Comparison of Calculated and Experimental Cascade Performance for Controlled-Diffusion Compressor Stator Blading

(NASA-TM-87167) COMPARISON OF CALCULATED AND EXPERIMENTAL CASCADE PERFORMANCE FOR CONTROLLED-DIFFUSION COMPRESSOR STATOR BLADING (NASA) 22 p HC A04/MF A01 CSCL 21E

Nelson L. Sanger
Lewis Research Center
Cleveland, Ohio

and

Raymond P. Shreeve
Naval Postgraduate School
Monterey, California

Prepared for the
International Gas Turbine Conference and Exhibit
sponsored by the American Society of Mechanical Engineers
Dusseldorf, West Germany, June 8–12, 1986
ABSTRACT

The mid-span section of a previously reported controlled-diffusion compressor stator has been experimentally evaluated in cascade. Measurements were taken over a range of incidence angles for blade chord Reynolds numbers from 470,000 to 690,000. Blade chord length was 12.7 cm, aspect ratio was 2.0, and solidity was 1.67. Measurements included conventional cascade performance parameters as well as blade surface pressures. Computations were made for the inviscid flow field, surface boundary layers, and loss for several of the blade inlet angle conditions, and compared against corresponding data.

NOMENCLATURE

AVDR Axial Velocity-Density Ratio (Eq. 1)
Cp surface pressure coefficient (Eq. 8)
Cr local-to-reference pressure (Eq. 4)
c blade chord
i incidence angle (air angle - blade metal angle)
k local-to-reference mass flux (Eq. 3)
P total pressure
p static pressure
q dynamic pressure
Re Reynolds number based on chord
s blade spacing
V Velocity
x/c fraction of chord
B air angle
γ stagger angle (Fig. 5)
ρ density
σ blade solidity
ϕ blade camber angle
ω loss coefficient (Eq. 2)

Subscripts
1 inlet plane
2 outlet plane
REF reference conditions
t stagnation conditions

INTRODUCTION

In a paper presented at a recent International Gas Turbine Conference, the design of a controlled diffusion compressor stator using an automated design procedure based on numerical optimization was described (1). The controlled diffusion stator was a redesign of the first stage stator of the NASA Two-Stage Fan (2). The original design was highly successful, demonstrating a first stage peak adiabatic efficiency of 87 percent, and a radial distribution of loss across the stator which was remarkably low. The purpose of the redesign was to develop and demonstrate the feasibility of an automated design process using numerical optimization methods. Although significant performance improvement from an already excellent stator design was not expected, at least equivalent performance was expected. In addition, the redesigned stator was intended to provide a research vehicle for the new controlled diffusion class of blading.

As described in Ref. 1, the controlled diffusion stator was designed using a series of computational analysis methods coupled by a numerical optimization procedure. The blade shapes were specified by a
experimental programs. Turbulence intensity, measured by the technique of Scanivalve (Ref. 5), was achieved as a result of suction. Upstream flow uniformity, periodicity and steadiness were also satisfied. All of the aerodynamic and geometric codes together were tested using the COPLS/COMMIN code (6,7).

The mid-span section of the blade has been built and tested in a cascade wind tunnel at the Naval Postgraduate School. Although inlet Mach numbers (0.2) are not at the design point, these tests have provided a useful data set for code verification.

Testing Procedure and Data Reduction
Seven inlet air flow angles from 24 to 46° were selected and set in turn. At each angle setting similar procedures were followed. With the tunnel set to the design inlet dynamic pressure (either 0.2 or 20 cm of water) tail boards and IGVs were adjusted to give near-uniform wall static pressures both upstream and downstream of the test blade. Blade-to-blade probe surveys were then conducted over four adjacent blade spaces about the center blade. Probe data and reference data were recorded at 0.04 cm intervals over the outer spaces, and 0.25 cm intervals over the central spaces. The lower probe trailed the upper by 3.84 cm throughout the traverse procedure. A spanwise probe survey was then conducted at 1.27 cm intervals at the upper station with the probe located at about 2.5 cm from the suction side of the center blade. The survey procedure was repeated with the lower probe at approximately 2.5 cm from the pressure side of the central blade. Blade surface pressures and reference data were then recorded with tunnel reference data.

China clay observations were made for similar settings of the cascade at a dynamic pressure of approximately 0.3 cm of water. The reduced velocity was necessary since higher velocities give too rapid a drying rate, and difficulty in recording and interpreting the drying patterns. Blade static pressure distributions were recorded when china clay observations were made. These data could be compared with data already recorded at two higher Reynolds Numbers.
In the reduction of the probe survey data, after reduction to velocity, pressure and flow angle at each point, the data were referenced to quantities derived from the tunnel plenum to atmospheric pressure (driving potential). As shown in Ref. 9 and 10, this permits integration of the measurements over the blade-to-blade displacement to obtain the Axial Velocity-Density Ratio (AVDR) and loss coefficient such that small variations in supply conditions during the survey have little effect. The AVDR was calculated using the definition

\[
\text{AVDR} = \frac{\int_0^1 \rho_2 V_2 \cos \phi_2 \, ds_2}{\int_0^1 \rho_1 V_1 \cos \phi_1 \, ds_1}
\]  

(1)

and the loss coefficient using the definition

\[
\bar{\omega} = \frac{P_{t1} - P_{t2}}{P_{t1} - P_{t1}^{\text{ref}}}
\]

(2)

where bars denote mass-averaged values.

Defining local-to-reference mass flux as

\[
k = \frac{\rho V \cos \phi}{\rho_{\text{ref}} C_{\text{ref}}}
\]

(3)

and local-to-reference pressure as

\[
Cr = \frac{p}{p_{\text{ref}}}
\]

(4)

then Eqs. (1) and (2) become, respectively,

\[
\text{AVDR} = \frac{\int_0^1 k_2 \, ds_2}{\int_0^1 k_1 \, ds_1}
\]

(5)

and

\[
\bar{\omega} = \frac{\int_0^1 Cr_{t1} \, ds_1 - \frac{1}{\text{AVDR}} \int_0^1 k_2 Cr_{t2} \, ds_2}{\int_0^1 k_1 Cr_{t1} \, ds_1 - \int_0^1 k_1 Cr_{t1} \, ds_1}
\]

(6)

which is, equivalently,

\[
\bar{\omega} = \frac{Cr_{t1} - \frac{1}{\text{AVDR}} Cr_{t2}}{Cr_{t1} - Cr_{t1}}
\]

Probe data were reduced using Eq. (3) to (6), using overlapping quadratic interpolation to carry out the numerical integrations to obtain AVDR and loss coefficient.

Surface pressures were reduced to pressure coefficients using the definition

\[
C_p = \frac{p - p_1}{\frac{1}{2} \rho_1 V_1^2}
\]

(8)

To verify accuracy, the reference upstream conditions were derived in three different ways, namely: as the mass average of the blade-to-blade probe surveys; from the ensemble average of stagnation pressure readings and derived static pressure values during blade-to-blade probe surveys; and as derived from the fixed Prandtl probe measurements.

CALCULATION METHODS

Inviscid Flow Solution

The inviscid flow about the blade section in the two-dimensional, blade-to-blade plane has been calculated by two methods: the method described by Katz et al. (10), and the panel method developed by McNally (19). The program solves the stream function equation by finite difference techniques for the subsonic, compressible flow regime. It is necessary to define the fluid properties, inlet total temperature and density, weight flow, blade geometry, inlet and outlet flow angle, finite difference mesh, and a meridional distribution of streamtube height. In the present work, the linear distribution of streamtube height was utilized so as to match the measured axial velocity-density ratio.

Because the nature of the equations dictates that the solution be of the boundary value type, the outlet flow angle must be specified on the downstream boundary. In these calculations, measured exit angle was used.

The TSONIC code uses a uniform mesh and, therefore, mesh packing in regions where more definition is desired is not permitted. To better define the calculated flow properties in the leading edge region, McFarland's panel code (17) was used. The code is a surface singularity method which solves the inviscid, irrotational, compressible blade-to-blade flow equations on a surface of revolution. Streamtube thickness can be incorporated as a function of meridional distance. The governing equations are linearized by approximating compressibility effects, and solved using an integral technique (panel method). Up to 98 panel elements are possible.

Boundary Layer and Loss Calculations

Blade surface boundary layers were calculated using the program developed by McNally (5). In addition to the surface velocities, required input includes upstream flow conditions, fluid properties, blade geometry. Among the output provided by the program are the conventional integral thicknesses, form factors, wall friction coefficient, and momentum thickness Reynolds number.

The program uses integral methods to solve the two-dimensional, compressible laminar and turbulent boundary layer equations in an arbitrary pressure gradient. Cohen and Resnikо's method (18) is used for the laminar boundary layer, transition is predicted by the Schlichting-Ulrich-Granville method (19), and Sasman and Cresci's method (20) is used for the turbulent boundary layer.

A boundary layer which is initially laminar may proceed through normal transition to a turbulent boundary layer, or it may undergo some form of laminar separation before becoming turbulent. To provide flexibility for analyzing this behavior, several program options are available to the user. The calculations may proceed from the laminar boundary layer...
through transition to a turbulent boundary layer. However, if laminar separation is predicted before transition, the turbulent calculations may be started by specifying a factor by which the last calculated value of momentum thickness is multiplied (this factor is commonly chosen to be 1.0 to satisfy conservation of momentum). This new momentum thickness and a value for form factor based on the last calculated momentum thickness Reynolds number are used as initial values for the turbulent calculations. In no case is an initial turbulent boundary layer allowed which has a momentum thickness Reynolds number less than 320 (21). Laminar separation is predicted when skin friction becomes zero. Prediction of turbulent separation is inexact. A separation criterion common to compressor blade analyses which use integral boundary layer methods is the incompressible form factor, $H$. Values of 1.8 to 2.6 have been proposed and used in the past (22). In this report, critical values will be inferred from comparisons with data.

Total pressure loss coefficients were calculated using Stewart's method (23). Required input includes upstream flow conditions, fluid properties, displacement and momentum thickness at the trailing edge, blade spacing, trailing edge thickness, and exit velocity and flow angle. There is no satisfactory method for calculating loss when the boundary layer is separated, and a combination of analytic art and empiricism is generally used. In this report, for off-design cases where turbulent separation occurs, the displacement and momentum thicknesses at the location of critical form factor are assumed to remain constant to the blade trailing edge. These values are then used in the loss calculations from that point. Expected accuracy diminishes as incidence angle increases or decreases significantly from the design point.

RESULTS AND DISCUSSION

Experimental Observations

Since the cascade facility is somewhat unconventional, the quality of the flow is discussed before results are presented.

Flow quality. Data were obtained at inlet air angles ranging from 25° to 46°. Care was taken at each setting to verify that the inlet pressure and velocity, and the outlet pressure were acceptably uniform, and that two-dimensional flow conditions with streamline contraction prevailed to the downstream measurement plane. Surveys of upstream and downstream flows for all test conditions are documented in detail in Ref. 14. In Figs. 6 and 7 are shown, for illustration, the results of spanwise and blade-to-blade probe surveys, respectively, at the design air-inlet angle of 39°. In Fig. 6 it can be seen that the flow remains nearly uniform over the center 40 percent of the blade.

In Fig. 7, showing the blade-to-blade conditions, the variation which appears almost as noise on the inlet stagnation pressure profile is what remains of the wakes produced by the turning vanes. The peak-to-peak variation seen in Fig. 7 is about 1.4 percent of the reference dynamic pressure, or 1.1 percent of the cascade inlet dynamic pressure. Thus, the inlet velocity was uniform to within 1.2 percent, and these small variations were removed by mass-averaging in evaluating both AVDR and losses. The inlet flow angle was uniform to within 0.5° over the central four blade passages which were surveyed.

In viewing the downstream flow distributions in Fig. 7, it should be noted that data were taken at close intervals (0.25 cm) for integration over one blade passage, and over coarse intervals (0.62 cm) for the other three. All data points are shown connected by straight lines. The minor departure from strictly repetitive conditions seen in the first (left-hand) blade interval was observed in all data sets. Integration to obtain blading performance was therefore carried out over the third blade interval. Periodicity within the blade passages was verified using corresponding pressure taps on three instrumented blades.

The quality of the test conditions did not change significantly except at the two extreme angles tested. At the lowest air angle (25°), the inlet uniformity decreased fractionally as a result of operating the inlet turning vanes considerably off design, while the physical separation of the wakes was increased because of the less oblique wall angle. At the highest angle (46°), the uniform core of the spanwise profile was reduced from 40 to 20 percent of span as a result of increased wall and passage viscous effects associated with increased loading.

Overall performance. The results obtained for the cascade performance based on survey probe measurements are shown in Fig. 8. Also shown for comparison are the corresponding curves for data obtained by Himes (12) for the equivalent cascade of DCA blades. Some differences are noted. First, the loss coefficient for the controlled diffusion blade was measured to be less than that for the DCA blade at the design point, and over the useful range of air inlet angle. The data for loss coefficient were well behaved and showed no discernible effect of Reynolds number, except (perhaps) at the highest air inlet angles.

There were measurable differences in behavior at air inlet angles less than design. The outlet air angle did not change significantly for the CD blade, and ranged from 1/2 to 3° greater than measured for the DCA blade. Larger values of AVDR were also measured, although at angles approaching and exceeding the design value, the AVDR was measured to be lower than for the DCA cascade.

The AVDR is largely a consequence of the behavior of the end wall boundary layers in passing through the cascade, and the reason for the high value at 33° inlet air angle is not clear. However, a much reduced static pressure rise was also registered, which was confirmed by manometer readings and by differences in the wall static pressures. In fact, the pressure rise across the cascade dropped very abruptly with reduced air inlet angle, the drop being associated with the detection of leading edge separation on the pressure side of the blade. Subsequent examination of all the information obtained in the tests pointed to a need to obtain more information in the range of inlet flow angles between 30 and 36°.

Vortex shedding. When testing at the three lowest inlet air angles, pure, highly audible tones were heard as the tunnel was brought up to the required test conditions. The tones occurred at discrete settings of the plenum pressure, and the frequency increased (1080, 1960, 2380, 2790, 3080 Hz) as the inlet velocity at which it occurred increased (approximately 30, 34.5, 42, 48.5, 56 m/sec). Vortex shedding in the blunt blade wake was suspected when the Strouhal number based on trailing edge thickness was found to be 0.17 (when the tones occurred). An experiment was conducted to verify this explanation. The bluntness was removed by tapping metal shim-stock to produce sharp trailing edges on all blades. The tones then did not occur. The removal of the shim-stock from one blade resulted in the reoccurrence of tones, but very faintly.
Vortex shedding in turbomachinery blade wakes has been observed or suspected in several turbomachinery research experiments (24 to 28). However, the occurrence in the present case was particularly graphic because the frequencies were in the audible range and, despite the tunnel background noise level, some had the clarity of pure organ tones.

In high speed compressors and turbines, these resonant frequencies can be over 100 kHz and therefore too high to be detected by other than the highest response transducers (see Ref. 28, for example). The issue of vortex shedding must be raised when attempting to obtain comparisons of data with analyses which aim at the correct modeling of the flow. Whether any special treatment of the trailing edge flow is required when vortex shedding occurs, compared to when it does not, requires that a more detailed study be conducted than was possible in the present series of tests.

Comparison of Calculated and Experimental Results

Inviscid flow computations, presented as static pressure coefficient versus percent of chord are compared with experiment in Fig. 9. The solid line represents panel code calculations and the dashed line represents TSONIC results.

There is very little difference between TSONIC and panel code calculations, except in the trailing edge region. Even there, the differences are minor and are due to differences in the way each code models the trailing edge. No inviscid code will calculate the flow accurately near the trailing edge of a blade row because real, viscous effects are the most prominent in that region. For blades with round trailing edges, and particularly for the present case with a blade having a relatively large trailing edge diameter, the Kutta condition does not truly apply. Some artifice must be used, and code developers employ different methods.

In TSONIC, Katsanis has used a mass injection or wake simulation model[1] sketched in Fig. 10. Tangents are formed at the intersection of the trailing edge circle and the blade surface, and extended to the vertical line which forms a tangent with the trailing edge circle (Fig. 10). The "wake" is then extended downstream with an orientation determined by the downstream whirl boundary condition. Pressure is allowed to vary across the simulated wake. This modeling removes the trailing edge circle and the attendant accelerations and decelerations associated with curvature. The user may vary exit angle until "closure" of the pressure distribution occurs at the trailing edge to simulate a Kutta condition, or the user may specify an exit angle (such as an experimentally measured angle) and accept the crossing of suction and pressure surface pressures near the trailing edge, as in the present calculations.

McFarland sets the downstream static pressure by continuity considerations. He then forces the surface pressures on both surfaces to meet this pressure at the trailing edge by an interpolation process involving the last three panel elements on each surface. To achieve satisfactory results in the separated edge region, it was found necessary in these calculations to use all 98 panel elements, and to pack points in the trailing edge (FTE set equal to 1.05).

Both methods are artificial. But inviscid flow, in itself, is artificial, and comparisons will always differ from the real flow in regions where viscous effects are strong.

Experimental measurements are generally in good agreement with both methods of calculation. Viscous effects near the trailing edge begin to appear (as a divergence between calculation and measurement) at the design point (Betal = 38.91) and increase as incidence increases. The last pressure tap on each surface is in a region of curvature and reflects the decreased pressure (increased velocity) there, particularly at lower inlet angles where suction surface boundary layers are relatively thin. Corresponding trailing edge accelerations do not appear in the calculations because the trailing edge has been modeled to remove them.

Measured pressures compare very well with the calculated leading edge pressure spikes, and they are evident here even at the design point (Betal = 38.91). The excursions can be large and are mathematically consistent. How much of such an excursion is actually felt by the real flow will determine the nature of the boundary layer behavior. It appears from the measured data that the flow does experience a large proportion of the calculated leading edge velocity diffusion.

Two principal boundary layer calculations were made, one set using data from low Reynolds number tests to compare against flow visualization experiments performed at low Reynolds numbers (360,000) and another using calculated pressure distributions corresponding to higher Reynolds number tests (670,000). The latter results were used to calculate loss coefficient to compare against measured loss.

China clay flow visualization experiments were run on the suction surface of the blade over the full range of incidence angles, but at a low Reynolds number to accommodate drying times of the solvent. The results are presented in Fig. 11. The axial position at which laminar separation-turbulent reattachment, transition, and turbulent separation is plotted against the inlet flow angle condition. The figure shows the existence of a laminar boundary layer to about 60 percent of chord at the two lowest flow angles. As incidence angle was increased, an abrupt change occurred and a laminar separation with turbulent reattachment was produced very near the leading edge (2 to 5 percent chord) at all of the higher inlet angles.

The boundary layer calculations were made using experimental surface pressure as input, and results are also plotted on Fig. 11. In all cases, laminar separation with turbulent reattachment was predicted, rather than pure transition. The calculated laminar separation point is reasonably close to experiment for Betal = 28.80, but disagrees by about 15 percent chord at Betal = 32.87. The calculated trends appear to be more valid because as incidence angle is increased, the adverse pressure gradient on the suction surface becomes steeper. Since laminar separation is strongly influenced by pressure gradient, earlier separation would be expected at Betal = 32.87. At the higher inlet angles there is good agreement between experiment and calculation. The adverse gradient near the leading edge is very steep and produces almost immediate laminar separation. Due to the magnitude of the adverse pressure gradient in most cases, and the Reynolds number levels, the laminar separation bubbles are presumed to be short.

The experimental static pressure distributions already reflect turbulent separation. Because of mesh limitations, TSONIC did not pick up any leading edge acceleration/decelerations upstream of 3 percent chord, and therefore was quite limited in boundary layer calculations. The panel code provided quite adequate resolution. A point of concern to code users has always been the calculated leading edge pressure spikes, and they are evident here even at the design point (Betal = 38.91). The excursions can be large and are mathematically consistent. How much of such an excursion is actually felt by the real flow will determine the nature of the boundary layer behavior. It appears from the measured data that the flow does experience a large proportion of the calculated leading edge velocity diffusion.
likely to be a localized drying phenomenon than a separation.

Boundary layer calculations on both surfaces were conducted for the highest Reynolds number case over the full range of incidence angles using calculated surface pressures as input. The calculated laminar and turbulent separation locations are shown on Fig. 12, using the china clay results as reference. Predicted laminar separation locations occur earlier for both Betal = 28 and 32.87, but agree with china clay results at the higher inlet angles. No turbulent separation is predicted for the two lowest inlet angles, but is predicted for all inlet angles 38° and greater. Assuming separation to occur at critical incompressible form factors of 2.0, 2.2, and 2.5, the corresponding locations are plotted as percent chord in Fig. 12. The best correlation with flow visualization data is given by Hi = 2.2. For the steep adverse gradient at Betal = 45.96, a flow visualization separation location of 90 percent chord does not appear consistent. The 73 percent chord value, corresponding to Hi = 2.2 agrees better with the flattening of the pressure distribution shown in Fig. 9(f).

Total pressure loss coefficients were calculated using Stewart's method (23), and are compared with experimentally measured values in Fig. 13. Attempting to calculate loss at off-design conditions using an integral boundary layer method and a one-dimensional loss model is a dubious enterprise. The calculations obviously break down at the two extremes of inlet angle (solid line). But agreement is remarkably good at the other incidence angles. For cases in which turbulent separation is predicted, the values of displacement and momentum thickness corresponding to Hi = 2.2 were assumed to remain constant to the trailing edge of the blade where the loss model was applied.

One notable point of disagreement is at the design inlet angle of 38.91°. A recalculation of the boundary layer beginning at about 4 percent of chord beginning with a laminar boundary layer produces loss predictions in agreement with measurements (dashed line, Fig. D). To accomplish this it would be necessary for the boundary layer to have relaminarized in the reacceleration region between 4 and 25 percent of chord (Fig. 9(d)). Although no evidence of this is evident from the china clay experiments, this appears to be the only way the measured loss values could be reconciled with computations.

The boundary layer calculations for the lowest inlet angle (24.49°) were particularly troublesome on the pressure surface due to the excessively steep adverse pressure gradient. Laminar separation followed by turbulent separation was predicted. The boundary layer calculations can be continued through modestly high form factors, and values of displacement and momentum thickness were obtained at the trailing edge. But, with such a steep pressure gradient, turbulent separation would not be unexpected, and due to the much relaxed pressure gradient at 30 percent of chord, turbulent reattachment could be envisioned. Using this speculative approach, a loss coefficient comparable to experimental measurements was achieved by reattaching the turbulent boundary layer at 30 percent chord with a displacement and momentum thickness equivalent to a fourfold increase over values at predicted turbulent separation (dashed line, Fig. 13). Using such methods to predict loss at far off-design conditions is clearly speculative. More sophisticated modeling is required or, at least, an extensive data base is necessary to permit consistent empirical enhancement.

SUMMARY OF RESULTS

The mid-span section of a controlled diffusion stator was tested in a two-dimensional cascade. Measurements over a wide range of incidence angles were obtained. A quite acceptable minimum loss coefficient level of 0.0241 was measured, a value lower than that measured on the reference double circular arc blade. Operating range was slightly better than for the DCA blade.

Measurements of surface pressure compare well against results computed by the TSONIC and panel codes over the full incidence angle range. Integral boundary layer calculations using the McNally code showed generally good agreement with flow visualization data when measured surface pressures were used as input. When computed inviscid surface pressures were used as input, laminar separation was predicted with less accuracy. Correlations between computed boundary layers and flow visualization data produced a critical incompressible form factor value for turbulent separation of 2.2 for this set of data. Loss calculations using the Stewart loss model provided remarkably good agreement except, as expected, at the extremes of the incidence angle range.

ACKNOWLEDGMENTS

The authors would like to acknowledge the assistance of Eric McFarland for his aid with the panel code, and Allan McGuire of The Naval Postgraduate School for his efforts in obtaining the china clay and other data. The experimental program was funded by NASA Lewis Research Center, and partially by Naval Air Systems Command, Code 310C.

REFERENCES


**TABLE I - BLADE AND CASCADE GEOMETRY**

<p>| Camber, deg | 41.09 |
| Max thickness, percent chord | 7.0 |
| Leading edge radius, percent chord | 0.9 |
| Trailing edge radius, percent chord | 1.26 |
| Solidity | 1.67 |
| Stagger angle, deg | 14.27 |
| Cascade aspect ratio | 2.0 |
| Chord, cm | 12.7 |
| Blade Spacing, cm | 7.62 |</p>
<table>
<thead>
<tr>
<th>Measurement</th>
<th>Method</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe position</td>
<td>Linear potentiometer</td>
<td>±0.02 cm</td>
</tr>
<tr>
<td>Flow angle (B₁) (B₂)</td>
<td>Angle potentiometer</td>
<td>±2 deg</td>
</tr>
<tr>
<td>Pressures</td>
<td>Scanivalve &amp; transducer</td>
<td>±0.05 cm water</td>
</tr>
<tr>
<td>Plenum</td>
<td>Scanivalve &amp; transducer</td>
<td>±0.05 cm water</td>
</tr>
<tr>
<td>Wall static</td>
<td>Scanivalve &amp; transducer</td>
<td>±0.05 cm water</td>
</tr>
<tr>
<td>Blade surface</td>
<td>Scanivalve &amp; transducer</td>
<td>±0.05 cm water</td>
</tr>
<tr>
<td>Probe</td>
<td>Calibrated probe</td>
<td>±0.05 cm water</td>
</tr>
<tr>
<td>Flow field</td>
<td></td>
<td>±2 cm water</td>
</tr>
<tr>
<td>Stagnation pressure</td>
<td></td>
<td>±5 percent</td>
</tr>
<tr>
<td>Static pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. - Cascade wind tunnel test facility.

Figure 2. - Test section instrumentation and physical dimensions.
Figure 3. - Cascade test section with front wall removed.

Figure 4. - View of test blading through plexiglas window.
Figure 5. - Cascade geometry.
Figure 6. - Measured inlet and outlet flow field in the spanwise direction at design inlet angle.
Figure 7. Measured cascade inlet and outlet flow field in blade-to-blade direction at design inlet angle.
Figure 8. - Cascade performance from probe survey data.
Figure 9. - Comparison of experimental and calculated surface pressure coefficient.
Figure 9. - Continued.

(c) Inlet angle, $\beta_1 = 32.95$ deg.

(d) Inlet angle, $\beta_1 = 38.91$ deg.

Figure 9. - Continued.
Figure 9. - Concluded.

(e) Inlet angle, $\beta_1 = 42.90$ deg.

(f) Inlet angle, $\beta_1 = 45.96$ deg.
(a) Construction of effective wake;

(b) Original trailing edge model (ref. 9).

Figure 10. - Mass flow injection model: TSONIC program.

Figure 11. - Comparison of boundary layer behavior between China clay experiments and calculations using experimental surface pressure distributions. Suction surface.
Figure 12. - Comparison of boundary layer behavior between China clay experiments and computations using calculated surface pressure distributions. Suction surface.
Figure 13. - Calculated loss (Stewart's model) compared with experimental measurements.
The mid-span section of a previously reported controlled-diffusion compressor stator has been experimentally evaluated in cascade. Measurements were taken over a range of incidence angles for blade chord Reynolds numbers from 470,000 to 690,000. Blade chord length was 12.7 cm, aspect ratio was 2.0, and solidity was 1.67. Measurements included conventional cascade performance parameters as well as blade surface pressures. Computations were made for the inviscid flow field, surface boundary layers, and loss for several of the blade inlet angle conditions, and compared against corresponding data.