB heritage.	 u

F
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Mechanical pumps, such as conventional centrifugal pumps, are an obvious and

familiar possibility. These have been demonstrated by NBS with both He I

and He IIB , and detailed performance measurements have been made with He I.4

The heat input to the helium is less than that of a thermomechanical pump

operated above I.5K, 6 so the helium mass loss is lower. The biggest dis-

advantage to the mechanical pump is its reliance on ball hearings operating

in He II, which produces reliability uncertainties. These pumps are current-

ly under development and study by ARC/NBS.

Thrust assist, using the small aerodynamic drag on the Shuttle Orbter,6

special maneuvers of the Orbiter, or a long tether' between the supply dewar

and SIRTF to produce an artificial gravity, would eliminate the need for a

pump, but would constitute a major impact on the Shuttle mission. Flow rates

are expected to be extremely low. Because of the low density of He II and

practical limitations on the acceleration achievable, this technique can

only produce low pressures, which may seriously impact cooldown of the warm

transfer line, and possibly of a warm SIRTF.

Free expansion from the supply dewar to an initially evacuated SIRTF is

another possibility. This is the "thermodynamic" transfer technique under,

study by Martin Marietta for Lewis Research Center for the Cryogenic Fluid

Management Facility$ (CFMF). The receiver tank is vented to space, valved

off, and then filled with a controlled amount of cryogen from the supply

tank, with the receiver vent closed. The liquid flashes to vapor in the

tank and warm transfer line, absorbing heat until it is in equilibrium with

the wall. The cycle is repeated until the receiver dewar is cold enough to

permit filling without venting. Analysis has shown that reasonable cooldown

and transfer times are possible for liquid hydrogen at more than one

atmosphere, but calculations taking into account the lower heat of vaporiza-

tion and pressure (maximum of 38 Corr) for He II are needed to evaluate the

achievable mass efficiency. Since this technique was developed primarily to

avoid the use of phase-separating vents, the availability of porous plug

vents for He II removes the strongest motivators for using it.

R

M
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Expanding supercritical helium through a Joule-Thomson valve or orifice

produces a two-phase mixture of gas and liquid colder than the supply dewar.
This could, in principle, be used to produce He TI to fill SIRTF, but its
mass efficiency of about 30 percent rules it out as the primary transfer

technique. It could be used, however, in conjunction with free expansion to
remove the heat of condensation from the receiver dewar, $ or as an auxiliary

refrigerator to intercept heat leaks in the transfer line or bayonet joints.

The modeling results discussed below show, however, that these heat leaks

are not a large enough driver on the overall system to justify the separate

supercritical helium or He I tank required.

Table 2-3 summarizes the comparison of these 5 liquid transfer techniques,

and shows why vie have selected the thermomechanical and centrifugal pumps

for this study. From an overall system point of view, the tradeoff is be-

tween the simplicity, reliability, and high achievable static pressure of

the thermomechanical pump; and the possible pressure and helium mass advant-

age of the mechanical pump.

Because the choice has only minor

plenishment system, we recommend

in parallel, and that the choice

program. The performance of the

level planning and tradeoffs will
development approach minimizes pri

effect on the other elemen

that both pumping techniques

be finalized at the start of

two is sufficiently similar

be valid for either one, and

)grammatic risk.

is of the re-

be developed

the hardware

that system-

the two-path

2.1.3	 Thermomechanical Pumping Technique

This section will discuss the physics, hardware implementation, and expected

performance of the thermomechanical pump. Because it is usable only in He

II, it is unfamiliar to most people concerned with space hardware. The
physics involved and the hardware required, however, are simple, and appear

to be remarkably convenient for replenishing He II cryogenic systems in

space.

BP20AI5-7
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Table 2-3
LIQUID TRANSFER TECHNIQUE TRADEOFF

TECHNIQUE	 ADVANTAGES	 DISADVANTAGES

Therm omechanical Simplicity, reliability	 4.7% mass loss at 1.8 K
Pump	 due to no moving parts.

Mass loss occurs in ASE 	 Requires large vent in
dewar, so high-flow vent not 	 supply dewar.	 •
needed in SIRTF.

Easy to control flow rate. 	 Works with He II only.

Static pressures up to
500 torr attainable.

Under development by GSFC,
BASD.

Mechanical Pump	 Mass loss less, than thermo-	 Reliability risk due to
mechanical pump above 1.5 K 	 cold bearings.

Familiar technology.

Works with He I, other
cryogens.

Under development by
NBS/ARC.

Thrust Assist	 No pump required.	 Major impact on Shuttle/
Space Station op4rations.

Low flow rates,

Limited pressure
available for cooldown.

Free Expansion	 No pump required.	 Driving pressure <38
torr may impede cool-

May be used for other	 down.
cryogens on Space Station.

Under development by LeRC. 	 Unknown mass efficiency.

Joule-Thomson	 Intercept heat leak or	 Requires second dewar
Expansion	 remove heat from receiver 	 for supercritical He or

dewar. Used in combination	 He I.
with another transfer	 Subject to clogging of
technique.	 single small orifice.

BP20AJO-3
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After identifying the thermomechanical pump as one of the two leading candi-

dates for replenishing SIRTF, we focused our efforts on it for two reasons:

to complement the work under way at ARC and NB9 on the centrifugal pump, and

to provide specific focus for in-depth analysis that is largely applicable

to systems employing either technique.

Physical Concevt and Hardware

The thermomechanical pump is based on the "fountain effect" shown in Figure

2-5, a phenomenon which was first observed in He II in 1938. 9 A small heat-

er was observed to cause He II to flow through the tiny pores in a plug of
tightly packed powder, producing either a substantial increase in pressure

above that of the bath, or to shoot a stream of liquid as shown in Figure

2.-b

The physical basis of the fountain effect can be understood in terms of the

two-component theory of He II 10 which views He 11 as consisting of ''he sum

of two fluids, a "normal" component with density PN and a "superfluid" com-

ponent with density pS, such that the total He TT density is given by

p(T) = PN (T) + PS (T) .	 (2.1)

The fraction pS/p of the He II in the superfluid state depends strongly on
temperature T as shown in Figure 2-6. Just below the lambda point, the

liquid consists almost entirely of the normal compL,ant; as the temperature

approaches absolute zero, it becomes almost totally superfluid. The normal

component behaves like any other liquid, having finite viscosity and carry-

` ing thermal energy. The superfluid component carries no thermal energy

(i.e. it has zero entropy), and has zero viscosity under certain circum-

stances. In very small channels and at sufficiently low velocities e.g.

in the pores of the porous plug) the 7`,escosity is zero, but when flowing in

larger channels (e.g. in the transfer line) a "mutual friction" -with the

normal component leads to viscous pressure drop.

BP20AI5-3
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The basic operation of the thermomechanical pump is illustrated in Figure

2-7. The channel carrying He II is blocktifA a porous plug, having a pore

size (less than 1 µm) small enough that the viscous normal component can

flow only very slowly, but the superfluid component can flow freely. An

electrical heater (or other heat source, such as heat leaks into the trans-

fer line) raises the temperature to the right of the plug, thereby reducing

pS below that on the left. Random thermal motion of the atoms causes helium

to try to pass through the plug from both sides, but the larger pS on the

left permits a larger fraction of the liquid to pass freely from the left to

right than the other way round. The net effect is a net mass flow from the

colder side to the warmer right side, or an osmotic pressure increase AP on

the right given by the London equationll

AP = p S AT,
	

(2.2)

M

where S(T) is the entropy of the liquid and AT is the temperature

difference.

Extensive experimental work has confirmed that this phenomenon behaves as

expected. Figure 2-8 shows that the measurements of Hammel and Keller12

fall very close to the prediction of eq. 2.2 (suitably integrated over the

fiaite temperature difference across the plug), and show that pumping pres-

sures of about 500 torr can be achieved.

Figure 2-9 shows the elements of a replenishment system using a thermo-

mechanical pump. The supply and receiver dewars are connected by a transfer

line having one or two bayonet connections, and probably having a, signifi-

cant heat leak. The pump is connected directly to the supply dewar. Both

dewars are ve^,Aed though porous plug vents of the type used successfully on

IRAS, and nc ,,n to be launched on COBB and on the SpaceLab 2 Infrared Tele-

scope (IRT) and Properties of Superfluid Helium experiments.

BP20AI5-9
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The power supplied to the thermomechanical pump inevitably boils off helitun

liquid, but in a way that is at first surprising. Br::.,use essentially all

of the mass flow through the porous plug consists of the superfluid com-

ponent, which carries zero entropy, flow with zero heater power would in-

crease the He II mass on the right without increasing its total entropy.

This would result in cooling of the receiver dewar (thereby reducing AT and

tending to stop the flow). In order to hold the temperature on the down-

stream side constant and maintain a steady state flow 1, power P given by

P = mST	 (2.3)

must be supplied. This power does not cause boiling in the receiver dewar,

but adds enough entropy to the pure superfluid emerging from the plug to

maintain the SIp- ratio appropriate to the receiver temperature

TR = TS + AT,	 (2.4)

where TR and TS are the temperatures of the receiver and supply, respec-

tively. Another way to look at it is that this is the power required to

warm the 100 percent superfluid component from absolute zero to TR.

Since the mass being extracted from the supply dewar is essentially all

superfluid component, the total entropy on the left is constant while its

mass is being reduced. This would result in the warming of the supply dewar

(again, reducing AT and tending to shut off the flow) unless heat is somehow

extracted. For steady-state flow, TS is held constant by boiling in the

supply dewar, with the pump power P producing a vapor flow mLOSS out the t
supply dewar vent.

This mass loss is inherent in the use of the thermomechanical pump, and is

part of the system-level tradeoff to select the transfer technique. The

mass loss fraction is given by



LS'

OF

m LOSS / m = P / L	
(2.5)

ST/L,

where L is the latent heat of vaporization. This fraction is a function of

the temperature and fluid properties alone, and does not depend on hardware

design or transfer rate. Figure 2-10 shows that the transfer efficiency is

improved by reducing the temperature, and that the mass loss is .less than 5

percent for transfers at 1.8 K or lower. This would require a supply dewar

'

	

	 S percent larger than required for an ideal transfer. This may be an ac-

ceptable penalty to pay for the inherent simplicity of the thermomechanical

PUMP

Expected Performance

In order to learn what sort of performance can be realistically expected

from the thermomechanical transfer technique, BASD has undertaken an in-

ternally funded program of experimental and theoretical work on the problem.

Small scale laboratory tests have confirmed the underlying theory, and have

shown that 100 percent filling of the receiver dewar is possible. We have

developed a detailed numerical simulation which is revealing the design

drivers and allowing us to predict overall system performance under various

conditions. Large scale laboratory tests are underway to verify the simula-

tion results, and to demonstrate this technique on a scale relevant to re-

plenishing SIBTF.

Appendix B discusses the model we have developed, and gives the most impor-

tant results obtained to date. We will summarize these results here, and

discuss their implications for the conclusions of this study.

Figure 2-11 shows the hardware configuration presently modeled. The line

linking the dewars is taken to be 6 m long, 2.54 cm in diameter, and have

0.2 W/m of heat leak along its entire length. (Actually, the heat leak in

the 4 m inside the two dewars will probably be much smaller.) Each of the

aa
BP20AI5-11
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two bayonet couplings are assumed to contribute 1 W of heat leak. The sup-

ply and receiver dewars act as constant-temperature reservoirs during the

steady-state transfer.

The thermodynamic path on the P-T diagram followed by the liquid is shown in

Figure 2-12 for one particular set of conditions. The liquid is the supply

dewar is brought from its equilibrium vapor pressure at Tcc to m substantial-

ly higher pressure, given by eq. 2.2.. The liquid then flows down the trans-

fer line toward the lower pressure in the supply dewar (the vapor pressure	 E

of He II at TR), increasing in temperature until it reaches the receiver at

TR.

Expected performance for two different supply temperatures is shown in Table

2==. The principal difference is the increase in mass transfer efficiency

at the lower temperature, from 95.3 percent to 97.8 percent, due to the

decrease in mass loss shown in Figure 2-10. In either case, the fluid is

transferred into SIRTF at a temperature less than 0.06 K above that of the

supply dewar.

Most of the laboratory work with He II to date has been with flow rates and

geometries such that the flow of the superfluid component is laminar, even

though the normal component may be turbulent. Under these conditions, the

thermal conductivity along the column of moving liquid is remarkably high,

permitting a substantial fraction of the heat leak into the transfer line to

flow upstream and add to the heater power in driving the mass flow, accord-

ing to eq. 2.3.
k-

C^.

f

t	 K

There is uncertainty as to precisely what happens when the flow of the

superfluid component is highly turbulent, as may be the case in the con-

ditions relevant here. There is some evidence 13 that the two components

become locked together, effectively eliminating the anomalous thermal

conductivity along the liquid column. To test the sensitivity of the per-

formance of the thermomechanical transfer to thispossibility, we have

modeled two limiting cases:

HP20AI5-12	 u
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Table 2-4
PERFORMANCE AT TWO TEMPERATURES

SUPPLY THWERATURE

PARAMETER	 1.6 K	 1.8 K

Electrical Heater Power 	 19.34 W	 40.49 W

AT at pump	 0.012 K	 0.007 K

AP at pump	 3.99 torr	 4.18 torr

AP across transfer line	 2.43 torr	 2.66 torr

Receiver dewar temperature 	 1.658 K	 1.833 K

1000 liters/hour flow, 2.54 cm line diameter, turbulent limit model.

e
N

0.

BP20AJO-4
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Laminar flow, with pressure drop given by the laminar flow equa-

tion, and high thermal conductivity; sand

• Turbulent limit, with pressure dr+:p given by the Blasius equa-

tion, and thermal conductivity along liquid column negligible

compared to forced convection.

These two cases produce qualitatively different temperature profiles along

the transfer line, as shown in Figure 2-13. 	 (In this figure, a 1.27 cm
x

diameter line is used to produce larger, more easily seen temperature

changes than in the 2.54 cm diameter lines baselined.) Table 2-5, however,

shows that the difference in overall performance, while scientifically

interesting, has little impact at the system level for transferring large

quantities of He II in bpace.

The modeling and experimental work to date have not established the limits

of this technique, but they have shown what sort of performance is possible.

The conclusions that can be drawn for purposes of this study are:

	

^I• 	 The thermomechanical transfer technique is expected to work well,

with 100 percent liquid transfer into the SIRTF dewar at a tem-

perature less than 0.1 K above that of the supply dewar, and

	

•	 Flow rates on the order of 1000 liters/hour are achievable.

At this point it is reasonable to baseline the thermomechanical transfer

technique for replenishing SIRTF in space, with the centrifugal pump as au

attractive backup. Careful examination of the startup transient will be

necessary.

BP20AI5-13
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Table 2-5

PERFORMANCE BOI TNDS FOR DIFFERENT BUT TRANSFER ASSUMPTIONS

MEAT TRANSFER ASSUMPTION
PARAMETER LAMINAR PEOW TURBULENT LIMIT

Electrical heater power 37.97 W 40.49 W

AT at pump 0.001 K 0.007 K

AP at pump 0.65 torr 4.18 torr

Receiver dewar temperature 1,813 K 1.833 K

A

1.800 K supply temperature, 1000 liters/hour flow, 2.54 cm line diameter

BP20AJO-5 2-30.
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2.2	 MODIFICATIONS TO SIRTF

this section presents the recotomended modifications to SIRTF required to

perform an efficient on-orbit replenishment. The changes identified are

directed at all phasms of replenishment including cooldown, fill, stabiliza-

tion, and topoff. The recommendations are a result of reviewing many facets

of transfer operations such as:

•	 transfer operations for the IRAS project;

•	 cooldown performance of COBB;

comprehensive review of conditions that might take place in ac-

complishing an on-orbit cryogen transfer on the Shuttle or the

Space Station within a practical time frame; and

•	 a fluid flow model of the Helium-II fill process.

2.2.1	 Impact of On-Orbit Cooldown

In filling a cryogen system the longest time element required is for the

cooldown process. This is due to the large amount of heat which must be

removed from the receiver tank and the instruments attached to it. In the

case of SIRTF these instruments are the telescope and MIC. This heat must

be removed through either GHe conduction or forced convection to the cooling

GHe from the tank, and through thermal-mechanical joints of sometimes dif-

ferent metals, and or instrument joints that are purposefully isolated to

permit elevated temperatures during flight operation. For ground operations

extended cooldown time results only in a larger quantity of coolant re-

quired. In space extended cooldown time could result in not filling the

receiver tank because of insufficient mission time.

Tradeoff comparisons of the three major constituents for cooldown were made

and are summarized below. The three elements are:

•	 ability of the GHe to absorb the heat being removed from the

cryogen tank, and telescope and MIC instruments;

BP20AIS-14
2-.'32



I

•	 heat transfer ct^efficient between the metal thermal joints;

•	 heat transfer coefficient between the GHe boundary layer and the

tank.

The minimum cryogen quantity is achieved by limiting the helium flow to that

required to absorb the heat flow into the GHe. At the beginning of cooldown

the line size limits the rate of GHe flow unless modified. The heat trans-

fer coefficient across the thermal joint used for cooling the IRAS telescope

was the limiting factor heat transfer and led to a long cooldown time (42

hours) and larger than expected consumption of Me (2400 li'14ers for cool-

down). ( "Cooldown time" as used here means the time required to begin col-

lecting liquid. The time required for the temperature of the optics to

fully stabilize is not included.) For COBB the desi gn was changed to higher

joint loadings, providing a higher thermal conductance which resulted in a

cooldown time of 20 hours. The fill time was less than 5 hours. The BASL

model developed for the STICCIR study predicted, before the fact, a cooldown

time for COBS of 29 hours. The total cryogen cooldown quantity predicted

was 1240 liters; actual consumption was approximately 1190 liters. The

conductance predictions between the GHe and the tank, and the metal-to-metal

thermal joints were conservative.

2.2.2	 Plumbing Modifications

As mentic,,,:-,d above certain changes are recommended to improve cooldown char-

acteristics of the SIRTF dewar. Figure 2-14 pictorially presents the opti-

mized flight fluid management scheme with the y on-orbit replenishwen't changes

enclosed in the dashed box. The modifications are summarized in Table 2-6.

BP20AI5-15
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Table 2-6

PLUMBING ADDITIONS/MODIFICATIONS

REQUIRED FOR REPLENISHMENT

Item	 Function

Forced Convection	 Increased GHe heat transfer reduces cooldown

Heat Exchanger	 time

Large Porous Plug Flexibility during transient cooldown and

flexibility in replenishment fluid tempera-

ture

Short Vent Line
	

Increased fluid °;flow at warm temperatures

reduces cooldown time

Increased Valve Orifice	 Reduced pressure drop for precooling system

The forced convection heat exchanger has been added to enhance the heat

transfer between the GHe and the tank. It is located next to the cryogen

tank mounting flange to increase the conductance to both the tank and the

telescope/MIC areas. As mentioned above a transient model of the cooldown

of SIRTF was developed to determine the sensitivity of the various elements.

Adding the forced convection heat exchanger in series with the internal tank

Gge conduction cooling, the gas to metal heat exchange rate was increased to

the value th-.:.t it no longer is a constraint for cooldown. The GHe conduc-

tance across the 1.5 inch boundary layer caused by the internal structural

fins was approximately 18.4 watts/K at 250K and decreased to approximately

1.6 watts/K at 10K. The forced convection heat exchanger can be made to

transfer 107 watts/K at 250K and 60 watts/K at 10K. Analysis for these data

are in Appendix D. Also liquid will collect in the tubular heat exchanger

before it collects in the tank so that film or nucleate boiling will take

place enhancing the cooldown process to the telescope at the cold

temperatures.

BP20AI5-16	
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The second item added to the plumbing is a separate large vent porous plug

which permits loading of S£He at temperatures higher than normally desired

for on flight operation, i.e., load at 2.OK and reduce tank pressure until

tank temperature is reduced to 1.6K in a short time. This large porous plug

also permits flexibility during transient cooldown operation when the in-

coming helium may be slightly above 'the lambda point and the transition to

superfluid can be made to occur in the plug.

Flight cooldown will be enhanced by adding a flight cooldown valve which

permits the cooldown GHe to be vented out the short vent line connected to

the transfer plug. This permits the normal flight vent to still function

and maintain the shields cold, but exhausts the bulk of the effluent GHe

during cooldown with only a small pressure drop.

One of the main flow restrictions in any fluid management system are the

valves. For IRAS ball type valves were used to minimize back pressure.

Since flow conductance will be important for on-orbit replenishment, more

emphasis must be placed on the valve selection and design. Ball, butterfly,

or gate valves of about the same diameter as the vent lines will be rquired

to permit a large flow without increasing the pressure drop across the vent

and fill system,

Redundancy is a very important safety consideration. It is not clear at

this time whether space station safety will permit function redundancy or

require complete component redundancy. The proposed system is functionally

redundant in that the tank can be vented by a number of paths; e.g., the

fill line, the porous plug, the two vent lines. The flight porous plug for

SFHe retention cannot be internally closed off and is protected from over

pressure by an external burst disk and relief valve system.

BP20AIS-17
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2.2.3	 Aperture Cover

In preparation for cryogen replenishment, the aperture of the SIRTF tele-

scope will be closed to prevent contamination from entering the telescope.

The planned cover would be a simple blade type shutter which does not form a

vacuum seal but does eliminate line of sight paths for gas and particle

contamination. This blade will be at the outer shell temperLture and as

such could radiate up to 13 watts of heat to the fore baffle.

several methods: The first and

ing on the blade thereby reducing

is to install a blanket on both

is reduced, also the cover will

the last and most difficult, but

blade cover and cool it to less

a heat exchanger attached to the

The radiated heat load can be reduced by

simplest is to plate a low emissivity coat;

the effective emissivity; the second method

surfaces such that the radiated heat load

cool off and thereby reduce the heat load;

most effective, is to thermally isolate the

than 70TC by GHe refrigerant flowing through

sliding cover.

In the recent BASD study l of SIRTF a case was made for a vapor cooled fore

baffle. With the vapor cooled fore baffle design, very little of the cover

parasitic heat actually gets to the cryogen tank, since the fore baffle is

effectively isolated from the tank and the parasitic heat is carried away in

the effluent 'GHe, less than 0.5 watts in the worst case. See Appendix D for

the detailed analytical data.

2.2.4	 Impact on SIR,TF Performance

This section discusses impact of thz on-orbit replenishment modifications on

the SIRTF lifetime. The two contributors that decrease the lifetime are the

increased fill line size (assumed to be 2.5 cm. in diameter instead of 1.9

cm as was used in the thermal/cryogen system study), and the additional

short vent line from the transfer, porous plug. The degradation is 0.18

years for the baseline 4,000 liter dewar, or a decrease from 2.59 years to

2.41 years. The backup analysis and model description is included in

Appendix D. This is a reduction of 7 percent in lifetime.

BP20AI5-18
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A second area of degradation could be refilling a warm SIRTF after an in-

strument changeout. The precooling phase assumes that the total system is

cold at start of fill but, is very possible that components within the in-

struments may not have good thermal contact i%nd be cooling down, for hours

after fill. This would degrade the lifetime by some factor. To counteract

this problem the timeline provides for a aettli„ng time Mind then ai topoff. . A

second way of reducing long term cooldown is to require that the instruments

be designed to be cooled within a certain time, and to verify this by test.

The operating temperature of SIRTF will not he impacted by an on-orbit re-

plenishment. The joints must be designed to remain in contact after mul-

tiple thermal cycles and launch vibration and 'will be verified in ground

test operations 'long before on-orbit replenishment.

2.3	 AIRBORNE SUPPORT EQUIPMENT DESIGN CONCEPT

Eased on the tradeoffs discussed above, we present here the design concept

for the ASE for replenishing the He II in SIRTF. Operations, replenishing

hydrogen, and replenishing Helium-3 are discussed later.

The fundamental design requirements that we have used in defining the ASE

are that it' be:

•	 Capable of filling SIRTF within 60 days of launch,

•

	

	 Capable of being used on either the Space Shuttle or the Space

Station, and

•

	

	 Self-contained, consisting of one easily-handled unit (the

External ASE Kit), plus the control panel (the Internal ASE Kit).

The first requirement determines the cryogenic design of the ASE and its

volume. The second determinas 1;.. overall configuration and the SIRTF hand-

ling hardware associated with it. The last requirement is intended to sim-

plify operations, and amounts ' to requiring that the transfer line, electri-

cal umbillicals, etc. be stowed on the large ASE dewar.

EP20AIS-19
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2.3.1	 Cryogenic Aesiet

This seu.;isu discusses the cryogenic design drivers for the Airborne Support

Equipment. Parameters of primary importance in the tradeoffs were;

•	 Quantity of supply cryogen required

•	 Conditioning required for transfer efficiency

•	 Liquid acquisition by the pump

quantity of Supply Cryogen Required

The first design driver includes all elements which contribute to the quan-

tity of Me required to cool and fill the SIRTF receiver dewar. This in-

eludes the efficiencies for cooldown, line sizes which might "limit flow

rate, and conduction and convection heat transfer coefficients. A series of

tradeoffs were made regarding the effect on cooldown time of increasing the

heat transfer coefficient between the tank and the GHe flow, and of increas-

ing the metallic thermal joint contact between the telescope/MIC instruments

and the dewar mounting ring. The result of these tradeoffs was that the

metallic conductor is the limiting factor and doubling the GHe heat transfer

had little impact on the cooldown time and quantity of LHe required to pre-

cool the SIRTF cryogen tank.	 This is discussed in more detail in

paragraph 2.4., 2 .

To determine the total quantity of cryogen required, the cooldown quantity

was determined and added to the fill quantity based on a transfer efficiency

of 95 percent (the supply dewar loss through the vent at 1.$K). Then the

tank was sized for storage losses of 0.1 percent, 0.2 percent, and 0.5 per-

cent per day. These percentages represent an IRAS type insulation with a

fourth vapor cooled shield, an IRAS type system, or an insulation system

representing standard commercial supply dewar technology, respectively. The

results of the three different insulation systems designed to fill SIRTF

when still wet, at 150K, and at 300K are presented in Figure 2-15. As can

be seen the 0.1 percent per day loss system is almost mandatory, at least

AP20AI5-20
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tangeout takes place and the cryogen tank must be cooled

from sum. 'rte effect of cooldown, transfer efficiency and supply dewar

hold time are better appreciated in Table 2-7 which identifies the percent-

age each contributes to the supply dewar sizing.

Table 2-7

Contributors to Cryogen Volume Required

SIRTF Tank Condition

Wet	 150K	 300K

Operation	 liters	 %	 liters	 %	 liters	 %

Cooldown	 25	 0	 31545	 36	 51078	 43

Transfer Efficiency	 210	 4	 210	 2	 210	 2

Fill	 41000	 75	 4,000	 41	 4,000	 34

Margin (15% of cooldown 632	 12	 11163	 12	 1,325	 12
and delivered quantity)

Hold Time	 458	 9	 882	 9	 1,069	 9

Total	 5,325	 100	 9,800	 100	 11,682	 100

,ply Dewar Venting

This refers w the requirement to vent GHe from the supply dewar during the

transfer to maintain the fluid at a lower temperature than the receiver

dewar. The percentage loss of helium is shown in Figure 2 -16. As can be
seen, is a function of temperature only.

Liquid Acquisition by the Pump

Some device must be used to assure that a sufficient flow of helium is al-

ways present at the pump entrance to maintain the SfHe transfer. Two con-

cepts considered are the use of surface tension screens or a centrifugal

device that causes the liquid to be thrown to the outside surface of the

BP20AI5-21

,-

t

2-41



a
M
0
x

a

chi

CL

cn

w

a
CL

x
a

a-

v
H

v
z
ca

W
x

TEMPERATURE (K)

A/N 5708

Y'!

!J

Figure 2-16 Supply Dewar Helium Loss

2-42-



NIP F 8F

}

tank in a rvirling motion. Two types of devices which have been suggested

for this action are big paddle wheel blades driven by a motor, or redirect-

ing a small portion of the transfer hel:".um back into the tank through tan-

gential jets to cause swirling action. Both concepts are preliminary and

deserve further study. Preliminary analysis indicates that surface tension

screens presently available will probably retain the SfHe. The magnitude of

orbital G-loads which may be encountered must be reviewed relative to the

surface tension screen retention capability.

Fluid Management Scheme

Figure 2-17 presents one concept for a SfHe supply system which could be

used to refill SIRTF on orbit. It consists of a cryogen tank connected

through various fluid management components and lines to a transfer line

which is either remotely or through astronaut EVA connected to the vehicle

being resupplied. The transfer line will probably be of minimum-length

consistent with the fixturing required to hold the SIRTF near the ASE supply

dewar. The schematic pictures two bayonets which are typical but to reduce

heat leak to the SfHe being transferred only one may be desirable.

Included in the fluid management components are large orifice, remotely

actuated valves used to control the SfHe. 	 A fill line is included for both

ground and on-orbit refill of the SfHe. The vent line is for use during

ground fill. There are three porous plugs included in the supply dewar.

The first is a small size plug, sized for venting the normal loss rate dur-

ing standby operations. A larger plug (approximately 18 cm in diameter) is

used to retain the SfHe but allow higher vent rates during the transfer

operation. The third plug is the thermomechanical pump used to transfer up

to 1000 liters/hour of SFHe to the receiver dewar.

A centrifugal mechanical pump is an alternative to the thermomechanical

pump, it is being developed by the National Bureau of Standards under con-

tract to NASA-ARC. An attractive feature of the thermomechanical pump is it

has no moving parts and requires only 'a heater. The mechanical pump has a
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higher efficiency at fluid temperatures above 1.5K, but the heat from the

motor will be partially absorbad in the transferred cryogen and must be

vented from the reaeaive,r tank. The GHe is vented from the supply tank when

transerring with a t'hermomechanical pump.	 Both pumps require further

development which is presently in progress. Beth BASD aui NASA -GSFC have

thermomechanical pump programs underway, and NASAL-ARC is developing a

mechanical pump.

The number of valves may vary slightly depending on the flexibility re-

quired. The portrayed scheme permits a very large number of options for

precooling, venting and operating the supply dewar. Additional components

such as temperature sensors, pressure transducers, liquid level and or mass

quantity gauging devices will be required. Perhaps a cold flow meter in

conjunction with a warm flow meter may be rsed if adequate mass quantity

gauging is not available when required. All lines that may trap cold GFe

will be supplied with burst disks and relief valves to avoid excessive pres-

sure which might damage the Cryogen tank.

Redundancy is required for Shuttle and Space Station safety. It is not

clear when dealing with an inert fluid such as SfHe whether the redundancy

required should be redundancy of function or redundancy of components. The

existing fluid management scheme provides double and triple redundancy for

venting to keep pressure within safe limits. It "Joes not provide redundancy

of components. There is only one fill line for instance; the bayonet coup-

lings can have redundant 0-ring seals but the fill bayonet as a whole is not

redundant. This i_- an area that needs further definition and study.

2.3.2	 Dewar Mechanical Design

The first tradeoff to be made is the configuration of the ASE dewar. A

spherical shape will always yield the least weight for the tanks, but there

are other considerations besides minimizing weight. A commonly built form

of dewars is cylindrical with torospherical heads. A cylindrical tank could

BP2klAI5-23
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be mounted in the STS ':ay either axially or radially. After the configura-

tions were sized, a review was made of the existing STS carrier designs, but

none were found suitable for mounting the ASE dewar. Therefore it was de-

cided that all configurations should be trunnion mounted on STS sill and

keel fittings.

Figure 2-18 illustrates the three configurations sized for 5300 1 of LH2,

plus 10 percen^ ullage. The axially mounted cylindrical configuration is not

really a cylindrical inner tank, but two torospherical heads butted edge to

edge. The radially mounted cylindrical tank is so inefficient a usage of

volume that it was dropped from further consideration. Figure 219 shows

the two remaining configurations sized for 11,750 1 (plus 10 percent tillage)

for servicing a wam, (300 K) SIRTF.

Table 2-8 lists the relative weights for the two 5300 1 configurations. The

wall thickness for all tanks were sized by buckling criteria for external

pressure. No design effort was made for weight reduction such as waffling

or ribbing. Weight reduction for the cylindrical dewar should be more easi-

ly attained than for the spherical dewar. The spherical tanks already have

minimal walls.

Table 2-9 shows identical trends for the 11,750 1 dewars. The cylindrical

dewar has much heavier wall thickness in the torospherical heads. Also, it

has greater surface area resulting in higher VCS and MLI weights.

Weight versus Length

Another criterion to be considered is the average weight per unit length.

The STS can carry a payload of 29,500 kg and the bay is 1830 cm in length.

The maximum average utilization is 16.1 Kg/cm. Using the weights from

Tables 2-8 and 2-9, and the lengths from Figures 2-18 and 2-19, gives

°r
i
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Table 2-8

COMPARATIVE WEIGHTS OF 5300 LITER ASB DEWARS

Component	 Spherical	 Axial Cylinder
(kg)	 (kg;)

Inner Tank 210 570

Outer Tank 285 900

Garth Rings 48 49
V IS 160 210

ULI 46 65

Plumbing, Straps 15 16

LHe 665 665

Trunnions 62 30

Electronics 45 45

TOTAL 1536 2550

Table 2--9

COMPARATIVE WEIGHTS OF 11 0 750 LITER ASE DEWARS

Component Spherical Axial Cylinder
(kg) (kg)

Inner Tank 331 805

Outer Tank 770 1210

Girth Rings 50 70

VCS 262 310

IWLI 69 90

Plumbing, Straps 32 34

LHe 1470 1470

Trunnions 114 63

Electronics 45 45

TOTAL 3143 4097
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GV7

A,

H

Volume Cliter__,_-
Configuration	 5300	 11,750

Spherical dewsxs	 5.4 kg/cm	 9.2 kg/cm

Cylindrical dewars	 14.1 kg/cm 17.4 kg/cm

This indicates thi^t the spherical dewars do not utilize their bay length

very efficiently and that perhaps the additional weight for cylindrical,

dewars does not impact launch costs drasti. :al,ly.

Fabrication

Ease of fabrication is a criterion which directly affects cost. Fabrication

of the shaped shells for the tanks is about even. They have about the same

number of weld seams, but the seams are longer on the cylindrical dewar.

The biggest difference, and the most labor intensive, lies in installing the

MLI blankets. Spherical blankets require cutting and hand sewing gore

sections. The torospherical shapes are much easier to lay up because they

only need to be slit part way.	 Also the less seams in the blankets, the

better they perform.

Versatility

If a spherical dewar is in the design or fabrication stage and the volume of

LH2 requirement increases, all design and hardware must be scrapped and

redone. For a cylindrical dewar using the maximum size torospherical heads

for the STS, only the cylindrical sections need to be changed in' length.

It should prove easier to manifest a shorter length item aboard the STS,

given a choice. This is another advantage for the cylindrical dewar.

a	 ,

^^	 r
BP20AI5-25	 3,
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Conclusions

Unless the extra weight proves a cost driver for STS launch, the advantages

of the cylindrical dewar make it the logical choice. Figure 2-20 illus-

-trxt+es the configuration of the 11,750 1 ASE dewar. The inner tank and

'GCS's are supported by six fiberglass support loops from the outer tank

girth rings.. For space station operations, two grapple fixtures are provid-

ed, in order for the STS RUS to hand off the ASE to the space station MRMS

For liquid helium transfer from the STS, no grapple hooks are required. The

dewar is fitted with sill and keel trunnions and will interface with the

PRLA's at the sill and the AKA at the keel. The ASE is self-contained. The

transfer hose is mounted in clips and the electronics bo*es and cables are

carried between the girth rings. Only the control console is stored else-,

where. Figure 2-x21 shows the 5300 1 configuration. It is identipal except

for size.

2.3.3	 SIRTF Handling Hardware

On STS

The Multimission Modular Spacecraft Flight Support System (MMS/FSS) is a

reusable platform that provides the structural, mehanical, thermal and

electrical interfaces between the MMS or other spacecraft and the STS for

launch, retrieval, and on orbit servicing. Of interest for SIRTF is a com-

pact, short bay length platform for launch and retrieval of ORU's and dock-

ing facilities on orbit.

The FSS consists of three independent cradles identified as cradle A, cradle

B and cradle, A prime. They are illustrated in Figure 2-22. They can be

used in combinations. The A prime is an A cradle with a docking ring which

can position and, rotate a spacecraft. That capability is not essential to

servicing SIRTF. Therefore, a modified A cradle was selected as a candi-

date, and is shown in Figure 2-23.
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The modifications consist of replacing the cross brace with an inverted

brace with a fined docking device suitable for SIRTF. In addition, some

brackets have been added to provide storage for Orbital Replaceable Units

(ORU's). Existing attached points on the A cradle will b6 used so that the

basic unit does not need modification.

Figure 2-24 illustrates SIRTF docked to the A cradle and the STS, at an

arbitrary location. The docking interface consists of two pins on the keel

trunnion of SIRTF. This type of docking mount has been analyzed for Lease-

craft and found adequate during primary and vernier thruster maneuvers.

On Space Station

Both SIRTF and the ASE are trunnion mounted for STS launch, as will other

spacecraft which dock with the Space Station. Therefore, it seems logical

that the SS will have hardware duplicating the STS sill and keel fittings

for a 3-point ;zAeniion mount, as shown in Figure 2-25. However, when one

considers the size of such hardware compared with the 2.7m long sections of

the SS, it is not trivial hardware. Since it appears feasible to dock SIRTF

to the STS with a close coupled pair of pins on the keel trunnion it should

be a-ren more feasible on the SS, since there are less perturbations. The

hardware would be much smaller and easier to handle.

2.3.4	 Electrical Configuration

For the ,purposes of this study, a strawman concept of the ASE electronics

subsystem was roughed out in order to estimate power requirements of the

ASE, establish a framework that could be used for developing self-consistent

operational scenarios and to assist in formulating the development planning.

It is not intended to be complete or detailed below the subsystem level, but

does establish the conceptual footing for the eventual requirements for the

overall system.
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The electronics subsystem can be divided into two categories: the Dewar or

external electronics, which are mounted on the shell of the ASE dewar, and

the control or internal electronics which *,ould be located inside a Space

Station module or reside in the Aft Deck of the shuttle.

A block diagram of th- electronics subsystem is shown in Figure 2-26. Note

that there is a direct connection from the ASE external controller to the

SIRTF dewar. It is assumed for reliability and simplicity that a hard line

connection between the external and the dewar electronics of SIRTF allow-

ing direct control of SIRTF valves as well as sensor monitoring would be

desirable.This gives direct control authority (either manual or automatic)

to the ASE system control console for the entire transfer operation. Power

to the SIRTF could also be provided through this interconnect if

appropriate.

The external electronics consist of:

• Valves and valve controllers- provides drive power, position

sensing and current limiting. Eight valves are assumed for the

ASE Dewar.

•	 Temperature Sensor Electronics- Conditioning and monitoring elec-

tronics for 40 temperature sensors in the ASE dewar.

•	 Pressure sensor electronics- High voltage power supply and con-

ditioning electronics for guard vacuum pressure transducers.

• LHe mass quantity sensor and electronics- electronics for the LHe

mass quantity gauging in the storage dewar. This is a develop-

ment item.

•	 Pump Driver- Power conditioning and logic for the pump system.

This is a fully redundant system. This is a development item.

BP20AI5-28
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•	 He flow rate sensor- ElectroJ,4ics for in line flow meter or other

transducer. This is possibly a 4evelopment item.

Barometric valve controller- The vent valve of the ASE dewar

opens automatically during shuttle ascent or closes during

descent.

• External Controller- Control logic that distributes commands to

and collects data from external electronics subsystems and to the

SIRTF main dewar electronics. Provides primary power conditioning

if required as uhs interface to either the Space Station or the

Shuttle power bus. Interfaces to the Space Station and/or Shuttle

data bus to communicate with internal control electronics.

The Command Console or Internal Electronics coneists of:

•

	

	 Data/Command Interface- Device to act as interface from the com-

mand console to the Data bus on Station or Shuttle.

• Display and Manual Controller- In the Shuttle this would be the

aft deck Standard Switch Panel. On Space Station presumably a

similar device would exist. It provides positive manual control

authority for valve opening or closure to the crew.

•	 Data/Command Computer- For acquisition of sensor data and par-

' tially or fully automated control sequences used during the

transfer operation. The level of automation involved may vary

from manual execution of separate preprogrammed sequences to full

automated control of the entire transfer, depending on the re-

quirements established at the time. This unit would most likely

be a familiar NASA standard such as the GRID computer.

BP20AI5-29
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Estimating the number of lines of code for the computer at this

time would be premature, but one might get an idea from the fact

that the COBB GSB control computer required approximately 1500

lines of code while the computer used for the Orbital Refueling

System experiment flow on STS mission 41-C used a software system

consisting of 42K words.

•	 Computer/Telemetry interface- To allow transfer of data to and

command from Ground Operations Control.

Table 2-10 shows data rate and power estimates for these electronics. These

estimates are extr9polated from the existing COBE dewar.

2.3.5	 Performance with Other Cryogens

The baseline (5300 liter) ASE supply dewar has also been evaluated as to

performance with other cryogens. The support size was changed to much

stronger supports (7.5 x SFHe only) for the heavier L02 and LN2. The re-

mainder of the insulation system and tank design is the same. Therefore the

dewar is not optimized for any cryogen but is universal for all cryogens

stored and supplied at low pressures of less than two atmospheres. The

fluid management scheme required for SFHe is significantly more complex than

is required for the other cryogens, but all cryogens can be resupplied by

the design proposed for SFHe.

The losses of cryogen which might be incurred are presented in Table 2-11.

Note that the first column is the ASE supply dewar with the supports pro-

posed for storage of SFHe. The remaining columns show the effect of using

supports sized for L02 and what losses are incurred for a universal supply

tank design.

BP20AI5-30
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Table 2-10

POWER AND DATA RATES FOR ASE DEWAR ELECTRONICS

QM RATE(BPS)

VALVE CONTROLLER 30 8

salsoRs
TEMPERATURE 2 320
PRESSLFIE- 6.0 16
LFle MASS 5.0 1
FLOW RATE 1.0 16

CONTROWER
HEATER 5 16
PLw 50 16
LOGS BOARD 15 128

MAER
CONDUMING 35
TO SIRTF 55 Ll 2

TOTALS 197 <1 K
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Table 2-11

Supply Dewar Performance With Other Cryogens

y	 Loss in 00 Days (liters)

Supports Sized for LO2

Dewar	 SFHe	 SFHe	 LH2	 LO2	 LN2
Size	 Sized
	 w

Supports

5300	 478	 1257	 608	 211	 292
	

a

2.3.6	 Use With Other Cryogenic Payloads

The ASH described here can be used to replenish other helium-cooled payloads

smaller than SIRTF. The available volume after a given time on orbit or

after filling another payload can be computed using Figure 2-27. This shows

the liquid remaining in the 11,750 liter ASH as a function of time (includ-

ing ground hold time b^af ore launch) .

Once the SfHe volume required to fill (and possibly cool) a given payload

has been calculated, the curve shows directly how long that much fluid will

be available in the ASE. Drawing that much liquid out moves the ASE to a

new point further to the right on the curve. The amount available for fill-

ing another small payload can then be determined.
	 y;

V
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2.4	 CRYOGENIC OPERATIONS

The following paragraphs present a list of tasks which must be performed in

replenishing SIRTF. A detail discussion of the two major time elements,

cooldown, and We transfers are then presented.

2.4.1	 Operation Sequence

The following table presents the sequence of events for a normal on-orbit

replenishment of SfHe. 	 The specific steps are self-explanatory but the
method of performing them merits some discussion. This section discuspes

only the cryogenic operations.

On-Orbit Replenishment Sonli ce

Task	 Function	 Time (hour)

1. Connect Transfer Line	 May be connected by Astronaut EVA	 1

to SIRTF Fill Bayonet	 or remotely. Effect a seal between

transfer line, supply dewar, and

receiver dewar

2. Connect Control Con-	 Provides Electrical power and con- 	 1

sole electrical cables	 trol between supply and receiver

to supply dewar and	 dewars EVA or remote

receiver dewar

3. Functional check, of 	 Verifies system integrity 	 1

all components

4. Leak Check	 A leak could increase during cool-	 1

down and prove a hazard to astro-

nauts suit or other equipment.

Pressure decay type leak check.
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S. Initiate Cooldo^{a	 Open SfHe supply valves and start 	 20

cooling plumbing and tank (assuming

150K initial temperature).

6. Fill	 Will occur automatically after	 5

system is cooled. Vent plug bypass

valve is closed to retain SfHe in tank.

Monitor mass quantity gap. Transfer

ratite is 1000 liters/hour.

h
7. Stabilization	 Instrument elements may require a 	 5

stabilization time with associated

losses of cryogen.

8. Topoff	 Replace cryogen lost during topoff, 	 2

may be eliminated if instruments

are well heat sunk.

9. Position Fluid Manage-	 Change fill and vent valve position	 1

ment and electrical	 from fill operation to standby

components for dis-

connect

10. Disconnect Electrical 	 Disconnect electrical and cables	 1	 .t

and transfer line	 fluid bayonets, remote or EVA
a	

connections	 4

2.4.2	 Cooldown

As was previously mentioned a series of tradeoffs to -determine the sensitiv-

ity of the various factors effecting length of cooldown time and quantity of

liquid helium required to cool SIRTF were made. A simple SINDA transient

model of IRAS was developed with nodes for the metallic conductors, thermal

HP20AI5-33
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joints, GHe conduction, and the flowrate of Me helium. Thin model was then
adapted to the SIRTF configuration and used for the SIRTF cooldown. The

IRAS telescope and instrument temperatures lagged the fill line cooldown

temperature by some 40 hours. 	 Figure 2-28 presents the model simulation

plus the actual fourth cooldown cycle data.	 The simulation is very good

except for the temperature range between 140K and 30K.

To determine the cause of this 40 hour lag cases were run in which the heat

conduction coefficient was doubled and a separate case for the metallic

thermal joint interface was investigated. The results plotted in Fig-

ure 2-29 make it very clear that the metallic joint caused the long cooldown

time and the excess cryogen requirements.

For COBB, higher joint pressures on the thermal joints were applied, so for

predicting the cooldown rate of GIBE, the model used data derived at BASD

for joints loaded to 5000 psi and listed in Table 2-12. The GHe heat trans-

fer coefficient assumed was that of pure gas conduction across a boundary

layer of 3.8 cm thickness. The predicted cooldown time was 29 hours, and

quantity to cool the tank and mass model was 1240 liters. Actual time and

quantity to cool CODE was 19 hours and 1190 liters, respectively. There-

fore, the model appears to be quite accurate, and if anything somewhat con-

servative in heat transfers coefficients, probably in the thermal conduct-

ance across the metallic joints.

To minimize the cooldown time for SIRTF, the number of straps cooling the

MIC and telescope have been increased to six yielding the conductance listed

in Table 2-12. The flowrate during cooldown has been made proportional to

ttthe cooldown conductance o minimize the quantity of Me required, that is

	

^.^	 q	 Y	 q	 ,

with high heat loads a larger flowrate is required; with smaller heat loads,

	

x	 smaller flowrate is required to absorb the heat.

tP
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Table 2-12

Thermal Conductance Across Bolted Joints	 4'

Number of	 Total Heat
Tewperature Coefficient 	 Joints	 Transfer Coeffficient

	

(K)	 (mW/K)	 (mW/K)

	

2	 200	 6	 1,200

	

2-20	 1,000	 6	 61000

20 & above	 41000	 6	 24,000

The effects of the metallic joint conductances vs. the GHe cool.t'.g for SIRTF

is pictured in Figure 2-30. Note that the cooldown for SIRTF can be accom-

plished in approximately 29 hours if the baselined six straps and high con-

ductance joints are used, whereas doubling the GHe transfer coefficient

would require 42 hours to cool down.

Additional analysis was performed in investigating using a forced convection

heat exchanger in series with the rHe conductive cooling. The result was to

reduce the cooldown time by approximately one hour. At first glance this

would not seem to be much benefit but it was incorporated into the cryogenic

plumbing design because it gives additional heat transfer at temperatures of

10K and less where transfer coefficients become small. 	 The benefit is that
	

s

the heat exchanger tube will be the first place to collect liquid helium

that contacts the telescope. This will provide either nucleate or film

boiling at the telescope/MIC Instru p-nt interface, and provides design mar-

gin for fast and efficient cooldowL.

An additional concern regarding cooldown is the driving pressure required to

flow a sufficient amount of GHe through the plumbing to cool the tank and

plumbing. A flow rate of 200 liters/hour was required to absorb the heat

cited in Figure 2-31, but for a plumbing system 10 meters long with an in-

ternal diameter of 3.6 cm, a driving pressure of one atmosphere is required,

If this pressure would be limited to 200 torr which can be easily supplied

by the thermomechanical or mechanical pump either the flow will be reduced
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until the plwcbing is cooled to 75K, or the line size must be increased.

Fortunately the by-pass transfer line from the transfer vent plug provides a

larger (5.8 cm line) which can be accessed by adding a valve. The net re-

sult is that the 29 hour cooldowk time cannot be achieved with the baseline

SIRTF plumbing, but the modified oystem will permit it.

One area which must be investigated further is the cooldown rate of the

glass mirror. If 15K per hour is satisfactory, then we have an acceptable

cooldown plan, if not, then the cooldown time must be increased to meet the

mirror requirement.

2.4.3	 Transfer Rate

For this study an arbitrary value of 1000 liters/hour transfer rate has been

taken as a goal and analyzed as to its feasibility. The 1000 liter/hour

transfer rate permits filling of the SIRTF system within approximately five

hours. Based on the analysis cited in paragraph 2.1.3 and Appendix B we can

see that this flowrate results in only , a 2.7 torr pressure drop and a 33

millikelvin temperature increase for the steady state transfer using a

thermo-mechanical pump. Power required for the various temperatures and

flowrates can be calculated using the equation: Q = !ST

where:

	

	 Q = power Joules/sec = watts

m = mass flowrate grams/sec

S = Entropy - Joules/gm-K

T = Temperature - Kelvin.

For 1000 liters/hour the power requirement is plotted versus temperature in

Figure 2-31. One can see that the colder the supply dewar is the less heat

required to transfer the fluid. The pressure head developed can be deter-

mined by using the London equation:
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where:	 T1

T2

P

S

ap

internal

external

density

Entropy

Joules/c

A,

T
AP = fT p SdT

1

f

I

temperature - Kelvin

temperature - Kelvin

g/cc

Joule/g-K

= Newton/meter2 x 106

= Pascal x 106

For instance with T1 = 1.6K and

T2 = 1.7K

AP r 0.145 g/cc 0 . 285 Joule/g-K

= 0.004  JO^ile/cc = 4 x 103 Pascals

31 Torr

BASD has taken the laboratory tests one step further and is in process of

conducting a large-scale transfer test between 1.6 and 1.8K. Each tank has

a porous plug with an interconnecting line which simulates a transfer line.

The BASD SFHe flow model has been used to model the test configuration and

will be verified by the test.

Additional tests are planned by both NASA /OSFC and NASA /ARC in a series of

Hitchhiker tests which will be flown on the shuttle during 1989. The Hitch-

hiker tests consist of two derars connected by a transfer line with bayo-

nets. The pump on the initial flight will be a thermomechanical device of

approximately 3 micron absolute pore size and capable of transferring

Helium-II at rates up to 1000 liters /hour. Unfortunately the dewar sizes

are 175/liter and therefore- high flowrate tests will be of very short

duration.

i'
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A second method for transferring the nuperfluid helium is a mechanical pump

as described in References 3 and 4. The mechanical pump concept is a paral-

lel development sponsored by NASA-ARC and being performed at the National

Bureau of Standards. At the time of this writing additional flow pressure

and efficiency data is not available beyond that published in the two refer-

enced texts, so our comments will be based on that data.

The mechanical pump seems to be a very viable alternative to the thermo-

mechanical pump for transferring Sf$e. Performance plots for both normal

Helium-I and Helium-II are ;presented in Figure 2-32. The dates for the two

curves are given because the test program in 1975 used different instrumen-

tation and a slightly different configuration for the pump and motor. The

helium I performance was improved, therefore, one can expect a slightly

improved performance for the pumped SfHe.

Pump efficiency, defined as the ratio of the fluid power to electrical input

power, is approximate 30 percent for normal helium. The zero flow pressure

head 100 torr for SfHe and 120 torr for normal helium. Flowrates up to 900

liters/hour were demonstrated and 1000 liters/hour should be easily

achieved. The power requirement varied from 5 watts for pump speeds as low

as 3000 rpm to over 12 watts for speeds in, excess of 7000 rpm. The flowrate

also varied with power and speed.

The major tradeoff to be made between the thermomechnical and mechanical

pump is one of reliability. The centrifugal pump uses bearings and so is

subject to contamination and failure, whereas the thermomechanical pump is a

passive device requiring a heater only.

2.5	 DUAL CRYOGEN SERVICING

The baseline primary cryogenic system configuration under consideration for

SIRTF is an all SfHe system. However, an optional configuration for the

28.5' inclination orbit might be a dual cryogen system using solid hydrogen

to cool the aperture forebaffle. 	 This section will identify and discuss
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some of the major dual cryogen system servicing considerations plus identify

various options which might be used. Also an estimate of the quantity of

hydrogen and helium required, will be presented along with a schematic of

additional airborne support equipment required to service the hydrogen

system

The hydrogen would be used in its solid form; and since it cannot be trans- 	 d

ferred in that form, some method of transferring liquid hydrogen must be

devised. Liquid hydrogen transfer techniques are currently being studied

(Reference AG) for LeRC in the Cryogenic Fluid Management Facility (CFMF)

experiment (NASA/LeRC Contract 3-23355). The CFMF is a Shuttle payload

experiment which will be used to demonstrate the "thermodynamic filling

technique" for liquid hydrogen. The CFMF design calls for a supply dewar

which uses surface tension devices to acquire the liquid in a low gravity

environment. The key characteristic of the thermodynamic filling technique

is that the CFMF receiver is filled without venting.

The CFMF chilldown and fill technique is based on the use of lightweight

receiver tanks. Even the scale model tanks which are referred to as heavy

in CFW' literature have mass- to--vc;.l,ume ratios of less than one sixth that

expected for a foam filled toroidal SIRTF hydrogen tank and associated

shroud. The energy of the warm tank material is absorbed by raising the

pressure and the temperature of the liquid hydrogen in the CFMF receiver

tank. For the SIRTF application, this energy must be removed to lower the

temperature of the hydrogen to 10K. 	 Because of the much larger mass-to- 9

volume ratio and the energy introduced into the hydrogen, it is expected

that a no-vent fill is not practical without complete precooling of the

tank.

To pre-cool the SIRTF hydrogen tank a source of refrigeration will be re-

quired. Mechanical refrigeration is ruled out by the large power input

required to accomplish the cooldown and subsequent freezing. Either liquid

hydrogen or liquid helium must be selected as expendable cryogens. If

hydrogen is selected, a forced convection heat exchanger will be used in

BP20AI5-39	 2-78
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conjunction with a foam metal "sponge" heat exchanger in the SIRTF hydrogen

tank. Further analysis will be required to determine the relative effec-

tiveness of each.

	

2.5.1	 Transportation of Hydrogen

The CPVF experiment will use a 800 liter hydrogen supply dewar (Reference

HB). This size of dewar will be inadequate for SIRTF requirements so a

second dewar of similar design 'moo the Helium-II supply will be required.

If hydrogen resupply is possible at the Space Station, the SIRTF dedicated

hydrogen supply dewar and transportation will not be required. Since hydro-

gen will be supplied to the Space Station partially by scavenging unused

propellant from the Shuttle external tank and transportation on a space and

weight available basis, it can be expected that hydrogen resupply of SIRTF

at the Space Station will be most cost effective.

	

2.5.2	 Transfer Technique

The precooling of the hydrogen tank will be accomplished by routing cold

hydrogen through a forced convection heat exchanger, and then venting it

into the hydrogen tank to cool the foam inside the tank. One possible

transfer scheme and hardware are presented in Figure 2-33. Once the tank is

cooled, liquid hydrogen will start to collect and filling of the hydrogen

tank with a closed vent will be completed. The hydrogen then may be frozen

by either reducing the pressure over the liquid and retaining it by surface

tension in the foam or by passing Me through a heat exchanger attached to

the tank and cooling the hydrogen through' conduction in the foam. Other

methods have been eliminated because of the large quantity of helium requir-

ed, or because of risk in venting hydrogen fluid due to low surface tension.
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2.6.3	 Hydrogen Conversion to Solid

Table 2-13 shows the various options versus the required hydrogen supply,

helium supply, expected life, and fill Lnd freeze time. Table 2-14 shows

the liquid hydrogen and liquid helium required to precool the SIRTF hydrogen

tank, fill and freeze the hydrogen, for starting temperatures of 300, 150

and less than 20 K.

To arrive at a worst case requirement of helium and hydrogen refrigerants

necessary for the various cases, only the latent heat of vaporization was

assumed to be used for cooling. The source of helium for these operations

would be the helium ASE dewar, and would force the dewar to be larger. The

calculations are based on CFNF data and hydrogen properties. Heat exchanger

efficiencies have not been accounted for.

The first option shown in Table 2-13,

freeze the hydrogen, with a no-vent

liquid hydrogen. This option is t

quires the least development.

introduces the use of liquid helium to

ill.	 t.recooling of the tank is with

e recommended approach because it re-

It appears that a liquid hydrogen cool down of the SIRTF hydrogen tank,

followed by a thermodynamic fill and converting the liquid to solid by slow-

ly venting the tank to space, would be the simplest method to resupply of

the SIRTF hydrogen tank in orbit.	 After the first charge of hydrogen has

frozen, the SIRTF hydrogen tank is topped off by introducing additional
.

hydrogen through the vent line. It is expected that approximately 50 per-

cent of the void created by blow down and freezing can be reclaimed in this

manner. This method was not selected because of the question of whether the

aluminum foam will retain the liquid during this operation. Another draw-

back is the need to develop a cryogenic metering valve for maintaining

appropriate pressure drops across the foam metal in the SIRTF hydrogen tank.

BF20AI5-41
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Table Z-13

HYDROGEN FILL/FREEZE OPTIONS
F

LIQUID DELIVERED TO
RECEIVER DEWAR (liters)*

OPTION	 LH2 **	 LHe ***	 FILLS/FREEZE

	

TIME	 Y

(hours)

1. LH Heat Exchanger Cool Down	 3500	 5500	 50
No2Vent Fill
LHe Heat Exchanger Freeze 	 e,

2. LH Heat Exchanger Cool Down	 4.209,	 --	 95
No2Vent Fill
Blow Down Conversion to
Solid Two Top Offs

3. LH Heat Exchanger Cool ,Down 	 4400	 100
Vented Fill
Blow Down Conversion to

Solid Two Top Offs

i

*	 For 1650 liters of solid H 2 , 2.5 year life.
rF

.{9

** Equivalent volume of liquid at 20K density. 	 1t
6	 w	 f

*** Equivalent volume of liquid at 1.8K density.
4



Table 2-14

CRYOGEN VOLUME

REQUIRED FOR OPTION 1

snap	 CXkNTRIB TLOR
SUPPLY VouuyE REQC7Il^EfJ (liters)

START=
TEMPERATURE LH2 Life

W

300 Trans Line Cool Down 25 25
Tank Cool Down 1800 NA
Fill 1700 NA
Freeze NA 5600
Boil Off 320 500
15% Margin 580 920

Total 4425 7045

150	 Transfer Line Cool Down 	 25	 25
Tank Cool Down	 490	 NA
Fill	 1700	 NA
Freeze	 NA	 5600
Boil .Off	 200	 500
15% Margin	 360	 920

Total	 2775	 7045

<20	 Transfer Line Cool Down 25 25
Tank Cool Down NA NA
Fill 1700 NA
Freeze NA 5600
Boil Off 160 500
15% Margin 280 920

Total 2165 7045

A/N 5708
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The third option shown in Table 2-13 is similar to the first option except

the fill operation is performed while venting instead of by the no-vent fill
method. This approach again has design risks, because of the questions of

liquid retention in the foam metal.
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Section 3

INSTRUMENT CEANGEOUT

Developing a concept for changing out or servicing ;focal plane instruments

and other cold mechanisms requires addressing these questions:

•	 What are the most important design constraints?

How should access to the instruments and mechanisms be provided?

•	 What impact is there on the performance of SIRTF?

How are the instruments to be changed out, and what are the

design impacts on them?

•	 How are the other cold mechanisms to be serviced?

We address these questions here, and find that on-orbit instrument changeout

can be successfully combined with cryogen replenishment.

3.1	 DESIGN CONSTRAINTS

Many important design issues will arise in developing SIRTF and instrument

hardware that will permit on-orbit changeout. Two issues stand out, how-

ever, as critical to determining the overall outlines of the changeout

concept: whether the changeout operation can be performed while SIRTN is

still cold, and what are the operational constraints associated with extra-

vehicular activities (EVAs) by astronauts.

3.1.1	 Warm Versus Cold Changeout

One of the primary decisions that will have to be faced in order to develop

a viable approach to instrument changeout is whether or not it is realistic

to consider performing the changeout operation while the dewar is still

AP20AG5
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cold. The main advantage of performing a cold changeout is that it reduces

or eliminates the need for the SIRTF dewar cooldown operation during the

cryogen replenishment sequence. During the early part of this study, it was

felt that this time savings might be significant, especially when considered

in light of the current seven day Shuttle missions. However, although

starting with a cold dewar represents a savings of 29 hours in the cooldown

process and up to 12 hours in dewar thermal stabilization and topoff time,

the mission timeline, presented in Section 4.5 shows that the changeout

operation and cryogen replenishment of a 300K SIRTF can be performed in less

than seven days. That conclusion is true even if contingency time is added

to the instrument changeout operation.

On the other hand, there are a number of arguments against doing a cold

changeout. These include!

• Misalignment problems that will e:;,ist due to the 270 K tempera-

ture difference between the instruments being installed and their

interface at the dewar. These could be offset by special kine-

matic design of the interfaces or substantial precooling of the

instruments prior to installation. Electrical connectors and

mechanical fasteners would require special designs so that they

could be physically mated with one half cold and the other warm

and still function properly when both halves are at the same

temperature.

R

It Special tooling, lubricants and fasteners would be required to

tolerate the temperature differentials without binding or embrit-

tlement fracturing during torquing.

•	 EYA operations in the immediate vicinity of and inevitable con-

tact with cryogenic surfaces present:; a risk to EMU integrity.

•	 The risk of contaminating a cold optical surface during Shuttle

or station based operations.

BP20AG5
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The issue of cryo-contaumination alone, however, is enough to cause us to

abandon the possibility of performing a cold changeout. For that reason

this discussion focuses specifically on that problem.

Cryo-contamination during Instrument Changeout-

There are several major sources of condensable conta4l^;aation during change-

out:

• Ambient atmosphere at altitude- at 400 km, the nominal atmo-

spheric density is 5 x 10 -15 g/cm3 , with a corresponding deposi-

tion rate of 0.1 micron /hour or exposed cryogenic surfaces.

This disposition rate is not corrected for probability of stick-

ing of the species, nor for any shielding features, but it does

represent the local. environment that must be contended with.

•

	

	 The local Shuttle environment consists of the following; sources

of condensable contamination:

Orbiter outgassing after bay doors open

10-10 - 10-12 9/cm2sec

RCS firings

--	 water dumps

•

	

	 The EMU's (suits) present a major hazard with discharges during

EVA of

- 0.72 kg/hr of Oxygen

- 0.77 kg/hr of water

Of all the possible sources that it will be necessary to contend with, the

EMUs'are the most the most significant and the most difficult to control

without major redesign.	 The ambient atmosphere and orbiter-produced

1
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contamination can be reduced by the use of some form of enclosure or tent

around the back of the dewar. However, since the EVA crew member must be

inside the tent while installing and removing instruments, the EMU

discharges will take place inside a closed environment open on one side to

one huge cryopump, the 2K surfaces of the SIRTF telescope and instrument

assembly. Under those -conditions, the suit dumps can result in over 50

microns of cryodeposit on sensitive surfaces in the four hour servicing

period. Without a significant redesign of the suit itself, there is no way

we know of to prevent this problem except to maintain the SIRTF temperature

above the condensation temperature of these contaminants. For that reason

we recommend that the instrument changeout be performed on a facility that

has been heated to 300K before the dewar is opened..

3.1.2	 Operational Constraints

The primary constraints of the instrument changeout operation that affect

the design of the SIRTF facility and changeout support equipment are EVA

compatibility and the overall mission timeline. The general discussion of

EVA requirements and the impacts of mission timelines appears in Sections

4.2 and 4.4, respectively. However, the requirements most pertinent to the

actual mechanical design of the instruments and facility are summarized

here:

EVA requirements

• Crew and Equipment safety- A major safety concern is the

compatibility of the payload system/structure with the EV

crewman's life support equipment and space fruit components.

Specifically all equipment:, ° ... requiring EVA interface must be

designed to preclude sharp edges and protrusions or must, be

covered in such a manner as to protect the crewmember and his

critical support equipment. ° (.CSC-10615)

BP20AG5	 3-4



The equipment that might snag, tear, puncture or abrade a suit

must meet the "Edge, Corner, and Protrusion Criteria" specified

in JSC-10615. This is particularly significant for the

instruments and other ORU's involved in the operation, since it

will involve additional design and inspection effort.

• Visibility and lighting requirements- Although illumination is

provided by in-bay mounted lights and helmet lights on the

suits, stray light rejecting black coatings on the outside of the

instruments and the inside of the instrument cavity provide

little contrast and hamper the EV crewman's vision. high contrast

color coded surface coatings may be required. This will most

likely conflict with the facility stray light rejection

requirements and will require testing early in the course of the

program to ensure that the system level trade between facility

performance and changeout requirements is properly performed.

Restraint provisions at worksite- In addition to tethering

requirements for tools and equipment, the proper restraint of the

EV crewmember A`t the worksite is mandatory. Handholds and foot

restraints are required to provide reaction force or torques

during most operations. Our approach assumes that the

Manipulator Foot Restraint (MFR) will be attached to the RMS and

be used to provide crewmember restraint during instrument

changeout.

• Required working volume- Guidelines for the volume reach of a

crewmember constrained by an Eh'U are given in JSC-10615. The

instrument changeout concept presented in the next section

follows those guidelines assuming the crewmember is using the

MFS. In addition, these criteria need to be applied to the

spacecraft design to allow access to external electronics.
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Requirements derived from mission timeline- As will be shown in Section

4.4 1 the changeout operation will require a 6.4 day mission assuming that

the opening of the dewar, instrument changeout and dewar closure can be

performed in a two man, six hour EVA. Performing the instrument changeout in

under six hours should be considered a design goal. The use of an

additional EVA to accomplish changeout should only be considered as

contingency time, This time limit imposes the following constraints:

• The instrument/telescope interfaces must be self- aligning,

kinematic mounts. Any fine adjustments must be made internally

to the instrument either automatically or via telemetry.

•

	

	 Thermal interfaces must be mechanically simple, accessible and
reliable with minimum inspection.

•	 Instrument installation and removal must be mechanically simple,
requiring a minimum number of fasteners. A single, clean

electrical interface should be considered a design goal. The

COBB instrument, with nearly 700 electrical connections requires
around 140 pounds of insertion force during installation. Even

with the aid of the RMS, this could present problems.

•	 The dewar opening and closure mechanism must be simple and

reliable, to be performed by one crewmember with RMS assist.

3.2	 DEWAR ACCESS

The first requirement for allowing on-orbit changeout of the focal plane

instruments is to provide access to them through the dewar envelope. This

requirement also produces the biggest impact on the SIRTF design and

performance.

A
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3.2.1	 Alternatives

The BASD study proposal contained six concepts for accessing the science

instruments in the SIRTF MIC while in orbit. One concept involved removing

the entire telescope with the MIC through the front aperture. The other

concepts involved access to the rear, either by removing the entire cover or

individual instrument covers.

One of the main goals of this study was to make changeout as simple and easy

for the EVA crew members, and as safe as possible. Figure 3-1 shows the

baseline SIRTF configuration. One can see that it is feasible to remove the

telescope and the 'MIC through the front aperture, but not easily and not

without hazard. It is not simple to access blind fasteners and connectors 4

meters inside an annulus but it is feasible=	 Captive guides could be
employed, and rails provided to guide the telescope in and out. Also, an

additional mounting scheme is needed to stow the 5.2 meter telescope either

on the STS or the SS, while changing out experiments. The only advantage to

front aperture changeout is that the vapor cooled shields and multilayer

insulation are not disrupted.

When considering rear access, it is necessary to remove the vapor cooed

shields and MLI. It is also necessary to reinstall the shields so that they

are conductively coupled to the shields not removed. This can be done using

flexible copper straps with screw fasteners. The astronaut would have to

have access through the MLI and unscrew perhaps a dozen screws per shield,

and manually handle and stow four shields and the external cover. This is

not simple or easy for a gloved crew member. Therefore, it was decided that

r'	 the shields, MLI, and cover should be removable as a single assembly.

3.2.2	 One Piece End Closure

One way to accomplish one piece end closure is to use the shrinkage of the

cylindrical shields for a shrink fit on the head shields as the dewar is

filled with liquid helium.	 The vapor vent lines are attached to the

BP20AG5
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cylindrical shields so that no plumbing connections need to be made. There-

fore, during fill, the cylinder shields will contract first and shrink onto
	 I

the head shields. By combining the right materials, a pressure between

shields will result providing the necessary conductive path. And, when the

dewar is warmed sufficiently, the shields w,"'Lll automatically separate.

Figure 3-2 illustrates the one piece end closure. Besides the shrink fit of
	

4

the shields, there are two other aspects which must be controlled, These

are the attachment of the shields to the cover and the control of the ULI

blankets at the separation plane.

The head shields are shown attached to the cover and to each other with

nested fiberglass tubes. The tubes are aligned toward the center of curva-

ture of the cover and head shields to accommodate the shrinkage of the heads

as they reach their different temperatures. The three sets of support tubes

slide relative to each other. The angle also accommodates support in a 1 g

field in any position, and are sized for this load. The tubes represent

thermal paths from one temperature zone to another, but fiberglass is a poor

conductor and the tube walls are thin (0.5 mm) so the effect is not

significant.

Of more significance thermally is the gap that will occur in the MLI. As

the cylinder shields shrink radially, they will also shrink axially while

the head shields will remain in place until there is sufficient pressure due

to the shrink fit to lock them together. By then, a 3 mm gap will exist in

the MLI. The thermal impact of this is discussed in Section 3.3.

Care must be taken to control the MLI at the gap. Although there will be

radiation tunneling ,due to the gap, this can be minimized by having each

layer viewing its opposite layer at the same temperature. Figure 3-3

illustrates a method for controlling edge locations of the thicker layers of

MLI. An outer layer of Kapton (0.25 mm thick) is held by hollow fiberglass

pins to the shield. This will help prevent sag and control the location of 	 I
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the feather-like blanket edges. How many pins are required and a method of

installation has not been evaluated.

Finally, it was decided that the one piece end closure should not be removed

at all. A pair of hinges provides the stowage of the closure during access

as well as a means of guiding the shield heads and cover into alignment.

Figure 3-4 shows the cover assembly rotated open at 5'. The crew members	 0

activity for accessing the VIC has been reduced to an absolute minimum -

opening a hinged door. 	 i

If access has been made simple on orbit, it will provide direct benefits on

the ground during hardware assembly and test.

3.2.3	 Shrink Fit Analysis

Although initial hand calculations showed that shrink fitting the shields

together could be possible, it was decided to do a more accurate analysis to

determine the sensitivity of the fits to manufacturing tolerance. The

analytical results are given in Appendix E for all four shields. The data

was put in graphical form for the inner shield (largest AT) ^_nd outer shield

(smallest DT) and these are shown here.

Figure 3-5 gives the pressure between shields as a function of the initial

radial gap, for two different thicknesses of an Invar ring inside the outer

aluminum head shield. Since the AT is only 100K, a large difference in

coefficients of expansion is required to maximize the initial gap; hence,

the use of Invar.

The slope of the lines shows that the pressure is quite sensitive to the

initial gap. To get from 5 to 20 psi pressure the gap must be held to 0.010

to 0.040 inches, for the 0.100 inch thick Invar. It is equally sensitive

for the 0.25 inch thick ring, but covers a greater range. Figure 3-6 shows

the stresses resulting from the pressure, and the stresses are rather

insensitive to change in gap. , It can be seen that the stresses are smaller

BP20AG5
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for the thicker Invar rings but they increase for the aluminum. From these

charts it can be seen that use of the 0.25 inch thick ring results in a

pressure of 6.5 to 28 psi for a nominal gap of 0.030 inches +0.020 inches.

Figure 3-7 and 3-8 show similar trends for the innermost shields. Other

materials could be considered to find an optimum stress/pressure range, but

this is sufficient to show feasibility.

The thermal conductivity of rings under pressure is not easily assessed.

BASD has run conductivity tests at cryogenic temperatures where many thou-

sand (9,000) pounds were applied to a 1 cm2 area in order to conduct a few

milliwatts. Fere we need to conduct several watts. On IRAS, the head

shields were riveted to the cylinder shields with perhaps a dozen rivets and

the heads coaled to within a fraction %if a degree of the cylinder tempera-

ture. The heat shrink fit, even at 6.5 psi will certainly provide better

conduction than the rivets due to the very large area of contact.

Roundness of the rings and heads does not need to be held to the gap toler-

ance. A review of figures 3-3 and 3-4 shows guiding tapers three to four

times the gap between ghields. These tapers could be made larger if needed.

3.3	 IMPACT ON C YOGENIC PERFORMANCE

The baseline SIRTF cryogenic system has an integrated cryogenic tank

insulation system and outer shell. The telescope and MIC/Instruments are

inserted through the aperture. There is only one radiation path to the warm

environment and that is at the aperture. ''O permit instrument and various

component changeout the most likely candidate configuration is'through a

rear access. We now have two heat paths to the warm surface. The design

will be such as to minimize the radiation through the insulation joints but

it will not be eliminated and the inner vapor cooled shield will be slightly

warmer. Also to provide rigidity to the large vapor cooled shield assembly,

supports will be required which will increase the heat leak between shields
ii

ii
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thereby raising each shield's temperature and causing a small increase in

heat leak to the cryogen tank.

The 'lifetime impact analysis was made using the thermal model developed

during the BASD Thermal and Cryogenic Study for SIRTF I , and so the revisions

caused by the rear access can be directly compared to the previous model and

study results. The effect of the added heat in the insulation system due to

the potential gaps and the vapor cooled shield supports are presented in

Table 3-1.

Table 3-1
Instrument Changeout

Lifetime Degradation Effects

VCS
GAP AQ-mW- Support A Life Lifetime

OVCS MVCS IVCS Type
(cm) (mW) (Years) (Years)

0 0 0	 0 0 2.6
0.32 739 101	 9 - 0.3 2.3

206 91	 18 Concentric 0.2 2.4
Tube, Point
Contact

Lifetime Including Replenishment 2.2 years
Modifications

The net effect of the instrument changeout will be a loss in life of from

0.2 years to an absolute worst case of 0.5 years. By adequate control of

the insulation system edges the heat flux through the gaps can be minimized.

One could assume that a perfect matchup of edges could be accomplished but

with 1 /4 mil mylar and net which purposefully has no stiffness this assump-

tion would be somewhat naive. So the trade is whether to close the gap and

experience some increased conduction or purposefully allow a slight gap. A

0.5 year degradation estimate for the instrument replacement should be real-

istically conservative. '



3.4	 SERVICING FOCAL PLANE INSTRUMENTS

The details of designing the focal plane instrument hardware to accommodate

on-orbit changeout can only be worked out as the designs of the instruments

and of the facility multiple instrument chamber (MIC) into which they fit

are developed, At this point, however, it is important to assess the likely

design impacts which could affect the overall system design or performance,

3.4.1	 Mechanical Design Impactsmpacts

Figure 3-9 shows the one piece end closure fully open and the MIC uncovered.

The MIC itself consists of a mounting plate which attaches to the dewar and

supports the telescope. Surrounding the instrument cavity is a non-

structural photon shield one meter in diameter by one meter long, with a

removable cover. The center portion is occupied by the rotating beam split-

ter and the fine guidance system. Three science instruments are located in

the remaining annular space.

The original instrument mounting concept was to cantilever mount them to the

mounting plate to a modular set of holes. This was to provide structural

mounting as well as a conductive thermal attachment. This concept remains

feasible if no other structural support is to be added. At the start of

this study there were six candidate instruments occupying the entire annulus

and it was difficult to visualize how they would be bolted in place. Now

the number is three - two at 60' and one at 90°, and they are readily bolted

to the mounting plate using external flanges.

A nonredundant, statically determinant mounting method is required so that

any distortions of the mounting plate do not stress or distort the instru-

ments. Mounting on three parallel pads with three bolts very nearly pro-

vides this requirement. Two very accurate positioning pins adjacent to two

bolts on opposite flanges are required. 	 One of the pins is round and the

a,

	

	 other is diamond shape to control rotation about the round pin without over-

ly constraining the space between them.
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3.4.2	 Other Design Impacts

On Orbit Cooldown

In some cases the instrument focal plane assemblies will be thermally iso-

lated from the rest of the instrument because of elevated temperature re-

quirements. This will not interfere with the on orbit cooldown of the fa-

cility,  but may delay instrument check out by several hours. The instrument

check out would be required prior to SIRTF being released.

Temperature differences between the VIC and the new instruments will need to

be minimized prior to changeout so as to insure alignment whdn cooled down

to a uniform 2K. Heaters on the MIC will probably be required.

Super-Coolies

An adiabatic demagnetization refrigerator (ADR) could be included an in-

strument. All thermal interfaces of the AIR will be the responsibility of

the instrument. A high current lead will be provided by the facility at the

7K station. This electrical interface connection will need to be low elec-

trical resistance so as to preclude joule heating and a loss of super

conductivity.

Helium-3 connection to the instrument (if needed) could be a blind probe

sticking out of the instrument. The connection is made when the instrument

is locked down. Providing a low impedance vent for an open cycle system

could be a real problem. This question has not been addressed.

Human Factors

Normally the MIC and the instruments would be painted black so as to mini-

mize stray light problems. Changeout of black instruments inside a black

cavity while in a space suit will be next to impossible. One possibility is

to enclose the optic train so as to permit the instruments to be painted

DP20AG5-13
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white and interfaces to be adequately marked or color coded. This optics

train cover will also serve to protect the fragile optics.

In order to keep the change out process simple, instruments should be lim-

ited to one black box at tle MIC and one black box outside the instrument.

Electrical interface connections should be minimized and plumbing connec-

tions should be an integral part of the box mounting.

Guide Rails

Guide rails will be required for on-orbit instrument removal and insertion.

Since they are not essential for ground work, they can be incorporated in

the non-structural photon shield, as shown in Figure 3-10. There will be

some rubbing contact ) so one surface should be Delrin 500 (Acetal) as is used

for the ST guide rails.

Thermal Strapping

If there were to be no instrument changeout, the instruments could be bolted

in place in this manner with indium or gold foil to enhance thermal

conductivity. However, any contamination (i.e., velcro, body oils) of this

instrument-MIC interface during change out will affect alignment and thermal

conductivity. Thus, instrument changeout requires a somewhat different

approach while maintaining the main mounting features.

The indium or gold foil cannot be used at the structural attach pads. If an

instrument is removed and pieces of foil stick to the pads, alignment of the

next instrument would be affected. Also, the gasket residue will preclude a

good thermal interface for the new instruments. Instead, thermal strapping

directly from the helium tank will be used for the 2K control. The MIC

could provide multiple attach points near each instrument with a clean one

being used each time an inEtrument is changed out. These attach points must

be accessible to the astronaut at the back of the instrument, which may

complicate the instrument thermal management.

I
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Handles

Astronaut rated handles must be mounted on the rear of each instrument.

Clearance must be provided for gloved hands, and this either reduces the

allowable instrument length, or the MIC must be extended in length to accom-

modate the handles. Astronaut handles impose a structural load of 30 pounds

in all directions. This imposes a design requirement on all experiments.

Round Corners

For crew member safety, all corners exposed to possible contact must be

rounded. All edges and corners of the instruments must be rounded, as well

as all exposed edges and corners of SIRTF in the vicinity of the

instruments.

Electrical Connectors

Special EVA rated connectors are required for changeout. They require more

space than conventional connectors but this does not create a problem with

only three instrument occupying the MIC. However, the harness and cable

routing must be considerably different for changeout versus no changeout.

The connectors must be accessible from the rear of the MIC and there must be

hundreds of spare wires to cover all contingencies for second generation

instruments. If a manual astronaut operation is necessary, then one cold

electrical connection per :instrument should be the design goal keeping in

mind that the shielding of the different signals is important. An alternate

approach would be to have the electrical interface connection a rigid probe.

The connection is automatically made when the instrument box is installed.

BP20AG5-15	 3-25
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SUMMARY OF CHANGEOUT IMPACTS

IMPACT	 FACT

ITEM	 ON INSTR	 ON SIRTF

Guide Rails	 Required	 Required

Thermal Strapping	 Required	 Required
	

M

Handles	 Required	 Required

Round Cornets	 Required	 Some

Electrical Connectors	 Little	 None

Wiring	 None	 Increased

3.5	 SERVICING OTHER COLD MECHANISMS

The fine guidance sensor (FGS),

secondary mirror are essentially

locations are known, and some as,

changes-,,t can be made. They all

loads, and they all will have

harness cable to exit the dewar

will most likely all have connectors

ground testing. Changeout on orbit is

on orbit.

to facilitate assembly„ checkout and

then primarily a question of access

rotating beam splitter, and the chopping

undefined at this time. However, their

sessment on their mounting and the impact of

must be hard mounted and locked for launch

electrical leads which must join the main

through the vacuum shell. However, they

Fine Guidance Sensor

This has been depicted as mounted on a cylindrical structure surrounding the

beam splitter and supported from the MIC mounting plate. However, the tele-

scope beam must pass through the cylinder so it can only 'ase approximately

three 60' sectors between experiments. Mounting could be the same as for

the instruments, and access would be identical through the one piece end

cover for changeout. An alternate mounting is to support the FGS on spiders

attached to the MIC plate 'between instruments. This would provide better

access for crew members since it could be removed from the spider.

BP20AG5-16
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Rotating Ream Splitter

This is directly mounted on the NIC plate. It can be flange mounted between

instruments. The FGS would necessarily have to be removed in order to re-

move the rotating beam splitter.

Cryogen Valves

All of the valves can be located on the rear of the cryogen tank where they

are directly accessible through the one piece end cover. The valves are

motor driven and it is not anticipated that they will be removeu from the

plumbing lines. At most, only the motors and gear heads would be changed.

Chofloing Secondary Mirror

The chopping secon%A'ary mirror is only accessible through the sun shade and

front aperture. It would be too hazardous to insert any part of the astro-

naut's suit inside the baffles, so he could only get his hando to within 1.6

meters of the mounting plane. A special tool would be required to extract

and insert the assembly. Also the assembly will have to be keyed and have a

blind connector. An alternative would be to chop with an articulated mirror

located in the MIC. This would make on-orbit replacement easier, but would

constitute a significant departure from the baseline. They s4ontific impact

would need to be studied.

a The mechanisms listed above should have redundant motor windings and not be

considered primary ORUs. However, they should be designed with changeout in

mind.

vi
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Section 4

MISSION ANALYSTS

This section describes the operational aspects of in-orbit cryogen re-

plenishment and instrument changeout of the SIRTF. It is intended to provide

the following:

•	 Mission scenarios for performing the cryogen replenishment and

instrument changeout of SIRTF on both Space Station and Shuttle.

•	 The operational sequences and timelines associated with these

scenarios.

•	 The interfaces, operational constraints, and requirements of the

her-dwai a eletmt eats of the missions.

•	 The impacts of human interface including 'EVA and safety require-

ments.

•	 The impact of performing these operations on Space Station.

A detailed summary of the Space Station based mission discussion in this

section appears in Appendix A as a stand alone document. It focuses

specifically on the Space Station activities, with mention c*f the Shuttle

only as a means of transportation of the ASE to and from the Station.

4.1	 SERVICING MISSION OPTIONS FOR SIRTF

To achieve the mission lifetime objectives and to support the evolving needs

of the astronomical community, i_t will be necessary to provide in-orbit

servicing operations on SIRTF that till include the following:

•	 Cryogen replenishment- , The lifetime of the liquid holium supply

of the SIRTF dewar is currently baselined to be two years. In

BP20AG6
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order to extend the lifetime of the facility to.the desired ten

to fifteen years, it will be necessary to periodically replenish

the liquid helium system. This will be performed either on Space

Station or on Shuttle and requires a replenishment supply dewar

of 5000 - 11(_M liter capacity.

Instrument changeout- It will be highly desirable to provide the

capability of changing out focal plane instruments in order to

recover from the failure of an instrument, to upgrade the instru-

ments to take advantages of improved technologies, or to change

the type of instruments and the capabilities of the facility to

meet changing requirements of the science community.

Facility repair- To achieve a ten year mission lifetime, it would

Sz prudent to anticipated problems or failures in mission-

critical mechanisms and to build into the facility a capability

of performing in-orbit replacement or repair. For the purposes of

our discussions, repair operations are considered a subset of the

instrument changeout mission.

Top level Servicing Options

The various options for SIRTF servicing are shown in Figure 4-1. For the

28.5 degree inclination orbit SIRTF may be mounted on Space Station or, for

the 900 km altitude orbit, be based on a dedicated satellite, a station co-

orbiting platform, or a leased platform. The satellite or platform based

SIRTF can, in turn, be serviced by one of three approaches:

SIRTF descends to Space Station orbit and is serviced at Space

Station,

SIRTF descends and is serviced on the Orbiter,

w

t
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	 The 011V ascends to SIRTF orbit with the ASE and the replenishment

operation is performed b,v u teleoperated robotic system.

Since we are baselining man-tended transfer operations, we will not consider

the third option of using a teleoperated system. For the Orbiter based

servicing we discuss the basic cryogen replenishment operations in Section

4.3.2 and the instrument changeout operations with subsequent cryogen 	 a

replenishment in Section 4.4.1.

t.
For the station-based operations, we discuss the detail scenarios for per-

k	 forming the replenishment on SIRTF berthed on the station in Section 4.4.2.

A summary of the implications of performing the instrument.^ y p p g changeout ong

station are discussed in Section 4.4.3. The detailed timelines and opera-

tional sequences, however, duplicate much of what is presented in the

earlier sections and hence are relegated to Appendix A. Since the proximity

.i zone servicing from Space Systems also relies on teleoperated systems, it is

not discussed.

4.2	 SERVICE MISSION ELEMENTS

Before presenting the mission scenarios and timelines for the cryogen re-

plenishment and instrument changeout operations, a brief description of the
k

hardware and operational elements of those missions is in order.

This section summarizes the parts played by these elements in the missions.

In addition, there are some general considerations, common to all of the

variations of the missions that are discussed in the last part of this

section. These include the constraints imposed by EVAs, safety requirements

and contamination control concerns.

4.2,i	 Hardware Elements

M

The following discussion describes the role played by the various hard.ware

elements in the mission scenarios.
z

i

t
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Shuttle

The Shuttle plays a role in all the servicing scenarios. For Space

Station-based servicing the Shuttle delivers the ASE to the Station prior to

servicing and returns the depleted dewar sometime after the operations are

complete. For Orbiter-based servicing, it delivers the OMV to low earth

orbit (LEO), serves as the site of all the servicing operations, and pro-

vides the means for contingency return of SIRTF in event of problems. The

following standard hardware elements are also involved in the mission:

•	 Standard Orbiter Remote Manipulator System (RMS) -

-	 Deploys and stows the OMV

-	 Demates and mates the OMV and SIRTF

-	 Positions SIRTF for capture by the A frame latches

-	 Positions OMV/SIRTF  for post-servicing deployment

-

	

	 Positions EVA crewman and Orbital Replacement Units (ORUs)

for changeout operations.

•	 A Cradle -

-	 Supports SIRTF in cargo bay during servicing operations

-

	

	 Modified to provide storage of ORU's and tools during

launch and operations.

-

	

	 Provides intermediate storage for instruments during

changeout.

-

	

	 Provides storage for "old" instruments during deorbit and

landing.

•	 Manipulator Foot Restraint (MFR)-

-

	

	 Restrains EVA crewman, tools, and GNP 	 during changeout

operations.

+w

i
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Space Station

The Space Station is the alternative site for the cryogen replenishment

and/or the instrument changeout operations. The ASE dewar would be stored

here for up to two months prior to the replenishment and in the interim

could service several smaller experiments. The OMV used to retrieve SIRTF

would be normally based at the Station and would require refueling on

Station before returning SIRTF to an operational orbit. The configuration

and facilities assumed for Station are taken from JSC-19989, "Space Station

Reference Configuration Description".

Orbital Maneuvering Vehicle

The OMV is used to retrieve SIRTF to the Orbiter and to reboost SIRTF to

its operational orbital altitude following the servicing mission. The OMV

for the Orbiter based-operations will be transported to LEO by the Shuttle.

The OMV for the Space Station-based operations will be one of the Station-

based OWW s. The concern for contamination of the SIRTF during OMV proximity

operation is somewhat relieved by the recently p+t.,jiosed use of the cold gas

RCS. However, the SIRTF aperture closeout mechanism is still considered

necessary to minimize contamination of the SIRTF telescope.

The orbit transfer capability of the OMV is sh( ,n in Figure 4-2. The

configuration, capabilities, anu transfer times for tb J are based on the
January, 1985 revision of the MSFC OMV Preliminary Definition Study.

Airborne Support Equipment

The ASE for the changeout and replenishment operations is described in

Section 2.3. The role of the ASE in the operations is summarized below :

Y

t

•	 Provides helium (and hydrogen) supply storage,

•	 Provides transfer lines , pumping mechanism and pump control,

•	 Provides supply dewar monitoring and control,

BP20AG6	
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•	 Provides SIRTF dewar monitoring and control,

•

	

	 Provides the data and power interface to Station or the Orbiter,

and

•

	

	 Provides formatted data to Orbiter or Station interface for

telemetry to ground.

SIRTF

The modifications to SIRTF required for replenishment and instrument change-

out are discussed in Section 2.2. These are summarized below:

•	 Plumbing interface for EVA installation of transfer line,

•

	

	 Electrical umbilical interface to permit external valve control

and sensor monitoring by ASE,

•

	

	 Dewar modifications as described in Section 3 to allow instrument

changeout,

•

	

	 Instrument interfaces conforming to the changeout requirements,

and

•

	

	 Internal thermal interfaces compatible with the cooldown and

thermal stabilization times presented in Section 4.3.

4.2.2	 Operational Elements	 o

Ground operations

PRELAUNCH- Whether. or not the ASE dewar will be delivered to KSC filled or

warm will depend on the details 'of economics of helium loss versus trans-

portation costs. However, under normal circumstances,there will be two

topoff operations for the ASE dewar prior to launch. The first would occur

BP20AG6
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in the Orbiter Processing Facility (OPF) after the Dewar has been integrated

into the Orbiter bay. The second topoff would occur in the Rotating Service

Structure at the pad. This second topoff will require on the order of

1500 liters of helium to be available in a GSE supply dewar. Because of

physical limitations in the service structure , special provisions for 1500-

2000 liter GSE dewar may have to be made.

POST-LANDING- There are no special requirements associated with the post-

landing operations unless it is necessary to return SIRTF to earth in the

event of a problem. In this case, a suitable environmentally controlled

transporter would be required.

FLIGHT OPERATIONS

EVA- The FVA tasks are shorn in Table 4-1.

IVA- Intravehicular activities by crew are assumed for the following

operations:

•	 RMS (or MRMS) operation for

-	 Deploy and stow of the OMV,

-	 Demate and mate of the OMV and SIRTF,

-	 Positioning SIRTF for capture by the A frame latches,

-	 Positioning OMV/SIRTF for post-servicing deployment, and

-	 Positioning EVA crewman and ORU's for changeout operations.

• Monitoring and operation of the command console during ASE and

SIRTF dewar checkout, leak check operations and initiation of

transfer operation.

POCC- The use of the JSC Payload Operation Control Center is assumed. It-.

would be staffed with cryogen transfer and facility specialists who would

participate in the following operations:

1

a

'41
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Table 4-1
SIRTF EVA TASKS

N/A = Not applicable to that mission
P - Planned	 AM 5708

C = Vontingency task, unsceduled

4-10

Task Replenishment
mission

Changeout
mission

Transfer line
• Mete P P
• Demate P P

SIRTF Umbilical
• Mate P P
• Demate P P

Sunshade Cover
• Installation P P
• Removal P P

Dewar Access
• Open N/A P
• Close N/A P

ORU changeout N/A P

Soler Array
• Latch C C
• Unlatch C C
• Storage C C
• Jettison C C

Antenna
• Latch C C
• Unlatch C C
• Storage C C
• Jettison C C

0

J	 YI
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•	 Monitor telemetered data during health checks of both dewars,

•	 Maintain voice link with crew during setup and transfer

operations,

•	 Control transfer operation during crew rest periods, and

•	 Provide technical assistance in event of any abnormality in

operation.

CONTINGENCY- In the event of a failure of any of a variety of mechanisms

that might endanger the success of the mission or safe return of the Orbiter

and crew it is necessary to provide for the following operations :

•	 Manual backup for deployment and retraction of solar arrays,

antennas, trunnions and A frame mounting interface;

•	 Manual jettison of solar arrays, antennas;

•	 Installation of SIRTF in the Orbiter bay for safe return; and

•	 Contingency EVA to support manual operations.

In the event of an aborted mission that requires the return of SIRTF to

earth it will be necessary to either 1) provide for expulsion of the helium

from the main tanks or 2) install a temporary pressure dome to substitute

for the aperture cover.

If the main tanks of SIRTF are full at the time the decision to abort is

made, it will take 6 to g hours to dump the tanks and 30 hours to warm the

SIRTF telescope system to 300K. The dew°,r insulation system would still be

cold at this time and atmospheric condensation would contaminate the MLI.

The risk of contaminating MLI might be an acceptable option, in the event of

BP20AG6
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an'abort compared to the difficulty of installing a reliable pressure dome

over the aperture. These alternatives will require a system level trade

during the early phases of the replenishment program.

4.2.3	 General Mission Considerations

The constraints imposed by the requirements of EVA compatibility, safety and

contamination control are essentially the same regardless of the mission

scenario. The following discussion summarizes these requirements.

EVA Compatibility

The design requirements for EVA compatibility specified for STS operations

in JSC-10615 will probably be comparable to those demanded by Space Station

operations, so we have used these as a basis for this discussion. when con-

sidering a total EVA mission the ASE and SIRTF designs should address the

following:

•	 Airlock to payload access corridor,

•	 Translation aids to the worksite,

•	 Cargo transfer requirements,

•	 Crew and equipment safety,

•	 Restraint provisions at the worksite,

•	 Visibility and lighting requirements,

•	 Working volume requirements,

•	 Extravehicular (EV) glove interface, and

EVA tool design.

In addition, mission planning must account for the six hour limit on EVA

duration and the four hour preparation required for each EVA. A nominal STS

mission includes provisions for two 2-person EVA's with one contingency EVA

for emergency purposes only. Additional EVA's are possible if necessary

but require additional EVA kits. Rather than repeat the lengthy requirements

BP20AG6
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stated in JSC-10615, we will highlight the major points that :effect the
SIRTF and ASE designs or the changeout /replenishment operations.

•	 Airlock to payload access-	 The payload must allow egress from	 d

the Orbiter airlock. A 48 inch clear envelope at the forward part

of the bay is reserved to permit outer hatch operation and 	

alegress.

•	 Crew and safety requirements- These are discussed on the safety

section.

• Restraint provisions at the work site- Handholds and foot

restraints must be provided by the payload to provide the crew-

member with a reaction point against the forces or torques

associated with any mechanical activity. This is considered to

be the single most limiting factor of all EVA elements, often

causing crew fatigue and early termination of the EVA.

• Glove interface and equipment design- The transfer line bayonet

connections and electrical connectors for the umbilical must be

compatible with gloved hand operation. Installation and removal

torques should not exceed 15 N-m (11 ft-lb). They should be

designed to allow one-hand operation , allowing the other hand to

be free for position management.

•	 Number of EVA's-	 The cryogen replenishment operations require

two each two-person EVA's. The instrument changeout operation

requires three EVA's and provisions for a fourth contingency EVA

is recommended.

Safety

The safety requirements for the ASE dewar and the EVA operations are

governed by NHB 1700.7 and JSC-10615 respectively. NHB 1700.7 categorizes

BP20AG6
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the ASE dewar as a cryogenic pressure vessel and curiously, the cryogen as a

propellant. This has the following consequea:es:

• As a pressure vessel, the ASE dewar is considered a fracture

critical item and must meet fracture critical design and testing

requirements. Although this has come cost impact, it is the same

requirement that has been successfully met by COBB.

In the case of a catastrophic loss of guard vacuum of the ASE

dewar, a significant heat load would be applied to the helium

tank. The system must be capable of relieving the increased

pressure in the tank without rupturing. The COBB power was able

to meet t'_,is requirement by analysis, showing that a burst

disc would open a vent 'line of adequate conductance to prevent

overpressur zxT,,=^^,n, However, that dewar could vent the cold

helium into the Orbiter bay without lowering the average tempera-

ture of the bay enough to affect any electronics. This may not

be the case with the 5300 or 11000 liter ASE dewar. Provisions

for overboard dumping of the cryogen may be required.

Valves cannot be actuated accidentally- This can be accommodated

by good electrical design practice and by requiring a minimum of

two commands, "arm" and "actuate", or serial manual switching and

command combinations for valve actuation.

• Double redundancy on valve opening and triple redundancy on valve

closure is required- This is a consequence of the cryogen being

classified as a "propellant" by NHB 1700.7. Given that helium is

chemically inert and has a relatively low heat capacity, it may

be possible to get this requirement modified. Triple redundancy

implies a very complex design of the dewar plumbing scheme and

the transfer line. This requirement would apply to the transfer

line in order to meet the requirement to protect the crew members

from any fluid hazard such as spillage after disconnect. We

t

np

.+I

w

BP20AG6
4-14



i

i

believe that this requirement was not applied to the COBB dewar

because no crew members are involved with valve operations,

The crew and equipment safety requirements related 'to EVA are given by JSC-

10615,

*	 No single failure or operator error shall result in damage to

equipment or in the use of contingency or emergency procedures.

• No two failures and/or operator errors shall result in personnel

injury, loss of life, or prevent the safe return of the Orbiter

vehicle.

• The payload structure must be compatible with the EV crewmemberas

life s4pport system and apace suit components. Hence there can

be no protrusions or sharp edges that might cui,, abrade,

puncture, or otherwise damage a suit. The detail criteria for

this requirement are given in the referenced JSC document.

It is the payload's responsibility to provide inherent self-pro-

tection or define crew operational constraints to prevent con-

tamination from the EMU discharges of water and oxygen.

The .first two requirements necessitate manual backup modes to deployment

operations and the capability of manual jettison of the STRTF. System redun-

dancy and command redundantly will also be required. The extent of the re-

dundancy would be determined during the initial system design. The third

requirement would be imposed as a design requirement on the ASE, SZRTF, and

the instruments involved in the changeout operation. The requirement is

verified by inspection. The fourth requirement is discussed in the following

section.

BP20AG6
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Contamination Control

The contamination control requirements for SIRTF are difficult to ;meet under

the best of circumstances. Neither the environment of the Orbiter nor of

the Space Station can be expected to be benign, and specific measures will

be required to prevent severe contamination of the SIRTF optics. The major
sources of contamination that will have to be contended with are: 	

t

•	 Orbiter

Outgassing products on the order

molecular weight and water.

Frequent water venting, RCS firings

A source of large particles, on

with a distribution strongly

particles.

of 10`11 g/cm2/s of high

the order of Level 750

biased toward larger

• fOMV- The OMV will use a hydrazine bipropellant propulsion system.

The potential for contamination production is high but not yet

characterized. A recent modification, however, is to use com-

pressed gas for the RCS which is not a threat.

at the present, the

biter except bigger and

however, since it will

for operations such as

will be easier to con-

• Space Station- Although uncharacterized

station will probably be similar to the Or'.

hence worse. The size is an advantage

permit the use of large, protected bays

the replenishment or changeout. The bays

trol than the Orbiter environment.

A

EMU

The space suit sublimates 0.77 leg/hr of water.

The suit is known to be a significant source of particle

contamination but we are unaware of any quantitative char-

acterization.

BP20AG8
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The space cuits present the worst problem for instrument changeout because

of the unavoidably close proximity of the contaminant source to the sensi-

tive elements, the instruments themselves, As mentioned earlier, the use of

the EMU precludes the possibilit7l of performing a cold instrument change-

out.

The final solution to the contamination problems of servicing SIRTF will

require detailed analysis and planning and is well beyond the scope of this

study. However we have some strong recommendations that we have implemented

in our design and mission planning.

r A_ erture Cover. An aperture closeout shutter o- , .,r is

absolutely required to protect the telescope optics during all

operations. The design of the cover is discussed in section

2.2.3. The cover must be closed remotely prior to the initial

OMV rendezvous, and not opened until the facility has been

serviced and returned to operational orbit and the OMV has

departed. The only exception to this would be if the telescope

secondary mirror assembly required servicing, and then only if

the systes has been warmed to 3O0K.

•	 StLashada Heater. The sunshade inner cone should be warmed oy

heaters to above 27OK prior to the OMV rendezvous. This

temperature should be maintained	 throughout all operations if

possible.

0

• Sunshade Cover. A sunshade cover should be installed over the

opening of the sunshade as early as possible after station or

Orbiter rendezvous. This cover is primarily to protect against

particle contamination of the low-scatter inner cone surface. The

cover should remain in place until just prior to SIRTF/OMV

deployment.	 If installed by EV&, the cover could be a

collapsible plastic "shower cap" that would be stretched across

the sunshade aperture.	 If the RMS is used for a remote

BP2OAG6
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installation, then the cap would have to be structurally

compatible with the grapple fixture. A remotely operable cover

that could be closed before rendezvous with the OMY would be

highly desirable, and should be explored.

Servicing Bay. Operations on Space Station must take place in a

low contamination bay, shroud, or tent. An equivalent to a Level

300 environment would be desirable. Surface particle

contamination on the SIRTF represents a source of large particles

that can be ejected by meteoroid impacts and enter the telescope

field-of-view.

There is no immediate solution to the contamination problems associated with

the EMU except perhaps an external covering of the suit and vent ducts to

control water dumps. This implies a redesign of the suit itself, which is

beyond the scope of this study.

4.3	 CRYOGEN REPLENISHMENT OPERATIONS

In this section we discuss the cryogen replenishment mission as envisioned

for both the Shuttle and Space Station. For both cases, we describe the

assumptions used that are unique to the mission, an overall mission

scenario, and the general hardware configurations and interfaces. A de-

tailed discussion of the operational sequence and resulting timelines for

both sets of 4,aitial conditions, filling a 2K or a 150K SIRTF, is also pre-

sented.

^,	 1

t

4,3.1	 Assumptions Used

In addition to those described in Section 4.2, there are a set of

assumptions used that are common to the operational plans and timelines

for all the activities that involved transfer of helium to SIRTF. These

are:



•	 The ASE equipment used would be that bas lined in Section 2.

• All connections of transfer lines, electrical interconnects and

installation of protective covers for SIRTF would be performed

manually during EVA. This has special signilivance for instru-

ment changeout on Shuttle as discussed in Section 4.4.

•

	

	 The times incorporated into the schedules for cooldown of a warm

SIRTF and transfer of liquid helium are the same for all opera--

r tions regardless of the site where the operation takes place.

The only vpxiations in the schedule are basal on whether or not

the SIRTF starts warm.

The detailed sequence and times for the cooldown and transfer process are

shown in Figure 4-3. These data are based on the analysis discussed in

Section 2.4.1. It is assumed that during the cooldown and transfer

operations, there will be adequate telemetry links to the Payload Operations

Control Center such that the transfer can be monitored and controlled during

crew rest periods or during other crew activities. Therefore the transfer

operation will continue uninterrupted from the time that helium starts

leaving the supply dewar, either for cooldown or transfer, until the SIRTF

is full and stabilized.

4.3.2	 Shuttle-based Replenishment Operatic

For ;,he Shuttle-based missions, the capability and capacity of the Orbiter

is assumei to be as defined in Volume XIV of JSC 07700. No additional

capabilities or future enhancements were assumed except for the existence of

the OMV. We assumed that it was desirable to minimize occupied bay space

and mission duration for cost reasons.

1
K

K^
11

BP20AG6	
4-19

e,



w

I	 I	 1	 5	 1
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b) TIMES FOR TRANSFER TO 150K SIRTF

1 I 30	 S	 lx 2
ATTACH LEAKCHECK LINE AND TRANSFER THERMAL '.OPOFFTRANSFER TRANSFER SIRTF COOL AT 1000 STABILIZATION DEWAR
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0 TIMES FOR TRANSFER TO 300K SIRTF

I
REMOVE

TRANSFER
LINE

e
REMOVE

TRANSFER
LINE

A/N 5708
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Figure 4-3 Timeline Options for SIRTF Transfer
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Mission Scenario

The top level scenario for the Shuttle-based replenishment operation is

shown in Figure 4-4. The Shuttle is launched into a 28.5 degree inclination

400 km orbit carrying the ASE equipment and an OMV. 400 km is about the

maximum altitude achievable without an additional Orbital Maneuvering

Subsystem (OMS) kit. The total weight of the OMV and the ASE is well under

the 25,000 lb limit for Shuttle delivery to this altitude so from at least

the point of view of deliverable mass 	 capacity, this need not be a

r dedicated mission. Once at altitude, the OMV is deployed and boosts to

SIRTF's 900 km orbit. The SIRTF and OMV return to the Orbiter and are

captured by the RMS.

Options for cz,pture technigt& are ohown in Figure 4--5. In one case, the OMV
and SIRTF detach and the OMV is stewed by the RMS under the eventual working

areas for the SIRTF. Then the RMS grabs the SIRTF and sets it on the

servicing cradle. This configuration minimizes the bay length occupied by

the hardware dedicated to this operation. The second technique places the

OMV/Slli.2 pair in the SIRUP male before separating the two. The second

option reduces the time of the stowing operation and the additional attitude

trim maneuvers by the Orbiter. This presents a slightly 'lower contamination

risk to SIRTF.

The cryogen transfer is performed. The OMV and SIRTF are recoupled in the

reverse manner of the stowing operation and the pair are deployed and boost

back to SIRTF's operating orbit. The OMV returns to the Shuttle, is stowed

and the Shuttle returns to earth. In this scenario, neither weight limita-

tions nor bay space restrictions necessitate that this be a dedicated

mission.

Hardware Configuration

A sketch of the ASE, OMV and the SIRTF as they might be positioned in the

Orbiter bay is shown in Figure 4-6. The SIRTF is shown mounted towards the

BP20AG6
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back of the bay. One of the primary drivers for the location of the

operation should be minimizing the contamination of the SIRTF due to firings

of the Shuttle OMS and RCS, Although the SIRTF as shown has a belly band

spacecraft, this position -mould also accommodate a leased platform

spacecraft. A forward mounted position would be used if SIRTF were attached

to the larger Space Platform.

The SIRTF mounting cradle is a modification of the MRS A cradle as discussed

in Section 2.3 . Since there is no apparent need for rotational capability,

the A Prime cradle is not required.

The positioning of the ASE dewar directly under the bottom end of SIRTF

allows the use of a minimum length transfer line. Allowing for some degree

of flexibility during attachment, the transfer line could be less than

four feet in length. A simplified block diagram of the hardware connections

are shown in Figure 4-7. Note that the SIRTF is electrically connected only

to the ASE. The ASE dewar is connected to Shuttle power and data buses via

the Standard Mixed Wiring Harness. The control console is located in the

Aft Flight Deck and the Display and Manual Control Panel is a Shuttle

Standard Switch Panel.

Operational Sequence and Timeline

A flow diagram of the operations for the replenishment activity on board

Shuttle is shown in Figure 4-8. `i.'he name of the activity is written in the

box representing the task. The initials of various resources required for

that task appear in the upper right of, or below the box. The duration for

the task in hours is above the upper right corner of the box. The durations

are given for both times if there are alternate conditions for the

operations such as starting with a 2K or 150K SIRTF dewar. In the case; of

Figure 4-8, numbers in parentheses refer to the times required for the task

if SIRTF is at 150K when the replenishment operations are started.
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The timelines for the operations appear in Figure 4-9 and Figure 4-10. The

first timeline aesumes that the SIRTF is still wet with helium at the start

of the operation; the second assumes that SIRTF has been depleted of helium

and reached a tank temperature of 150 K. In the first case, the cooldown

time is one hour for cooling of the transfer lines only. There is no time

required for instrument stabilization or topoff. The second case requires a

20 hour dewar cooldown plus stabilization and topolfn
s

Description of the Operations

• STS Launch- The Shuttle is launched into a 400 km orbit carrying

the 5300 liter ASE supply dewar, an OVV, and the SIRTF support

cradle in the bay. The ASE Control console computer is stowed in

the Aft Dock Storage.

• Orbit Insertion- Two hours are allowed for orbit insertion and

adjustment and the opening of the bay doors. It is assumed that

a portion of the first day of the mission will be uied for

initial SIRTF activities.

•	 OMV deployed- One hour is allowed for the RMS to properly posi-

tion the OMV for deployment.

•	 OMV to SIRTF rendezvous- The schedule for OMV to capture and

return SIRTF to the Orbiter allows 24 hours. This is probably

conservative since this maneuver could be performed in as l-Ittle
	 r

as 12 hours depending on the respective orbits of the Shuttle and

SIRTF. However, the shorter OMV flight times will probably not

shorten the overall schedule since the OMV would return during a

crew rest period.

•	 Rendezvous with Orbiter- One hour is assumed to enable final

orbital adjustments for rendezvous with the OVV.

BP20AG6
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DAY 1	 DAY 2	 DAY 3	 DAY 4	 DAY 5	 DAY 5
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MS GRABS, SIRTF AND OMV

SUNSHADE COVER ATTACHED
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ATTACH TRANSFER LINES

LEAK C14CK OF TRANSFER LINES

TRANSFER LINE AND SIRTF COMDOWN
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REMOVE TRANSFER LINES

FIN41. IN-DAY CHECKOUT VIA TELEMETRY

MACH OMV

REMOVE SIRTF SUNSHADE COVER

a DiPLOY OMV/SIRTF

OMV/SIRTF BOOST TO ORBIT; & OMV RETURNS

Orbiter - ba s e d 	 OMV RENDEVOUS AND DOCK WITH ORBITER

He Rep 1 en i s hmen t	 PREPkd FOR RETURN CLOSE BAY DOORS ETC

CnK SIRTF	 Q ORBITER RETURNS TO EARTH
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Figure 4-9 Timeline for Shuttle-Based Replenishment of Cold SIRTF
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DAY i	 DAY 2	 DAY 3	 DAY 4	 DAY 5	 DAY 6
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AM 5708

Figure 4-10 Timeline for Shuttle-Based Replenishment of 150K SIRTF
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•	 RMS capture- The RMS is used to capture the OMV/SIRTF wad hold it

in position.

• Sunshade cover attached- EVA is assumed for the cask of covering

the external aperture of the sunshade with a protective con-

tamination cover. The Shuttle environment is not benign with

regards to particle contamination, and the scatter sensitive

inner cone of the sunshade must be protected as soon as

possible. It would also be possible to use bhe RMS to install a

suitably designed cover. This would eliminate the need for this

EVA.

•	 OMV stowed- The OMV is placed in its storage position and battery

recharge cable is connected.

•	 SI',TF mounted in 	 mounting	 structure-	 The	 service structure is

usei to hold the SIRTF out 	 of	 the bay. This is necessary if the

SIRTF is mounted to 	 a	 large	 spacecraft such as leased platform

but in any case would probably 	 be used to minimize the amount of

bay space taken up by the operation. 	 The total period from the

capture of the OMV/SIRTF 	 until	 both	 are secured should be less

than two hours. !^

•	 Electrical connections- The umbilical 	 from	 the ASE dewar to the z

SIRTY is made at this time. 	 EVA is assumed.	 A remote connection +,

could be set up such that electrical connection occurred when the

SIRTF was set in its mounting structure.

•	 Configure for	 transfer-	 Preliminary	 electrical	 check of the

SIRTF system	 umbilical,	 valve	 status,	 thermometry and general

status of the transfer system.

•	 Attach transfer lines- EVA is	 assumed	 scr the connection of the

transfer lines. The line is 	 removed from its storage position on

i
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the ASE dewar, interfaces are inspected, and the line is

installed. This is the most difficult operation to perform

remotely.

. r`T

r

• Leak check of interconnects- The transfer line bayonets are

checked for leaks by an external helium source or by the supply

dewar boiloff. A hand held or RYS held mass spectrometer could be

used for this operation. After this operation the EVA crew would

return to the cabin or .perform other duties in the bay not

associated with SIRTF. The EVA would probably continue until the

leak check was complete to allow inspection or treatment of a

suspect leak without the delay associated with resulting in the

EMU's.

• Cooldown- At this point the transfer process would start and the

cooldown of the transfer lines would be performed. If the SIRTF

was depleted of helium to start with, then the cooldown would

continue for 20 hour-os until liquid started to collect in the

receiver dewar.

• Transfer of helium- The transfer should take less than 5 hours at

The anticipated 1000 liter/hour rate with the thermomechanical

PUMP

• Thermal Stabilization- In the event that the dewar was initially

dry, it would be necessary to allow the instruments to continue

to cool down until the dewar boiloff stabilized. This time

depends strongly on the instruments internal thermal design, and

could range from 5 to 24 hours, depending on initial

temperatures. This time would be used for various health checks

of SIRTF including instruments checks if the system is configured

to allow them.

BP20AG6
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* Topoff- Again, in the case of starting with a dry dewar, the

final cooldown of the instruments would consume a smell portion

of the helium transferred initially. This would be replenished

by a topoff operation.

•
	

Final in-bay checkout- A checkout of the transfer operation is

performed, valve positions, temperatures, and boil off rates are

monitored.

y	 Remove transfer lines- EVA is used to remove the transfer lines

and secure them to the ASE dewar.

• Attach WV- The RMS lifts the OMV from its berth and attaches it

to SIRTF. Depending on the stow position of the OMV, this may

occur after SIRTF has been undocked and positioned away from the

Shuttle.

•	 Remove sunshade contamination cover- EVA is assumed as the

baseline but remote operation is possible.

•	 Deploy OMV/SIRTF- The pair area deployed by the RMS.

• Final checkout via telemetry- A final Health check of the SIRTF

system can now be performed via telemetry. This is the final

or ortunity to elect to abort the orbit transfer operation and

bring SIRTF back to earth. In the event of an abort, the OMV

would be separated and stowed, and the abort procedures discussed

in 4.2 would be initiated.
Ir

• Orbit transfer and insertion- This operation, has been allowed 16

hours. Since there is no time required for rendezvous at the

higher orbit, it will be a shorter mission than the one to fetch

SIRTF. OMV deorbits to 400 km.

BP20AG6	
4-33



OVV rendezvous with Orbiter-

secured.for reentry.

OVV is captured by the RMS and

i
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•	 Prepare for reentry- Final genera's preparw6ions for reentry. The

1.5 hours all,.°-wed here are arbitrary and could be whatever is

necessary.

•

•	 Orbiter returns

Discussion of the Timelines

As mentioned ^;-lier, we are car ing two options for the transfer operation

that influence the mission timeline. The first is that the SIRTF will be

serviced before its previous helium supply has been exhausted. The end- to-

end timeline for this appears in Figure 4-9. The second timeline assumes

that the SIRTF will be dry and at 150K tank temperature at the time of the

replenishment off.-ration. This is shown in Figure 4-10. There are several

observations to be made by examining these timelines.

Timeline for "2K" SIRTF

•	 The shaded blocks indicate that EVA is required for the opera-
k

tion. The beginning of the second day would require that the EVA

crew ,,start the four hour long task of donning their suits while

the O,,-biter and OMV perform rendezvous and docking operations.

o

• The first EVA will last approximately 5 hours and includes in-

stallation of the sunshade cover, attachment of electrical

umbilical and transfer lines, and support for the leak check

operation. This EVA could be shortened by one to one and one-

half hours, but not eliminated, if the installation of the cover

is performed by the RMS..
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The transfer operation is started in the middle of the necond day

of the flight and continues into the beginning of the crew rest

period. At this point there will be slack time in the operation

sequence since the next activity, the disconnection of the

transfer line, cannot begin until after completion of the crew

rest period and the four hour effort of donning their EMU's.

This period could be used by the POCC to perform additional

health checks on the SIRTF (thi s; is an argument for providing

full instrument telemetry as well as dewar telemetry).

• The second EVA will last about four hours and consist of dis-

connecting the transfer lines and umbilicals and removing the

sunshade cover prior to separation of the OMV and SIRTF. The

cover should be left on for as long as possible in the interest

of minimizing particle contamination if the sunshade. Again, if

this procedure were to be performed remotely, it *could reduce the

length of the EVA period but not eliminate it.

•	 The total elapsed time is 77.5 hours including 13.5 hours of

slack time in day 2 of the mission.

Timeline for " 150K" SIRTF

Up to the point of the cooldown operation, both timelines are

identical. The cooldown of the 150K tank takes 20 hours and

carries this operation into the 3rd day of the mission. Since

there is no need to wait for the end of a crew rest period to

continue operations, there will be no slack time available after

the fill operation for system health checks. However, the time

period required for thermal stabilization prior to topoff should

allow ample opportunity for any SIRTF testing deemed necessary.

X

d The second EVA required

Q+:a.r+: 1%+0 4 "+.n the third

to disconnect the transfer lines would

day of the mission. This time would



normally be a crew rest period and hence the EVA might be post-

ponzed until the fourth day of the mission. This would extend the

mission an additional 12 hours or .so.

•	 This operation t4kes a total of 92 hours as shown.

Shuttle Interfaces

• The ASE, dewar uses the 3-po-lut longeron mounting scheme in the

Shuttle bay. No cradle is required since the longeron and keel

fittings are part of the dewar structure as shown in Figure 4-11

and 4-12. The 6300 liter dewar used.for the replenishment mip-.

sion occupies approximately 70 inches of bay length. Two feet on

eitker side of the dewar are required for working room or RMS
accevs if required. Two RMS grapple fixtures are provided on the

dewar to allow transfer to Space Station.

The dewar vent valves would be controlled by redundant barometric

controllers for opening during ascent or closing in the event of

an abort and descent. An electrical connection to the dewar via

a SURE connector would allow emergency manual valve actuation

from a Standard Switch Panel.

• The dewar would be %llowed to

most operations. This is the

dewar. There is a possibility

the emergency venting rates in

in the dewar guard vacuum wou;

the helium.

vent into the Shuttle bay during

current procedure for the the COEE

that a detailed safety analysis of

the event of a catastrophic leak

ld necessitate overboard venting of

•	 The peak power requirements of the ASE and STRTF during the

transfer operations would be 200 watts. This is assumes

multiple, simultaneous valve actuation, which is rarely the case.

Normally, the system would reWuire less than 100 watts for

HP20AC3	 4-36
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transfer and monitoring operations. Power and data interconnects

are provided by Shuttle via the Standard Mixed Wiring Harness in

the cargo bay.

+	 The modified A frame also uses a three point retention scheme for

the longeron and keel attach points. It would also provide

electrIcal connection to the SIRTF if a telemetry link to SIRTF

through the Shuttle were required. Otherwise the SIRTF umbilical

connection to the ASE will provide power and commands for the

transfer operation. The mechas 4 cal interface of the A frame to

SIRTF is described in section 2.'.

The xeplonishment mission requires a total of two RVAs. The

duration of the first is six hours; the second is four hours. An

additionaGl crewmember is assumed for data monitoring and RMS

manipulaision.

4.3.3	 Space Station-based Replenishment Operations

For Space Station based operations we have assumed the IOC Reference Con-

figuration per JSC- 19989, the "power tower „ configuration, for the station

capability baseline. This was for convenience in communication; the mission

description and timelines are not sensitive to the final configuration

except for the following assumptions:

Shuttle-style rail and keel mounting structures will be available

An enclosed bay, providing contamination protection, will be

available

The Mobile Remote Manipulator System (MUS) or equivalent will be

available.
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0	 The OMV will be availabli from Station,

Power and data buses will be	 available both on the structure and
in the inhabited module.

Two mouth or	 longer	 storage	 of	 the	 ASE dewar with continuous
automated monitoring will be possible.

Mission Scenario

The top level	 scenario	 for	 the	 Station-based	 replenishment operation is
shown in Figure 4-13.	 Here,	 the	 A!SB	 is transported to the Space Station
during one of the routine , service	 missions	 that are scheduled to occur on
two mouth intervals,

5

After docking at Station, The	 Station	 Mobile Remote Manipulator (MRMS) re-
moves the	 ASE dewar from the Shuttle bay and carries it to an interim stor-
age area. This storage area will probably 	 be the 'tank farm" located on the
lower keel, above the inhabited modules. 	 The ASE dewar will be stored here
for up to two months awaiting the arrival of SIRTF,

Sometime during this two mouth period, an OMV will be dispatched from
Station to fetch SIRTF. The OMV/SIRTF will rendezvous with Station and tht^
SIRTF will be brought to a service hanger on tht lower keel for the transfer 1,14
operation.

After the transfer operation is complete, the SIRTF will be returned to 900

km orbit by an OMV, and the ASE dewar will be returned to storage to await
the next available Shuttle slot for the return trip to Earth. There is
nothing critical about the overall schedule, except that manifesting of the
ASE on a supply mission occur within a two month window of the retrieval of
SIRTF.

BP20AG6
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Figure 4-13 Space Station-Based Replenishment Scenario
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Hardware Configuration

The probable locations of the storage site for the ASE dewar and the trans-

fer operation on Space Station are shown in Figure 4-14. After the ASE

dewar is transported to the Space Station by the shuttle on a routine supply

mission, the Station )IRV8 gill remove it from the Orbiter bay. Altern&tely,

the ASE dewar is provided with two opposing ,grapple fixtures that pero ►xt the

RMS to pick the dewar out of the bay and hand it off to the Station YRMS.

The NRMS the moves along the station structure to the lower keel.

There the dewar is mounted on Shuttle- style longeron mounts that are

attached to the keel structure, The ASE dewar is designed with its own

external thermal control finishes and does not have to be stored in any sort

of thermal enclosure.

The dewar electronics are attached to the Space Station data and power bus

to allow monitoring of the dewar health during the storage periods. We have

assumed that an automatic monitoring procedure would be used for the the

dewar that would sound an alarm if an over-limit condition occurrs, but

would not otherwise require attention by the crew.

Prior to the arrival of SIRTF, the MUS would move the ASE dewar into the

Refuel Bay, also located on the lower keel. After being separated from the

OMV, SIRTF would be also brought into the Refueling Bay, where the transfer

operation would take place. The suggested configuration of the :!SSE and

SIRTF during the transfer operation is shown in Figure 4-15, The SIATF and

the ASE dewar are both mounted on longeron mounts as they would be in the

Shuttle bay. The configuration allows a transfer line that is less than

five feet in length.

As described in section 2.3.5 and 4.4.2, the electrical power and command

lir_--.; ^o SIRTF are over hard line from the external ASE electronics, which

in this case are hooked to the Space Station power bus and data bus as

t„frown in the simplified block diagram in Figure 4-16. The ASE Command

L)
1

1
i

0

BP20AG6	
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Figure 4-14 Storage and Transfer on Space Station
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Figure 4-16 ASE System Configuration on Space Station
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Console and Internal Electronics are located inside the Logistics Module,

and communicate with the external electronics via the Station data bus.

40

Operational Sequence and Timeline

A flow diagram of the operations for the replenishment activity onboard

apace Station is shown in Figure 4-17. 	 The description of how the flow

diagram is laid out appears in section 4.4.2. 	 As before, numbers in

parentheses refer to the times required for the task if SIRTF starts the
a

replenishment operations dry.

The timelines for the operations appear in Figure 4-18 and Figure 4-19.

Again, the first timeline assumes that the SIRTF is still wet with helium at

the start of the operation, the second assumes that SIRTF has been depleted

of helium and achieved a tank temperature of 5150 K. In the first case, the

cooldown time is 1 hour and only applies to the transfer lines. There is no

time required for instrument stabilization or topoff. The second case

requires a 20 hour dewar cooldown plus stabilization and topoff.

Description of the Operations

•	 OMV to retrieve SIRTF- the schedule for OMV to capture and return

SIRTF to the Orbiter allows 24 hours. 	 P `

•	 Relocation of ASE dewar- The ASE dewar is moved from its storage

area to the refueling bay and connected to the Station power bus

and Data bus.	 r
F

• SIRTF docking- The MRMS is used to capture the OMV/SIRTF , the

two are separated and SIRTF placed in the refuel bay. The OMV is

moved another refueling area for refueling and battery recharge.

•	 Sunshade cover attached- EVA is assumed for the task of covering

the external aperture of the sunshade with a protective contami-

f^^

BP20AG6
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Figure 4-19 Timeline for Station-Based Replenishment of Warm SIRTF
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nation cover. It would also be possible to use the MS to

install a suitably designed cc,eer. This would eliminate the need

for this EVA.

• Electrical connections- The umbilical from the ASE dewar to the

SIRTF is made at this time. EVA is assumed. A remote connection

could be set up such that connection occurred when the SIRTF was

set in its cradle.

• Configure for transfer- Preliminary electrical check of the

SIRTF system umbilical, valve status, thermometry and general

status of the transfer system.

• Attach transfer lines- EVA is assumed for the connection of the

transfer lines. The line is removed from its storage position on

the ASE dewar, interlaces are inspected, and the line is in-

stalled. This is the most difficult operation to perform

remotely.

• Leak check of interconnects- The transfer line bayonets are

checked for leaks by an external helium source or by the supply

dewar boiloff. A hand held or RMS held mass spectrometer could be

used for this operation. As with the Shuttle operation, this EVA

would probably continue until the leak check was complete to

allow inspection or treatment of a suspect leak without the delay

associated with resuiting in the EMU's,

BP20AG6

The following operations occur in the same manner as explained

for the Shuttle based transfer in section 4.4.2:

-	 Cooldown

Transfer of He

Thermal Stabilization

Topoff

4.50
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The only difference is that there is no concern about phasing

operations with crew rest periods on the Station,, so there is no

forced slack time as there was with the Orbiter-based transfer.

• Final checkout- A checkout of the transfer operation is per-

formed, valve popitions, temperaturbs, and boil off mates are

monitored.

•

	

	 Remove transfer lines- EVA is used to remove the transfer lines

and secure them to the ASE dewar.

•

	

	 Attach 016- The MRMS moves the OMV from its berth and attaches it

to SIRTF.

•

	

	 Remove sunshade contamination cover- EVA baseline but remote is

possible.

•	 Deploy OVV/SIRTF- the pair are released by the MRMS.

I

•	 Final checkout via telemetry- A final health check of the SIRTF

system can now be performed via telemetry. This is the final

opportunity to elect to abort the orbit transfer operation and

maintain the SIRTF on Station or bring it back tc earth. In the

event of an abort, the OMV would be separated and stowed, and the

abort procedures discussed in 4.2 would be initiated.	
Ya

Orbit transfer and insertion- This operation has been allowed 24

hours.

OMV returns to Station- OMV is captured by the MRMS and returned

to its storage bay.

ASE moved back to storage area.- The ASE is returned to storage

until the next available Shuttle back to earth.
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Discussion of the Timelines

As discussed in Section 4.4.2 1 we are carrying two options for the transfer

operation that influence the mission timeline, a 02K" and a 1 150K" SIRTF.

The and-to-end timeline for the 02K" SIRTF appears in Figure 4-18. 150K

SIRTF is shown in Figure 4-19. The timelines for the Station-based

operationa are'nut as critical as those for the Orbiter-based transfer since

there is no pressure from a time limited mission to optimize the schedule.

The main comment to make therefore is that these timelines represent the

minimum amount of time necessary to perform the transfer. Howe;or, there is

no reason why the operations cannot be conducted in a more leisurely

fashion. Again, the shaded blacks indicate throb EVA is required for the

operation.

•

	

	 The minimum time for the the transfer to a wet SIRTF is 74.5
Lours including the retrieval and return to orbit by the DMV.

•

	

	 The minimum time for the transfer to a wet SIRTF is 98 hours

under the same condition.

S ace Station Interfaces

This is a summary of the interfaces to Space Station:

• The ASE dewar uses the 3-point longeron mounting scheme in the

Orbiter bay. Presumably, station will be able to provide a

mechanical interface equivalent to the sill and keel fittings of

the Orbiter bay. Two RMS grapple fixtures are provided on the

dewar to allow transfer to Space Station MRMS by the Orbiter RMS

if required.

4

{	 p

4

^	 1

F
{	 ry

•	 The ASE dewar interfages to the station data bus via the Station-

provided interface system.	 There will be data bus interface

ports available on the keel, in the logistics and other modules

DP20AG6-32	 4-52
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and presumably in the satellite service bay or the refueling bay,
The data bus may be hardware, fiber optic or RF based, but in any

case will require a standard interface box on both the dewar and
control console sides as shown in Figure 4-20.

• The SIRTF dewar would be mounted to the Station on Shuttle
longeron fittings using either the three or five point mounting

scheme. The transfer operations would be performed in the re-

fueling bay. This bay must provide contamination protection from

the general station outgassing and particulate environments.

• The ASE dewar external thermal finish a/c will be 0.20-0.30. In

order to maintain main shell temperatures below 310K inside the

refueling bay, the total power dissipation in the service area

enclosed by the bay must he below O.S W The AS-E. dewar _n.n be

stored on the station keel outside of a bay or tent until the

time of the act-tail transfer operation.

• The peak power requirements

transfer operations would be

simultaneous valve actuation,

mally, the system would requi

and monitoring operations.

Station power bus.

of the ASE and SIRTF during the

200 watts. This assumes multiple,

which is rarely the case. Nor-

re less than 100 watts for transfer

Power would be provided by the

*	 The replenishment mission requires a total of two EVA's. The

duration of the first is six hours; the second is four hours. An

additional crewmember is assumed for data monitoring and RMS

manipulation.

4.3.4	 Platform-based Replenishmen t

As discussed in Section 4.2, a platform-based SIRTF could be serviced by

Space Station, the STS Orbiter or remotely by a teleoperated OMV. OMV-based
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Figure 4-20 Data/Command Interface to Station Data Bus

4-54

4



1

I
I

servicing obviously would require the development of robotic techniques for

all operations,, and is not addressed in this study. A. service mission on

Space Station or the Orbiter would essentially have the same operations

scenario and timeliness for the platform as we have shown for our baseline

free flying satellite. Rather than repeat those discussions in detail, we

will focus on some of the major advantages and disadvantages of servicing
SIRTF on platform as compared to a dedicated satellite.

The single major advantage that servicing on platform will offer .?.s that the

operations and techniques for performing general servicing on co-orbiting

platforms will be well established for both Space Station aad Shuttle-based

operations. This does not say anything about the SIRTF specific operations

but it doss mean that retrieval of platforms, docking 'and undocking, OMV

interfaces, etc., will have been developed and flight-tested on other,

earlier platforms before it will be necessary to perform the first

replenishment operation for SIRTF. Al,t4ough this advantage is partially

offset tv the fact that this experience and experience with othe-. • types of

spacecraft is in some part transferable to any spacecraft that SIRTF may fly

on, the knowledge and background associated with servicing of platform-based

instruments will exceed that of any unique spacecraft.

The primary disadvantage stems from the overall sizs and mass of the

platform itself, compared to a free flying satellite. The size will make

the docking operation with the Orbiter a more clumsy operation and requires

.additional interface structures Iwo support the platform other than the

simple configuration of the SIRTF supported by a modified A frame that we

have shown. Supporting the massive platform solely through the SIRTF

mounting would place unnecessary stress on the gimbaling system.

Another disadvantage of the platform stems from the fact that it will pro-

bably have its own propulsion system. The propulsion system is proposed to

include 6500 pounds of propellant and 1200 pounds of structure. It would

initially be used to boost the platform to its operational altitude of 901.h

km, and then be used to deorbit the platform for Station or Shuttle base,

BP20AG6	
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cryogen replenishment. This name propulsion system would most likely be

used to return the platform back to operational orbit after the servicing is

complete. This requires that the propulsion systems be replenished during
the same timeli. , as the cryogen replenishment operations. For the Station

based operations, this dor-s not present a major schedule problem, It may

not have an significant impact on the Shuttle-based replenishment either,

but ar will be discussed in the next section, there is very little margin

available for any additional operations in the timeline shown for instrument

changeout. Any additional time required to perform a refueling operation,

particularly if EVAs are required, will extend the changeout mission beyond

the seven day limit. A concurrent refueling operation of the platform could

also have some contamination implications, but presumably one of the goals

of the refueling technique development will be to eliminate the possibility

of contamination. If the platform does not have its own propulsion system

bqt uses ti zt nVV +1 nci Rad 3 then the refueling will not ha required.

4.4	 INSTRUMENT CNANGEOUT OPERATIONS

The instrument changeout operation differs from the stand-alone cryogen

replenishment operation not only in that there are additional activities

associated with the task of replacing instruments, but also in that the

SIRTF dewar must be warmed to 300K. As discussed in Section 3.1.1, we feel

that exposure of a cold telescope and instruments to the Orbiter or Space

Station environment presents an unacceptable contamination risk. Hence our

operations include warming the SIRTF dewar to 300K before performing the

changeout and a subsequently longer cooldown period during the cryogen fill

operation.

The additional time required for both changeout and cooldown extend the

length of the Shuttle mission to close to the current maximum of seven days.

Although it is planned to be able to extend missions beyond seven days in

the future, we have attempted to develop a concept that would make it

possible to complete the changeout and dewar fill within the current mission

duration. To that end, we have paid particular attention to phasing the



r

t V., I

task activities for the Shuttle-based changeout with crew rest periods and

known EVA restrictions.

Since the mission duration is more critical on the Shuttle than it is on

Station, we have focused our attention on that mission in Section 4.4.1.

Section 4.4.2 briefly discusses the implication of performing the changeout

on Station. The detailed operational sequence and timelines for Station-

based changeout appear in Appendix A.

^.	 Assumptions used for Instrument Changeout Operation-

The Shuttle crew has a twelve hour working shift followed by a

twelve hour, rest r,.riod. All crew members work the same shift;

there is no crew activity during the rest period.

•	 The duration of an EVA is six hours maximum. Four hours are

required to prepare for an EVA.

• SIRTF is the primary mission for the flight and other payloads

will not receive significant attention during SIRTF EVA

activities.

• Ground operations personnel will monitor and control long dura-

tion activities such as cooldown or transfer if they occur during

crew rest periods.

4 4.1	 Orbiter-based Instrument Changeout

Mission Scenario

The overall mission scenario for the instrument changeout on the Orbiter is

essentially the same as the Orbiter-based cryogen replenishment activity

shown in Figure 4-21. The Shuttle is launched into a 28.5 degree 400 km

orbit carrying Orbital Replacement Units (ORU) in addition to the cryo ASE

HP20AG6	 4-57
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and OMV. The OIN is deployed and retrieves SIRTF. Internal heaters on the

SIRTF cryogen tank and instruments have warmed SIRTF to 300K prior to the

rendezvous with the OMV. The SIRTF is placed on the service structure and

the electrical connections and transfer line are attached. The changeout and

transfer are performed. The remainder of the mission proceeds as described

in 4.4.2.

Hardware Conf duration

• The layout of the hardware in the Orbiter bay is shown in Figure 4-22. In

this case, the OUV will most probably be stowed under SIRTF's working area

in order to all.aw the RMS better macesz to the ORU and the oft end of the

SIRTF dewar. The electrical layout is the same as described in Section

4.4.2. During instrument changeout, the dewar access door is swung 90 to

120 degrees from the closed position and allows complete access to the MIC.

The crew member is positioned on the RMS work platform in any clocking

position about the dewar axis that is required for access to the

instruments.

Operations and Timeline

The operations sequence is shown in Figure 4-23. 	 We will only go into

detail about those operations that are different from the ones discussed for

the Shuttle-based replenishment discussed in Section 4.3.2. The initial

sequence is essentially the same as for the replenishment operation up until

the SIRTF and OMV are berthed in the Orbiter bay. The transfer line and

electrical umbilical are attached and the leak check of the transfer line is

performed during this first EVA, before the instrument changeout tasks

start. This eliminates the necessity for an additional EVA operation after

instrument changeout.

• Dewar access door opened- The first operation of the second EVA

is to unfasten the dogs holding the SIRTF dewar bottom shut. The

RMS is used to swing the door up and into a stowed position where

M
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Figure 4-22 Instrument Changeout Configuration on Orbiter
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it is safety clamped. One hour is assumed for EVA crew trans-

lation to the dewar and dewar opening and securing,

• Instrument exchange- A four hour period of the EVA is assumed for

the instrument changeout operation. Two crew members are assumed

for the operation; one crew member would work the changeout of

the boxes internal to the dewar and the other would work the

external box exchange simultaneously. The crew member working the

external boxes would be available for intermittent support of the

other crew member if need be. The RMS would be used to support

the Manipulator Foot Restraint used by the crew member working

inside the dewar.

The mechanical, thermal and electrical interfaces of the instru-

ments are be designed such that the changeout can be completed in

this single EVA period. An additional EVA can be used as a con-

tingency if the overall mission can be extended beyond seven

days.

• Dewar access closed- Again the RMS would be used to assist the

EVA for this operation. The dewar closure need only be adequate

for structural support of the OMV reboost operation. A hermetic

seal is not required.

•	 The remaining operations consist of the dear cooldown and helium

transfer. The cooldown is performed in 30 hours, followed by 5 	 ti

hours for the actual transfer. A 10 hour stabilization time is

assumed to allow the instruments to complete their cooldown

before the final topof. f .

•	 In parallel with the cooldown and transfer operation, instrument

electronic checks can be performed via telemetry.



•	 4a

•	 A third EVA is used to remove the transfer lines and remove the

sunshade cover prior to final deployment of the OMV/SIRTF.

Timeline

The timeline for the changeout operation au the Orbiter is shown in Figure

4-24.

•	 The timeline shows that instrument changeout and replenishment of

the warm SIRTF requires a 6.2 	 day	 mission and three EVA's.	 The

EVAs on day 2 and day 3 of the taissioa are six hours each.

•	 The mission timeline is 	 phased	 with	 crew	 rest periods and EVA

preparation time. The entire changeout operation is shown to take

place in one six hour	 EVA.	 This	 will impose severe design con-

straints on the interfaces 	 of	 the	 instruments to the dewar. An

additional EVA could be added in the fourth day of the mission to

extend the amount of	 time	 available	 for changeout, but without

other changes in	 the	 overall	 approach,	 this	 would extend the
k

mission an additional 24 hours.

•	 Figure 4-25 shows the 	 advantage	 of	 using	 of	 using the RMS to

remove the sunshade cover remotely. 	 By moving the third EVA to

day 5 instead of day 	 6,	 the	 transfer line and SIRTF umbilical

can be disconnected	 a	 day	 earlier.	 Then	 two crew members can

deploy the OMV/SIRTF during	 the	 crew	 rest	 period.	 This would

shorten the mission to	 5.5	 days	 but	 has the disadvantage that

some work would be	 required	 of	 the	 crew	 during a normal rest

period.	 This is the	 only	 instance	 where	 the use of	 a remote

operation reduces the overall mission duration.

F
r

h k

e
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4.4.2	 Space Station-based Instrument Changeout

The overall miss;lon for the changeout operation on Space ;>f,, 4ticn is

essentially the same as the replenishment mission described in Section

4.3.3. Rather than repeat the mission scenarios, hardware configurations

and operational, descriptions in their entirety, we will focus on the major

differences between this mission and the Station-based replenishment. A

complete description of the mission is contained it Appendix A.

The basic scenario for the changeout mission is the same as shown in Figure

4-13 for the cryogen replenishment. The ASE and the replacement instruments

are transported to the Station via Shuttle during a routine service

mission. The major difference is that now the larger 11,500 liter dewar is

required since the SIRTF dewar will require cooldown from 300K.

The hardware configuration will be the same as described in Section 4.3.3,

except that an ORU carrier will be required to house the instruments during

the changeout. The M MS will be used to support a crew member and the in-

struments during the actual exchange or installation of the instruments.

All operations performed with the dewar access door opened must be conducted

in an enclosed bay or tent that provides a protection against particle and

molecular contamination. The advantage that the Station offers here is that

the enclosed bays should be able to provide an environment that is more

benign than the Shuttle bay.

Figure 4-26 shows the overall timeline for the changeout. Because the

Station can provide around-the-clock crew shifts, the staging of the opera-

tions with the crew rest periods is not required so this timeline is shorter

than that of the changeout mission of the Orbiter. The operation from the

time of OMV launch to the return of STRTF to operational orbit can take as

little as 4.5 days. However, since the Station operations are not
constrained by a maximum mission duration as was the Shuttle, there is no

obvious need to compress the schedule„ This means that the actual instrument

y+
1

:Q
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Figure 4-26 Station-Based Instrument*Changeout
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changeout operations can be extended beyond the single 6 hour EVA shown in

the timeline.

In summary, the changeout operation on Space Station offers some distinct

advantages over performing the same operation on Shuttle

• The Station bays or enclosures are potentially cleaner environ-

ments than the Shuttle bay and will probably offer better pro-

tection to the open dewar and instrument cavity.

• Without the schedule pressure of a limited duration mission,

additional time and probably additional EVAs are pr.:--sible for the

actual instrument changeout. This will relax some of the instru-

ment and facility design constraints that were necessary to opti -
mize the changeout operation for the Shuttle mission, Of course,

these constraints Would still be carried if the Shuttle-based

operation was to be considered a backup.

Probably most important is that if there were difficulties en-

countered during the changeout or some facility anomaly occurred,

Station can provide a safe storage area for SIRTF for essentially

an indefinite period of time. This would permit extensive

diagnostics to be performed without necessitating a return to

earth. ^F

•
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Section 5

TECHNOLOGY DEVELOPMENT PLAN

The state of development of the critical technology elements is summarized

in Figure 5-1. The list in the left hand side of the figure includes the

major development items associated with the helium transfer and instrument

changeout for SIRTF. Obviously the list is not complete, but it does in-

clude those items that are not in existence today. The items listed with

Arabic numerals are necessary for the helium transfer operation, and those

listed with Roman numerals apply to the instrument changeout, The numbers

repvesentang these items appear in the matrix on the right hand side of the

figuze .

The vertical axis of the matrix describes the state of the development of

the item while the horizontal axis indicates its mission criticality. Hence

an item that is shown in the upper left box, "feasible in theory" and "high"

mission criticality has a high level of programmatic risk associated with

it, while any item in the lower right hand corner, with "proven flight de-

sign" and "low" mission criticality, would represent very low programmatic

risk.

This representation is useful to prioritize those items that must be addres-

sed in early development planning in order to reduce overall programmatic

risk. The object of the development plan is to move items from the upper

right hand corner of the matrix towards the lower left through an orderly

sequence of development design and testing.

,.	
The vertical axis spans the range of development status from proven flight

design to theoretically possible. 	 The divisions require a bit of

explanation:

BP20AJ3-1	 5-1
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• Feasible in Theory - An item is accepted as possible by the gen-

eral community of experts, usually backed by analysis and a con-

ceptual design, but not necessarily. This is not where the "blue

sky" ideas go, however. Those ideas are off-scale on this axis.

• Working.Laboratory Model. - Just that. An item that has been

shown to function on the laboratory scale goes in this category.

The problems of flight quaalification have not been addressed at

this 'level.

• Based on Non-flight Engineering - Working units exist in ground

applications but have not been modified for flight use as of yet.

Full flight qualification is ,required.

• Extrapolated from Existing Flight Design - A unit of similar

function and design has been flown before. This type of item

could be qualified for flight by similarity. Only acceptance

testing will be required on the item.

•	 Proven Flight Design - It has been done before and flown success-

fully.

The horizontal criticality scale is sort of gray but broadly breaks down in

the following manner:'

• High - The success of the mission is dependent on the success of

the item. If these items failed, so would the mission. Re-

dundancy would be provided for the function of these items in the

actual mission. In the case of the development program, it would

be wise to pursue parallel development for the function, e.g.,

simultaneously pursuing the thermomechanical and mechanical

pumps.

BP20AJ3-2
5-3

"ii, .^ i I

M..



r

• Medium - This range covers the arena of performance dependence,

The overall mission performance is related to the performance of

these items, but a successful mission can occur even if thes6

items perform marginally. A non-existent mass flow meter would

not cancel the mission, but knowing the difference between 80

percent and 100 percent fill is important.

M

• Low - Items in this range are usually considered part of the

system, but provide engineering information only or have viable

operational and functional work Grounds during the actual

mission.

i

. 
yt
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BP20AJ3-3	 5_4



5-5

^.r. 7A 1

ITEM 1:

PUMP SYSTEM, THERMOMECHANICAL

DESCRIPTION:

Thermomechanical system used to transfer He II from supply dewar to

SIRTF.

STATUS:

Laboratory model of the thermomechanical pump system is currently

under test at BASD. GSFC is also currently engaged in development of

a pump for a zero-g experiment on Shuttle.

CRITICALITY : .

A oor kin- umping meeb a,-tism 3 s hi-hl critical to the in-orbit cryogen15 p" ^ 	 8 y
transfer mission. The overall programmatic risk is reduced since there

are currently two options being pursued, both with reasonable chance of

success.

s.

r

s. APPROACH:

Demonstrate
t.

ance parame,

flight unit

zero-g test

test bed.

function of pump in one-g environment and measure perform-

ters. Develop analytical model suitable for designing

and verify with detailed testing of development unit. Full

combined with Items 2 and 9 should be performed on Shuttle

MILESTONES:

	

1985 -	 Operational test of T /M pump in one g at BASD.

	

1986 -	 1 g test of T/M pump at GSFC

	

1989 -	 0-g transfer test (combined with Items 2 and 9) on STS

mission.

COST:

S250K Initial ground test

$5M Flight demonstration combined with Items 2 and 9



b

ITEM 2:

PUMP SYSTEM, MECHANICAL

177

{

r:

DESCRIPTION:

Mechanical pump system (probably centrifugal) for transfer of helium

from supply dewar to SIRTF

STATUS:

Currently under development at NBS laboratories in Boulder, CO. Has

been run successfully.

CRITICALITY:

The demonstration of a functional pumping mechanism for transfering

helium is critical to the program.. Programmatic risk is reduced since

there are two pump types under development in parallel.

APPROACH:

Demonstrate function of pump

ance parameters. Develop

flight unit and verify with

zero-g test combined with Its

test bed.	 '

in one-g environment and measure perform-

analytical model suitable for designing

detailed testing of development unit. Full

ams 1 and 9 should be performed on Shuttle

MILESTONES:

1985	 Detailed testing of existing pump with He II at NBS.

1986 -	 Verification of pump design model.

1989 -	 0-g transfer test on STS mission.

COST:

S250K Initial ground test

S5M Flight demonstration (combined with Items 1 and 9)

"i
^I
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ITEM 3:

HIGH CONDUCTANCE VALVES

DESCRIPTION:

High throughput cryogenic valves are required to allow cooldown of warm

dewar and fluid transfer rates of 1000 liters/hour. High conductance

valves are required to permit adequate pump down rates of both the ASE

and SIRTF dewar to maintain superfluid phases during the transfer

process.

STATUS:

No work currently being performed. 	 Design can be based on existing

ball, gate, or butterfly valves.

CRITICALITY:

High mission criticality; there are no alternatives available. The

programmatic risk is medium, since there exist several commercial can-

didates and the flight development can benefit from the work done on

IRAS and COBE.

APPROACH:

Determine maximum acceptable impedance and leak rate using end-to-end

transfer system model. Survey available commercial designs and select

one for development. Modify as required and test for leak rate, reli-

ability at 1.8K.

SCHEDULE:

9 Months

COST:

$400K

,i
BP20AHl-3	 r
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ITEM 4:

TRANSFER LINES

DESCRIPTION:

He transfer line that is EVA compatible and has acceptable heat leak.

STATUS:

Can be based on existing non-flight engineering.

G

r	 }

CRITICALITY;

Medium to High mission criticality; a special direct insertion bayonet

coupling might be used instead. Low programmatic risk since design

would be a simple extrapolation of existing ground based transfer line

design.

APPROACH:

Design using established techniques.	 Use end-to-end transfer system

model to establish heat leak requirements. Demonstration unit could be
l

added to coupling development program (Item 5).

MILESTONES

See Item 5.

COST:	 7

See Item 5.
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ITEM 5:

EVA COMPA=TIBLE BAYONET COUPLINGS

DESCRIPTION:

Bayonet couplings suitable for operation by EVA crewmember to connect

transfer line between ASE dewar and SIRTF.

STATUS:

Base on existing non-flight designs. JSC is preparing to let an RFP

for a flight-gtimlified cryogen transfer coupling design and

development.

CRITICALITY:

".Lg mission criticality; unere Is no aluernebive to using a bayonet

coupling. Medium to high programmatic risk since, although technically

feasible, implementation for a man-rated system may be difficult and

expensive.

APPROACH:

Develop coupling for helium and other cryogens. Deliver test units to

ARC and JSC. Proceed to build SIRTF flight units.

MILESTONES:

1986 -	 JSC RFP issued

1987 -	 1st test, hardware delivered.	
6

1989 -	 SIRTF flight coupling delivered.

COST:

~	 S3M

BP20AHl-5	 5-9
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COST:

82M

BP20AH1-6
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ITEM 6:

RELIUM MASS QUANTITY SENSOR

DESCRIPTION:

A sensor that can measure the amount of He II in a dewar in a zero g

environment. Needed to judge the progress and extent of completion of

the fluid transfer. Very desirable in both SIRTF and ASE dewars.

STATUS:

Various techniques have been proposed, but not demonstrated. RFP for

laboratory brassboard issued by JSC covers many cryogens. Unit devel-

oped by JSC may or may not meet STICCRS needs because of unique proper-

ties of He II.

CRITICALITY:

Medium mission criticality. Although an important adjunct to determin-

ing the course of the transfer operation, the lack of the sensor will

only reduce the reliability of a 100 percent transfer. Analysis and

perhaps thermometry can compensate somewhat. However, considering

that an 80 percent fill on a service mission costing on the order of

$30 M or more compared to a 100 percent fill given appropriate instru-

mentation suggests that effort and money spent here will see reasonable

returns.

APPROACH:	 n
Wait to see if current JSC brassboard effort will apply to He II. If

it doesn 't, begin similar ground-based brassboard for He II. Begin

STS-based demonstration.

MILESTONES:

RFP 6/85

Contract Start 1/86

Contract Complete 12/87

F



ITEM 7:

GAS FLOW METER

DESCRIPTION:

Flow meter to measure gas venting rates of the supply dewar.

STATUS:

Current designs are available but are not compatible with the low

impedance requirements of the high conductance vent lines of the supply

dewar.

CRITICALITY:

This item is of low mission criticality since the data provided by it

is primarily for diagnostic purposes only. Becomes more important if

satisfactory mass quantity sensor is not available.

APPROACH:

Design around properties of He, flow range expected, and low pressure

drop requirement. Possibly base on SL-2 IRT experience.

SCHEDULE-

2 Years

COST:

$2M

r

1a

1

k
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COST:

$2M

0
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ITEM 8:

FLUID FLOW METER

DESCRIPTION:

Floe meter to measure rate of helium transfer from supply dewar to

receiver.

STATUS:

Schemes based on second sound usable in laboratory.

CRITICALITY:

Low mission criticality if the mass quanity sensor is developed.

APPROACH:

Design for unique properties of He II, flow range expected.

SCHEDULE:

2 Years

r



ITEM 9:

LIQUID ACQUISITION SYSTEM

DESCRIPTION:

A device for ensuring that the pump is in contact with the He fluid in

the supply dewar, and supplying fluid to the pump at the required flow

rate.

STATUS:

Work is currently beings performed on fluids other than He II, including

water, hydrogen, oxygen and hydrazine. GSFC flight demonstration

includes acquisition device based on surface tension. Alternate tech-

nique may deserve exploration.

CRITICALITY:

High mission criticality to achieve high transfer rate. Medium pro-

grammatic risk since superfluid film will probably support transfer at

reduced flow rate.

APPROACH:

Surface tension device included with GSFC shuttle test bed. Explore

alternate scheme(s) with lab tests.

I	 MILESTONES:
1

1987 -	 Lab test of alternate device

j	 1989 -	 Flight demonstration of surface tension device
^I

I
a
f

k	 COST:

S250K Lab tests

$4M Flight demonstration (combined with Items 1 and 2)

M^

r
G
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ITEM 10:

HIGH CONDUCTANCE POROUS PLUG

DESCRIPTION:

Used for fluid containment on the supply dewar, high conductance neces-

sary for use with T/M pump and mechanical pump.

STATUS:

Theory seems to be developed and smaller plugs have been flown and

characterized on WS, 2 Spacelab II experiments, and soon CODE. No

current work being performed.

CRITICALITY:

High mission criticality; no reasonable alternative liquid containment

method available. Medium programmatic risk since can be extrapolated

from current designs.

APPROACH:

Design and procure plug for expected flow rate. Test in laboratory

dewar with heater. Compare behavior with design predictions and re-

solve discrepancies.

SCHEDULE:

1 Year

COST:

$300K

F



ITEM 11.

END-TO-END SUPERFLUID TRANSFER MODEL

DESCRIPTION:

Detailed numerical time-dependent simulation of He II transfer system,

including supply dewar, pump, transfer line, receiver dewar, and 'vents.

STATUS:

Core of model exists at NASD.

CRITICALITY:

High to medium mission criticality because needed for top-level system

tradeoffs before detailed design can start.

APPROACH:

Add dewars, existing pump and gent models yo existing model. Add con-

venience features, documentation to turn into user-friendly design

tool.

SCHEDULE:

1 Year

COST:

S600K

► 	 .
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ITEM I:

INSTRUMENT/DEWAR THERHAL JOINTS, EVA ASSEMBLED

DESCRIPTION:

A standardized thermal joint between the instruments and the dear that

can 'Pe easily made or separated by an EVA crewmember during the instru-
ment changeout operation.

STATUS:

Repeatable thermal joints at He II temperatures demonstrated and quan-

tified in BASD lab tests.

CRITICALITY:

High mission criticality for changeout. Thermal testing, and EVA simula-

tions required to standardize design for instruments.

APPROACH:

Design joint for EVA compatibility. Test forces, torques required.

Test thermal performance at 1.8K after each of several mate/demate

cycles.

SCHEDULE:

1 Year

COST:	 M

$300K



ITEM II:

MLI BLANKET EDGE FABRICATION

DESCRIPTION:

A separable joint in the multilayer insulation (M,I) blanket at the

cylinder/dome interface inside the SIRTF dewar that allows the bottom

of the dewar to be opened for MIC access. Must withstand handling

during system integration and instrument changeout.

STATUS:

No current work being done. Initial design concepts presbnted in BASD

STICCRS Final Report.

CRITICALITY:

Medium mission criticality since most failure modes will result in

mission lifetime degradation, not mission failure.

APPROACH:

Design and build short cylindrical test unit of full diameter. Test

handling properties, gap with axis vertical and horizontal. Test

thermal con6uction. Combine with Item III.

MILESTONES:

1 Year (Items II and III combined)m-,^

COST:

$2M (Items II and III combined)

s
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ITEM III:

VCS SHRINK FIT JOINT

DESCRIPTION:

Mechanical/thermal circumferential joint in VCS's of SIRTF dewar that

separates during dewar opening for instrument access.

STATUS:

Initial design concept and analysis %omplete during STICCRS study.

CRITICALITY:

High mission criticality since failure could preclude closing the devPar

after instrument changeout. The approach shown in this report appears

feasible but requires a demonstration model of the same general dimen-

sions as the flight unit to be built and tested for producibility,

reliability and determination of handling characteristics.

APPROACH:

Full scale demonstration of this interface should be assembled and

tested. Do in combination with Item II.

MILESTONES:

See Item II.

COST:

See Item II.
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F	 APPENDIX A

SPACE STATION-BASED SERVICING OF SIRTF

This appendix describes the SIRTF cryogen replenishment and instrument

changeout missions on Space Station, The scenarios, operations, and time-

lines are presented for both missions. The facilities and services that are

expected to be available from Station are mentioned, as is a summary of the

Airborne Support Equipment (ASE) to Station interfaces.

r

For Space Station based operations we have assumed the IOC Reference Con-

figuration per JSC-19989, the "power tower" configuration, for the Station

capability baseline. This was for convenience in communication; the mis-
sion description and timelines are not sensitive to the final configuration

except for the following assumptions:

•

	

	 Orbiter-style rail and keel mounting structures will be

available,

•

	

	 An enclosed bay, providing contamination protection, will be

available,

•

	

	 The Mobile Remote Manipulator System (MRMS) or equivalent will be

available,

•

	

	 The Orbital Maneuvering Vehicle (OMV) will be available from

station,

•

	

	 Power and data buses will be available both on the structure and

in the inhabited module,and

•

	

	 Two month or longer storage of the ASE dewar with continuous

automated monitoring will be possible.



a
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•

	

	 EVA will be available under the same constraints as Shuttle-based

EVAs.

SPACE STATION-EASED REPLENISHMENT OPERATIONS

Mission Scenario

The top level scenario for the Station-based replenishment operation is

shown in Figure A-1. Here, the ASE is transported to the Space Station

during one of the routine service missions that are scheduled to occur on

two month intervals. After docking at Station, the Station MRMS removes the

ASE dewar from the Orbiter bay and carries it to an interim storage area.

This storage area will probably be the "tank farm" located on the lower

keel, above the inhabited modules.

The ASE dewar will be stored here for up to two months awaiting the arrival

of SIRTF. Sometime during this two month period, an OMV will be dispatched

from Station to fetch SIRTF. The OMV/SIRTF will rendezvous with Station

and the SIRTF will be brought to a service hanger on the lower keel for the

transfer operation.

After the transfer operation is complete, the SIRTF will be returned to

900 km orbit by an OMV and the ASE dewar will be returned to storage to

await the next available Shuttle slo'`: for the return trip to earth.

0	 A

There is nothing critical about  the overall schedule, except that mani•-

festing of the ASE on a supply mission occur within a two month window of

the retrieval of SIRTF.

Hardware Configuration

The probable locations of the storage site for the ASE dewar and the trans-

fer operation on Space Station are shown in Figure A-2. After the ASE dewar
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is transported to the Space Station by the Orbiter on a routine supply mis-

sion, the Station MRMS will remove it from the Orbiter bay. Alternately,

the ASE dewar is provided with two opposing grapple fixtures that permit the

EMS to pick the dewar out of the bay and hand it off to the Station MRMS.

The MRMS then moves along the station structure to the lower keel. There

the dewar is mounted on shuttle-style longeron mounts that are attached to

the keel structure. The ASE dewar is designed with its own external thermal

control finishes and does not have to be stored in any sort of thermal

enclosure.

The dewar electronics are attached to the Space Station data and power bus

to allow monitoring of the dewar health during the storage periods. We have

assumed that an automatic monitoring procedure would be used for the the

dewar that would sound an alarm if an over-limit condition occurred but

otherwise would not require attention by the crew.

Prior to the arrival of SIRTF, the MRMS would move the ASE dewar into the

Refueling Bay, also located on the lower keel. After being separated from

the OMV, SIRTF would be also brought into the Refueling Bay, where the

transfer operation would take place. The configuration of the ASE and SIRTF

during the transfer operation is shown in Figure A-3. The SIRTF and the ASE

dewar are both mounted on longeron mounts as they would be in the Orbiter

bay. The configuration allows a transfer line that is less than 2 m in

length.

The electrical power and command lines to SIRTF are over hard line from the

external ASE electronics, which in this case are hooked to the Space Station

power bus and data bus as shown in the simplified block diagram in Fig-

ure A-4. The ASE Command Console and internal electronics are located in-

side the Logistics Module and communicate with the external electronics via

the Station data bus.

BP20AI9-3	 A-5
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Operational Sequence and Timeline

A flow diagram of the operations for the replenishment activity onboard

Space Station is shown in Figure A-5. The numbers in parentheses refer to

the times required for the task if SIRTF starts the replenishment operations

dry. Otherwise the numbers refer to the times associated with starting with

a 2 K SIRTF dewar.

The timelines for the operations appear in Figures A-6 and A-7. The first

timeline assumes that the SIRTF is still vet with helium at the start of the

operation; the second assumes that SIRTF has been depleted of helium and

achieved a tank temperature of 150 K. In the first case, the cooldown time

is one hour and refers to cooling the transfer lines only. There is no time

required for instrument stabilization or topoff. The second case requires a

20 hour dewar cooldown plus stabilization and topoff.

Discussion of the Operations

The operations depicted in Figure A-5 are summarized below:

•	 OMV to retrieve SIRTF - The schedule for OMV to capture and re-

turn SIRTF to the Orbiter allows 24 hours.

• Relocation of ASE dewar - The ASE dewar is moved from its storage

area to the refueling bay and connected to the Station power bus

and Data bus.

• SIRTF docking - The MRMS is used to capture the OMV/SIRTF, the

two are separated and SIRTF placed in the refueling bay. The OMV

is moved around refueling area for refueling and battery

recharge.

r
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Sunshade cover attached EVA is assumed for the task of cornering
the external aperture of the sunshade with a protective con-

tamination cover.. It would also be possible to use the MS to
install a suitably designed cover. This would eliminate the need

for thin EVA.

• Electrical connections - The umbilical from the ASE dewar to the

SIRTF is connected at this tame. EVA is assumed. A remote con-

nection could be set up such that connection occurred when the

SIRTF was sat in its cradle.

Configure for transfer Preliminary electrical check of the

SIRTF system umbilical, valve status, thermometry and general

status of the transfer system.

• Attach transfer lines - The line is removed from its storage

position on the ASE devu,r, interfaces are inspected, and the line

is installed. This is the most difficult operation to perform

remotely.

Leak check of interconnects -- Thp transfer line bayonets are

checked for leaks by an external helium source or by the supply

dewar boiloff. A hand held or RMS held mass spec,rometer could be

used for this operation. As with the Orbiter operation, this EVA

wou?.'. probably continue until thcs leak check was complete to 	 C
a	 ^

allow inspection or treatment of a suspect leak without the delay

associated with resuiti,ng in the EMU's.
tt

Cooldown - At this point the transfer process would start and the

cooldown of the transfer lines would be performed. If the SIRTF

was depleted of helium to start with, then the cooldown would

continue for 20 hours until liquid started to collect in the

receiver dewar.

BP20AI9-5
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• Transfer of Helium - The transfer should take less than five

hours at the anticipated 1000 liter /hour rate using the thermo-

mechanical pump„

• Thermal Stabilization - In the event that the dewar was initially

dry, it would be necessary to allow the instruments to continue

to cooldown until the dewa r boiloff stabilized. This time depends

strongly on the instruments internal thermal design and could

range from 5 to 24 hours, depending on initial temperatures. This

time would be used for various health checks of SIRTF including

instruments checks if the system is configured to allow them.

• Topoff - Again, in the case of starting with a dry dewar, the

final cooldown of the instruments would consume a small portion

of the helium transferred initially. This would be replenished

by a topoff operation.

•	 Final checkout - A checkout of the transfer operation is per-

formed, valve positions, temperatures, 	 boil off rates are

monitored.

Remove transfer lines - EVA is used to remove the transfer lines

and secure them to the ASE dewar.

Attach OMV - The MS moves the OMV from its berth and attaches

it t;,) SIRTF.

Remove sunshade contamination cover - EVA is baselined for this

but remote operation is possible.

I

Deploy OMV/SIRTF - the pair are released by the MRMS.

Final checkout via telemetry - A final health check of the SIRTF

system can now be performed via telemetry. This is the final

A-13 ^a



opportunity to elect to abort the orbit transfer operation and

maintain the SIRTF on Station or bring it back to earth, In the

event of an abort, the OMV would be separation and stowed and the

abort procedures discussed in 4.2 would be initiated.

*

	

	 Orbit transfer and insertion - This operation has been allowed 24

hours.

•

	

	 OW returns to Station - OMV is captured by the MRMS and returned

to its storage bay.

ASE moved back to storage area - The ASE is returned to storage

until the next available Shuttle back to earth.

Discussion of the Timelines

The timelines for the Station-based operations are not as critical as those

for the Orbiter-based transfer since there is no pressure from a time limit-

ed mission to optimize the schedule. The main comment to make therefore is

that these timelines represent the minimum amount of time necessary to per-

form the transfer. However, there is no reason why the operations cannot be

conducted in a more leisurely fashion. The minimum time for the the trans-

fer to a wet SIRTF is 74.5 hours, including the retrieval and return to

orbit by the OMV. The minimum time for the transfer to a wet SIRTF is 98

hours under the same condition.

SPACE STATION-BASED INSTRUMENT CHANGEOUT

Mission Scenario

The overall mission for the changeout operation on Space Station is essen-

tially the s , » a^ the replenishment mission shown in Figure A-1. The

major diff fnce is that now the larger 11 ;,500 liter dewar is required since

BP20AI9-7	 A-14



the SIRTF dewar will require cool down from 300 K. The ASE and the change-

out units are transported to the Space Station during one of the routine

ser="^.ar missions that are scheduled to occur on two month intervals.

After docking at Station, the MRMS removes the ASE dewar from the Orbiter

bay and carries it to an interim storage area, probably the "tank farm"

located on the lower keel, above the inhabited modules, The ASR dewar will

be stored here for up to two months awaiting the arrival of SIRTF.

Any Orbital Replacement Units (ORUs) will probably be mounted in a support

cradle for the Shuttle flight to Station. This cradle would provide thermal

control and a contamination free environment for the instruments. It would

be moved onto Station from the Orbiter and transported by the MRMS to the

Satellite Storage Bay until needed for the changeout operations.

Sometime during the next two months, an OMV will be dispatched from Station

to fetch SIRTF. The OMV`SIRTF will rendezvous with Station and the SIRTF

will be brought to a service hanger for the changeout operation. Since the

contamination requirements for the changeout operation are tight, the Satel-

lite service bay would be the most 'likely site for the changeout operation.

Presumably, the ASE dewar would also be moved to this same site for the

post-changeout transfer operation rather than transport SIRTF to the lower

keel of Station in order to use the Refueling Bay,

After the transfer operation is complete, the SIRTF will be returned to 900

km orbit by an OMV and the ASE dewar and ORU cradle will be returned to

storage to await the next available Shuttle slot for the return trip to

earth.

Hardware Configuration

For instrument changeout, the hardware configuration will be the same as

described for the transfer operation, except that an ORU carrier will be

required to house the instruments dur ug the changeout. The MRMS will be

BP20AI9-8	 A-15	 `'I
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used to support a crew member and the instruments during the actual exchange

or ins`allation of the instruments.

All operations performed with the dewar access door opened must be conducted

in an enclosed bay or tent that provides a protection against particle and

molecular contamination. The advantage that the Station offers here is that

the enclosed bays should be able to provide an environment that is more

benign than the Shuttle bay.

Operational Sequence and Timeline

Figure A-S shows the overall timeline for the changeout. Because the

Station can provide around-the-clock crew shifts, the staging of the opera-

tions with the crew rest periods is not required so this timeline is shorter

than that of the changeout mission of the Orbiter. The operation from the

time of O)V launch to the return of SIRTF to operational orbit can take as

little as 4.5 days. However, since the Station operations are not con-

strained by a maximum mission duration as was the Shuttle, there is no

obvious need to compress the schedule. This means that the actual instrument

changeout operations can be extended beyond the single 6 hour EVA shown in

the timeline.

Summary

In summary, the changeout operation on Spaca Station offers some distinct

advantages over performing the same operation on Shuttle:

• The Station bays or enclosures are potentially cleaner environ-

ments than ,w :shuttle bay and will probably offer better pro-

tection to the open dewar and instrument cavity.

•

	

	 Without the schedule pressure of a limited duration mission,

additional time and probably additional EVAs are possible for the

BP20AI9-9	
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actual instrument changeout. This will relax some of the instru-

ment and facility design constraints that were necessary to opti-

mize the changeout operation for the Shuttle mission. Of course,

these constraints would still be carried if the Shuttle-based

operation was to be considered a backup.

•

	

	 Probably most important is that if there were difficulties en-

countered during the changeout or some facility anomaly occurred,

Station can provide a safe storage area for SIRTF for essentially 	 .
an indefinite period of time. This would permit extensive diag-

nostics to be performed without necessitating a return to earth.

Interfaces

• The ASE dewar uses the 3-point longeron mounting scheme in the

Orbiter bay. Presumably, Station will be able to provide a

mechanical interface equivalent to the sill and keel fittings of

the Orbiter bay. Two RMS grapple fixtures are provided on the

dewar to allow transfer to Space Station MRMS by the Orbiter RMS

if required.

•	 The ASE dewar interfaces to the Station data bus via the station
x	 provided interface system.	 There will be data bus interface

` ports available on the keel, in the logistics and other modules

and presumably in the satellite service bay or the refueling bay.

The data bus bus may be hardwire, fiber optic or RF based but in

any case will require a standard interface box on both the dewar 	
u

and control console sides.

• The SIRTF dewar would be mounted to the Station on Shuttle

longeron fittings using either the three or five point mounting

scheme. The transfer operations would be performed in the re-

fueling bay. This bay must provide contamination protection from

the general .station outgassing and particulate environments.

BP20AIO-10	
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The changeout operation will have tighter contamination control

requirements than the replenishment operation. A Level 300 en-

viron _.At should be considered an absolute minimum. This may

require that the changeout be performed in the Satellite Service

Bay rather than the Refueling Bay.

• The ASE dewar external thermal finish will have an aft of 0.20-

0.30. In order to maintain main shell temperatures below 310 K

inside the refueling bay, the total power dissipation in the

service area enclosed by the bay must be below 0.5 kW. The ASE

dewar can be stored on the station keel outside of a bay or tent

until the time of the actual transfer operation.

• The peak power requirements of the ASE and SIRTF during the

transfer operations would be 200 watts. This is assumes multi-

ple, simultaneous valve actuation, which is rarely the case.

Normally, the system would require less than 100 watts for trans-

fer and monitoring operations.	 Power would be provided by the

Station power bus.

• The replenishment mission requires a total of two EVA's, the

duration of the first is six hours, the second is four hours. An

additional EVA crew member is assumed for data monitoring and RMS

manipulation.

•	 The changeout and subsequent replenishment requires three EVAs of

approximately six hours each. EVA support should be assumed for

k	 the 4.5 day duration of the changeout operation.

1a

BP20AI9-ll	 A-19
	

I

E

i
Or	 t., x -p.:,	 w ^.



BP20AK1-1
	

q-1

APPENDIX B

MODELING OF SUPERFLUID HELIUM TRANSFER

The following manuscript was presented at the Superfluid Helium Transfer in

Space Workshop, Boulder, Colorado, August 20-21, 1955. It will appear in a

special issue of Cryogenics devoted to the workshop. This work was spon-

sored by BASD, and is included here for the convenience of the reader.
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YODELTNG OF SUPERFLUID HELIU.f TRANSFER

L. A. Hermanson, A. J. Mord, H. S. Snyder

Ball Aerospace Systems Division

ABSTRACT

A one dimensional model for the flow of He II is applied to a transfer line

with flow driven by a thermomechanical pump. The thermodynamic parameters

are updated at each step of the integration. A check is made at each step

on the proximity of the saturation line, and two-phase flow is allowed.

Turbulence is allowed in both the normal and the superfluid. Results are

shown for conditions that may be typical for the transfer of large volumes

Of He II in space. The main result is that flow rates of 1000 liters/hour

should be achievable with the receiver being 100% filled with saturated

liquid He II.

i
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INTRODUCTION

An important Lool for analyzing superfluid helium transfer is a simplified

physical model of the process. The model described here was developed by

Ball Aerospace Systems Division, and applied to studying the replenishment

of cryogen in the Space Infrared Telescope Facility (SIRTF) (ref. 1). It

constitutes an extension of a previous model of forced He II flow (ref. 2).

The intention of the model is to be physically rigorous by applying existing

analytical knowledge of bulk, superfluid helium behavior is such a way as to

bound the characteristics of transfer between two dewars without addressing

design details.

The previous He II bulk flow model (ref. 2) only analyzed subcooled trans-

fer, using constant physical properties. A model was needed which applied

continuous physical properties, and could deal with saturated liquid and

boiling in order to accurately reflect the system behavior for this study.

This extension of existing analytical techniques takes the form of a numeri-

cal model on the computer.

The first goal of the model was to check the feasibility of transfer at high

flow rates. Since there exists some question as to the exact behavior of 	
I

superfluid at the high Reynolds numbers encountered in this transfer, study,	 y'
the feasibility can be determined by quantifying the sensitivity of the

process to the realistic bounds on the behavior of the fluid. That is, we	 .y

compare the results using a model of a laminar superfluid flow, as is

observed in counterflow experiments, to a model using the equations for

fully developed turbulent flow of ordinary fluid.

1.

The second goal of the model is to

drivers. This is important to do

ware is begun because the limits

quantitatively and problem areas

detailed design progresses the mod

into a design optimization tool.

identify the He II transfer system design

before detailed design of transfer pard-

on realistic configurations are explored

can be efficiently identified. As the

it1 is modified and expanded and develops

BP20AK1-3	 B-3
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DESCRIPTION OF THE MODEL

The model consists of all the essential elements necessary for calculating

the end-to-end equilibrium physical profile. The hardware elements modeled

are shown in Figure 1. The flow proceeds from the supply dewar through the

thermomechanical pump down the pipe and into the receiver dewar. Elements

not modeled but examined were the effect of valves and pipe bends on the

pressure drop, and tho mechanism of the heat leak. The addition of these

effects was determined not to significantly affect the results. The quanti-

ties needed to assess the performance of our configuration are calculated

and displayed graphically. They are the temperature, pressure and heat

conduction profiles of equilibrium steady state flow.

Two separate sets of equations are used in the model, The first set 2,s the

high thermal conductivity, laminar flow bound. The Fi t)nd set is the zero

thermal conductivity, turbulent flow bound. Actual behavior will be between

these limits.

The equations used for the laminar flow limit are shown in Table I (ref. 3).

Equation (I-A) describes conservation of mass in the two fluid model where

Vn is the normal component velocity and Vs is the superfluid component ve-

locity. Equation (I-B) describes the laminar flow hydrodynamics of the

normal component. Equation (I-C) describes the heat transfer of the fluid

where the second term, the Gorter-Mellink mutual friction, dominates. Equa-

tion (I-D) describes conservation of energy where the normal component of

the superfluid carries all the entropy. Equation (I-E) describes the heat

conducted through the column of liquid (ref. 4).

The equations used for the turbulent flow limit are shown in Table II.

Equation (II-A) describes the Blasius formulation of the turbulent flow

pressure drop. Equation (IT -B) describes the heat transfer for a non-con-

ductive fluid.

BP20AK1-4	
B-4
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TABLE Z - LAMAR LET EQUATIONS

= viscosity 'Ve = superfluid component velocity

mass flow rate A	 = croaxectional area

pn = normal component density P	 = pressure

PS = superfluid component density I	 = line length

T	 = temperature D	 = line diameter

S	 = entropy p	 = total density

Q	 = heat leak into line a = mutual friction coefficient

Vn = normal component velocity q = heat conduction

A

A
ra

(A) A ` pnYn + Ps s

dP	 -3217 a

dl	 D
(E) 'n—

2

dT 1 dP apn
	 3

(C) 31 
_ 
pS M + --g- (vs-yn)

(D) ^, (Ap n ST) = aldQ

(E) q = Ape ST (n - s )

NBS36AA5	
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e
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P	 = pressure

1	 = line length

q	 = heat loaak

P djusity

n viscosity

A = mass flow rate
D n diameter

0  = hest capacity

T = temperature

TAM II _ TURBULENT LIMIT EQUATIONS

7r

i

r

dP -,2414 & 
4/7 

?1 
1/4

(A) • d1 
=	

^T

dQ	 dT

(B) a ` in 0  ell

ro* 4
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In order to observe liquid-gas transitions anywhere in the sine, it was

necessary to create a numerical computer model which uses continuous physi-

cal properties. The technique selected for solving the equations was a

finite difference metho-4 where the simultaneous non-linear differential

equations are solved iteratively. Initial values, based on the conditions

of the supply dewar and the London equation for the thermomechanical pump,

are propagated ija 1 can increments downstream to the line/receiver de>.rar 	 r

interface. Successive runs are made shooting for the equilibrium receiver

Dewar boundary condition, which for our configuration is saturated liquid in

the receiver, and zero heat conduction between the line output and receiver

dewar. These equilibrium conditions were determined oh the basis of the

restoring forces which come into play. That is, if the receiver condition

predicted by the equations is too warm or too cold, heat will be conducted

out of or into the receiver resulting in a equilibrium temperature either

lower or higher. Also, if a condition is calculated where the liquid be-

comes saturated and some of it boils before reaching the retw'.5" rer, then the

pressure drop in the line becomes greater. For this case r "M pumping force

would be required so the actual equilibrium flour rate would be lower.

The equations and the physical model are incorporated into a previously-

developed modeling code, called SLIM (System Level Interactive Model). SLIM

provides the code requited for easy parameter input and output, selection of

initial conditions, profile graphing and documentation.

RESULTS	 q

The model was run for a supply dewar and thermomechanical pump operating at

1.8 K. The temperature, conduction, and integrated heatleak profiles for-

the laminar flow limit are shown in Figure 2. The turbulent flow limit

profile is shown compared to the laminar limit for the same operating condi-

tions in Figure 3.	 The equilibrium receiver dewar conditions for these

cases are given in Table III. Temperature profiles (Figure 4) were

calculated for three different line diameters representing three widely

different Reynolds numbers.

BF20AK1-5
8-8
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TAM III - EFFECT OF FLOW REGIME

CONDITIONS MODELED

Line Diameter 1/2 in

Line Length 6 M

Flow Rate 1000 L/hr

Supply Dewar Temperature 1.8 K

Two Bayonets Heat Leak	 1 W each

Line Heat beak 0.2 W/M

RESULTS

Laminar Flow Turhuleat Flow	 S

Plug Heater Power 39.1897 W 55.109 W

AT across Pump Plug 0.00177 K 0.0992 K

AP across Pump Plug 1.042 torr 58.40 torn

Line AP 0.0365 torn 52.312 torr

SIRTF Temperature 1.8216 K 1.9194 K

h

.	 ,
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A comparison of transfer operating temperatures of 1.6 K and 1.8 K are made

in Table IV in the turbulent flow limit. Either operating temperature re-

sults in a reasonable pressure drop and less than 0.1 degree Kelvin rise in

temperature between supply and receiver. The heater power required for

transfer at 1.8 K is much greater than at 1.6 K since the zero entropy

fluid cowing out of the pump must be raised to a higher temperature, but the
„.	 overall behavior remains the sage.

For laminar flow of the superfluid the energy from the heiAer and heatleaks

goes into raising the flow rate and the temperature of the receiver, Ta-

ble V and Figure 4 show that for higher Reynolds numbers, caused by smaller

pipe diameter, not only is the pressure drop increased but less heat is

ovywdicted back to the plug; thus more heater power is required to maintain

um t glow and more of the heatleak goes into raising the temperature of the
fluid. Increased pressure drop and lower heat conduction result in a higher

receiver temperature.

The most notable effect of line diameter for our application , is that the

f-hape of the laminar flow temperature profile approaches that of the turbu-

lent flow limit when the bulk i.luid velocity is high, i.e., high Reynolds

numbers. That is, the conduction of heatleaks through the fluid becomes

negligible as is the case for ordinary fluid. In all cases it is important

to none that the line pressure drop for laminar flow increases for high

fluid velocities but remains very small. The pressure drop is no problem

even when very high Reynolds numbers are modeled using the turbulent flow

equations. The results in Table III show receiver conditions (1.92K satu-

rated liquid) which are still reasonable for our application. Thus the

pressure drop and the heat transfer mechanism do not seem to b y design driv-

ers since the flow will take place with just slightly different conditions

at the receiver.

BP20AK1-6	 Q-13

i`
i.

m



r ft

9

l^

TABLE IV - EFFECT OF TEMPERATURE

CONDITIONS MODELED

Line Diameter 1 in.

Line Length 6 M

Flow Rate 1000 L/hr

Turbulent Flow

Two Bayonets Heat Leak 1 W each

Line Heat Leak 0.2 W/M

RESULTS

SUPPLY DEWAR TEUPERATURE

1.6 K 1. k.	K

Plug Heater Power 19.341 40. 492,

AT across Pump Plug 0.0129 0.0071 K

AP across Pump Plug 3.903 4.1759 Corr

Line AP 2.427 2.664 Corr

SIRTF Temperature 1.6581 1.533 K

NEM36AA5
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TABLE V - EFFECT OF LINE DINER

CONDITIONS MODELED

Line Diameter	 1/2 in.

Line Length	 6 M

Flow Rate	 1000 L/hr

LAMINAR Flow

Two Bayonets Heat Leak	 1 W each

Line Heat Leah	 0.2 W/MI

RESULTS

TRANSFER LINE SIZE

1/2 in. 1 in. 2 in.

Plug Heater Power 39.1897 W 37.975 W 36.20 W

AT across Pump Plug 0.00177 K 0.0011 K 0.0002 K

4P across Pump Plug 1.042 torr 0.64757 torr 0.11774 Corr

Line AP 0.0365 tors 0.00223 torr 0.0001355 Corr

SIRTF Temperature 1.8216 K 1.81342 K 1.800975 r.

Heatleak Conducted)

to Plug 0.3 W 1.42 W 3.07 W

ri
I

NBS36AAS	 B-15
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CONCLUSIONS

The analysis performed with this model shows that the thermomechanical

transfer method will work regardless of the particular conductive attributes

of the superfluid. The transfer will result in the receiver being; 100%

filled with saturated liquid. Also this analysis shows that flow rates of

1000 liters/hour should be achievable. The feasibility of superfluid pumped

transfer is not dependent on the exact behavior of He II at high Roynolds

numbers. Assuming the Gorter-Mellink formulation as the high thermal con-

ductivity bound and ordinary turbulent fluid mechanics for the non-conduc-

tive bound, the existence or not of some type of turbulent He II is not a

driver for the-SIRTF replenishment application.
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APPENDIX C

HELIUM-I TO HELIUM-II CONVERSION EQUATION AND THERMODYNAMICS

The following is the derivation of the thermodynamic equation used for cal-

culating the mass fraction of liquid helium lost during cooldown. The cool-

down is accomplished by venting the saturated liquid to a lower pressure,

thereby producing a lower temperature.

First of all, the work done on the fluid is given by

dW = - P dv o	(C-1)

where P is the pressure and V is the volume. Secondly, the heat leaving the

liquid and being delivered to the surface layer for evaporation is given by

dQ = 1 dm,	 (C-2)

where 1 is the latent heat of vaporization per unit mass and m is the mass

of the liquid. Finally, the change in the internal energy of the fluid is

given by

dU = dQ + dW.	 (C-3)

Combining equations 1 through 3, we get

0

1 dm = dU + PdV.	 (C-4)

Since (dU + PdV) is the change in total enthalpy of the fluid, equation (4)

can be written as

1

(C-5)1 dm = dh m,

.N	 where h is the enthalpy per unit mass of the fluid.

BP20AI1-1
h '	 C-1



Since we are looking for the ratio of the final mass of fluid to the initial

mass, we must solve equation (C-5) for mf/mi. First we get

	

fam

mf dm
	 Tf dh

.	 m

	

T.	
(C-6)

z

The right hand side of equation (C-6) can be integrated analytically by

approximating 1 as a constant over the temperature interval,. Thus,

h 
(TI) - h (Ti )	 A

In m f - In m  = --- I	 = 7	 (C-7)
average	 average

find

m  - exp ( A )mi	 average	 (0-8)

For Figure 2-4 the right hand side of Equation (C-fir) was integrated numer-

ically using continuous helium properties.

I

i.

A }
L

y,
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Appendix D

CRYOGENIC ANALYSTS

This appendix contains analysis backing up certain conclusions stated in

Section 2 of the report. The topics covered are:

1) Sensitivity Evaluation of SIRTF Cooldown Cycle

2) Estimate of ASE Dewar Size to Resupply SIRTF

3) Cooldown GHe Conduction Analysis

4) Estimate of Contact Conductance Across Thermal Joints for SIRTF

5) Cooldown Limiting Factors

6) Heat Transfer Coefficient and Resulting Conductance in Single

Tube Heat Exchanger Loop for SIRTF Cooldown

0

_: ^ d

BP20AL3 --1 	 19-1
	

J^^



r

ttw

FYI"	 4

1

Sensitivity Evaluation of SIRTF Cooldown Cycle

The following analysis develops thermal conductance coefficients which

represent the TRAS cooldown performance. These coefficients s,re then modi-

fied to represent COBB and SIRTF configurations and cooldown predictions

made. The COBB predictions for quantity of cryogen required were within 4%

and the cooldown time prediction was conservative by 30%. Based on the

analysis, 4772 liters are required to cool the SIRTF system from 300K to 2K,

and the cooldown can be achieved in 29 hours: if the fill line is wrapped

around the tanks if adequate thermal joints are provided to the instruments

and telescope; and if the vent line is 2.5 cm in diameter.

The analysis of a dewar "cool down" is very difficult if a pure analytic

approach is taken. For the most part this is caused by the modeling uncer-

tainties. If a Thermal Math Model is m-Ae to agree with known cooldown data

then that model can be used to extrapolate results for other configurations.

This approach was taken to predict COBB cooldown (with fairly good results)

based on IRAS experience. With this methodology proven, SIRTF was modelled.
The main "actor" was identified for the SIRTF cooldown, and typical tempera-

ture responses are included in this analysis. In addition, it was

discovered that throttling the LHe supply could save as much as 30% of the

supplied helium with no increase in ca;ol.down time.

The basic model is composed of four nodes:

NODE #	 NUDE
3

	

998	 Helium supply at 2K

	

3	 Gas in the cryogen tank

	

2	 Tank

	

1	 Mirror (Telescope)

and three conductors:

CONDUCTOR #	 FROM	 TO

	

20	 Helium supply (998) 	 gas (3)

	

11	 gas (3)	 tank (2)

	

10	 tank (2)	 mirror (1)

BP20AL3-2	 D-2



The thermal capacitance of the tank and the mirror for the three difference

dewars are based on the following weights and materials:

WEIGHT (Kg) - MATERIAL

NUDE IRAS COBB SIRTF

MIRROR (1) 72Kg Beryllium 181Kg Aluminum 42PKg Aluminum

TANK (2) 105Kg Aluminum 12ft Aluminum 670K'g Aluminum

Conductor G(20) is the fill rate conductor. The helium fill rate for IRAS

and COBB was modelled as 50 1/hr. The fill rate for SIRTF was assumed to be

200 L/hr.

Conductor G(11) is the gaseous conduction term. It is a strong function of

temperature and was calculated for IRAS to be;

(T(2)¢T(3))/2 K	 G(11) MW/K

	

10	 1640

	

20	 3410

	

50	 5780

	

15ti	 13240

	

250	 18440

	

300	 18440

G(11) for COBB was assumed to be 1.28 times the IRAS value. G(11) for SIRTF

was assumed to be 5.28 times the IRAS value. This is strictly based upon

the surface area ratios of the tanks.

r G(10) is the conduction.across flexures from the tank to the mirror. The

value of this path was based partially on ,Perry Siebert's work on low tem-

perature interfaces and partially on tailoring the shape of the 0(10) vs

	

Temperature curve so	 as to .match IRAS. 	 The value of G(10) for SIRTF is

quite a bit larger and is based on the fact that this joint is to be en-

hanced by means of thermal straps.	 While the	 magnitude is much larger,

compared to IRAS data, the shape was kept the same. See Figure 1.

1y
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Figure 2 is the IRAS stimulation and compares favorably with data found in

IRAS log books.

Figure 3 is the COBVj simulation for a flexure conductance G(10) the same as

IRAS.

Figure 4 is the COBB simulation for a flexure conductance G(10) the same as

SIRTF.

Figure 5 is the SIRTF simulation which shows that for the nominal con:^igura-

tion approximately 45 hours will be needed for a cooldown from 300K.

Figure 6 is for SIRTF with the flexure conductance G(3.0) twice its nominal

value. This leads to a 10% saving in cooldown time.

Figure 7 is for SIRTF with the gaseous conduction term G(11) doubled. This

provides a marginal improvement of about three hours.

Figures 8 and 9 are the same types of SIRTF data but from an initial temper-

ature of 150K.

Figures 10, 11, and 12 indicate that considerable savings in the amount of

helium needed to cool down can be had by Throttling the nupply. This can be

achieved with no loss of time which indicates that the flexure conductance

is dominant and a wide open supply valve only helps in the beginning of the

cooldown.

Figure 13 is a plot of the gaseous conduction G(11) term independently ar-

rived at by Doug Regenbrecht. This value is somewhat higher than was nomi-

nally used, but shows a response: in Figure 14 very similar to the nominal

SIRTF prediction ii. r?figure 5.
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Estimate of ASE Dewar Size to ResupR Sg IRTF

This analysis presents the evaluations made to determine the quantity of

SfHe required to fill the SIRTF satellite on orbit.

Parameters considered in this analysis include:

Quantity of cryogen required to cool system

-Transfer efficiencies

-Margins
A

-Affect of supply dewar thermal performance on cryogen quantity

-SIRTF temperature

-Hold time

This analysis also utilizes the results of other analysis performed

regarding the STICCRS study such as thermal joint contact resistance,

methods for improving the GHe cool.down transfer rate, and the results of a

transient thermal model of the SIRTF, COBB, and IRAS dewars.

The results of this sizing effort is that for a 0.1% per day loss rate sup-

ply dewar; 5300 liters of superfluid helium are required to fill a cold <10K

SIRTF; 9800 liters are required to cool and fill a SIRTF that is initially

at 150K as might be the case if SIRTF ran out of cryogen and was left in its

orbit for a long period of time; and 11,750 liters are required to cooldown

and fill SIRTF from 300K as might be the case if an instrument changeout was

performed.

BP20AL3-5	
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Estimate of ASE Dewar Size -to Resupply SIRTF

Tasks to be performed and documented in this analysiv include:

1. Receiver tank temperature effect on quantity of cryogen required.

Evaluate: A receiver tank with a temperature less than 10K, 150K,

and 300K.

2. Evaluate effect of Supply dewar performance on quantity of cryogen

required. Consider 0.5%, 0.2%, and 0.1% loss rates per day. 0.5% is

equivalent to a commercial supply dewar, 0.2% is equivalent to the IRAs

insulation system performance with a cylindrical vessel, and 0.1% is an

IRA_S system with a fourth vapor cooled shield.

3. Viscollaneous parameters to be assumed include-

0
	 Hold time of 90 days, i.e., 60 days hold time with a 50% margin.

• Transfer efficiency of 95%, that is the topoff value achieved on

IRAS. Analysis for STICCRS of an all SfHe transfer would indi-

cate that a value of 95-98% efficiency can be achieved.

,a

I.	 Quantity of LHe required to precool the received tank and transfer line

system.

Assume transfer line is 2.5 centimeters

and 3 meters long.

Q to be removed -

2.5 (r) .04 (300) = 94.2 cm3

p of CRES = 0.3#/in3 = 0.3 (453)/16.4 cm3

= 8.3 gm/ cm3

M = 8.3 (94.2) = 781.2 gm

AH 300K to 2K = 81.1 Joules/gm

CRES

BP20AL3--6

dia. x 0.04 cm wall thickness



to ue removed = 781.2 gm (81.1 Joules/gm)

6.34 x 104 Joules

I 

'T14

F,;

Qty of LHe required to precool transfer line assy
aH of LHE = 20.3 Joules/gm

Q•'uy = 6.34 x 104/20.3 = 3121 gms
'LHe = 0.125 gm/cm3

Qty LHe = 25 liters

Case 1.

Qty of LHe Req'd to Fill a Wet >10K 4000 Liter Receiver Tank.

Assume 95% eff. - 4000 = 4210 liters

Add 15% margin = 632 liters

Compare 0.5%, 0.2% and 0.1% per day loss rates for dewar size.

0.5%/day loss

For 4840 liters - 8450 liters

E	 0.2%/day loss - 5900 liters

0.1%/day loss - 5300 liters

Case 2. Qty of LHe Req'd to fill a Cryogen tank at 150K

Cooldewn qty for Cryogen tank, MUS, and Telescope = 3344 liters based

I.!	 on IRAS and COBB tank configuration GHe conductances per SER ARU-004
A'	 s

combined with a metal to metal conductance of 1200 mW 0 2K, 6000 mW 2-

20K, and 24,000 mW 0 20K and above.

Reference SER ARU-003

Qty of LHe Reqd.

BP20AL3-7	 D-21
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Qty of LHe Reqd.

i

Precool Transfer Line -	 25 liters
I

Precool of Receiver Tank -	 5053 liters

Fill Tank -	 4210 liters

Margin 15% -	 1325 liters

TOTAL -	 10,681 Liters

Hold Time of 90 days

SUPPLY DEWAR SIZE

0.1% day -	 11,750 liters

0.2% day -	 13,000 liters

0.5% day -	 19,500 liters

r	 ^,

0
	

A

t

t,
i

Precool of transfer line - 	 25 liters

Precool of Receiver Tank 95% 	 3520 liters

Fill tank 95% eff.	 4210 liters

Margin 155	 1163 liters

TOTAL	 8918 liters

Hold time of 90 days

SUPPLY DEWAR SIZE

0.1%/day	 -	 9800 liters

0.2%/day	 -	 10870 liters

0.5%/day	 -	 16120 liters

Case 3. Qty of LHe Req'd to Fill a Cryogen Taak 0 300K.

Cooldown quantity for Cryogen tank, MIPS, and Telescope = 4772 liters

based on IRAS and CORE. Performances and an analytical prediction for

SIRTF as documented in SER TKK-03.

Lifetime that a 11,750 liter dewar will provide using a 0.1%/day loss

rate.



1^
Quantity required after hold time = 4867 liters.

Quantity available for on-orbit hold = 11,750 - 4867 = 6883.

Loss per day = 11.75 liters

Hold time = 585 days

Hold time for a Wet/Cold cryogen tank to fill a 120 liter dewar.

Quantity required =
f

Transfer line cooldown 	 -	 25 liters
r

Transfer efficiency	 -	 6 liters

Margin	 -	 15 liters
Fill	 -	 120 liters

TOTAL	 166 liters

Quantity available - 11,750 liters

Hold time quantity - 11,584 liters

11,51.14/11.,75 liters/day 1r)ss rate = 985 days hold time

Size of supply dewar to service a 10,000 liter receiver dewar which is

0 2K temperature.

Transfer line cooldown 	 - 100 liters

Transfer Eff. 95%	 - 500 liters

Margin	 - 1500 liters

*Fill	 - 10,000 liters

4

TOTAL	 - 12,100 liters

90 day hold time 0 0.1%/day loss rate

Hold quantity	 = 1195

Total Quantity Reqd 	 = 13,295 liters

Quantity of LHe req'd to	 fill	 a	 storage	 dewar on Space Station 4867

liters req'd after 90 days = 5300 liters req'd {

HP20AL3-9
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Precool supply dewar - 5053 liters

5300 (.15`') = 795 liters
Total Reqd = 11,148 liters plus ground hold of 30 days = 334

liters

Total = 11,482 liters

I
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....uction Analysis

This section presents an analysis of estimated GHe conduction coefficients
experienced in the IRAS satellite cooldown and fill operations.

The results are:

18.44 w/K 0 250K

13.24 w/K 0 150K

5.78 R/K 0 50K

3.41 w/K 0 20K

1.64 w/K 0 10K

Cooldown of the IRA3 cryogenic dewar syst6m was accomplished by flowing Me

into a transfer line connected to TRAS. The liquid was vaporized and routed

through the dewar fill line into the cryogen tank and then vented out the

vent line. Connected to the cryogen tank was the optical telescope and

experiment. On the inside of the cryogen tank are stiffener flanges 1.5

inches long so the flow was as pictured in Figure 1. As the transfer line,

plumbing and cryogen tank cooled down the liquid helium interface gradually

progressed to the tank and it eventually collected Me and filled. This

analysis documents the anticipated GHe conductl,on which can be expected

using this type of cooldown procedure.

0
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Figure 1.

IRAS Cryogen Tank Cooling Flow Pattern

Tank Inner Dia	 - 32.20 in.

Tank Outer Dia	 - 47,85 in.

Length	 -	 35,38 in.

Fin length	 -	 1.5 in.

Open Area	 - 606 in2 4.21 ft2

Velocity of GHe assuming 5OL/hr flowrate of Lite

300K - 40,984 L/HR of GHe = 344.0 ft/hr

200K - 25,646 L /HR of GHe = 215.0 ft/hr

100K - 12,833 . 7 L/HR of GHe = 108.0 ft/hr

JK - 6,420 L/GHe of GHe = 53 . 9 ft/hr

10K - 1 , 250 L/GHe of GHe = 10.5 ft/hr

BP20AL3-12	 D-26
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0

Assumptions - 1.0 atm. press

50 L/HR of We = 6.25 Kg/Hr flow

= 1250 Liters/Hr of GHe 0 10K

Velocity thru vent line -

Assume 0 .47 I.D. = 0.0012 ft2

vel 0 lOK = 36 , 808 f t/hr = 613 ft/sec

vet 0 300K = 1.2 x 10 6 ft/hr = 20,185 ft/sec

Sonic vel. = 3,346 ft/sec

Flow 0 room temp (300K) limited to 7L/hr

200K - 11.2 L/hr

100K - 22.4 L/hr

50K - 44.7 L/hr

Gaseous Conduction of Helium

1.35 mW/cmK 0 250K

0.97 mW/cmK 0 150K

0.47 mW/cmK 0 5OK

0.25 mW/cmK 0 20K

0.12 mW/cmK 0 10K

Fin length = 1.5 inches = 3.8 cm

Surface Area of Tank ID = 32 in OD = 48 in

A = 32 (Y) 32 in (2.54)2

+ 48 (r) 32 (2.54) 2 =

= 20,755 + 31,132 = 51,887 cm2

Q = KADT = 1.35 (53 88 7) 50K

BP20AL3-13
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a 922 watts 0 260K 18.44 W/K

a 0.97 (683) w 662 watts 0 ISOK 13.24 W/K

a 0.47 (616) = 289 watts 0	 50K 6.73 W/K

W 0.25#51887)16 .= 51.2 watts 0 20K
 1

3.41 W/K

0.12 (51887)5	 = 8.2 watts 0 10K
1

1.64 W/K

IRAS BYA LUATION

Specific Heat of Helium 0

250K =	 5 .2 Joules/gmK

150K =	 5.2 Joules/gmK

60K =	 5 . 2 Joules/gmK

20K =	 5.2 Joule4sK

10K =	 5.5 Joules/gmK

Max flow 0 250K (from page 2= 9 L/hr)

Cooling power available = 5.2 Joules /gm -K (1125 gm/hr)50K

292,500 Joules/hr

2.9 x 105 Joules/hr

Qty of heat to be removed to cool IRAS dewar and telescope to 250K

45.4 Joule6 /gm (105,000)	 = 4.77 x 106

Mirror-lie Joules/gm (72 , 000) = 6.3 x 106

= 11.07 x 106 Joules

= 38 hours to cool.?

Boundary layer cooling 	 = 922 watts	 r

= 3.32 x 106 Joules/hr

If we assume boundary layer controls cooldown rate time = 3.33 hours to cool

to 250K

Actual on primary and secondary mirrors was approx. 7.5 Hrs and approx.

260 L of LHe indicating that the thermal joints were poor and control-

ling the cooldown.

i
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Estimate of Contact Conductance Across Thermal Joints for SIRTF

The following page presents a figure From a report on Thermal Conductance

across Bolted Joints presented by Jerry Siebert at the 10th International

Cryogenic Engineering Conference, The data was interpreted for the nooldown

ranges of interest for SIFTF and the following coefficients derived:

600 mW/K 4 2K

3000 mW/K 4 2-20K

12000 mW/K 0 20K and above

D.

E	 ^

r
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ORIGINAL PAGE IS

IDE POOR QUALITY
Cooldown Limiting Factors

The controlling factor that limits the flow rate of SfHe during cooldown of

the receiver (SIRTF flight dewar) and SIRTF telescope and VIC is the ability

to vent the vapor formed when the liquid is boiled. Calculations made with

the supply pressure ne6r 1 atmosphere indicates 200L/h of liquid He is feas-

ible even at 300K line temperature.	 However, at 4psia this flow is not

possible for line temperatures above 75K.	 The end of the vent line (where

"	 the flow limit is established) will not be this cold. At this time, the

optimum SfHe flow rate time-line profile has not been established. If

«	 200E/h of flow should be required through a warm vent line, the line size

needs to be larger (approx. double the area). It is likely that this large
A

flow rate is not needed (nor desired) during tho early stages of cooldown

with the heat exchanger loop on the main tank.

The curves show the limiting flow in the vent line. The data is the same

but expressed as mass per time (lbm/s) and equivalent volume per time of

SfHe (L/h). They are valid for cooldown venting and for liquid filling

venting.

The calculation;>, were made for c;.nstant temperature of the gas along the

length of the line. This requires a small heat flow into the gas from the

pipe. A check was made for some values with no heat flow to the gas (adia-

batic flow) and the results are within 10% of the isothermal values plotted.

The thermophysical properties were obtained from the NBS TN 622 tables for

He.
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ORIGINAL FAGh 46

OF ROOD QUALITY
Heat Transfer Coefficient and Resulting Conductance in Sing  Tube Heat

Exchanger Loop for SIRTF Cooldown

The heat transfer coefficient between the GHe and the interior of the main

tank of SIRTE is expected to be very small during cooldown before Me is

accumulated in the tank. A "st4gnant" gas film is expected with the con-

ductance equivalent to only gas conduction. A system is proposed with a

tube welded to the main tank at the interface to the telescope mount and MIC

mount that makes only one turn around the inner perimeter of the tank. The

heat transfer coefficient then becomes forced convection in zero-gravity and

the equivalent conductance its much higher. When the tube nears the boiling
temperature of the entering Sf$e, the boiling two-phase heat transfer coef-

ficient becomes very high even in zero-gravity if a twisted ribbon is
inserted inside the 0.9 in tube to give a swirling motion that will throe

the lictuid.to the tube wall and displace the vapor film.

In order to evaluate the concept, values of the heat transfer coeffic fnt,

h, have been calculated for the condition of gas flow above the He b sling

point. Forced convection correlation is the accepted one for this ase and

is

Nu = 0.23 Re0.8 Pr1/3

The heat transfer coefficient, h, is in the Nusselt number, Nu, and the

equivalent conductance then becomes (hAs) where As is the inner surface area

of the tube that forms the heat exchanger.

The resulting conductance is plotted in the figure for various average GHe 	
a

temperatures and are organized in the form for direct inclusion in the SIRTF 	 t

SINDA thermal model. In order to properly evaluate the system that includes

the heat exchanger loop and the gas conduction to the tank, the preliminary

thermal model should be expanded with a few additional nodes. The conduct-

ance values for the gas conduction and for the forced convection heat ex-

changer loop are based on the GHe temperature and not the exit temperature.

The heat conductance in the heat transfer loop is added to the gas conduc-

tion value for direct injection of He into the tank. A replacement of con-

ductances in the present model will not predict the full potential value of

BP20AL3-17	 D-34
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the new system concept. Also care in coupling the concentrated thermal

capacitance nodes of the main tank, MIC and telescope needs to be used to

take advantage of the improved thermal network possible with the heat ex-

changer loop addition.

The values for the curve were calculated for a mass flow rate equivalent to

a constant LHe flow of 200L/h. As shown in SER DER-001, the vent line from

the main tank will not permit this mass flow at warm temperatures. At the

present we have not attempted to use the SfHe in an optimum flow time-line

profile to minimize the time for cooldown and fill and the amount of He

carried into orbit,

There are some important considerations with respect to the flow rate during

cooldown. It is important to keep the total cooldown and fill time short so

that it will not impact the length of the shuttle mission. Also, it is

important to use the SfHe carried into orbit efficiently to eliminate waste

And the size and weight carried up. Helium has a high sensible heat capac-

ity relative to its latent heat capacity. If the GHe is dumped overboard

when cold, the sensible heat capacity (refrigeration) is not realized and

therefore wasted. If the flow rate is high during the initial stages of

cooldown the heat transfer rate can be unnecessarily high and the resulting

exiting temperature unnecessarily low. This results in a low overall heat

exchange efficiency which is ,ot offset by a corresponding shortened mission

time. Refrigeration is wasted. The heat transfer rate tends to be natural-

ly high at the warm temperatures existing during early cooldown. The limit-

ing flow rate tends to be naturally small at the same time.

Therefore, we need to take advantage of these features and optimize the

system parameters to optimize the natural characteristics available.

It would seem that a moderate flow rate at the beginning of cooldown, in-

creasing as the components become colder, and followed by a high flow rate

when liquid He is retained in the SIRTF tank tends to fit the natural way

the cooldown and fill can be implemented with proper design.
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APPENDIX E

MECHANICAL ANALYSIS OF SHRINK FIT SHIELDS

For preliminary study, ignore the effect of aluminum shields "bottle-
necking."

' 94	 -6AP
.10 OR .ZS INV.AR

OR 410 SS	 .080 6061-T6

ti

3 4	 5.

Solved as a 3-ring problem using BERT, (a thermal ring program written by R.

Taylor) and assuming a negative interference between rings e,. and 5 (a gap)

as an initial condition.

P45 summarized in the following tables is the final pressure between rings 4

and 5, or the shield and the cap. 	 F3 is the stress in the Invar or 410 SS

t ring and f4 is the stress in the aluminum cap. Shield 1 is the OVCS,

shield 2 is the MRS, shield 3 is the IYCS, and shield 4 is the inner shield

attached to the cryogen tank.

4
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Shield 1

TBA5E = 300'K

TFINAL = 200'K

R4 = 36.85	 t = 0.1,	 36.70, t = 0.25

R5 = 26.95

R6 = 37.03

R9 = 37.11

INVAR W3 = 0.75 a3 = 3.4 E3 = 2.1 a• 7

Al W4 = 0.75 a4 = 2.-5 E4 = 1, + 7

Al W5 = 0.75 as = 2.-5 E5 = 1.	 + 7

410 S8 W3 = 0.75 a3 = 9.-6 E3 = 3. + 7

INVAR t3 = 0.10

Gap P34 P45 Invar Al

(in.) (psi) (psi) f3 (psi) f4 (psi) f5 (psi)

0.00 48 24 17,712 11,097 11,121

0.01 45 20 16,605 11,559 9,268

0.02 41 15 15,129 12,022 6,951

0.04 35 5 12,915 13,871 2,317

0.06 28 -3 	 No Contact

0.08

0.10

I

a

{

R

q,
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INVAR t3 = 0.25

Gap p34 p45
(in.) (psi) (psi) f3 f4 f5
0100 65 32 9,594 15,258 14,828
0.01 61 28 9,004 15,258 12,975

0.02 56 23 81266 15,258 101658

0.04 48 12 71085 16,646 5,561

0.06 39 1 50756 17,570 463

0.08 29 -8 No Contact

0.10

Shield 2

TEASE = 300
> i

TFINAL = 118
I

R4 = 35.24 (t = 0.10) 35.39 t = 0.25

R5 = 35.34 f

R6 = 35.42
R7 = 35.50

INVAR W3 = 0.75 a3 = 1.2-6 B3 = 2.1 +7
Al W4 = 0.75 a4 = 1.9'5 E4 = 1. +7	 a

i	 Al W5 = 0.75 a5 = 1.9-5 E5 = 1 . +7 .

r I

410 SS W3 = 0.75 a3 = 8.1-6 E3 = 3. +7
0
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INVAR t3 = 0.10

Gap P34 P45

(in.) (psi) (Psi) f3 (Psi) f4 (Psi)

4..

f5 (Psi)
0.00 83 41 29,299 181575 180173

0.01 80 36 28,240 19,459 15,957

0.02 76 32 26,828 190459 14,184

0.04 68 21 24,004 20,786 91308

0.06 61 12 21,533 21,670 5,319

0.08 55 1 19,415 23,882 443

0.10 47 -8 No Contact

INVAR t3 = 0.25

Gap P34 P45 Invar Al Al

(in.) (Psi) (Psi) f3 (Psi) f4 (Psi) f5	 (Psi)	 ,ll

Vi0.00 112 56 15,680 240822 24,822

0.01 108 51 15,120 25,265 22,606

0.02 103 45 14,420 25,709 19,946
S

0.04 92 33 12,880 26,152 14,627

0,06 83 23 11,620 26$95 10,195

0.08 73 11 10,220 31,914 40876

0.10 63 0 No Contact
^k

a



410 SS	 t3 = 0.10

f

a

Gap P34
(in.) (Psi)

0.00 57

0.01 53

0.02 49

0.04 41

0.06 33

410 SS t3 = 0.25

Gap P34
(in.) (Psi)
OMcan 73

0.01 68

0.02 63

0.04 52
0.06 41

0.08 31

P45 410 SS Al Al

(Psi) f3 (Psi) f4 (Psi) f5 (Psi)
29 19,950 12,411 12,854

24 180550 12,854 10,638
19 17,150 13,298 8,422

8 14,350 14,627 3,546

-3 No Contact

P45 410 SS Al Al

(Psi) f3 (Psi) f4 (Pal) f5 (psi)
36 10,220 16,400 15,957

31 g,520 16,400 13,741
25 8,820 16,844 11,081

13 71280 170287 51762
1.3 51740 17,597 576

-•11 No Contact

4

8P20AD8-5
	 r

E_5



TBASE = 300•K

TFINAL = 52`K

` 14 = 34.02, t = 0.1, 33.87, t	 0,25

R5 = 34.12

R6 = 34.20

Rg = 34.28

TNVAR	 W3 °= 0.75 a3 = 1.7-6 E3 = 2.1+7

Al	 W4 = 0.75 44 = 1.6`5 E4 = 1,+7

Al	 W5 = 0.75 as = 1.6'5 E5 = 1.+7

410 SS	 W3 = 0.75 a3 = 6.8-6 E3 = 3.+7

INVAR	 t3 = 0.10

Gap	 F34 P45 Tnvar Al
(in.)	 (Psi) (Psi) f3 (Psi) f4 (Psi) f5 (Psi)
0.00	 95 47 321395 20,496 20,116
0.01	 91 41 31,031 21,350 17,548

0.02	 87 36 29,667 21,777 15,408

0.04	 79 25 26,939 23,058 10,700

°	 0.06	 71 15 24,211 230912 61420

0.08	 63 4 21,483 25,193 1,712

0.10	 56 -7	 No Contact

0

N
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TNl^A$ t3	 0.25

Gap P34 P45 Invar Al

(in,) (Psi) (Psi) f3 (Psi) f4 (Psi) f5 (psi)
0.00 127 64 17,269 26,903 271392

0.01 123 57 X6,726 280182 24,396

0.02 117 52 15,910 27,755 222256

0.04 1017 39 140550 29,036 16,692

0.06 96 27 13,054 290463 11,556

0.08 85 15 110558 29,890 6;420

0.10 75 3

410 SS t3' = 0,10

1 i

Gap P34 P45

€r

(in.) (Psi) (Psi) f3 (P5i) f4 (Psi) f5 (Psi)
r

x
0.00 69 35 23,529 14,5.18 14,980

0.01 65 29 22,165 15,372 12,412

0.02 61 24 20,801 150799 10,272

0.04 52 12 17,732 17,080 5,136'
f:

0.06 43 1 14,663 17,934 428

s'	 0.08 33 -11 No Contact

0.10
4

9

4
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Gap x'34 F45 Inva,r Al
(in.) (Psi) (Psi) f 3 (Psi) f4 (Pal ) i5 (Psi)
0.00 88 44 11,966 18,788 18,832
0.01 83 37 11,286 19,642 150836
0.02 77 32 10,470 19,215 13,696
0.04 65 19 81839 19,642 8,132
0.06 55 7 71479 20,496 21996
0.08 43 -7 No Contact

Shield 4

TEASE = 300'I(

Tm-INAL = 2'

R4 = 33.38	 `t = 0.10, 33.23, t = 0.25
R5 = 33.48
R6 = 33.56 ..

R9 = 33.64

INVAR W3 = 0.75 a3 = 1.8`6 E3 = 2.:1*7
Al W4 = 0.75 al = 1.4_5 E4 = 1,+7
Al W5 = 0.75 a.5 = 1.4"5 E5 = 1.+7

410 SS W3 = 0.75 a3 = S-9-6 E3 = 3.+7

d

i

I

TW,4

410 SS	 t3 = 0. 25

BP20AD8-8	
E-8



A	 a

i
w

^I

TNVAR t3 = 0,10

Gap P34 P45
(in.) (Psi) (Psi) f3 (Psi) f4 (Psi) i5 (Psi)
0.00 99 49 32,967 20,950 20,580

0.01 95 44 31,635 21,369 18,480

0.02 91 37 30,303 22,626 15,540

0.04 83 27 27,639 23,464 X1,340

r	 0.06 75 16 24,975 24,721 6,720

0.08 67 4 22,311 26,307 11680

0.10 59 -7 No Contact

TNVAR t3 = 0.25

Y.

Gap P34 P45

'J

(ire.) (Psi) (Psi) f3 (Psi) f4 (Psi) f5 (Psi)
0.00 133 67 17,745 271654 28,140

0.01 128 60 170078 28,492 25,200

0.02 123 53 16,411 29,330 22,260 A

0.04 1.11 41 14,810 291330 17,220

F.	 0.06 100 28 13,342 30,168 11,760

0.QR. 89 16 11,874 30,587 6,720

0.10 49 4 10,540 31,425 1,680
1 i+14

j
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C
4 ^ ^'^.1 ^	 ^ e. b	 ^ f'Mw• 1 4 f'v^^ ^' _ .	 _

f

Shield 4B

410 SS	 t3 = 0,10

Gap P34 P45

(in.) (Psi) (Psi) f3 (Psi) f4 (Psi) f 5 (Psi)
0.00 75 37 24,975 15,992 15,540

0.01 71 32 230643 16,341 13,440

0.02 65 25 21,645 16,760 10,500

0.04 56 13 18,648 18,017 5,460

0.06 47 3 15,651 18,436 1,260

0.08 57 -9 No Contact

Shield 4BB

410 SS	 t3 = 0.25

Gap P34 P45

(in.) (psi) (psi) f3 (psi) f4 (psi) f5 (psi)

0.00 95 47 12,675 20,112 19,740

0.01 89 41 11,874 20,112 17,220

0.02 83 35 11,074 20,112 14,700

0.04 72 21 9,606 21,369 8,820

0.06 60 8 6,A05 21,788 3,360

0.08 48 -4 No Contact

BP20AD8-10
E-10
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APPENDIX G

GLOSSARY OF ACRONYMS .AND, SYMBOILS

Acronyms

ARC Ames Research Center

ASE Airborne Support Equipment

BASD 'Ball Aerospace Systems Division

BPS Bits Per Second

COBB Cosmic Background Explorer

CFMF Cryogenic Fluids Management Facility

EMU Extra Vehicular Mobility Unit

EV Extra Vehicular

EVA Extra Vehicular Activity

We Gaseous Helium

GSFC Goddard Spaceflight Center

IRAS Infrared Astronomical Satellite

IVA Intravehicular Activity

IVCS Inner Vapor Cooled Shields

J-T Joule-Thompson

JSC Lyndon B. Johnson Space Center

KSC Kennedy Spaceflight Center

LeRC Lewis Research Center

LHe Liquid Helium

LOX Liquid Oxygen

4	 LNZ Liquid Nitrogen

MFR Manipulator Foot Restraint

+	 MIC Multiple Instrument Cavity

MMS Multimission Modular Spacecraft

MMV Manned Maneuvering Unit

MRMS Mobile Remote Manipulator System

MVCS Middle Vapor Cooled Shields

NASA National Aeronautics and Space Administration

NHB NASA Handbook

BP20ALl-1
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OMS Orbital Maneuvering Systems

OMV Orbital Maneuvering Vehicle

ORU Orbital Replaceable Unit
ORV Orbital Recovery Vehicle

OVCS Outer Vapor Cooled Shields

RCS Reaction Control Subsystem

RMS Remote Manipulator System p

SfHe Super fluid Helium

SIRTF Space Infrared Telescope Facility

STS Space Transportation System

S mbols

f	
cm Centimeter (10-2 m)

hr Hour

in Inch

K Kelvin

kg Killogram

km Killometer (103m)

lb. Pound

l Liter jf

L Latent Heat of Vaporization 1',

m Meter or Mass

cW Milliwatt (10-3W)

P Power or Pressure

psi Pound per Square Inch

u	 Q Power

r	

S Entropy

sec Second

T Temperature

W Watt

a Absorbtivity

E Emissivity

i	
µm Micrometer (10-6m)

P Density

BP20AL1-2
G-2
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