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Abstract

Summer research at NASA Lewis Research Center gave the opportunity
to incorporate new control volumes in the Denton 3-D finite-volume time-
marching code. For duct flows, the new control volumes require no
transverse smoothing and this allows calculations with large transverse
gradients in properties without significant numerical total pressure
losses.

The summer research also pointed to possibilities for improving the
Denton code to obtain better distributions of properties through
shocks. Much better total pressure distributions through shocks are
obtained when the interpolated effective pressure, needed to stabilize
the solution procedure, is used to calculate the total pressure. This
simple change largely eliminates the undershoot in total pressure down-
stream of a shock. Overshoots and undershoots in total pressure can
then be further reduced by a factor of 10 by adopting the effective
density method, developed at VPI&SU, rather than the effective pressure
method. Use of a Mach number dependent interpolation scheme for pres-
sure then removes the overshoot in static pressure downstream of a
shock.

The stability of interpolation schemes used for the calculation of
effective density is analyzed and a Mach number dependent scheme, the
M&M formula, is developed. This formula combines the advantages of the
correct perfect gas equation for subsonic flow with the stability of 2-
point and 3-point interpolation schemes for supersonic flow.
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PART 1

SUMMER WORK AT NASA LEWIS 'RESEARCH CENTER

INVISCID FLOW CALCULATIONS USING THE DENTON CODE

1.1 NEW CONTROL VOLUMES IN THREE DIMENSIONS

A new control volume has been introduced (1) which allows the

calculation of transonic flow in ducts using the finite-volume

method without the smoothing of flow properties that is usually

needed(2). Previous work(l) using these new control volumes has

been limited to two dimensions. The first part of the work at

NASA Lewis this summer was to extend these new control volumes to

three-dimensional flow calculations. This was thought important
i

since the three-dimensional version of the Denton finite-volume

code is the one typically used at NASA.

An example of a typical new three dimensional control volume

is shown in Fig. 1. The locations of control volume boundaries

are specified in the input data and the control volume surfaces

are constructed from this information. Once the control volume

boundaries are known then the grid points are placed in the

middle of the upstream and downstream faces of the control

volume. The fluxes through the transverse faces of the control

volume needed for the continuity and momentum balances are

determined from interpolated properties using the nodes adjacent

to the face. Fig. 2 shows two adjacent control volumes of

different sizes. The procedure for calculating the properties to
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be used in calculating the fluxes on the common boundary(face I)

can be shown in the following way. For face I, any property, X,

is determined from the average of the property at points A and

B, where the values of the properties Xft and XB are determined by

linearly interpolating between the values of the property at

nodes 1 and 2, and between the values of the property at nodes 3

and 4, respectively.

Assuming that face II corresponds to a solid boundary, the

values of a property at points C and D are determined by linear

extrapolation using the values of the property at nodes 1 and 2,

and 3 and 4 ; respectively. For the present calculations, only

the pressure needs to be calculated at the solid boundaries since

the fluxes of mass are set equal to zero through these solid

boundaries.

Additional adjustments were made to NASA's finite volume

code to allow the calculation of cascade geometries with the new

control volumes . Fig. 3 shows a two dimensional projection of a

typical grid system up to the leading edge of a cascade blade.

Note that a grid point is not located along the periodic boundary

when the new control volumes are used . The computational domain

extends from the lower periodic boundary to the upper periodic

boundary. The missing calculation points outside the

computational domain are replaced by the corresponding points

adjacent to the other periodic boundary. For the calculations

made this summer the leading and trailing edges were modeled as

shown in Fig. 4.
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1.2 SAJBEN'S DIFFUSES CALCULATIONS USING THE NEW CONTROL VOLUMES

Sajben's diffuser(3) was used as a test case to test the

effect which the new control volumes have on the calculation of

transonic flow. The results from calculations using NASA's

current finite-volume code are used for comparison.

The geometry and grid used in the calculations are shown in

Fig. 5. There were 34 axial grid points and 10 equally spaced

radial grid points. The current NASA code requires input in

x-r-0 coordinates. This requires that the two dimensional nozzle

geometry be input either in the x-0 coordinates or in the x-r

coordinates. Both were used successfully. The current

calculations are made essentially two dimensional by inputing the

coordinates of the diffuser at a very large radius (900 m.) in/'
x-r coordinates. The calculations begin at x/h=-3.6 and end at

x/h=7.9, where h is the throat height. The inlet total pressure

is 135 kPa and the inlet total temperature is 300 'K. The exit

static pressure is 108 kPa. The gives a Pexit/^tiniet^0•80°•

With these conditions, one dimensional isentropic f low gives a

shock with an upstream Mach number of 1.495 at the location

marked in Fig. 5. Mult igr idding is used to improve the

convergence speed. A copy of the input f i le used for these

calculations is in Appendix A.
/

Fig. 6 shows a comparison of bottom flat wall static

pressures obtained using the old control volumes and using the

new control volumes( "bid"' will refer to the type of control

volumes used in NASA's current f ini te volume code and "new" will

refer to the type of control volumes shown in Fig. 1). A one
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dimensional analytical calculation was made for the Sajben

diffuser geometry using the above specified boundary conditions.

Fig. 6 includes the static pressure distribution of this

one-dimensional calculation for comparison with the numerical

solutions. The agreement is good except through the shock.

1.3 EVALUATION OF TOTAL PRESSURE IN THE DENTON CODE

Fig. 7 shows a comparison of the calculated bottom flat wall

total pressures and the one dimensional analytical solution .

Both calculations show overshoots and a large undershoot in total

pressure in the region through the shock. The exit total

pressures, however, are essentially the same for both the

calculations and are close to the one-dimensional analytical

solution.

The overshoots and undershoots in total pressure arise

because the pressure used in the momentum equation, an

interpolated effective pressure, is not used to calculate the

total pressure. The current code uses the thermodynamic pressure',

determined from the ideal gas equation of state, to evaluate the

total pressure.

Because of the way that the effective pressure is calculated

in NASA's current finite-volume code, the shock is smeared out

over several grid points. One byproduct of this smearing is that

the maximum Mach number before the shock shown in the

calculations is lower that the one dimensional value (1.385 and

1.433 compared with 1.495) and should therefore not be used to

predict the total pressure loss across the shock. However the
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total pressure loss through the shock agrees well between the one

dimensional solution and the calculation. Pt -t/ptinlet ^roin

the one-dimensional solution was .9304 . This compares well with

the computed value of .931 using the new control volumes and

reasonably well with the value of .934 using the old control

volumes.

The effective pressure is used to stabilize the calculation

procedure and reduces overshoots and undershoots in static

pressure and Mach number through the shock. From Fig. 7, it was

seen that the local total pressure undershoots considerably

because of this but that the net total pressure loss through the

shock is calculated with good accuracy. If the local total

pressure is calculated from the effective pressure rather than

the thermodynamic pressure then the total pressure is much better

behaved as can be seen in Fig. 8. This demonstrates the advantage

of being consistent by choosing the pressure for use in

evaluating the total pressure to be the same as the pressure used

in the momentum equation. Since the effective pressure is equal

to the thermodynamic pressure at the exit the value of the

calculated Ptexit/
ptiniet

 is stiH .931. Fig. 9 shows a

comparison of the effective pressure and the thermodynamic

pressure for this test case . Perhaps the effective pressure

should be considered the best representation of the "actual1^

static pressure.

It was attempted to remove the pressure inconsistency brought

about in the transonic calculations by the way that the effective

pressure is calculated. The program currently uses Eqs. 2-4

given in Table 1 to calculate the effective pressure/ and for the
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Table 1 Effective Pressure Calculation

Pressure Interpolation

FUP= 1.7 (1)

A- (FDP-1.)*(/»I+1 -/̂ .-L ) (2)

71 r

0.0_< A < 0.9

CFPj = (l.-RF)*CFPI + RF*(1.-A)*.333*(PI_1- P 2> (3)

where RF= 0.02 to 0.05 typically and CFP is updated
every 5 iterations

PEFF].= P + CFPX

In the limit when convergence is reached,

PEFF]. = PI+I + (l.-A)*0.333*(Pr_1 -

Relaxation to Ideal Gas

I

CFP

in the limit when convergence is reached,

PEFF = P

= (l.-RF)*CFP + RF*(P -P) (5)
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calculations in Figs. 5-9 the parameter FUP was set equal to 1.7

(Eq. 1). If Eqs. 5-6 are used instead, as the solution

approaches a steady state the thermodynamic pressure would equal

the effective pressure. But this procedure causes large

overshoots in the static pressure as can be seen in Fig. 10. The

solution also did not converge and the static pressures shown in

Fig. 10 are after 2200 iterations. Many different ways of

applying equations 5-6 were tried for the transonic case but none

of them got rid of the overshoot problem. However, equations 5

and 6 could be used to obtain a stable solution if the Mach

number throughout the duct remained subsonic.

1.4 THE INFLUENCE OF TRANSVERSE SMOOTHING ON A STEP

PROFILE IN A STRAIGHT DUCT

Transverse smoothing is required in the current Denton

method with the old control volumes because there are more grid

points across the duct (unknowns) than there are control volumes

(equations). Smoothing formulae are used to add non-physical

"extra equations". Two forms of transverse smoothing are used in

the Denton code; these are linear smoothing, described in Table

2, and non-linear smoothing, described in Table 3 and Fig. 11.

This transverse smoothing of properties causes numerical

viscosity to be introduced into the solution when large gradients

in the properties are seen across the duct.

For the Sajben diffuser- test case, there are no large

gradients of properties across the duct so you would expect

little numerical viscosity. This lack of significant numerical
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Table 2 Linear Smoothing of Flow Properties

D(J)= (l.-SF)*D(J)+SF*(D(J+l)+D(J-l))
2.

the variable D at node J is smoothed using this
equation. The smoothing factor is SF, typically
0.01 - 0.02. The variables are updated and
then smoothed. The variables that are
smoothed are z? , 0V ̂, uVr,t>rVe, and Je.

Table 3 Procedure for Non-Linear Smoothing

1) an average value of a property D is determined from
the neighboring nodes using linear interpolation.
AVG(J) (see equation 1 Fig. 11 )

2) the difference between the actual and average value of
a property D at a node is determined and assigned the
variable name CURVE(J) (see equation 2 Fig. 11 )

3) a variable SCURVE is determined from the average of the
variable CURVE from the neighboring nodes.
(see equation 3 Fig. 11 )

4) the variable D at node I is smoothed using equation 4
in Fig. 11 . The smoothing factor is SF, typically 0.01-0.02.

5) this non-linear smoothing procedure results in no
smoothing added to linearly or parabolically varying
properties.
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viscosity is seen by the agreement between the calculations made

using the new control volumes without smoothing and old control

volumes with smoothing(see Fig. 6 and 7). As a severe test case,

calculations were made for a step' profile in inlet properties in

a straight duct. The geometry can be seen in Fig. 12. A step

inlet profile of total pressure is specified. The total pressure

at the centerline is 135 kPa and the total pressure is reduced to

120 kPa (Ptside/Ptcenterline=0.889) at the sides(see Fig. 13) .

The exit static pressure in the duct is 108 kPa

(0-8*Ptcenterline>-
Fig. 14 shows Mach number profiles at three axial locations

along the duct for the case where linear smoothing was used (with

SF=0.02) . The inlet step profile(x=0,0m) is quickly altered

into a parabolic type profile(x=4.0m). This parabolic profile

then changes relatively little until the end of the duct

(x=21.0m). Fig. 15 presents the total pressure distribution

along the duct. The step profile causes an almost step change in

the total pressure at the beginning of the duct and then the

total pressure decreases as in a viscous flow. Fig. 16 compares

the Mach number profiles at the end of the duct for calculations

using linear smoothing (SF=0.02) and non-linear smoothing

(SF=0.02). Non-linear smoothing did not improve the profile.

Additional calculations were made using the same boundary

conditions as above but using the new control volumes and no

smoothing. Fig. 17 compares the inlet Mach number and exit Mach

number profiles for this case . The improvement over the previous

results is dramatic. The total pressure distribution has also

improved especially along the centerline of the duct as can be
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seen in Fig. 18. These results show conclusively that the

numerical scheme used to calculate flows with large transverse

gradients in properties, like those seen in turbulent boundary

layers, must not have smoothing of properties in the transverse

direction.

1.5 SHOCK LOSSES IN AN INCLINED DIFFDSER

One of the possible sources of inaccuracy in the calculation

of total pressure in transonic compressor calculations is due to

the possibility of smoothing through the shock due to a inclined

flow path. In the Sajben diffuser calculations for Figs. 6-10

the property gradients across the duct were not large and

transverse smoothing did not add noticeable numerical viscosity

into the calculations. However, if the diffuser were inclined at

an angle, the shock would become oblique to the grid and would

introduce large transverse gradients in properties there. Fig.

19 shows Sajben's diffuser inclined at an angle of 40 degrees

with respect to the horizontal axis. This geometry would cause a

normal shock to cross about 4 transverse grid lines. The Sajben

geometry used previously(see Fig. 5) has been extended with

constant area sections added on to the inlet and exit of the

duct. The same inlet and exit boundary conditions were specified

as in the previous Sajben diffuser calculations. The input file

used in these calculations is in Appendix A.

The effective pressures along the flat wall are plotted in

Fig. 20 for the old and new control volumes, with and without

smoothing respectively. The wall pressures using the new control
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volumes were determined by linearly extrapolating from the

interior points. The effective pressures for the old control

volumes are displaced downstream of the effective pressures using

the new control volumes. Fig. 21 presents the total pressures

along the bottom wall calculated using the effective pressures.

The exit total pressures are approximately the same(0.941 for new

C.V. and 0.944 for old C.V.) for both calculations but the local

total pressures from the calculation using the new control

volumes are better behaved. In both cases, however, the exit

total pressure ratios of 0.941 and 0.944 are different from the

exit total pressure of 125.7 kPa (ptexit/Ptinlet=0.931)

calculated for the horizontal sajben diffuser.

Further comparisons of the inclined and horizontal results,

using the old and new control volumes, are shown in Figs.

22,23,24,and 25. The minimum static pressure for the inclined

calculations is greater than that obtained from the horizontal

calculations. The total pressure behavior is also poorer for the

inclined calculations when compared with the horizontal solution.

The total pressure losses through the shock for the inclined

calculations are approximately 15% less than those for the

horizontal calculations. The oscillations in total pressure at

the exit of the inclined diffuser (with the old control volumes)

are perhaps the result of the long thin control volumes that are

seen there.

It was difficult to obtain a converged solution for the

inclined geometry with either control volume. So the results

presented here are after 1000 iterations. At this point in the

calculations the maximum error in mass flow rate with the old
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control volumes is 0.2% and the maximum change in axial velocity

was .00009 of the mean flow velocity. For the new control

volumes, the corresponding error is 0.2% and the corresponding

change is .00019.

1.6 EFFECTIVE DENSITY CALCULATIONS

The method presented in reference 1 uses a different

procedure to update the pressure and density. The pressure is

updated directly from the continuity error and then the density

is updated using the ideal gas equation of state. This procedure

was necessary because of the multi-volume approach used in the

boundary layer region. This updating procedure was also

implemented in the three dimensional version of the finite volume

code at NASA Lewis.

If the density is updated in the calculations such that the

effective density becomes the actual density at a node the same

overshoot phenomena in static pressure and Mach number appears

here as did when the effective pressure was used (see Fig. 10).

The solution would also not converge. Therefore an effective

density which does not use the actual pressure at a node, but

uses an interpolated pressure, is used and is described in Table

4. This effective density reduces the overshoot problem and

results in a stable solution. The following results use this

effective density. Just as the interpolation procedure before

introduced an inconsistency between the thermodynamic and

effective pressures, the ideal gas equation of state is not

satisfied completely when the effective density is used.
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Table 4 Effective Density Calculation

= (l.-RF)*CFPI + RF/3.*(PI+1 - P^) (1)

R*TI+1

in the limit when convergence is reached

p 1+1 = pi + pi+rpi-2
3

RTI+1
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Fig. 26 compares the bottom flat wall static pressures for

calculations of transonic flow in Sa.jben's cliff user (Fig. 5)

using the effective pressure method and the effective density

method with the same boundary conditions as in our previous test

cases and the new control volumes (the effective pressure is

shown for the effective pressure method) . Fig. 27 compares the

total pressures for these two cases. The effective density

method gives a much more uniform total pressure upstream and

downstream of the shock; there are no overshoots in total

pressure when the effective density method is used.

To obtain a stable solution using the effective

density, it was found necessary to assume a constant total

temperature rather than use the energy equation in its full

form. It may be that an interaction between the continuity

error and the energy equation was responsible for this

instability.

1.7 CASCADE GEOMETRIES

Some additional calculations were made/ using the new control

volumes and the effective pressure method, on some simple cascade

geometries. The purpose of these runs was to check out the

periodicity condition and the treatment of the leading and

trailing edges which were discussed earlier. The geometries are

shown in Figs. 28 and 29. The inlet total pressure was 101.352

kPa, the inlet total temperature was 288.166 K, and the exit

static pressure was 85.44 kPa. Fig. 30 shows the Mach numbers

calculated along grid lines which are closest to the pressure and
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suction surfaces. A copy of the input data is in Appendix A.

The only difficulty encountered in these cascade flows was a

problem with the flow properties oscillating at the inlet about

some mean value between adjacent grid points. This was due to

the periodicity condition and the absence of smoothing to damp

out these oscillations. This problem was found to occur only

when there were an even number grid points across the inlet. An

odd number of transverse grid points seems to decouple the

odd-even oscillations.

1.8 CALCULATIONS FOR AN INLET GUIDE VANE

Fig. 31 shows the geometry and grid for an inlet guide vane

that was my final test for the summer work. The total pressures

along the streamline closest to the suction surface are presented

in Fig. 32. The new control volumes are used for both

calculations, one uses the effective pressure method and one uses

the effective density method. The total pressure distributions

in Fig. 32 , which use the new control volumes ,can be compared

with the results ,from the Denton code using the old control

volumes, shown in Fig. 33. Both the calculations using the

effective pressure method have large oscillations in total

pressure around the leading edge whereas the calculations using

effective density method give better total pressure behavior.

The effective density method is much better at calculating the

total pressure than the effective pressure method even when the

effective pressure is used to calculate the total pressure as was

done for the results shown in Fig. 32 .
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Figs. 34 and 35 present Mach numbers along grid lines

through the inlet guide vane for calculations using the effective

density method with the new control volumes and the effective

pressure method with the old control volumes ,respectively . It

was found necessary to use a small amount of smoothing(SF=0.005) ,

even using the new control volumes ,for this inlet guide vane.

This need for smoothing is perhaps the result of an incorrect

treatment of the pressure at the trailing edge.

SUMMARY

The work at NASA Lewis Research Center.involved using and

modifying the Denton finite-volume time-marching code. The

results can be summarized as follows.

1. The new control volumes developed at V.P.I. & S.U. can

be extended to a three dimensional geometry. For duct

flows the new control volumes require no transverse

smoothing.

2. The results for Sajben's diffuser were essentially the

same for both control volumes.

3. If the effective pressure is used to calculate the total

pressure the total pressures are much better behaved

through the shock.

4. Even though the total pressure is incorrectly calculated
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in the shock, the overall total pressure loss through the

duct is calculated accurately.

Ptexit/ptinlet

A. One dimensional solution 0 . 9 3 0 4

B. Old control volumes 0 . 9 3 4

C. New control volumes 0.931

5. An interpolated effective pressure is needed to stabilize

the solution.

6. For calculations where large transverse gradients in

properties are observed, transverse smoothing cannot be

used if an accurate solution is to be expected.

7. The new control volumes with no transverse smoothing

allow calculations with large transverse gradients in

properties without significant numerical total pressure

. losses.

8. Good convergence was not obtained for the inclined Sajben

with either control volume.

9. Calculations which use the effective density method,
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developed at V.P.I. & S.U., rather than an effective

pressure method give a much .more uniform total pressure

upstream and downstream of the shock. Overshoots and

undershoots were a factor of 10 smaller with the

effective density method.
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D(J-l)

FU(J)= X2/(X1+X2)

FD(J)= X1/(X1+X2)

1)

2)

3)

4)

AVG(J)=FD(J)*D(J-f-l)+FU(J)*D(J-l)

CURVE(J)=D(J)-AVG(J)

SCURVE(J)=FU(J)*CURVE(J-1)+FD(J)*CURVE(J+1)

D(J)= (l.-SF)*D(J)+SF*(AVG(J)+SCURVE(J))

Fig. 11 Non-Linear Smoothing
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Fig. 19 Sajben's Diffuser Inclined at 40° Angle

1.39



cc
LU
LO cn

LU ZDLU
CCLL. 51
ID U_ ID
CO >—i _J
COO O
LU >
CC Z
Q_ LU _J

QD O
CJ —) CC
•—i CT I—
1— CO 2!
en o
i— a o
en LU

^ a

cc
en

crcc is
_l ED LU

O
OJ

CD

CJC-J

3a
LU_I

X

tr>

- en

_ c\j

O ' l

_ o
«—I

' CD

1 CO

m

^ x

LU

-z.
CE

1 in H—
cn
i—P

•3. O

1 rn

1 c\j

x
cc

B'O 8'0 L'Q B'O B'O fi'O £'0 ^'0 I'OO'O

IblDi 131NI/ OlldlS 1U3D1

_ en
i

_ LD

I

CD
, I

1.40



cc
LU
CO CO
=3LLJ

LULuS:
OC Li_ ID
ID »— • _J
CO OO
en :>
LU :z:
QC LU__!
Q_ CD O

-)GC
_J CHh-
CC CO2
t— .o
O CDCJ
h-LU

OILJ

h-

O LU

C\J

I
I ' O't 6*0

1U101 131NI/lUi01 10301

Urn

1 en

1 OD

UJ
CD (_)

in

c\j

X
cc

Urn
i

CD
1

8'0

1.41



CD
LU

O

O
CC

LU C_J
CC
ID o CD
en _j LU
co a 2:
LU I i— i
CC CC _l
Q_ LU CJ

C_J

U_ CD

CD CC

_1LU CE
_l CO I—
CE —) 2:
IZCEO

cn rxi
I . .

CE CCCC

00
OJ

H

§
Ms
O

aw

hJ
U

_ oj

_ o

O ' T B ' O 8 ' 0 9 ' 0 S ' O f i ' O £ ' 0

CD

'CD

'LD

OJ

_ OJ
I

_ in
i

CD
I

i 'o o'o

UJ

-2L
or
i—
cn

o

_j
CE
I—H

d

auuis

1.42



CO
LU
s:
ZD
_l
O

o
cc

LJ
LU
CC CD O
ZD _J LU
coo :z:
CO I >—<
LU CC _l
CC LU LJ
Q_ CO 21

ZD—•
_) U_
cc u_o
\—^^L
O Q CC

CC

LUCE
CO I—
—) ^
cc o
CD M

CC CC CC
_io a
u_ L_ m

CO
OJ

CD
u_

i—
I 'I

3
H

SI
M
Pi
O
33

W

O
g

_ m

_ CM

1

Q ' l

1U1D1 131NI/1U101

1 CO

CD

1 in

OJ

, CM
I

CD
._ I

6 ' 0 8 ' 0

X

UJ

2:
cc
en

CD

X
cc

1.43



CO
LU

DC
H-
IZ:
ED

LU CJ
CC

CO LU LU

LU I i—1

DC DC _J
Q_ LU CJ

cn ;z:
CJZD i—*
i—'!_!_
f—LL_ O

h-aa:
CO

CE

LU CE
CQ h-
— ) ^
CT O

arccoc
_IO ED
U_ U_ H

OJ

H
2;
O
N
M
g
33

W

d

_ cn

_ CM

i
O ' T

_ O

cn

CO

UJ
CD (_J

1 LT> \—
CO
H—I

•3. a

cn

C\J

_ ra
i

_ cn
i

. LO
I

CD
I

B ' O 8 ' 0 Z . ' 0 9 ' 0 S ' O f i ' O £ ' 0

3ynsS3d'd DlidlS 131NI/ 1U301
Z ' O I ' O O ' O

X
CE

1.44



CO
LLJ

o
DC

o
CJ

LU
CC IZ CD
~111 I 11 I
CO Z ^
CO I »-H
LUOC _l
CC LU CJ
o_ co z:

—N . __,

_J L_
CE Li_ Q

OQCE
h-

- ~Z. _J
_JLU CE
_J CD h—
CE —) 2!
3CE O

corxi

cr cccc

u_ u_ic

LO
OJ

H§
Cs3

o
S3

Q

M
nJ

M

+

I 'I OT 6'0

3ynSS3Hd IblDi 131NI/1U101 IdOOl

_ C\J

_ o

en

1 CO

CD

OJ

_ 00
I

_ LO
I

CD
I

B ' O

X

LU

CC
f—
CO
h—I

O

X
(X

1.45



LUQ
OCO

LU
CC
ZD
CO
CO
LU
CC CC
Q_ LU

CO
0 ID

CO

o
o
ic

CO

CO-
ID h-
CO i—i
coco
LU ^L
CCLU
a_ a

_J LULU LU
_1CQ»
CE ~) i—i >—<
IS CE f— h-

COCJ CJ
h— LU LU
CE CCU_ Lu
_l O U_ Li-
Li-U_LU LU

CO
OJ

CD

COUJ

oc
Q_Q

U_U-
LUUJ

0+

X

1 en

1 ao

co nr
x:

1 ID

o

OJ
i

m
i

un
i

O ' l B ' O B ' Q L ' Q 3 ' Q B ' O f i ' O E ' O 2 ' 0

IblDl 131NI/3I1U1S IbOOl

T "0 O'O

O
Z
CC
h—
en
t—i

o

_!
CC
I—^

X
CC

1.46



QLU
OCC

CO

CO

LU
CC
ID
CO
CO
LU CC
CCLU
Q_CO

CCU-

o a
I—

_l LU
_1CQ
a: —)

CO
i—
cccc

a
o CD
310
h— 31
LU I—
2ILU

21
LU
CO-
ID I—
CO >—'
CO CO

CCLU
o_ a

LU LU

CJ CJ
LULU

LL,U_LULU

CM

a

CD

I
I 'I

ai

cc
ao_
u_u_
u_u_
LULU X

< + CO

I

O ' l

1U1D1

B ' O

1U301

OT

CO

CD

LO

CM

. OJ
I

cn
i

LD
, I

B ' O

LLJ
CJ

CC
t—)

X
CC

1.47



0)

o
<u
u

a
en
co
o
4-1
,eoo
•H
CO

OO

00
•H

1.48



ao
0)o

O
03
cfl
O

'O
Q)

U

CM

&0

1.49



r-
o

FIG. 30 MflCH NUMBER FOR THE 15
DEGREE CflSCflDE

ID
•

O

A SUCTION
+ PRESSURE

VS X

o
en

on

CM
•

o

o
•

o,

TE

0.00 0. 15 0.30 0 .45 0 . 6 0

R X I R L DISTf lNCE

0.75

1.50



o
HI
o
0)

OJ
TJ
•H
3

C
M

00
•H

1.51



LU
Z
CT

1 1 i

h— H

CO
~5*

LU
O

LU

>* P4
H P
M CO
CO O0

W S
O P
r-rl ri

-t
i

£ P
H-l H

( — 1 | i Cd W ' — '
1 — ' 1 — fn pn O
— )

CD

LU
i— i

i — i

CC
o
Lt_

LU
CC
ID
CO
CO
LU
CC
Q_

_l
CC
1 —
o
t—

C\J
00

o

CD

— '
U-

1
eo

(_j
LU
U_
i .
1 1

LU

CO
>

LU
CC
ID
CO
CO
LU
CC
Q_

LU
>

I—
LJ
LU
Ll_
U_
LU

'I

<
]

CO
LU A

3̂ '.
_i ;
> :.<
_l :

CC !
I— :
^ i
o :
CJ I

C

\ j

,

>
(>•>
<.
•«*,
^-

3 1
LU 0

^A—==^
Iji<
ri

t

i i i
20 ' I T O ' l 0 0 '

W W

^

>

»

>•

^

•

M

r
PT"|

'

i i r

• o

^• o

-

- o
o
o

~ LD
CO

• o

• o
a
o

- o
OJ

• o

u

- o
o
o

o
- Q

o
o
o

-. o

o
i
o
o
o
in
OJ

0
_ 1

CO

LU
h-
LU
-^-

.,

LU
CJ
~z.
CE
1 —
CO
1 [

Q

_1

£
en

I 6 6 ' 0 8 6 ' 0 L B ' O

aynss3yd 10101 IBINI/IOIOI 10001

1.52



1.06

1.05

l.Of

1.03

1.02

1.01

1.00

0.99

0.9Q

0.9X

SAN2 WE tOY NO. II EQUAL J SPACINO

0.96

I I I I

I I I I J I
-100 -75 -50 -25 0 25

L = 3

50 75 100 125 150

X AXIAL D/ST.

Fig. 33 Total Pressure Distribution for Inlet Guide Vane
Using Old Control Volumes

1.53



in
en

o
CO

LD
OJ ,

CC

ID o

in
CJ

o

o
T—( ,

o

un
o _

o
o

F I G , 34 MflCH NUMBER FOR INLET GUIDE VflNE

NEW CONTROL VOLUMES

SUCTION
+ PRESSURE

VS X

LE TE

1 . 1 1
-0 .25 -0.10 0 .05

flXIRL

i i I i . i ,
0 . 2 0 0 . 3 5

DISTRNCE X METERS

i
0 .50

1.54



CQ

_,_ SANZ VCE IOW NO. II EQUAL J SPACINQ

1 1 p 1—

.50

.4-5

.35

.30 -

.25 -

.20 l-

.15 -

10 -

,05 I I i

-1C3 -75 -50 -25

L * 3

25 50 75 100 125 150
X AXtfiL DISr.

Fig. 35 Mach Number Distribution for Inlet Guide Vane
Using Old Control Volumes

1.55



Appendix A

Input Files for Summer Calculations
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OOO OOO ^Hi—!|—! OCMin O^^ ^O^ i-lî r-H <^ O O O> t-> O ̂  O O O O i-l

ooo OOO p-l O O PJ 00 O O O O i— 1 1— 1 £3 O

o0>oocoor»i-ioeoooooaOooooeoo9>ooaOo^.t-ioeoooooooooooooooooin

in
^•(O (M •-• o.
ITl̂ H O
ooo o.

i-i m

1.62



ooo
OOO »*-«OK>
f-iino oi-ieo

eoo

<e«-io ooo
CMCMCM
oooooo

OOO
i-iino

000
• • •

ooo
I I

ooo r^

ooo
IT> iTllfl
oo oo co

ooo
OOO
»-nno

OOO
ooo

O O »H «0r4O
vor^o
o**o
OOO

OOO
CMCMCM
oooooo

OOO
ooo

OOi-l
io.-iin

ooo

ooo
I I

<0r4O
<or»>o

OOO
in iron
co oo oo

OOO
ooo

OOO rlrli

in OKI
r-irOvO

ooo

o<0f*
oo>o
OOO OOO

ooo

(sieges)
oooooo

ooo
inoio
i-IKI«

oo<o
OOO

ooo
I I

ooo
01-10
000

ooo

in in in
ooeooo

ooo

OOO
ooo

ooo
ooo
CM«0

OOO

omo
OCMO
oom
ooo

ooo

ooo
ooo

ooo

ooo

ooo
CMCMCM
«O eo 00

ooo

ooo
ooo
CM -00

ooo

oino
OCMO
oom

ooo

ooo
ooo
Oi-IO
ooo

ooo

000
m in m
OOOOOO
fH F-ll-l

ooo

ooo
ooo
CM<eo

ooo
II

ooo
ooo
OK»r»
OKI in

ooo

oino
OO»H

o o in
ooo

ooo

OCMO
ooo
Oi-l O
ooo

ooo

ooo
CMCMCM
oooooo

ooo

000
ooo
OK) r^
OKI m

ooo

oino
O O r-t

o o in
ooo

ooo

OCMO
ooo
Or-IO
ooo

ooo

ooo
in in in
oooooo

ooo

ooo
ooo
o or*
OKI m
ooo

OO

"m
CJ
CO
to

OOO
OOO
-a o \»-
o K> in

ooo

OCMCJ
£3 CD \r

ooo
I

OOO
O CO O
o ^4 o
ooo

ooo

OOO O O C3 O r- CT- OOO OOO
CMCMCM OOO O CM CM O CO O in in in
oooooo o o Nj- es o -f o 1-1 o oooooo
i-tr-ti^ o 10 in ooo ooo I-H P-I i— i

OOO
000

ooo ooo
I

ooo

o m in

ooo

•n
OJ
•>
r,
3

CJ

o
U-i

CM

OOO
ooo
K> r̂  ^H
OCMin
. . .

OOO

OlOO
O«TNJ-
OOKI
OOO
. . .

OOO

'

OCMO
o>om

OOO
. . .

OOO

OOO OOO
CMCMCM ooo
eo 00 oo ro r^ f-t
_l_i,_i OCMin

OOO OOO

o>3-vr
o o 10
000
. . .

OOO

OCMO
oom inmin
o -H o oooooo
OOO ,_i_i.-i

OOO OOO

OOO
ooo
ro r» .-<
O CM in
...
OOO

,-,
c"*

inCM<roo<a-oocMooocMooo.-it- ioooooooocooo<d-ooc\jooo(MOoo*4i-tooeOoOoooooo^oO
CM ro o CM «»• r~ "> o o o o 10 o o o OKI i-< ^H *-> ~+ to o CM ̂  r^xi o o o o 10 o o o o K>r-i P-I •-• ^H 10 o CM ^-

oooooooooooooooooooooooooooooooooooooooooooo

1.63



»«f-to

i-ioO I-I-H

ooo
CM CM CM

OOO
II

OOO

* • *

OOO

CM<OT<e
• • •

OOO

OOO

OOO
. 1 1

OOO
0 • *

OOO

o
t*.

OOO
o*&&

O-HO 00 00 CO
OOO rti-ti-l

OOO
ooo
00(M<O

OO*fl

Oi-ll>.
OOO

o r*. o
Oi-IO
OOO

CM

OOO

OOO

OOO
o» o o»
000000

O*Oi-l
o <

>-IIO<O

OOO OOO
I I

OrHO OOO
00*0
O i-4 ̂
OOO .Hi-H^H

OOO OOO

oino
OCM9>
ooin
OOO

I I

oo^o
OO>0
O-HO
OOO

ooo
O«9>0>
oooooo

OOO
CM«0o
p4IO«a

oirto
OCMO*
oom
OOO

O O> O CM CM CM
01-10 w>&>
OOO . vli-li-«

oino
OOrH
ooirt

OCMO
O9>0
o—«o 030000

ooo

OKI m

ooo

omo
OOrH
oom
ooo

ooo

OCMO
O O* O

ooo

ooo

ooo
CM CM CM

ooooooooo
ooooooooo
ooooooooo

1-4 tH 1-4

ooo OOO i-l

c? rs. ̂
O CM CM
o o >a-
OOO

ooo
O 00 O
o i-i o
OOO

ooo ooo
&*&*&• OOO
eo co oo -o o vr
i-H rl •-< O K1 ID

O I-. CT>
O CM CM
o o«s-
ooo

ooo

000
000 O
O rH O
ooo

ooo

m
00

ooooooooooo
ooooooooooo
ooooooooooo

I—I,—Ir-I CM i-* O CT> i-iQ O O O O O

OOO O O O CM 00 O O O O i-H i-(
^ m oo in
* fOCM i-l

ooo
CM CM (NJ

OCMO

OOO
i

ooo

ooo

OOO
o«o>o>
oooooo

000
ooo
ior-i-1
O CM IT)

ooio
OOO

OOO
i

OCMO
o>om

ooo

ooo

ooo
CMCMCM O CM O O OO O O O O O
* o» o> ooooooooooo
•-II-HI-* M-o o <y i-< o o o o o o

OOO rH O O CM 00 O O O O i-li-H
«»moo in
* fOCM <-<

ooo

o
"<«

O
o <

t^OOOOOKlOOOOIOi-li-d-lrHIOOCM^MOOOOO K>OOOOK>p-4i-lf-li-4inOOO>i-IOOOOOOOOi
o

ooo^oo^^o*rm^CMoooooof
o K>«r m oo in

ooooooooooooooooooooooooooo

•-• in 1-1
000

1.64



r»-»• o-* « r.-c tri •>«• PJ i-i (M <M CM CM •« CM oo r-o oo m
i-i o o cr>-* CM 10 ̂  in^>r- c* c* c* c» CP> ̂  1-1 «r o 10 ̂
r̂  <M r--H K> «10 «o 10 «j ro <e-o <o xo co o> CM .̂ .3-o CM
i-i i-i o o o o <-i f i CM CM 10 ooooooooooo

I l

1-1 (M o <* <a- ft (si "H o o» eo r» CM CM CM CM r̂  o o oo CM <r oo
co r*»« >o in 10 ̂  r̂  oo ĉ  o* o ^
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PART .2
1-D STABILITY ANALYSIS OF DENSITY-PRESSURE RELATIONS

USED IN THE COMPUTATION OF TRANSONIC FLOW

2.1 Background

When calculations of l-d or 2-d choked flow with a shock were

attempted with equations that were relaxed to perfect gas (i.e.
so that when converged, the ideal gas equation of state would be
satisfied with the same density and pressure as used in the
momentum and continuity equations) convergence was not obtained.
Eventually, as more and more iterations were taken wobbles
appeared in the pressure solution which grew and continuity
errors grew worse instead of better.

The following analysis explains the cause of the instability.
Further analysis then shows the stability of the 3 point
interpolation scheme used for the calculation of effective
pressure. Still further analysis suggests a Mach number dependent
interpolation scheme.

2.2 i-D Flow Example

1
1
1
1

_ — 1— 1t 1
A 1

1
* 1

> u.x

i-l i+l i+2

We are seeking a l-d steady flow solution for continuity and
momentum

Vpu. = 0 (1)

7'pu u. = - 7p (2)

for a perfect gas with constant total temperature.

* Using either an effective pressure (Denton) or an effective
density (Nicholson/Moore) finite-volume time marching method.
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2 . 3 Continuity

Continuity between grid points i and i+l. in discretized
form, when a converged solution is obtained, is simply

where superscript f stands for final.

Now consider an intermediate solution, p and u, which does not
satisfy continuity and changes, 8p and 6u, so that continuity is
satisfied. Then

(pi-H+8pi+l)(ui+l
+8ui-H)Ai+l - (Pi

+8pi)(uiH-8u.)Ai = 0 (4)

Rearranging,

8p.5u.A- - SP S u A . (5)

The first two terms on the right hand side represent the current
2

continuity error and the last two are of order 8 and so will be
negligible when the computation is nearly converged and 8p«p and
8u«u. Therefore we may write this equation as

= "error. i + sma11 (6)

In the density update time marching calculation procedure
(Denton) , when there is a continuity error, the density on the
downstream side of the control volume is changed.

8pi+l = "error. i8t/Voli (7)

The density change affects continuity directly, but it also acts
through the perfect gas equation to change the pressure which acts
through the momentum equation to change the velocity.

In the pressure update time marching calculation procedure
(Nicholson/Moore), when there is a continuity error, the pressure
on the upstream side of the control volume is changed.

8Pi = *error.i8tcRT/Voli (8)
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This pressure change acts through the momentum equation to change
the velocity and through the perfect gas equation to change the
density.

2.4 Momentum

The .steady state momentum equation discretized over the
control volume between points i and i+l is

(puA).+1ui+1 - (puAJ.u. = -[p1+1A1+1 - p.A. - Ps(Ai+1-A.)I

where p_ is the pressure acting on the sides of the controls
volume. Traditionally,

PS = (Pi+l
+Pi)/2 (10)

therefore,

(puA)i+1ui+1 - (PuA)iUi = -<Pi+1 - pi)(Ai+1-fAi)/2 (11)

We may write this as

~ miui = " (pi+l " Pi)Vol1/5x1 (12)

(9)

where A=puA is the mass flow rate, Vol .=8x . (A. +1+A. ) /2 is the

volume of the control volume and 8x.=x.+1-x. is the grid spacing.

Eq. 12 may be rewritten as

(13)

u.) + u m - - ( - > V o l / 8 x (14)

In the Nicholson/Moore method the continuity error term is
omitted and the change in velocity on the downstream side of the
control volume is proportional to the momentum error,

*ui+1 = [ - <Pi+1+*P1+1-Pi-*Pi)Vol1/5xi
. - m(ui+1-ui) ] 5t/(pi+1Voli) (15)

where 6p is the change in pressure calculated from the continuity
error. In the Denton method, the continuity error is not omitted
in the momentum equation and the change in PU is calculated from
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the momentum error,

8(pu).+1 = ui+1Sp.+1 +

= I -<Pi+1
+&Pi+1-Pi-&Pi>Voli/6xi

"error,! ] 5t/Voli (16)

Taking the mean velocity u approximately equal to the velocity on
the downstream side u.+-. we may subtract u times Eq. 7 from Eq.
16 and so for the Denton method we get

) (17)

the same as for the Nicholson/Moore method.

If at the beginning of a time step the momentum equation is
balanced except for the continuity error,

(18)

then for both methods we have

(8p. - 8pi+1) 5t/(p1+18xi) (19)

In general , in the density update (Denton) method, the time
step is calculated from the CFL condition

8t = 8x/(u+c) (20)

where c is the speed of sound. In the pressure update method the
time step for momentum is obtained from the coefficient of u.+1
in the steady flow equation so that

8t = 8x/u. (21)

We may combine these two equations by saying

8t = 8x/(u+ec) (22)

where e=l for the density update method and e=0 for the pressure
update method. Combining Eqs . 18 and 15 then gives

(23)

2.5



2 .5 Change in Continuity for One Time Step

The left hand side of Eq. 6 may be used to evaluate the change
in continuity for one time step. Substituting Eq. 23 into this
expression to eliminate p&u yields

- Ai(6pi-1-8pi)/(u+ec).

+ ui+l
Ai+l5pi+l -

 uiVpi = Change, i' (24)

Rearranging to order the coefficients of the 8p's and 8p's

8pi-l

8p.+1 + u.+1A.+1 8p.+1

• "change,! (25)

For stability we require that the change in continuity be of
the same sign as the continuity error. Note that this is a
necessary condition for stability but may not be a sufficient
condition to ensure stability.

2.6 Stability of Density Update Method Using Perfect Gas

For an intermediate solution where there is a continuity error
only between i and i+1, Eq. 7 yields

5P^i " *«.-™^ .8t/Vol. (26a)i+l error,i i

8p. = 0 (26b)

8p. . = 0 (26c)
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and from perfect gas, assuming temperature changes over the time
*

step are negligible ,

8Pi+l -
 8pi+l

RT = "error. iRT 5t/Voli (27a)

= 0 (27b)

_ _ = 0. (27c)

For this case then Eq. 25 reduces to

[ - A i + 1 RT/<u+c) . + 1 H- U.+ 1A.+ 1 1 Aer^i&t/Vol. = Achange>i (28)

Since for stability we require A and 1ft . to have the sameerror change
sign, we must have

[ - RT/(u+C>i+1 + u ] A > 0. (29)

2
Substituting c /y for RT yields

- c2/[y(u+c)i+1l + u > 0 (30)

or
(u+c)i+1 > c2. (31)

Evaluating for y = 1.4 we need

u > 0.48 c. (32)

Thus for low Mach number flow this density update method is
unstable.

2.7 stability of Pressure Update Method Using Perfect Gas

For a continuity error only between i and i+1, Eq. 8 yields

5Pi - Aerror,i8tcRT/Voli (33a)

= 0 (33b)

* If at this point the alternative assumption was made that the
changes were isentropic, then 8p = yRTSp and less conservative
stability criteria would be obtained, equivalent to setting y=l.O
in the following analysis.
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5pi_1 = 0 . (33c)

and from perfect gas assuming temperature changes over the step
are negligible

8pi = 5Pj/RT (34a)

= 0. (34b)

Therefore, in this case, Eq. 21 becomes

i/ui -uiAi/RT)Aerror,i5tcRT/Voli = »change.i' (35)

For *error
 and *cnanqe

 to have the same sign, we require

Ai+l/ui+l + Ai/ui ~ uiAi/RT > °- (36)

Assuming the values at i are approximately the same as the values
2

at i+l, and again using c /y for RT yields

or
2/u - YU/c2 > 0 (37)

2c2 > YU2. (38)

For Y = 1.4 then we need

u < 1.2 c; (39)

thus for high Mach numbers this pressure update method is
unstable.

2.8 A Downwind Effective Pressure or Upwind Effective Density

If an inconsistency in the pressure-density relation is
introduced such that the pressure used in the momentum equation is
offset by 1 grid point from the density used in the continuity
equation, the equation of state may be written as

pi = pi+lRT (40)

In a density update method this may be viewed as an effective
pressure evaluated downwind of its point of use in the momentum
equation. Similarly, in a pressure update method the equation
represents an effective density evaluated upstream of its point of
use in the continuity equation.
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For both the density and pressure update methods, Eq. 21 now
becomes

- (A./(u+ec). + u.A./RTXStRT/Vol..,) *error.i-l

(8tRT/Vol.)

- (A1+1/(u+ec)i+1)(6tRT/Voli+1) "error, i+l

Shange.i (41)

From this equation we can see that the coefficient of * _ _ _ _ _ _• is6 L r o r » i
always positive and so this pressure-density relation passes the
simple stability criterion (*„, ̂ . same sign as fli ,.„,.„ .) forcnange»x error/i
all Mach numbers. Note also that the coefficients of *error ̂ .j

and *error i+1 a
re of opposite sign to the coefficient of *error

and in general of smaller magnitude; this further assures the
stability of Eq. 40.

While the pressure-density relation, Eq. 40, is stable,
testing has shown that it results in poor shock capturing as the
calculated shock is spread over numerous grid points. Fig. 1
shows the calculated and theoretical pressure distribution for a
1-d calculation with a nominal shock Mach number of 1.45.
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2.9 Stability of 3-point Interpolation for Effective Pressure

One of the pressure-density relations used in the density
update method is a three point interpolation of density to obtain
the effective pressure. For approximately uniform T we may write
this as

- pi_1) ) RT (42)

so that for the change in p we have

8pi = <8pi+1 -
(1/3)8Pi+2 +<l/3)8pi_1)RT. (43)

Substituting into Eq. 25 and neglecting variations of A, u
and c with i, we obtain

- <Ac2/(y(u+c)) ( 8Pi -(l/3)6

(2Ac2/(y(u+c)) ( &P -(l/3)5pi+2 +(l/3)6pi_1) - uA

- (Ac2/(y(u+c)) ( 8p -(l/3)8pi+3 +(l/3)6Pi) + uA

• "change.i <44)

Collecting terms and substituting the Mach number, M for u/c

+ Ac/(3y(M+D) 8pi+3

- 5Ac/(3y(M+D) &Pi+2

+ Ac(7/(3y(M+l))+M) 8Pi+1
- Ac(4/(3y(M+l))+M) 8P;L

+ 2Ac/(3y(M+l)) 8pi-l

- Ac/(3y(M+l)) 8p._2 = m^a_Q . (45)

we can see that the change in continuity for the control volume
between i and i+l is now dependent on the change in density at 6
grid points.

Eq. 45 passes the first simple test for stability; the
coefficient of 8p.+1 is positive for all Mach numbers and so a
continuity error, flt „«„ ,-. will result in a change in

6 L L O L 9 1

continuity, mcnan *> of the same sign. However, since the
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coefficients of 8P.j+3 and SP^.J ace also positive, it is
appropriate to apply a more sophisticated stability criterion. The
criterion we will apply is:

the center point coefficient must be greater than the sum of
the other positive coefficients.

Coefcenter > Sum Coef+ (46)

Applying this to Eq. 45, we require

Ac(7/(3Y(M-H))+M) > 3AC/(3Y(M+1)) (47)

which is always true. Thus, Eq. 42 should be stable for all Mach
numbers. The experience of Denton and other users of his code
confirms this.

2.10 stability of 3-point Interpolation for Effective Density

A similar analysis can be done for the pressure-update
effective-density method using a three point interpolation of
pressure to obtain the effective density.

Pi-2)1/RT (48)

Substituting the change in density

&Pi+l = <6Pi
 + (1/3>8Pi+1 - (l/3)8p.,_2)/RT (49)

into Eq. 25, gives

( 2/M + 2YM/3) 8pi

(A/C) ( 1/M + YM ) Spi_1

(A/C) ( yM/3) 8pi-2

(A/0( TM/3) 8P.. - m . (50)

The center point coefficient is the coefficient of Sp., siace
this is proportional to *____ _ . in the pressure update method

6 L i O L $ JL

In Eq. 50, the coefficient of Sp. is positive and greater than
the sum of the other positive coefficients; therefore Eq. 48
should be stable for all Mach numbers.
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2.11 Mach Number Dependent Interpolation Formula
for Effective Density

In section 2.7 it was indicated that when the Mach number is
low, the pressure update method is stable with the ideal gas
equation of state satisfied at each grid point. Since this is the
correct pressure-density relation for ideal gases it should be
used where feasible. In this section we will start with a
generalized pressure interpolation equation for effective density

pi_2)/3 ]/RT (51)

and seek Mach number limitations to a , a, and a» using criterion
O 1 2 3

(Eq.) 46. Comparing equations 40 and 51, the upwind effective
density corresponds to a0~

ai=a2=0' t*16 3 point interpolation, Eq.

48, corresponds to ao
=ai=0> a2 = 1» and id®31 9as to a0

=1' ai=a2=0*

Substituting

= [<l-ao>8pi + (a0 +ai/2 +
a
2/

3>8

- (a1/2)8pi_1 - (a2/3)8Pi_2 ]/RT (52)

into Eq. 25 and rearranging in terms of the ceofficients of each
5p, aQ, 3j and a2, yields

(A/C) { (-1/M + YMaQ + (yM/2)a1 + (yM/3)a2>

+yM - 2yMa^ - (yM/2)a
O

-yM + YMa - (yM/2)a

2/H +yM - 2yMa^ - (yM/2)a- - (yM/3)a,) 8P.
O 1 *• 1

j i_1

+ ( + (yM/2)a]L - (yM/3)a2) Spĵ .2

+( + (yM/3)a2) SPi_3

= Change, i (53)

Let us first consider the case when a1=a2=0 and find limiting
values of a . From Eq. 51, it is obvious that we should consider
only values in the range

o i a i i. (54)

2.12



The coefficient of 6p. is positive when

2/M + yM - 2yMa > 0. (55)o

This gives a limit on a which is a function of Mach number.

a < l/(yM2) + 1/2. (56)o

But the coefficient of 5P-+ 1 is positive when

-l/M + yMaQ > 0, or M > l/<yao> (57)

In this region, from Eq. 46, we require

or
2/M + yM - 2yMaQ > -l/M + yMaQ (58)

3 < l/(yM2) + 1/3. (59)

Valid values of a based on these criteria are shown as a function
of Mach number in Fig. 2.

Let us next consider limiting values of a, when a and a- areJ i o z
zero. From Eq. 53 the coefficient of 5p.

2/M + yM - yMaj/2 > 0 (60)

is positive for all Mach numbers in the range

01 aj 1 1. (61)

The coefficient of 8Pi_2 is positive for all M and the
coefficienb of 8p. is positive when

-l/M + yMaj/2 > 0 or M2 > 2/(ya1). (62)

2
For M < 2/(ya],) we then require the coefficient of 8p. to be
greater than the coefficient of 6p._ ,

2/M + yM - yMaj/2 > yMax/2. (63)
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2
With aj 1 1. this is always satisfied. For M > iMyaj) we
require the coefficient of Sp^ to be greater then the sum of the

coefficients of 8Pi_2
 and 6

2/M + yM - yMa 1 /2 > yftej -1/M ( 6 4 )

or
3j < 2 / ( r M 2 ) + 2 / 3 . ( 6 5 )

2
Thus we can have a^1 up to M = 6/y or up to M=2.07 for y=1.4.
Fig. 3 shows the valid range of a^ based on these criteria.

We now consider combinations of aQ, a^ and a2 . In particular
if

aQ + aj + a2 = 1. ( 6 6 )

the interpolation scheme is second order accurate. (See Appendix
A.)

For Mach numbers less than 2, a^l is stable. Therefore, for
M < 2, we will choose

a2 = o
a0 + ax = 1. (67)

From similar stability analyses to those already given

a0 < 2/(yM2) - 1/3 (68)

should be stable for M <. 2 .

For M > 2, we will choose

ao - °
al + a2 = 1. (69)

The stability analysis suggests acceptable values of a^ are

3j < 0.4 + 3.6/(yM2) . (70)

The stability criteria, Eqs. 68 and 70, are shown on Fig. 4.
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A set of equations for aQ, a^ and a2, which satisfy Eq. 66 and
so give second order accurate interpolation, and which satisfy
Eqs. 67-70 so that they satisfy the stability criteria, have been
selected. These are:

for M 1 2 a = (0.8/3) (4/M2 -1)0

- 1 - a0 (71)

a2 = 0;

for M > 2 aQ = 0

4/M2 (72)

a2

These Mach number dependent formulations for aQ, a^^ and a2 are
shown in Fig 5. These equations are tested in Part 3 where they
are referred to as tke MAM formula.
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PART. 2

APPENDIX A. TRUNCATION ERROR OF PRESSURE INTERPOLATION EQUATION

The truncation error of the interpolated pressure used to
calculate the density in Eq. 51 may be determined using Taylor
series analysis. The interpolated pressure pe is given by

and to determine the accuracy of pe we will look at the magnitude
of Pej+i~Pj+i' With grid spacing h, arid expanding about i+l, we
have

pi_2 = p - 3hp' + 9(h2/2)p" - 0(h3)

pi_1 = p - 2hp' + 4(h2/2)p" - o(h3)

pi = p - hp' + (h2/2)p" - o(h3)

Therefore,

- (h2/2) (a+2 a+3a-l )p" + 0(h
3)

And if

aO + al + a2 =

then the difference between p and p is of the order of h , so
that pe is a second order accurate approximation for p.
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PART 3
1-D COMPUTATIONAL TESTS OF SHOCK CAPTURING USING PRESSURE
INTERPOLATION FORMULAE TO CALCULATE EFFECTIVE DENSITY

3.1 Denton's 1-D Nozzle for Testing Shock Capturing

Denton [1] has tested shock capturing with his finite-volume method
in a convergent-divergent nozzle (see Fig. 1) designed to produce a
linear variation of Mach number with distance for 1-D isentropic flow.
The equation for the Mach number variation with distance is

x = 10. + 45. (M - 1) (1)

Denton considered flow between x = 1, M = 0.8 and x = 46, M = 1.8; the
throat, M = 1.0, is at x = 10. He used three back pressures with
Pexit/pt inlet = °-85> °-80» and 0.75, respectively. The theoretical 1-

D solutions for these three flows are shown in Fig. 2. The maximum Mach
numbers, just upstream of the shock, are 1.267, 1.455, and 1.578, re-
spectively; this is a range of shock Mach number typical of turboma-
chinery flows.

We have used these three pressure ratios for Denton's 1-D nozzle to
test shock capturing with three of the pressure interpolation methods
discussed in Part 2.

3.2 Effective Density Method

This annual report (Parts 1, 2, and 3) includes the results of
calculations made with three different methods:
(a) The Effective Pressure Method as currently programmed in Denton's

code at NASA Lewis.
(b) The Effective Density Method incorporated into Denton's code at

NASA Lewis by S. Nicholson; this method uses the same time steps
for the continuity and momentum equations.

(c) The Effective Density Method developed at VPI&SU with different
time steps for continuity and momentum [2,3]; this is incorporated
in the Nicholson/Moore time-marching codes at VPI&SU.

These methods are outlined to show their similarities and differences in
Table 1.

In Part 1, results from methods a and b were presented and com-
pared. The stability analysis in Part 2 was applied to methods a and
c. Here in Part 3 the calculations are performed using method c.

3.3 Pressure Interpolation Schemes

The effective density methods (b and c in Section 3.2) use an
interpolated approximation for the pressure in the evaluation of the
density. A general form of the interpolation formula considered in this
report is

- V + r<pi+i - pi-i> + r(p
i+i - pi-2>
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and this is used to evaluate the density as
Pe

This general form is a linear combination of a single-point interpola-
tion, Pj+i - P^, a 2-point interpolation, P^+i - PI_I » and a 3-point
interpolation, P^+j - ?i-2- The single-point interpolation, of course,
really gives the correct perfect gas equation and involves no approxi-
mation.

The coefficients aQ, a^ , and a.^ are here taken to be constants or
functions of Mach number. Combinations, including individual terms or
pairs of terms, for which the sum of the coefficients

a0 + aj_ + a2 = 1

are second order accurate, as shown in Appendix A, Part 2.

Correct Perfect Gas Equation (aQ = 1, aj = 0, a.^ - 0)

This scheme has the advantage that it involves no interpolation or
approximation for the pressure. Experience has shown (see Part 1) that
it is stable for subsonic flow. But the stability analysis of Part 2
shows that for Mach numbers above about 1.2 this scheme becomes un-
stable. Thus it could not be used for the test cases of Denton's 1-D
nozzle.

These observations about the use of the correct perfect gas equa-
tion are in agreement with Denton's findings for his scheme B [1], In
that method changes of density were sent to the upstream corners of the
element, which is equivalent to our sending pressure changes upstream.
The method "proved stable, without any correction factors or damping, at
low Mach numbers but instability was found to develop at Mach numbers
around unity and above."

2-?oint Interpolation (aQ = 0, a^ = 1, &2 = 0)

The stability analysis of Part 2 shows the 2-point scheme to be
stable for Mach numbers up to about 2.0. Use of a 2-point scheme or a
3-point scheme has been suggested by Den ton in his recent ASME and AGARD
Lecture Notes [4 ,5 ] .

3-Point Interpolation (aQ = 0, a± = 0, a2 = 1)

3-point schemes have been shown in Part 2 to be the most conserva-
tive (in terms of stability) of the schemes considered in this report.
Perhaps for this reason, such a method is used to stabilize the current
NASA version of the Denton code. Both 3-point and 2-point schemes
provide second order accuracy for a continuously changing pressure; they
give correct interpolated values for linear variations in pressure
(assuming equally spaced grid points).
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M&M Mach Number Dependent Interpolation

The advantages of the three schemes just considered are:

(1) the accuracy and stability of the perfect gas equation for subsonic
flow;

(2) the stability of the 3-point interpolation at Mach numbers greater
than 2.0;

(3) the stability and reduced smearing of properties of the 2-point
interpolation at supersonic Mach numbers up to 2.0.

These advantages have been combined in a single Mach number depen-
dent interpolation scheme in Part 2. In this method

0-8r4--

M < 2.0

(--
n

al = X * ao

32 = ° J (4)

a = 0o

a =-^- > M > 2.0
1 M

The values of the three coefficients are shown graphically in Fig. 3.
Note, once again, that the sum of the coefficients is equal to one for
all Mach numbers, so that this scheme is also second order accurate.
For the calculations presented here M was taken as the larger of M on
the upstream side or downstream side of the control volume.

3.4 Computational Tests of Three Pressure Interpolation Schemes

Of the four schemes just considered, three are stable in the Mach
number range 1.0 to 2.0. These are the 2-point, 3-point, and M&M inter-
polation methods. In this section, results of shock capturing with
these three methods are presented and compared for Denton's 1-D nozzle.

Calculation Details

Number of Axial Grid Points =46 , 6x = 1
At inlet i = 1 , M = 0.80
For air k = 1.4 , R = 287. J/kg K
Pexit/Pt inlet = °'85 • °'80 ' °'75

Figures

The variations of static pressure, Mach number, and total pressure
are plotted for each interpolation scheme using the same scales as for
the theoretical solutions, Fig. 2. Fig. 4 shows the results for the 3-

C -5L,
3.6



point scheme, Fig. 5 for the 2-point scheme, and Fig. 6 for the M&M
method. The results from the 3-point and M&M schemes are shown together
with the theoretical solution on Fig. 7 for the pressure ratio of 0.80.

Table

The calculated values of maximum Mach number upstream of the shock
and total pressure ratio are compared with the values from the theoreti-
cal 1-D solutions in Table 2.

Shock Losses

The total pressure ratios across the shocks are well calculated by
all three interpolation formulae as shown in Table 2b. This is in spite
of the fact that the calculated values for the maximum Mach numbers
upstream of the shocks are significantly different from the theoretical
values. For example, at the lowest back pressure, the theoretical Mach
number upstream of the shock is 1.578 while the 3-point interpolation
formula gives 1.502, the 2-point formula gives 1.528, and the M&M for-
mula gives 1.534. For this case the calculated values of total pressure
ratio are all in the range 0.9027 to 0.9028, compared with the theoreti-
cal value of 0.9032. In general the M&M formula gives the closest
agreement with the upstream Mach number while the 3-point formula gives
the worst results. Based on the maximum calculated upstream Mach number
for these cases, the M&M formula would give shock losses from 16 to 42
percent too small, while the 3-point formula would give values from 27
to 62 percent too small. Interestingly the agreement for shock losses
based on maximum upstream Mach number improves (for all three formulae)
as the Mach number increases. However, these results show that peak
calculated Mach number should not be used to predict shock losses and
that the calculated total pressure loss across the shock is accurate to
better than 0.1% and it should be used.

Smoothing Upstream of Shock

The results in Figs. 4, 5, and 6 show that the interpolation formu-
lae all act to smooth properties upstream of the shocks. The smoothing
is most noticeable in the static pressure and Mach number distributions,
especially with the 3-point interpolation scheme. The 2-point scheme
gives less smoothing while the M&M formula gives the sharpest and most
accurate upstream distributions.

Overshoots and Undershoots Downstream of Shock

Both the 3-point and 2-point interpolation schemes give overshoots
in static pressure and undershoots in Mach number downstream of the
shocks. Only the M&M interpolation formula shows no noticeable over-
shoots and undershoots and this is because it has a better formulation
for subsonic flow; in fact, from Eq. 4, it can be seen that the M&M
formula reduces to the correct perfect gas equation for Mach numbers
less than 0.918.
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Table 2. Results of Calculations for Denton's 1-D Nozzle.

Table 2a: Maximum Mach number upstream of shock

Interpolation Formula

Pt inlet

0.85

0.80

0.75

insure cicax

1.267

1.455

1.578

j— roiut

1.173

1.375

1.502

.£— roiiit

1.193

1.395

1.528

nacn Nuraoer
Dependent

1.216

1.408

1.534

exit

t inlet

0.85

0.80

0.75

Table 2b: Total pressure ratio, Pt exit/Pt

Interpolation Formula

Theoretical 3-Point 2-Point

0.9847

0.9433

0.9032

0.98487

0.94331

0.90271

0.98492

0.94335

0.90277

Mach Number
Dependent

0.98494

0.94338

0.90281
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Shock Location

The M&M formula captures the shocks over about four grid points
centered around the theoretical shock locations. This is seen for the
pressure ratio of 0.8 in Fig. 7. In contrast, Fig. 7 shows the 3-point
scheme smearing the shock over about ten grid points with the shock
displaced slightly downstream due to inadequate resolution of the sub-
sonic flow. Once again the 2-point scheme gives results intermediate
between those of the M&M and 3-point schemes.

3.5 Conclusions - Progress in Shock Capturing

Significant improvements have been made in the finite-volume time-
marching method to allow more accurate calculations of the distributions
of flow properties through shocks. In Part 1, the Effective Density
Method was introduced to reduce undershoots and overshoots in total
pressure in the region of the shock. A stability analysis In Part 2 was
then used to develop a Mach number dependent interpolation scheme for
pressure which combines the advantages of the correct perfect gas equa-
tion for subsonic flow with the stability of 2-polnt and 3-polnt inter-
polation schemes for supersonic flow. The M&M interpolation formula,
representing this new scheme, when used in the Effective Density Method,
further removes the overshoot in static pressure in the subsonic flow
downstream of a shock.
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Fig. 1 Denton's convergent-divergent nozzle with a linear
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Fig. 2 Theoretical 1-D solutions for Denton's nozzle

for three exit static pressures at x = 46.,
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Fig. 2b Mach number.
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MRCH NUMBER DEPENDENT R'S WITH RO+R1+R2=1
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Fig. 3 M & M Mach number dependent values (Eq. 4)

for the coefficients .in Eq. 2.
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DENTON ID EXflMPLE 3 PT P INTERP, 12/85
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Fig. 4 Calculated 1-D solution for Denton's nozzle

using 3-point interpolation, Eq. 2 with

aQ = a =0 and a = 1.

Calculations for three exit static pressures at x

Pexit/Pt,inlet = °'85' °'80' and °'75'

= 46.,

Fig. 4a PW = P/P
t,inlet'
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Fig. 4b Mach number.
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DENTON ID EXflMPLE 2 PT P INTERP, 12/85
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Fig. 5 Calculated 1-D solution for Denton's nozzle

using 2-point interpolation, Eq. 2 with

= a_ = 0 and a = 1.

Calculations for three exit static pressures at x = 46.,

P /P = 0.85, 0.80, and 0.75.
exit t, inlet

Fig. 5a PW = P/Ptflnlet.
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Fig. 5b Mach number.
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DENTON ID EXflMPLE INTERP (MRCH) 12/85
o
o
O)

o
o
CO

o
o

o
o
ID

O
o
in

o
o

O
O
CO

o
o
C\J
•

o
o
o

o
o
o

0.0 10.0 20.0 30.0 40.0 50.0

Fig. 6 Calculated 1-D solution for Denton's nozzle

using M & M formula, Eq. 4.

Calculations for three exit static pressures at x

Pexit/Pt,inlet = °'85' °'80' and 0'75'

= 46.,

Fig. 6a PW = P/Ptfinlet.
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Fig. 6b Mach number.
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DENTON ID EXRMPLE PEX1T/PTINLET=0.8 12/85
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Fig. 7 Comparison of calculated results with the theoretical

1-D solution for P . •/P . n =0.80.
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Thin line. - theoretical solution:

Medium line - calculated using 3-point interpolation:

Thick line - calculated using M & M formula.
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Fig. 7b Mach number.
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DENTON ID EXRMPLE PEXIT/PTINLET=0.8 12/85
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