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INTRODUCTION

Radiance recorced by any remote sensing instrument will contain noise which
will consist of both systematic and random variations. Systematic variations
may be due to sun-target-sensor geometry (e.g. Duggin 1985a, Kirchner and
Schnetzler 1981) atmospheric conditions (e.gx. Dave 1978, 1980, Schnetzler 1981)
and the interaction of the spectral characteristics of the sensor with those of
upwelling rsdisnce (e.z. Slater 1979, Duggin, Slater and Somers 1980, Duggin
1985 a,b, Markham and Barker, 1985). Random variations in the data may be
caused by variations in the nature and in the heterogeneity of the ground cover
(e.g. Daughtry, Vanderbilt and Pollara 1982, Duggin 1974, 1983, 1985 a,b), by
variationg in atmospheric transmission, and by the interaction of these
variations with the sensing device (e.g. Duggin 1985a).

It is important to be aware of the extent of random and systematic errors
in recorded radiance data across ostensibly uniform ground areas in order to
assess the impact on guantitative image analysis procedures for both the single
date and the multidate cases. It has been shown that random variations in
irradiance and in reflectance characteristics (caused. for example, by
variations in the nature and in the heterogeneity of ground cover) can cause
variations in the discriminability of vegetation stress (Duggin 1983) and that
random variations in unregolved (sub-pixel sized) cloud can affect
discriminability of agricultural targets (Duggin, Schoch, Cunia and Piwinski
1984). Duggin and Schoch (1984) and Wardley (1984) showed that the impact of
random variationg in irradiance, ground reflectance and atmospheric
transmittance on target discriminability can be angle-dependent. Systematic
variations in radiance due to scan angle have been observed by meny workers in,
for example, even MSS data with a ecan angle range of 11.56 (Kaneko and Engvall

1977) and in AVHRR data which has a much larger scan angular range of 55 (e.g.



Duggin aﬁd Saunders 1964, Duggin and Piwinski 1984). The cause of the angular
dependence of soectral radiance (and therefore of discriminability) is ihe
systematic variation in the reflectance proprerties of ground cover with
{llumination and with viewing angles (e.x. Bauer, et al. 1979, Coulson 1966,
Coulson et al. 1965, Duggin 1977, Egbert and Ulaby 1972, Kollenkark et al. 1982,
Smith 1979, 1983, Suits and Safir 1972). In the case of emitted radiance, there
is a dependence of emissivity on view angles (e.g. Jackson 1981, Kimes, et al.
1980, Kimes and Kirchner 1983, Kimes 198la.b 1983). Atmospheric scattering and
transmission also vary with viewing and with illumination angles (e.g. Turner
1978, Dave 1978). The combination of these systematic variations in factors
controlling radiance levels gives rise to upwelling radiance which varies with
viewing geometry in a target-dependent manner (e.g. Kirchner and Schnetzler
1981, Schnezler 1981, Duggin, 1985, Duggin, Lindsay and Sakhavat 1985, Duggin,
Sakhavat and Lindsay 1985). There is the poseibility that systematic effects
may be corrected for if they are properly understood.

It has been reported that there is a sensor dependent variation of about 2%
in radiance levels across the TM gcan line in @ manner which is scan direction-
dependen£ (Malila, et al 1984, Metzler and Malila 1985, Kieffer, et al 1985,
Murphy, et al 1985). Thie effect will compound the effect of the scan angle
derendence of sensor output which is due to the goniometric anisotropy of the
scene radiance. The angle-deprendent upwelling scene radiance may interact with
both the spectral and spatial characteristics of the sensor in an as-yet
undetermined manner (e.g. Duggin 1985a,b): we do not yet know whether this is a
first order or a higher order effect.

It wae our intention in thie study to examine the systematic and the random
variations in digital radiance data recorded in each band by the thematic mapper
over crop areas which were ostensibly uniform and which were free from visible

cloud. The thematic mappers on Landsats 4 and 5 have narrower bandpasses and a



wider range of wavebands than the MSS or the AVHRR and so findinsn for the NSS
and for the AVHRR cannot automatically be assumed to apply té the TH, even
though the scan angle range for the AVHRR be restricted to that of the TM. For
example, the superior spatial resolution of the TM (30 m as compared to 79 m for
the MSS and 1 km for the AVHRR) will increase the random variation between
radiance values recorded from individual pixels located in apparently uniform
aresas (e.g. Daughtry, Vanderbilt and Pollara 1982).

The asnalysis was performed on several scenes at different growth stages.
We considered agricultural areas. Ve wished to see if there were seasonal
effects upon both random and systematic variations in digital radiance data
recorded in the thematic mapper bandpasses.

The heterogeneity of the scene within the ground resolution cell, which is
imaged by the IFOV will affect the sensor output in each bandpasse and will
affect the spectral distribution of sensor outputs for each pixel. This is
because of the spatial distribution of different scene elements with different
optical properties and anisotropies within the IFOV. The scene elements will
interact with the rear-projected point epread function of the TM system onto the
object plane in a manner which is both spatially and spectrally-dependent. This
has been discussed by (Duggin 1985a,b) and will be dealt with in greater detail
later in this report. The variation in scene type, and in the distribution of
scene components across the area imaged by the TM will superimpose random
variations in the level and in the spectral (between-band) radiance
distribution. Such variations in scene composition across the imaged area will
also give rise to edge effects. The impact of the edge effects will depend not
only bn the nature of the contrasting compoegition of adjoining ground resolution
celle, but will also depend upon the angle through which the imaged area is
viewed and upon the interaction of the upwelling radiance with the spectral and

svatial characteristics of the TM sensors.




The edge effects will impact the TM radiance data (calibrated digital
counts) in a manner which is dependent upon the modulation transfer function
(MTF) of the TH in each bandpass for sach sensor (e.g. Schowengerdt, Archwametry
and WUrigley 1985, Cushnie and Atkinson, 1985). The Fourier transform of the MIF
describes the instantaneous rear-projected point spread function (PSF) on the
object plane, as will be discussed later.

The radiometric calibration of the TM data has been the focus of several
studies (e.g. Tilton, Markham and Alford 1985, Desachy, et al 1985, Schott and
Volchok 1985, Murphy, et al 1985, Singh 1985, Duggin 1985b). There has also
besn considerable effort to develop algorithms to destripe and to
radiometrically correct the data after acquigition (e.g. Bernstein, et al 1984,
Poros and Peterson 1985, Malaret, et al 1985, Wrigley, et al 19684, 1985). Some
considerations will be discussed here.

There have been studies to evaluate the multivariate statistical analysis
of digital TM multidband, multitemporal data for improved 1land use analysis
(e.g. Anuta, et al 1984, Forster, et al 1985). Studies of the analysig of
eigenvectors of the principal components of multitemporal, multichannel TM data
will be discussed in an appendix as a potential means for enhanced land use

discrimination.




ANALYSIS

In this analysis, we were constrained by data availability; the data which
we hoped to obtain at various stagzes over agricultural regions including one in
Iowa (path=27, row=3]l on the World Reference System (WRS)) was not available at
all of the growth stages requested. Some acquisitions were cloudy and
unfofooocn circumstances prevented the acquisition of other scenes in time to
perform the analysis for this report. We did analyze two images over a forested
aresa, however.

The images which we discuss in this report are restricted to three regions.
In each case, we used ridiomctrically corrected p-type CCT data (NASA 1983).
WRS path 27, row 31 covers & corn/soybean region in Iowa: in August 1982, only 4
band data was available for thie area.

Firstly, in each case, the data were screened using the Landsat Assessment
System for cloud and for uniformity. That is, to ensure that the scene did
indeed consist entirely of crop areas for those regions examined. Only the
roads between fields were not vegetated for the agricultural areas studied.

In the first analysis, a mask was generated. Three swaths were used across
the full image: sach was 300 lines deep and started at lines 500, 1900 and 5000.
Slices which were 16 pixels wide were taken in these swaths. The slices had
starting pixel numbers 300 (bottom two swaths) 500, 1000, 2000, 3000, 4000,
5000, 6000, 6500, 6700 (top two swaths). The offset is related to the Earth
rotation correction of the Landsat image. In this manner, a non-biased analysis
was performed by analyzing all of the pixels in each slice over an apparently
uniform, cloud-free agricultural region. Training within these regions on areas
which appeared uniform on the image was not performed in this analysis, as it
was considered that this would have resulted in bias deriving from

unsubstantiated., a priori assumptions as to the nature of the target. The mean
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digital counts fur sach slice were calculated for each bandpass. The digital
counts were used since we were interested in variatione within images and
considered that errors due to offset would not seriously affect our estimates
of coefficients of variation (standard deviation divided by the mean; C.V.) {n
radiance, except to alter the C.V. by about 15% in the case of TM band 6 (Barker
1984, Barker et al 1984). At the same time, the variance and the coefficient of
variation were calculated for each slice. Fig. 1 shows the mean digital
radiance values for the first four bandpasses of the August 02 image for path
27, row 31l. Only four bands were available for analysis for this image. The
mean radiance values are shown as a function of scan angle (starting pixel
value for the slice) and of mean scan line for the swath from which the slices
were taken. In this and in @ll subsequent figures, the northernmost swath
(lower mean line number) is closest to the viewer, west ig to the left (lowest
pixel number) and sant is to the right (highest pixel number). There was no
attempt to register images in this investigation.

It is seen that there is a significant systematic variation with scan angle
before harvest, with a superimposed random variation of about 5%X. The
systematic variation is over 10X between the edges and the center of the image
and is apparently close to symmetric about nadir for TM band 1 of the pre-
harvest image. The effect becomes more pronounced in band 2 and is almost 25%
in band 3. There is a strongly assymmetric 30X change across the image for TM
band 4 of the same image. There appears to be a general decrease in mean pixel
radiance from south (mean scan line 5150) to north (mean scan line 650) in this
image, coupled with some change in the aprarent scan angle dependence. Also
shown are the coefficients of variation (C.V.s) for the pixel radiance values
contained within each slice of each single-band image. The C.V.2 are also
plotted as a function of pixel and mean scan line for the slices considered in

the mask superimposed on the image. There is approximately a 50% variation in



C.V. about nadir for bands 1 through 3, with.a superimposed random variation in
the C.V. and a systematic decreasing trend towards the north portion of the
image (decreasing mean scan line). Band 4 (the reflected infrared region) shows
mainly random variation with a slight monatonically incressing trend in C.V.
from west to .Ilt: It is noteworthy that the C.V. is generally less than 10% for
band 1 and 15% for band 2 but rises to nearly 30X for band 3 (whose digital
values are lower than bands 1 or 2), falling back to less than approximately 17%
in band 4. There does appear to be a general trend for the C.V. to decrease
from south to north.

The same region (path 27, row 31) was viewed again after harvest (October
21, 1982). A color infrared rendition of this image on the interactive computer
screen suggested that this area was mostly stubble. The mean digital counts for
the seven band data are shown in Fig. 2 as & function of the same variables as
for Fig. 1. They appear to show a general trend decreasing approximately 10%
from west to east in the image. The reverse is the case in band 6, the thermal
infrared channel. There appeare to be a slight decreasing trend in radiance
values from south to north in the image and the noise (random variation) in
digital radiance values appeare to be approximately 10%. The digital values
are lower after harvest, except in band 3. The coefficients of variation for
this image are shown as a function of pixel and mean scan line in Fig. 3. They
are all slightly higher than in the case of the pre-harvest image for the first
four bands, are around 20% in band 5, 20% in band 7, but less than 5% in band 6.
However, there is an apparently anomalous increase in C.V. at the far east side
of the image, which was not readily explicable from image data of the slices
examined on the interactive computer screen. The most obvious possibility would
be a greater heterogeneity in ground cover at the esastern edge of the scene.

For this image, an examination of the scene and of the analyzed slices in a




false color r;ndition on the interactive §olputor screen suggested that patches
of vigorous vegetation existed in what appeared to be stubble or soil areas.
The distribution of these scene elements might have, for some reason, been more
heterogenesous towards the extreme sast of the imags.

The same ares (path 27, row 31) was examined using a later (Landsat 5)
acquisition obtained on August 15, 1964 (image number 5016716293). For this
image, in order to avoid slight, 1localized cumulus cloud it was necessary to
start the three swaths at lines 2072, 3900 and 4900. Mean digital radiance
valuss are shown for the test areas (slices) as a function of pixel and of mean
scan line in Fig., 4. Bands 1-4 show weaker systematic trends than the August
02, 1982 image of the same area. Random variation appears generally to be of
the order 5% in digital radiance valuesz, while there is no obvious symmetry in
the systematic component of variations in bands 1-3. Band 4 shows approximately
a 20X decresase in radiance for the southern portion of the image, but no such
trend in the middle or for the northern region. The dependence on mean scan
line seems pronounced only for bands 5-7. Band é does show the same general
increase to the east as for the October 1962 image, analyzed in Fig. 2.

Fig. 5 shows the coefficients of variation of the pixel radiance values for
the windowed areas (slices) described by the overlay mask, plotted as a function
of pixel and of mean line. The C.V.s are below 0.08 for band 1 and generally
below 0.10 for band 2, with a random variation of up to 30% and with only a
slight systematic decreacing trend to the northeast. In band 3, the C.V. is
0.25 at the west edge of the image, falling to 0.15 or less towards the east.
The decrease is more pronounced in the north of the image than is the case {n
the south. In band 4, the C.V. is generally loss than 0.18, with a random
variation of up to 20% and & slight decrease from west to east in the south of
the image. The situation is similar in band 5. The thermal infrared band, TMé,

shows C.V. values less than 0.04, which exhibit a general decrease in trend from



west to east in the south of the image, and a general decrease from south to
north, which {s more pronounced in the east of the image. Band 7 has higher
C.V. wvalues (up to 0.40). There is a decrease from west to east and s slight
decreasing trend from south to north. However, while the thermal IR band (6)
shows the northeast region of the image to exhibit the lowest variance, bands 4,
5 and 7 (reflected~to mid-IR) show high variance. This may indicate a higher
heterogeneity in growth stage in this region.

The analysis on the August 1962 imsze, when compared to that performed on
the August 1984 image suggests that the systematic variations across an imsge
depend upon time. This may be related to the substantial non-uniform changes
with Julian date in both the level and angular dependence of radiance recorded
over the crop areas of the U.S. Great Plains by the AVHRR, as reported by (e.g.)
Duggin and Piwinski (1984). Atmospheric changes and varistions at ground level
can occur between image acquisitions.

Factors contributing to radiance changes across an image are atmospheric
changes across t' : imaged arca, together with atmospheric scattering anisotropy
and hemispherical-conical spectral reflectance anisotropy which is dependent on
sun-target-sensor geometry, as mentioned earlier. However, while these effects
will be substantial for a large scan angle range, covering a large area, such as
the AVHRR (255°), one would expect these effects to be less for the TM, whose
scan angle range is only $7.7°,

It has been noted (Duggin 1974, 1983) that the random variation to be
expected in recorded radiance will arise partly from random variations in
stmospheric transmission and partly from variastions in irradiance: reported
coefficients of variation are approximstely 6X (Duggin 1974, 1983). It has also
been reported (Duggin 1983) that ground reflectance measurementz made st 80 m

spacings in the MSS bandpasses show between 5% and 20X coefficient of variation.




Systematic recorded radiance due to atmosvheric scattering and bidirectional
reflectance factors anisotrooy might be exvectsd to give rise to substantial
scan angle dependence for large scan angle ranges (such as :55° for the AVHRR).
However. random variations might be expected to predominate over systematic
variations for the smaller scan sngular range (17.70) for the thematic mapper.
It s also interesting to note that the range of random variation before and
after harvest in 1962 is not markedly different and that the same range of
variation appears to apply to the August 1984 imarxet.

We now tried a different techniacue, involving “"training” within the grid
pcll arsaz described above. The same mask (overlav) was escloved as in the
method described above in order to define glicer 16 pixels wide by 300 lines
deer. However. in this analvsig. we used the cursor whose size, shape and
pogition could be defined interactively to “train™ orn areas considered to
consist of the moet vigorous vegetstion because of their red hue and saturation
when the interactive disvlav was uged with appropriate look up tables (LUT'g) in
the following modes:

(1) TM 2 = blue

1 3 = green begt for agricultural scene

.
»

-3
X

4 = red

(31) TV 4 = red

begt for forest scene ~
™ 5 = green sevarates forest from grassland
and agricultural areas
™ 7 = blue
Each "glice™ on each “sgwath™ wag taken to be a class. and training was performed
on three vigorous vegetation zites in each clase. or slice. In this analysis,
we cdid make the assgumption that what apveared to be "red” on the monitor was
vizorous vegetation. go that thizg was a biased analveis.

The cureor mode war used on the LAS interaciive analygie terminal (IAT) in

order to enclose those areag identified (g priori) bv means of their apvearance
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in & false color mcde. The central point of the examined ares was obtained
(both screen coordinates and coordinates related to the master image) from the
IAT control monitor, using the POLYSIT2 program. While the number of pixels
enclosed in each slice was always constant, this quantity varied in the case of
individually located and positioned cursors.

The analysis describad above was used on the pre-harvest Fort Dodge images
(path 27, row 31, image # 4001716261, 02 August 1982). Three training sites on
apparently vigorous vegetation were selected in each slice and the data for the
pooled sites in each slice are presented here. Fig. 6 shows the varistion with
pixel number (scan angle) of the mean digital radiance values for each training
site, in each bandpass. Swath X has a line start (first line of swath) of 500,
swath Y of 2000 and swath 2 of 5000. Mean pixel radiance values for each of the
two training areas within each grid cell, as well as the mean of the means of
the two training areas or cells (for which the best fit curve is shown) are
displayed. The scan angle-dependence is larger than in the case for the
previous analysis. Scan angle effects of up to 20X are seen in TM bands ! to 3,
but the effects in TM band 4 are anisotropic about nadir, and exceed 20%. The
reason for the difference in the results of the two analyses is probably due to
the fact that the method involving no training on apparently vegetated areas
includes areas which are less vegetated, or areas whose leaf area index is less
than that in areas (subjectively) selected in this (interactive) analysis. When
training is employed. an assumption is made that vegetation vigor is related to
hue and to saturation perceived on the screen of the image analysis terminal.
Training within the (18 x 300 pixel) grid cell areas was alsc usad for the seven
band post-harvest dats for the same scene (path 27, row 31 image # 4009716273,
2] October 1962). The data for the X swath (line start 500) is shown only in
Fig. 7. It is seen that there is far less variation than was the case before

harvest. This is to be expected, since the scene consists mainly of stubble.
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i An examination of a post harvest Indianapolis, Indiana scene (image ¢

4010315505, 27 November, 1982) showed similar results to the post harvest
Vebster-Fort Dodge image (path 27, row 31 image # 4009716273). The plot of the
sean digital counts for each of the grid cells as a function of start pixel is
shown in Fig. 8, and exhibits the same general behavior as shown for image #
4009716273, the post-harvest image for path 27, row 31. The plot of the coeffi-
cients of variation in digital counts for each bandpass, for each 16 pixel by
300 line grid cell, displayed as & function of start pixel, is shown in Fig. 9.

Ve examined an image of forest at Jamestown. Ve did not train within the
grid cells. The image number was 4004315244, August 28, 1982. One swath was
taken across the image at (approximately) line 5000. The swath was chﬁ.en 80
that the slicee contained forest and minimal cloud. When the "slices™ (16 x 300
pixels each) were displayed in composite form on the IAT, a very strong angle-
dependence was obvious to the eye. The coefficient of variation for the mean
digital count in each band and for each slice was generally less than 15%. Fig.
10 shows the large anisotropic scan angle-dependence of the mean digital counts:
the effect is approximately 30% in the case of TM band 3. TM band 4 shows
scatter. Fig. 11 ehows the coefficient of variation (C.V.) for the digital
radiance values, plotted as a function of scan angles. The scan angle-
dependence of the C.V. is spproximately a factor of two for several bands. The
procedure of training on areas of apparently high vegetation was tried for the
same area, imaged September 13, 1982 (path 17, row 31, image # 4005915251).
Significant, but somewhat less scan angle dependence was found in this case, as
is shown in Fig. 12 for the mean values. TM 4 again showed scatter, while TM 6
showed anisotropic behavior. The pointe for the individual training areas were
clogser to the best-fit line for the pooled data than was the case for the post-
harvest agricultural data. The scan angle~dependence of the coefficient of

variation is shown in Fig. 13.

12



St |

(TR ]

COMMENTS ON THE INTERCALIBRATION OF MULTISENSOR, MULTITEMPORAL, MULTICHANNEL
DIGITAL RADIANCE DATA

In order to compare recorded radiance data obtained on the same date using
different sensors, or on different dates using either the same sgensor or a
combination of sensors such as the Landsat 4 and 5 sensors TM 4 and TM 5, it is
necessary to refer such data to a common datum. This point is discussed in
Dugzin 1985b.

While calibration is readily made for a sensor in which the gain and offset
have been adjiusted during operation (e.g. U.S. Geological Survey 1979, 1984,
Duggin 1981), the intercomparison between sensors with different spectral
responses (bandpasses) is more complex (e.g. Duggin 1980, 1981, 1985; Slater
1979). This is because of the interaction of the spectral response of the
sensor with the spectral racdiance incident upon the sensor and because different
sensors may record information in different parte of the spectrum, where the
upwelling radiance has different values. This point is shown for a
hypothetetical eituation in Fig 14, Here bandpasses A and B from instrument 1
are taken to be approximately equal to bandpass C of instrument 2. The bandpass
of a sengor is normally taken to be the wavelength region between the boundaries
where the sensor has & 50% resvonge. It ies geen that the spectral regions
between the half-power wavelength limite of bandpass A of instrument 1( A]A 'AZA)
and between the half-power wavelength 1limits of bandpass B of ingtrument
1 A]B , AZB ) are not (in gum) the same as that encompassed by the half-power
wavelength limits of bandvass C of instrument 2( A]C , AZC ). The spectral band
shapes of the sensor response curves algo differ and so the calibrated, summed

outputs of the two bandpscses (A and B) of instrument 1 are
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Here ap. ag and ac are the offsets of the sensors in bandpasses A, B and C for
the two ingtruments. Also. 1/bA.1/bB and 1/bcare the gains of the sensors with
bandpasses A, B and C. AA'O' XB'O and AC'O are the upper zero power wavelengths
for the sensors, while AAO' ABO and ACO are the lower zero power wavelengths,

respectively.

If L(A ) changes, which could be ag 2 result of different viewing and
illumination geometry (e.g. Kollenkark, et al 1982, Duggin 1985s, Smith 1983)
then the interaction between‘L(A) ang l(A) will vary in an instrument-dependent
manner. Thug, intercalibratione between the outputs from bands A and B of
ingtrument 1 and band C of instrument 2 depend upon the spectral gcene radiance
and may therefore change with view angle scross even &8 homogeneous scene. The
intercalibratione will also be affected by unresolved cloud, wﬁich will modify
L(A). However, such intercomparisons are wavelength-specific. The calibrated
outputs from channels A and B of instrument 1 will vary differently from each
other and from that of channel C of instrument 2. Therefore, the intercompari-
Eon must be target-dependent, view angle-dependent and atmosphere-~dependent, as
well as illumination angle dependent (in the ootical-reflective ~region). The

same principles of the above argument would apply if radiance data from two
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basically similar sensors (each possessing one similar band pass) on two dif-
ferent instruments were being compared.

Further, as pointed out by Forshaw, et al (1983), by Duggin (1985a) and by
Duggin and Schoch (1983)., the output of a given sensor depends not only upon the
nature of the target and its heterogeneity, but upon the relative location of
scene elements of different optical properties and anisotropies in the nominal
instantaneous field of view (IFOV) of the sensor. This is because of the
interaction of the point-spread function (PSF) of the sensor with the radiance
recorded from each of the different scene elements in the IFOV. Thig situation
is shown diagrammatically in Fig 15. The scene is considered to consist of three
components A, B and € which give rise to different radiance levels at the sensor
(bandpass r) whose point-spread function is shown. The PSF fall-off to zero is
generally Gaussian and so radiance may be recorded from very bright scene
elements beyond the nominal IFOV of the sensor. The sensor output for a pixel
will therefore depend upon the position of the PSF peak with respect to the
assemblage of scene elements.

As pointed out by Duggin and Schoch (1983) for a cloud-free image
congisting of n different reflecting elements, each occupying a fractional area
apof a pixel (IFOV), the recorded radiance in bandpass r ig, for the optical-

reflective region, given by

Aav v w/2 x Yy
S ( { f_m[Ew.é)\) £ o) Rar e NPas)
+£2(3.9) Ro0,6:6' ' NP2z y) + ... + gn(x.y) Ro (6,608’ \Po(x )] 7(0’.¢'.Mdydx] dbde + L, (610, ;a',.d,.x))ax

f M 10 - d)
As0

L6¢)= (3)
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where I()) is the spectral response of the sensor andAAo.AAo. are the lower and

upper zero powsr bandpass limits of the sensor (e.g., bandpass A), respectively

E(6.¢+2) is the scalar global spectral radiance incident on the pixel
7(6°+¢ “+2) is the atmospheric transmission along the path from the pixel to the
sensor
Rn(e.¢ 30°¢¢°+2) is the spectral hemispherical-conical reflectance factor for
scene element n. which occupies fractional area &, of the
heterogeneous pixel
Pr(x.y) ig the point-spread function at position x,y in the pixel

glj(x.Y) is a delta function which equals 1 if scene element n is present at

(s,y), but ie otherwise zero, go that for an IFOV of dimensions X,Y.

-!:)x ‘j;ygﬂ(x;}')dydz =g,:

Lp(ei'¢2 ) ’2.¢ '].A ) is the path radiance for the sun—-scattering center-sensor

geometry defined by (e H e']. ¢’]) which will differ from the sun-

1" 4
target-sensor geometry CITH TR

Clearly, the effect of scene element heterogeneity and dieposition (with
respect to PSF peak value for a given IFOV) on pixel radiance values and on
between-band radiance dietribution depends on illumingtion and on viewing
geometry. For multitemporal analysis, this consideration is important in
dete..ining the acceptable (fractional pixel) superpogition accuracy of multi-
date images, 80 that the above effect does not adversely affect the accuracy of
clazsification procedures.

In the case of unresolved (sub-pixel sized) cloud, equation (4) will be

modified by the addition of a term
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where g describes the presence or absence of cloud at & location in the pixel

c
and where R(fk) ie the (nearly Lambertian) reflectance factor of cloud.
Similar equations can be developed for the thermal infrared region of the
spectrum, where scene radiance ig determined by scene element gpectral
emiesivity e(6’.¢’.A) instead of by the product of global spectral irradiance

ECO . ¢: 87 and the hemispherical-conical spectral reflectance

factor R(6.,436 "¢ 2).

In summary, more celibration deta ie required for remote gensing instru-
ments. This should consist of gain, offset, spectral response and point-spread
function for each bandpaee. This data should be available even where radiance
data have been radiometrically corrected, so that it is possible to wunderstand
what has been done to the raw radiance data. Thie information will permit
theoretical studies which will lead to the development of sensor intercalibra-

-tion procedures and to an understanding of the limitations inherent in such
intercalibrations. Such studies will improve understanding of the effects of
unresclved cloud, viewing and illumination geometry, scene composition and
heterogeneity. Perhaps correction procedures for egystematic effects (e.g. scan
angle cifferenceg) may be developed. Procedures for the determination of mini-

mum acqeptable image suverpogition accuracy for the multi-date analysis of

17



images with various sensor-scene

combinations,

with assemblages of

elements with different optical proverties and different heterogeneities

slso need to be developed.
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CONCLUSIONS

This study cannot be considered exhaustive: indeed it is still in progress
as the multidate data continues to arrive. However, several conclusions are
suggested by this work. While some systematic trends in radiance values with
scan angle were observed prior to harvest over a crop area in 1982, the same
pattern was not repsated two years later. It appeared that the random variation
in mesn digital values recorded from 4800 pixel sample areas at regular
intervals across an image in three swaths generally exceeded the systematic
variations for the three images studied, and that the coefficients of variation
were within those which might be expected to occur from prior measurements. The
coefficientse of variation of the digital values from the 4800 pixel areas
selected as regular intervale acrose an image showed some scan angle dependence,
but were more devendent upon bandpass than upon season or upon scan angle. The
systematic effects did appear to be significant for a forest area.

Random varjations may affect image classification accuracy. Further,
uncorrected systematic varistions across and between images may impose
restrictions on the level of classification accuracy which may reasonably be
expected from automated clasgification of single date or multidate, multichannel
digital thematic mapper data for the quantification and identification of
terrestrial features in g non-photointerpretive fashion. It is therefore
important to understand the restrictions which such variations inherent in the
digital radiance dats may place upon analyses. To this end, further work is
needed in which further empirical studies of digital radiance data are used to
determine optimum regimes of data acquisition and analyses for selected feature
identification and quantification.

Training on sreas of vegetation, selected on the basis of their false-color

rendition has been shown to produce indications of random and systematic
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variations in digital radiance data for esch band pass, w(thin and between
images. However, this method is less reliable than a stratified sampling
technique, since the method of training biases the data, due to assumed
relationships between the image characteristics and ground cover, which may or
may not be valid.

The effects of intercalibration between the TM sensors on Landsat 4 and
Landsat 5 have been discussed. These are problems which have attracted the
attention of other workers as well (e.g. Murphy, et al 1985, Singh 1985,
Malaret, et al 1975, Slater 1979, Markhsm and Barker, 1985). However, there is
a need to be aware of the interaction of the spectral response characteristics
of the sensor and the spectral characteristics of the upwelling scene radiance
(e.g. Dugsgin 1985a,b), which can give rise to (e.g.) target-dependent, sun
angle-dependent striping. There is also a need to reduce data to a common datum
level for meaningful intercomparison (as also remarked by Metzler and Malila
1985).

The use of principal componente analysis for multitemporal TM data analysis
ig considered in an investigation performed partly under the auspices of this
contract and described in the paper attached in appendix A. There is promise
that the evaluation of eigenvectors for certain ground features may enhance
discriminability.

Other papers arising from this work are included in appendix B.
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Fig. 1.

Fig. 2

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

EICURE CAPTIONS

The means and coefficients of variation of digital radiance data for
rectangular 4800 pixel sample areas (slices) described in the text,
plotted as a function of scan angle (pixel) and of mean scan line for
the pre-harvest image #4001716261, path 27, row 31, 02 August 1982.
Only four bands of data were available.

The mean digital radiance values for the rectangular 4800 pixel sample
slices of the mask described in the text, plotted as a function of
scan angle (pixel) and of mean scan line for the post-harvest image
#4009716273, path 27, row 31, October 21, 1982,

The coefficients of variation of digital radiance data for the
rectangular slices plotted as a function of scan angle and of mean
gcan line for the image shown in Fig. 2.

The mean digital radiance values for the rectangular sample slices of
the mask described in the text. plotted as a function of scan angle
(pixel) and of mean scan line for the pre-harvest, August 15, 1984
Landsat 5 thematic mavver image #5016716293, path 27, row 3l.

The coefficients of variation of digital radisnce data for rectangular
slices defined by the mask plotted as a function of scan angle and of
nean scan line for the image shown in Fig. 4.

The mean digital radiance values for training areas selected within
rectangular image sample areas, defined by the mask described in the
text. Here the image is that obtained by Landsat 4 on August 02, 1982
for path 27, row 31. "Red 1" and “"red 2" refer to mean digital
radiance values for individual training areas and “red” refers to the
average of the mean values for those training areas within e¢'ch {mage

‘slice’. ‘X’ 'Y’ and ‘2’ refer to 300 line swaths taken across the
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Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

north, center and south of the image. The mean digital radiance
values for the first four TH bands are plotfcd as a function of pixel
for each swath.

The mean digital radiance values for apparently vegetated training
areas ("red 1® and "red 2") and for averages of the means from those
training areas ("red”) taken from within rectangular image sample
areas defined by the mask described in the text. The heterogeneity
within each slice is considerable as the image was obtained Octobder
21, 1982 over a crop area path 27, row 31, where much of the scene
consisted of stubble. See Fig. 2 for comparison.

The mean digital radisnce values for the rectangular slices of the
mask described in the text, plotted as a function of p.x»1 and mean
scan line for the post-harvest November 27, 19682 Landsat 4 image
#4010315505, path 21, row 32.

The coefficients of variation of digital radiance data for 4B00 pixel
rectangular sample slices defined by the mask described in the text,
plotted as a function of pixel and of mean scan line for the image
shown in Fig. 8.

The mean digital radisnce values for the rectangular 4800 pixel slices
of the 300 1line swath starting at line 500 described in the text,
plotted as a function of pixel and mean scan line for the August 28,
1982 image of the Jamestown forest area (image #4004315244, path 17,
row 31 on the WRS system).

As Fig. 10, but for the 300 line swath starting at line 2000.

The mean digital radiance values for apparently vegetated training
areas ("red 1" and "red 2"), taken from within rectangular image
slices. These were taken across one swath (west to east) of an image,

and plotted as 8 function of pixel. The image (#400591525]1) was
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Fig. 13.

Fig. 14.

Fig. 15.

obtained by Landsat 4 September 13, 1982 over a forested area, path
17, row 3.

Coefficients of varistion of digital radiance values in esach bandpass
for the image areas described in Fig. 12.

Spectral responses of two different remote sensing devices, one of
which has two adjscent channels similar in combined wavelength
coverage to a single channel on the other device, shown with the
upwelling spectral scene radiance.

Interaction of the rear-projected point spread function of a sensor
with a heterogeneois scene composed of elements whose optical

properties (and therefore, scene radiance values) differ.
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ARSTRACT

ProQiouc work has suggestcd that seasonally varying reflectance properties
are predictably related to radiance recorded by multichannel remote sensing
devices. Two images were obtained from thematic mappers on Landsats 4 and 5
over the Washington, D.C. area during November 1982 and March 1984. These were
registered and selected training areas containing different types of urban land
use wers examined, one area consisting entirely of forest. Mean digital
radiance values for sach bandpass, in ssch image were examined and variances,
standard deviations and covariances between bandpasses were calculated. Ve
found that two bandpasses caused forested areas to stand out from o%har land use
types, especially for the November 1982 image. 1In order to evaluate quanti-
tatively the possgible utility of principal components analygig in selected
feature extraction, the eigenvectors were evaluated for principal axes rotations
which rendered each selected lancd use type moet separable from all other land
use types. The evealuated eigenvectors were plotted &s & function of land use
type, whose order was decided by considering anticipated shedow component and by
examination of the relative loadings indicative of vegetation for each of the
principal components for the different features considered. The analysis was
performed for each seven-band image sevarately and for the two combined images.
We found that by combining the two images, we obtained more dramatic land use
type -separation. Conclueions have been drawn from this preliminary work sug-
gesting directions for further study. Both British and U.S. image analyeis

systems were used.



INTRODUCTION

Thematic mapper (TM) data have a nominal spatial resolution of 29m in all
bandpasses except the thermal infrared band. The TM potentially has utility for
measurements of urban land use and of vegetation configuration within land use
types (e.x. Quattrochi 1983, Haack 1983, Forster 1983, Jensen, et al 1983).
Registered, multidate images of TM data sach contain 7 bands of data. There is
promise of superior feature identification and of urban forest identification
using principal components analysis of TM digital multiband radiance data (e.g.,
Bernstein, et al 1984) or other transformations (e.g., Crist and Cicone, 1984)
to reduce the dimensionality of the data without reducing its .nformation con-
tent. This approsch has been discussed frequently (e.g., Stiteler 1979) and
will facilitate data reduction. Such considerations are important in economical
data analvsis and in the representation of mapped features using images formed
from only three primary colors.

In thig report, we discuss the results of an experiment to show that
principal components analysis may be used to effectively distinguish between
different urban land cover classes and that this may be dore more effectively by
using a combination of images obtained on two different dates than by using
either of the images individually. In order to quantify the superiority of
using combined (superinposed) images, we have chosen to evaluate the eigen-
vectors for selected test areas, showing that the magnitudes of the eigenvectors
are most different for the combination of images obtained on two dates then for
either of the individual images, in the cases of those principal components

explaining most of the variance in {he data.



ANALYSIS AND DISCUSSION OF RESULIS

In this preliminary experiment we utilized two registered TN images
obtained over the Washington, D.C. ares (November 2nd, 1982 and March 24, 1984).
The former image was obtained by Landsat 4 (image no. 4010915140) and the latter
was obtained by Landsat 5 (image no. 5002315112). Ve registerad these images on
the Landsat Assessment System at NASA, Goddard Space Flight Center. The super-
imposed 512 pixel by 512 Line extracts were than output to tape and subsequently
were interactively analyzed by using the GEMS interactive image analysis sytem
located at the Royal Aircraft Establishment, Farnborough, England, and also by
using the GEMS interactive image analysis system at ERSAC, Ltd. in Edinburgh,
Scotland. The individual images are shown in Fig. 1. A linear stretch has been
applied to sach image.

Four training sites were selected as "typical” and are shown outlined in
the lower center image in Fig. 2. These consisted of "Forest™, "Dense urbsn”,
"Downtown” and "Airport”. The forest area has a 100X canopy cover, and {s to
the northwest of the city. The downtown area includes the park areas which
contain few trees but extensive lawns, including those between the Lincoln
Memorial and the House of Congress. The dense urban ares has virtually no trees
and ig to the east of the downtown area and Washington National Airport is
included ae the fourth area, being a mix of concrete, buildings and grass, the
last being less well meintained than that in the area between the Lincoln
Memorial and the House of Congress. These four areas are annotated on the image
at the bottom center of Fig. 2. The training sites contained the following

numbers of pixels.

Forest 7480
Dense urban 5852
Alrport 2448
Downtown 9246

These sample gizes were sufficiently large to perform a reliable analysis.



Ve have shown the mean radiance values recorded for each of the four land
use categories used in the study in Table 1. 1In this table, we have ordered the
land use categories in terms of decreasing vegetation conteNt. TM band 4 (0.76~
0.90 m) shows a decreasing value with decreasing vegetation for both images,
slthough the downtown area does appsar to show approximately the same band 4
radiance value as forest in March 1984. This would seem reasonable, since
deciduous trees ars not in leaf in March, and will give rise to lower band and
radiance values. TM band 6 (10.4-12.5 m) shows the thermal radiance recorded
from the training areas increasing with decreasing vegetation content. Again
the distinctions are most consistent in November 1982. A ratio of (TM band 6/TM
band 4) showe an increasing value with decreasing vegetation content. This
suggests that TM imazery could be useful in mapping vegetation, especially in
mapping forest in urban environments.

The principal components transformation was performed by using training
areas (Fig. 2) over selected land use types, 80 as to rotate the measurement
axes (i.e., axes describing recorded radiance in each band) to make the selected
land use type most separable from "everything else". The eigenvectors were
evaluated for sach of the four sslected land use types identified in the train-

ing sites after principal components analysis was performed to emphasize that

feature. Sinmilar calculations were performed, but without training, for the

whole 512 pixel x 512 line image extract: the 14 principal component images for

the two superimposed images are shown in Fig. 3. The eigenvalues for the first

three principal components were such a8 to explain generally over ninety percent

of the variation in the data. The eigenvectors have also been calculated for

each image and for the fourteen band composite obtained by combining the two

reven band images! in this case the first seven bands consisted of those from

one image and the latter seven bands (in the same sequence) contained digital



radiance data from tle second image. The evaluated eigen vectors are shown in
Table 2.

Fig. 4 shows a plot of the eigenvectors for the first principal component
for each date, for axis rotations performed to emphasize land use types in each
training area and for the whole image extract. The eigenvectors for the second
and third principal components show less difference between land use types
categorized by the training sites for the combined or for the single-date
images. However, in each case, there is a substantial difference between esach
of the eigenvectors for a given principal component and the eigenvector fur the
same principal component for the whole image. This demonstrates the separ-
ability of each land use type using thie technique.

Fig. 5 shows the percentage of variation in the data explained by each
principal component for the fourteen band image. This is the only image 8o
illustrated. for reasons of space. Fig. 6 shows the loadings (scaled to the
range 1.0) of each of the components (festure vectors) in the eigenvector for
each principal component calculated to emphasize the four features contained in
training areas considered for the two images (fourteen band) composite. The
forest area clearly has considerable shadow and a low albedo and thus has a
lower eigenvector (first principal component) than that of the dense urban areas,
which is less than that of the airport, which in turn is less than that of the
downtown area. Note that the loadings of the components (msasurement vectors)
for each of the training sites shows a progressive change from forest to down-
town area. It is suggested that both shadow and the vegetative component con-
tained in the training area contribute to the differences in loadings. It is
noted that the loadings for the bandpasses of the March 1984 images generally
exceed (in modulus) thoss for the November 1982 image. The seasonal vegeta-
tionsl change and the change in gshadow component due to the change §n solar

azimuth and =zenith angles at the time of satellite overpass will also be



important in contributing to new information in the eecond image which was not
present in the firet. This explains why the first principal component calcu-
lated for the composite fourteen band image was superior in separating the
features contained within the training areas identified earlier on and shown in
Fig. 2.

It 4s sugmested that either a canonical variate formed from the evaluated
eigenvectors obtained by training on a class containing & land use category or
possibly the principal components of ratioced images might be worth investigating
as better land use type discriminators. Clearly, these possibilities need to be
investigated and the intercalibration between the digital radiance data from the
Landsat 4 and 5 thematic sensors needs to be taken into cccount (e.g. Dugein

1985, Likens and Wrigley 1985, Palmer 1984).

SONCLUSION

A feasibility study involving the principal components analysis performed
by training upon selected urban land use types to make them most separable from
other imaged features has been described for single-date and for registered
multidate images. I: appears that separability is enhanced by using the
increased spectral radiance information contained in superimpcsed images
obtained on different dates. It appears probable that shadow znd vegetation
vigor., as well as changes in these parameters are importzut in controlling
feature separability. It appears that TM bands 4 and 6 contain information which
best discriminates forest from other areas and which may therefore be of use in
urban forest studies. Further work on a larger suite of images, containing a

larger variety of urban forest land use patterng is underwary.
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TABLE CAPTION

Table 1. Mean radiance values for each training site (land use category) for

each image studied.

Table 2. Calculated eigenvectors for the principal components obtained by
training on selected features, to so rotate the axes as to enhance the
separability of those features selected and by calculating the principal
components axis rotation for the whole image. Values are shown for the first
three principal components for each of the two images and for the fourteen band

superimposed image pair.




EIGURE CAPTIONS

Fig. 1. Single band extracts of images superimposed Landsat thematic mapper
(512 pixels x 512 lines) obtained on two dates; 2 November 1982
(Landsat 4) and 24 March 1984 (Landsat 5). The images are contrast
enhanced by using a linear stretch.

Fig. 2. Training areas used in 512 x 512 pixel image.

Fig. 3. Principal components images obtained for the whole 512 pixel x 512
line extract of the fourteen band composite of the superimposed
images. The training area (extracts) of the few selected cover types

are also shown.

Fig. 4. Plot of the eigenvectors as a function of training site (Fig. 2) and
for the whole 512 » 512 pixel image extraction for the first principal
component for each of the images and for the composite of the two

superimposed images.

Fig., 5. Piot of the percentage of variation in the data explained by each of
the principal components for the fourteen band (composite) image. In
each case the axes have been so rotated toc as facilitate the

extraction of the selected feature.

Fig. 6. Loadings (scaled to fall between 1.0) of the feature vectorg in
calculating the eigenvectors for the first three principal components
when the axes are so rotated as to emphasize each of the selected

features.
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