
NASA Technical Memorandum 87216

NASA-TM-8721619860006751

Simulating a Small Turboshaft Engine in
a Real-Time Multiprocessor Simulator
(RTMPS) Environment

Edward J. Milner and Dale J. Arpasi
Lewis Research Center
Cleveland, Ohio

January 1986

.NI\5/\

1111111111111 1111 1111111111 11111 1111111111111
NF01498

~ i i :. F: . ':"'\.~ (~, r.o '-;";r
. -',

SIMULATING A SMALL TURBOSHAfT ENGINE IN A REAL-TIME

MULTIPROCESSOR SIMULATOR (RTMPS) ENVIRONMENT*

Edward J. Milner and Dale J. Arpasi
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

A Real-Time Multiprocessor Simulator (RTMPS) has been developed at NASA
Lewis Research Center. The RTMPS uses parallel microprocessors to achieve
computing speeds needed for real-time engine simulation. This report describes
the use of the RTMPS system to simulate a small turbos haft engine. The process
of programming the engine equations and distributing them over one, two, and
four processors is discussed. Steady-state and transient results from the
RTMPS simulation are compared with results from a main-frame-based simulation.
Processor execution times and the associated execution time savings for the two
and four processor cases are presented using actual data obtained from the
RTMPS system. Included is a discussion of why the minimum achievable calcula
tion time for the turbos haft engine model was attained using four processors.
finally, future enhancements to the RTMPS system are discussed including the
development of a generalized partitioning algorithm to automatically distribute
the system equations among the processors in optimum fashion.

INTRODUCTION

Modern jet engines and their controls continue to become more and more
complex. Over the years, engine designs have continued to increase thrust-to
weight ratios. To gain this increased efficiency, the engines must operate
closer to surge conditions - conditions which can lead to catastrophic engine
stalls. Therefore, digital electronic engine controls are being developed that
provide close monitoring of engine parameters and precise control of fuel flow
and variable geometry.

Using a real-time simulation of an engine can facilitate the development
of these digital controls because it allows the actual control hardware and
software to be tested in a realistic fashion. If the real-time simulation is
implemented on a digital computer, the time required by the computer to com
plete one pass through the equations representing the engine must not be
greater than the integration step size. However, because of the massive amount
of calculation required to model a complex engine, real-time simulation of
modern jet engines on a single processor requires a fast, d~dicated main-frame
computer or simplification of the engine model.

A Real-Time Multiprocessor Simulator (RTMPS) has been developed at NASA
Lewis Research Center to demonstrate the potential of using parallel micro
processors for real-time engine simulation (refs. 1 and 2). In addition to the
RTMPS hardware, a structured, macro-based Real-Time Multiprocessor Language
(RTMPL) (refs. 3 and 4) and a Real-Time Multiprocessor Operating System
(RTMPOS) (refs. 5 and 6) were developed to form an RTMPS programming environ
.ment. The RTMPL software allows engineering-level personnel to develop simu-

*Materia1, not previously published, presented at the 1986 SCS Mu1ticonfer
ence, sponsored by the Society for Computer Simulation, San Diego, California,
January 23-24, 1986.

lat10n programs for the RTMPS. The operat1ng system allows the user to
1nteract1vely commun1cate w1th the RTMPS system

Th1s report descr1bes the use of the RTMPS system to s1mulate a small tur
boshaft eng1ne. The turbos haft s1mulat10n represents the f1rst real app11ca
t10n of the RTMPS system. Therefore, the paper presents an evaluat10n of the
RTMPS from a user's p01nt of v1ew.

Key features of the RTMPL and RTMPOS and the1r use to develop the turbo
shaft eng1ne s1mulat10n are d1scussed and demonstrated. The process of pro
gramm1ng the eng1ne equat10ns 1n RTMPL and d1str1but1ng the RTMPL equat10ns
over one, two, and four processors 1s also d1scussed. Steady-state and tran
s1ent results from the RTMPS s1mulat1on, obta1ned us1ng the RTMPOS, are com
pared w1th results from a ma1nframe-based s1mulat10n. Processor execut10n
t1mes and the assoc1ated speed-up for the two and four processor cases are
presented us1ng actual data obta1ned from the RTMPS system. Included 1s a
d1scuss1on of how the m1n1mum ach1evable calculat10n t1me for the turbos haft
eng1ne model was atta1ned us1ng four processors. F1na1ly, planned enhancements
to the RTMPS system are d1scussed 1nc1ud1ng the development of a generalized
part1t1on1ng algorithm to automat1cally d1str1bute the system equat10ns among
the processors in optimum fashion. .

THE REAL-TIME MULTIPROCESSOR SIMULATOR HARDWARE CONFIGURATION

A schemat1c of the RTMPS hardware is shown 1n f1gure 1. The RTMPS cons1sts
of 2(n+1) processors (1.e., l6-b1t, single-board microcomputers) 2n shared
memor1es (i.e., dual-port memory boards) connected via two data busses. Two
processors are reserved and the rema1n1ng 2n processors are ava11ab1e to oper
ate on portions of the s1mu1at10n. One reserved processor, des1gnated the
Front End Processor (FEP), 1s the commun1cat1on l1nk between the user and the
s1mu1at10n. The FEP allows the s1mu1at10n to run 1nteract1vely. The user may
mon1tor the results com1ng from a simulation wh11e it 1s runn1ng and may also
make changes to key simulation parameters "on-the-fly" while a transient is
be1ng run. The other reserved processor, designated the Rea1-T1me Extens10n
(RTX), 1s the communicat10n link between the s1mulator and external devices
such as actuators or controllers. The FEP and the computat1onal (COMP) proc
essors, are 11nked through the Interact1ve Information Bus. The RTX and the
rema1n1ng processors, called preprocessors (PREP), are 11nked through the Real
T1me Informat1on Bus. In general, both the COMP and PREP processors can be
used for solv1ng the s1mulat1on equat1ons. For 1nteract1ve s1mulat1on, only
the Rea1-T1me Informat1on Bus 1s used to transfer rea1-t1me data between the
processors. Th1s 1s because the Interact1ve Informat1on Bus may be busy
serv1c1ng user requests.

In each s1mu1at1on channel, the COMP and PREP processors communicate
through the shared memory. If data are to be transferred between two COMP
processors, the data must be sent from the f1rst COMP processor, through shared
memory, to 1ts correspond1ng PREP processor, across the Rea1-T1me Informat1on
Bus to the PREP processor of the channel to rece1ve the data, then f1nally
through that channel's shared memory to the COMP processor requ1r1ng the
1nfprmat1on. Because of th1s round-about path, transfers of data between COMP
processors are avoided when formulating an RTMPS simu1at1on.

2

THE REAL-TIME MULTIPROCESSOR LANGUAGE (RTMPL)

RTMPL 1a a structured, h1gh-order language des1gned to fac1l1tate the
development of error-free, time-efficient simulations in a digital multiproc
essor environment (refs. 3 and 4). It is a macro-based language which offers
the advantage that any simulation written in the language is independent of the
processors on which it is to be executed. Simulat10n source code executed on
one set of processors need not be changed to be able to execute on another set
of processors. Only the macro-based language operations need be retargeted for
the new machine. An RTMPL language uti11ty (translator) has been developed
that converts the RTMPL source code to a list of macro calls.

An assembly language programmer performs a one-time systems task to develop
the optimum assembly code for the language operation macros. The execution of
the simulation is only as efficient as the pre-programmed macros.

For each processor (i.e., program) in the simu1at10n, the user specifies
each constant and var1able used 1n the program and the1r data type, prec1sion,
scale factor, and value, as appropriate. The language utility keeps track of
the constants and variables associated with each processor, which values must
be sent from one processor to another, when a current value of each has been
calculated so that data transfer can begin, and when all processors have
completed the calculations assigned to them.

A small turbos haft engine simulation will be used later to further
illustrate features of RTMPL.

THE REAL-TIME MULTIPROCESSOR OPERATING SYSTEM (RTMPOS)

RTMPOS provides the user with a versatile, 1nteractive means for control
ling and obtaining results from a simulation executing on the RTMPS. RTMPOS
resides on the Front-End-Processor (FEP) and serves as the interface between
the user and the simulator. It allows him to load, run, debug, and obtain
and/or monitor results from the simulation. The user may also use RTMPOS to
modify and specify the computational flow of the simulation while it is
execut1ng.

The RTMPL translator produces "data base" files that contain information
needed for that interactive execution of the simulation. The RTMPOS uses the
data base information at run-time to allow the user to interactively execute
the simulation. RTMPOS also allows the data base to be edited; that is, it
allows changing/displaying values of constants and initial conditions on var
iables at run time. This modified data base may then be saved on disk, if
desired, and any portion or all of it may be listed on a ~ririter.

At run time the program control features of RTMPOS are used to load the
program modules from the disk files into the desired simulation channels and
to activate the execution of each of the program modules. Just as with an
analog or hybrid computer, three modes of program execution are available
through RTMPOS. They are: RUN, HOLD, and STOP. In the RUN mode all programs
are activated on the simulator and they run repeated update cycles of the
simulation until the user issues a STOP command or the simulator issues a halt
advisory. (A halt advisory results from an error condition in the simulator
and terminates the simulation execution.) In the HOLD mode, user specified

3

var1ables 1n any or all program modules are held at current or preselected
values for a spec1f1ed number of update cycles as requested by the user. In
the STOP mode. s1mulat10n execut10n 1s suspended and the s1mulator 1s halted.

A very useful feature of the RTMPOS 1s the creat10n of a permanent sess10n
h1story disk file. This f11e saves all user commands. prompts. and messages
from the operat1ng system dur1ng a user sess10n on the s1mulator. Hence. the
ent1re sess10n 1s self-documenting and the user can rev1ew the sequence of work
performed 1n the sess10n. Successive session h1stor1es document the complete
development and debug process dur1ng the bu11dup of a complex s1mulat10n so the
user has a record of each step in the s1mulat1on development process. Further
more. the commands in a session h1story f11e can be automat1cally read and
executed by RTMPOS. allow1ng the user to qu1ckly return to a cond1t10n obtained
in a prev10us sess10n.

Selected s1mulat10n parameters may also be sampled as a function of time
dur1ng any transient run of a simulation. These data are saved 1n a d1sk f11e
and they may be listed 1n tabular form or they may be transferred to a graph1cs
utility where they may be plotted to d1splay funct10nal relat1onsh1ps in v1sual
form.

Features of RTMPOS w111 be further illustrated using a s1mulat10n of the
small turbos haft eng1ne model discussed in the next section.

THE SMALL TURBOSHAFT ENGINE MODEL

The process of testing and debugging the Real-Time Mult1processor S1mulator
(RTMPS) hardware and system software required the select10n of a su1table
dynamic s1mulat10n model. It was dec1ded to use an ava11able a1rcraft eng1ne
model. That model was felt to be representative of modern a1r-breath1ng
eng1nes. yet simple enough to allow concentrating on the RTMPS system hardware
and software to be debugged. S1mulat1ng a more complex eng1ne model would
h1nder efficient debugg1ng of the RTMPS hardware and software.

Selected was a model of a small turboshaft eng1ne in the 20 000 lb thrust
class. Included 1n the model are mathematical representat10ns of the follow-
1ng: a s1ngle-centr1fugal-stage. f1ve-ax1al-stage compressor that includes
var1able 1nlet gu1de vanes and var1able stator vanes for the f1rst two stages;
an annular combustor; a two-stage. ax1al. a1r-cooled gas generator turb1ne
that dr1ves the compressor rotor; compressor ex1t bleed a1r that cools the
turbine; a second two-stage turb1ne that 1s uncooled and that has a coaxial
drive shaft that extends forward through the gas generator turbine and connects
to the eng1ne output shaft.

A d1g1tal computer s1mulat1on of the small turboshaft eng1ne model had been
developed prev10usly on a central. ma1nframe computer. The s1mulation had been
thoroughly debugged and was operat10nal. In add1t10n. a large base of data
from the simulation was on file. Th1s information could be used to verify
results coming from the RTMPS.

As will be shown later. th1s small turbos haft engine model turned out to
be nearly ideal for ver1fy1ng RTMPS operation. It was of sufficient complexity
"to offer a challenging part1t1on1ng problem for the processors. In the process
of determining what equations should go on the various processors. much 1ns1ght

4

was ga1ned and gener1c part1t10n1ng algor1thms were developed. S1nce the tur
boshaft eng1ne model only had s1x dynam1c state var1ables, the s1mulat10n of
th1s eng1ne model d1d not produce long execut10n t1mes and bog down the check
out of the RTMPS system.

For the purpose of check1ng out the RTMPS, results com1ng from the ma1n
frame s1mulat10n of the small turbos haft eng1ne model were used as the standard
aga1nst wh1ch the RTMPS results would be judged.

RESULTS AND DISCUSSION

In the process of check1ng out the RTMPS hardware and software, three RTMPS
s1mulat10ns of the small turbos haft eng1ne were developed: a s1ngle-processor
s1mulat10n, a dual-processor s1mulat10n, and a quad-processor s1mulat10n. The
purpose of the s1ngle-processor s1mulat10n was to check the bas1c hardware and
software funct10ns and to develop a data base of results from the RTMPS to be
used as a bas1s for further checkout of the system. The dual-processor s1mu
lat10n exerc1sed some of the 1nterface software and hardware 1nclud1ng the
ab111ty of a computat10nal processor and a preprocessor to exchange 1nformat10n
through a shared memory 1n a t1mely and effect1ve fash10n. The quad-processor
s1mulat10n further exerc1sed the 1nterface software/hardware system and demon
strated the effect1veness of the dual-bus, parallel-process1ng concept. The
object1ve was to show that the RTMPS, together w1th the RTMPL h1gh-order mult1-
processor language and RTMPOS user operat1ng system, prov1ded an effect1ve and
eff1c1ent env1ronment for real-t1me s1mulat10n.

The S1ngle-Processor S1mulat10n

One of the f1rst steps 1n develop1ng an RTMPL s1mulat10n 1s the def1n1t10n
of constants and var1ables. RTMPL 1s a structured language and, as such,
requ1res that all constants and var1ables used 1n the s1mulat10n be thoroughly
def1ned. The language allows no numer1c constants to be used 1n the s1mulat10n
equat10ns. Hence, each constant must be ass1gned an alphanumer1c name 1n the
constant def1n1t10n sect10n of the program. A port10n of the constant def1n1-
t10ns for the turbos haft eng1ne model 1s shown 1n f1gure 2.

The def1n1t10n sect10n beg1ns w1th the declarat10n CONSTANT. Follow1ng
th1s declarat10n 1s a l1st of the constants used 1n the program. Not1ce that,
for each constant, 1ts name 1s 1mmed1ately followed by 1ts type and prec1s10n.
The type may be e1ther 1nteger (I) or scaled fract10n (S). Integers are count-
1ng numbers and do not have a dec1mal p01nt. Scaled fract10ns are ftxed p01nt
numbers w1th an absolute value less than one. The prec1s10n 1s spec1f1ed by
e1ther 1, 2, or 3 w1th 1 s1gn1fy1ng s1ngle prec1s10n and 2 and 3 spec1fy1ng
double and tr1ple prec1s10n, respect1vely. Scaled fract10ns requ1re a further
spec1f1cat10n, namely, a scale factor. Because the scaled fract10n 1s l1m1ted
to values between -1 and +1, a scaled fract10n 1s obta1ned by d1v1d1ng the raw
data value by some appropr1ate constant value called the scale factor. RTMPL
requ1res that the scale factor be a power of 2. So for a scaled fract10n,
after the data type and prec1s10n, 1n the def1n1t10n declarat10n, 1s a slash
(/) followed by the exponent of the power of 2 scale factor. Integers are not
scaled, so no scale factor exponent appears 1n the1r def1n1t10n. F1nally,
w1th1n brackets appears the value of the constant. If a data table 1s be1ng

5

def1ned, the number of values mak1ng up the table 1s followed by brackets
hold1ng the table values.

The def1n1t10n for var1ables 1n the program follows bas1cally the same
format. A port10n of the var1able def1n1t10ns for the small turbos haft slmu
lat10n 1s shown 1n f1gure 3. The def1n1tion section beg1ns w1th thedeclara
t10n VARIABLE. Follow1ng th1s declarat10n 1s a llst of the var1ables used 1n
the program. For each var1able, 1ts name 1s 1mmed1ately followed by 1ts type,
1ts prec1s10n, and 1ts scale factor exponent, 1f the var1able 1s a scaled
fract10n. Th1s 1s exactly the same as was done for the def1n1t10n of the pro
gram constants. W1th1n brackets for var1ables, however, are not only the var-
1able 1n1t1al cond1t10n value, but also what 1s des1gnated as a hold value.
This 1s the value that the var1able w1ll be set to by the RTMPOS if the var1-
able 1s chosen to be "held f1xed" or "frozen" under the RTMPOS HOLD mode of
program execut10n. In figure 3, the slash (/) with1n the brackets slgn1f1es
that the number follow1ng 1s both the 1n1t1al cond1t10n value and the hold
value for that var1able. (A separate hold value for the var1able would be
spec1f1ed by a number preceding the slash.)

The equations defining the small turbos haft eng1ne model for this simula
t10n are contained 1n an execut1ve section, a portion of which 1s shown in
f1gure 4. This section begins with the declarat10n EXEC, followed by the
executive name. Following this declaration is the collect10n of equat10ns
making up the slmulat10n. The operators used 1n these equations are def1ned
RTMPL operations and the program appear1ng in the execut1ve section will not
change, no matter what computer system 1t is to be executed on. What w1ll
change are the system macros which translate each RTMPL operation used 10 the
simulat10n into corresponding assembly code. RTMPL translates the EXEC code,
as 1nput by the user, 1nto assembly language source code correspond1ng to the
computer system to be used to execute the program. In addition to the assembly
language code, RTMPL automatically creates extens1ve documentation for the
user. Included in the documentation are references glv1ng the relative loca
tion of each constant and var1able used 1n the program. The assembly language
source code file can then be assembled and linked to obtain an object file of
the program which can be executed on the target computer system. A file con
taining the complete assembly code listing of the program to be executed is
created 1n the process. Th1s f1le can be printed out to obtain a hard copy
record of the contents of each memory location used by the program.

The small turboshaft engine simulat10n was executed on the single processor
RTMPS at four typical steady-state operating conditions. Steady-state results
agreed very well with the steady-state results from the mainframe simulation
standard at the corresponding operat1ng cond1t10ns. Typical results.are shown
1n table I where selected values at one of the steady-state condit10ns are
shown for the two simulat1ons. The RTMPS results agree w1th the mainframe
standard to w1thin 0.2 percent. These small errors occur mainly because the
RTMPS simulation uses scaled fract10n ar1thmetic whereas the mainframe slmula
t10n uses float1ng-point arithmetic. Also, the RTMPS simulation is run on a
Motorola Exormacs development system based on the M68000 microprocessor chip
with l6-bit memory. The ma1nframe computer was an IBM 370 with 32-bit memory.

Because of the excellent match between steady-state results from the RTMPS
and the mainframe standard, 1t was felt that the RTMPS hardware and software
were operat1ng correctly. Also, RTMPL was proving itself to be an extremely
effect1ve, h1gh-order language. A careful examinat10n of the program code

6

revealed that 1t was produc1ng assembly code that was 99 percent as eff1c1ent
as code produced by an exper1enced assembly language programmer. RTMPOS also
was prov1ng 1tself to be a valuable tool. RTMPOS properly loaded the s1mula
t10n 1nto the RTMPS, and allowed the user to monitor key parameters as the
s1mulat1on was achieving steady-state conditions.

A "stale data" error occurs when data from different calculat10n cycles are
m1xed - for example, when a parameter value not correspond1ng to the current
calculation cycle is used to update parameters in the current cycle. Subtle
differences caused by these k1nds of errors can mistakenly be attr1buted to
roundoff. To flag these, and other errors, 1f they ex1sted, 1n compar1ng
single, dual, and quad-processor s1mulat10n results, eng1neer1ng unit conver
s10ns of the RTMPS memory contents were purposely printed 1n the1r ent1rety
us1ng the RTMPOS. Pr1nted 1n the1r ent1rety, correspond1ng eng1neer1ng un1t
convers10ns were expected to match exactly. The automat1c unsca11ng of s1mu
lat10n parameters by the RTMPOS was an extremely welcome feature of the oper
ating system. The RTMPOS further allowed the user to change operat1ng
cond1t10ns eas11y, and created a sess10n history f11e in which to store the
results.

To exam1ne the dynamic character1'st1cs of the s1ngle-processor RTMPS s1mu
lat10n and to check the data samp11ng and related features of the RTMPOS, a
40 sec trans1ent was executed, starting at one of the four selected steady
state cond1t10ns. The f1rst 2 sec was a steadying out per10d, allowing the
s1mulat10n to reach a true steady-state cond1t1on. Then, dur1ng the next
7 sec, eng1ne fuel flow was ramped from 1ts design value to a value of 0.784
of des1gn, wh1ch was held for an add1t10na~ 18 sec. Th1s was to allow the
trans1ent response to settle out so that the s1mulat1on could again approach a
steady-state condition. Engine fuel flow was then ramped back up to its design
value over the next 4 sec and that value was held for the remaining 9 sec of
the transient.

f1gure 5 shows a graph of engine fuel flow versus time. figures 6 to 8
show the correspond1ng time responses of gas generator turbine speed, compres
sor discharge temperature, and gas generator turbine inlet pressure, respec
tively. The agreement shown in figures 6 to 8 is representative of the
agreement found for other parameters in the simulation. The RTMPS transient
results agreed with the mainframe transient results to within 0.5 percent.

The Dual-Processor Simulation

As shown in the last section, the RTMPS single-processor results ,were in
excellent agreement with corresponding output from the mainframe standard.
This demonstrated the validity of the RTMPS single-processor' simulation and
provided a basis for checking multiprocessor simulations of the small turbo
shaft engine on the RTMPS.

When using a multiprocessing system, the simulation and 1ts results should
rema1n unchanged; only the effect1ve calculation time should be decreased.
Hence, if the single-processor equations are d1str1buted among two or more
processors, the output data from the resulting simulation should agree exactly
with corresponding output from the single-processor simulation. Without exact
agreement, the system hardware and/or software would be judged to be not work
ing properly.

7

To part1t10n the s1mulat10n equat10ns for solut10n on a mult1processor
system, one must cons1der the execut10n t1mes for each equat10n 1n the s1mula
t10n. The execut10n t1me for each equat10n 1n the s1ngle-processor RTMPS
s1mulat10n was obta1ned by summ1ng est1mated execut10n t1mes for each operat10n
requ1red to solve the equat10n. Hence, each equat10n then had an execution
t1me assoc1ated w1th 1t. G1ven th1s t1m1ng 1nformat10n, the small turbos haft
eng1ne simulation equations could be divided to run on multiple processors
thereby reducing the effect1ve ca1cu1at10n t1me. The fo1low1ng cr1ter1a were
used to evaluate var10us partition1ng schemes: 1) the t1me to complete the
ca1cu1at10ns on each processor should be closely balanced; 2) processor use
should be max1mized; that 1s, 1d1e t1me wa1t1ng for data from other processors
should be kept to a minimum; and 3) the number of data transfers between
processors should also be kept to a min1mum.

For the dual-processor case, the s1mu1at10n equations were sp11t as shown
1n f1gure 9. The resu1t1ng ca1cu1at10n t1mes for the processors were w1th1n a
few clock cycles of be1ng equal. Neither processor wasted time waiting for
data from the other. And only nine transfers of data between processors were
requ1red.

The n1ne data transfers between processors exerc1sed the shared memory
between processors. When th1s s1mu1ation was first run on the dual-processor
RTMPS w1th the same trans1ent used for the s1ng1e-processor simu1at10n, the
results did not agree w1th those coming from the s1ng1e-processor s1mu1ation.
Several system software bugs and a t1ming flag error were d1scovered and cor
rected before exact dup11cation of the s1ng1e-processor results was achieved.
W1thout the capab111ty of pr1nt1ng the engineer1ng unit conversions in their
entirety, determin1ng whether the two simulations agreed exactly would ha've
been a very time consuming task. It would have required accessing memory and
examining its hexadecimal contents to make sure that the simulation results
were the same. The operating system's ability to automati'cal1y convert these
hexadecimal numbers to very accurate equivalent engineering units allowed this
effort to be readily accomplished. It proved to be a particularly useful tool
in tracing the almost negligible differences between corresponding single and
dual-processor simulation outputs occurring midttansient. The criterion for
exact duplication of results, and being satisfied with nothing less, sparked a
long, persistent effort which led to the discovery and correction of the subtle
timing flag problem.

A portion of the steady-state output from the single and dual-processor
simulations is shown in table II. The corresponding results matched exactly.
Figures 10 to 12 show comparisons of time transients of gas generator turbine
speed, compressor discharge temperature, and gas generator turbine inlet pres
sure, respectively, for the single and dual-processor simulations. The cor
responding transients were exact duplicates for the two simulations.

Satisfied that the hardware and software were working for this dua1-
processor case, further partitioning and distribution of the small engine
simulation equations could be pursued with confidence.

The Quad-Proce~sor Simulation

To partition the simulation equations for the quad-processor RTMPS, it was
useful to compute "can start" and "can end" times for each equation in the

8

s1ngle-processor s1mulat10n. The ear11est that the calculat10n of an equat10n
"can start" 1s that t1me at wh1ch the calculat10n of every parameter to the
r1ght of the equal s1gn has been completed. The ear11est the calculat10n of
an equat10n "can end" 1s 1ts "can start" t1me plus 1ts execut10n t1me. Equa
t10ns w1th only constants or state var1ables (outputs of 1ntegrators) to the
r1ght of the equal s1gn "can start" at t1me zero. In turn, subsequent equa
t10ns (wh1ch depend on ~esults from prev10us equat10ns) "can start" at the
latest "can end" t1me of the parameters to the r1ght of the equal s1gn. For
any s1mulat10n th1s 1nformat10n can be obta1ned us1ng th1s purely mechan1cal
method. For the small turbos haft eng1ne s1mulat10n, the 1nformat10n 1s shown
1n f1gure 13.

The equat10n str1ng culm1nat1ng w1th the equat10n w1th the latest "can end"
t1me was placed on a processor by 1tself. The other equat10ns were d1v1ded
among three other processors 1n a way such that the total execut10n t1me of
none of the three exceeded that of the f1rst. The result1ng d1str1but10n of
the equat10ns among the four processors 1s shown 1n f1gure 14. Results
obta1ned w1th the quad-processor RTMPS matched exactly w1th the s1ngle and
dual-processor results. T1me trans1ents of gas generator turb1ne speed, com
pressor d1scharge temperature, and gas generator turb1ne 1n1et pressure are
shown 1n f1gures 15 to 17, respect1ve1y. The trans1ents shown 1n these f1gures
are exact dup11cates of the correspond1ng s1ngle and dual-processor trans1ents
shown 1n f1gures 10 to 12. A port10n of the steady-state output for the
s1ngle, dual, and quad-processor s1mu1at10ns 1s shown 1n table III. The
steady-state data were 1dent1ca1. Results were not affected by runn1ng the
s1mulat10n on one processor, two processors, or four. Only the effect1ve
ca1cu1at10n t1me was affected.

Effect1ve Calculat10n T1me

As was alluded to 1n the 1ntroduct10n sect10n of th1s report, the reason
for deve10p1ng a mu1t1processor s1mulator 1s to take advantage of any paral
le11sm 1n the s1mulat10n model for the purpose of decreas1ng the effect1ve
ca1cu1at10n t1me. The s1ng1e-processor s1mu1at10n requ1red 3.83 msec to com
plete one pass through all the ca1culat10ns. The dual-processor s1mu1at10n
requ1red 2.26 msec and the quad-processor s1mu1at10n requ1red 1.81 msec.

Thus, the dual-processor conf1gurat10n executed the small turbos haft eng1ne
s1mulat10n 1.7 t1mes faster than d1d the s1ngle-processor conf1gurat10n.
Ideally, all else be1ng equal, one could expect two processors to complete a
g1ven set of ca1cu1at10ns tw1ce as fast as 1f only one processor were ava11-
able. Pract1cally, th1s 1s not true. Some t1me 1s lost 1n mult1processor
overhead, pr1mar1ly because of data transfer requ1rements between processors.
Data calculated on one processor and needed by another requfres that the RTMPS
transfer that data over the Real-T1me Informat10n Bus and/or through shared
memory. These transfer operat10ns add to the effect1ve ca1cu1at10n t1me.
Also, the s1mulat1on equat10ns may not part1t1on equally between the two proc
essors. The effect1ve ca1culat10n t1me w1ll be d1ctated by the "cr1t1cal path"
t1me. Th1s latter effect w111 be d1scussed 1n the next sect10n.

The data transfer t1me among processors 1s even more pronounced 1n the
quad-processor conf1gurat1on. Ideally, four processors would complete a set
of ca1cu1at1ons four t1mes faster than only one processor. But for the RTMPS,
four processors execute the small turbos haft s1mu1at10n 2.1 t1mes as fast as

9

the s1ngle-processorconf1gurat10n. The "cr1t1cal path" execut10n t1me, wh1ch
1s 1.81 ms, is the dominant factor, as will be discussed in the next section.

The RTMPS multiprocessor system used for this study had relatively slow
16-b1t processors by today'sstandards. Using, newer 32-b1t microcomputer
boards will increase the processing speed by a factor of four or five. But
the existing system did demonstrate the effective time savings that can be
realized by taking advantage of paralle11sm present in a simulation model.

Partitioning and Effective Time Savings Limits

The "critical path" of a s1mulat1on consists of the serial str1ng of cal
culations wh1ch requ1res the longest execut10n time. For the quad-processor
s1mulat1on of the small turboshaft engine model, the "cr1t1cal path" resided
on processor B in f1gure 14. The last variable calculated on that processor,
NG, had the longest "can end" time as d1scussed 1n the Dual Processor Simula
tion section. Also, for each equation, the variable appearing to the left of
the equal s1gn was required as an argument in the follow1ng equat10n. On an
equation basis, the equation set residing on processor B could not be distrib
uted further among processors so as to be made to execute faster. If any of
the other three processors in the quad-processor simulation had a longer exe
cution time than processor B, using additional processors to take advantage of
any further parallelism in the simulation model would have an effect on the
effective calculation time. This is so because the "critical path" execution
time is the minimum time within which the simulation can be executed. In the
case of the small turbos haft engine model, though, this was not the situation.

Timing studies showed that using four processors to simulate the small
turbos haft engine model yielded an effective speed up of 2.1 over using only a
single processor. As previously stated, this was the fastest that the turbo
shaft engine model could be run on the RTMPS system using equation level par
titioning. Using more processors would have no further effect at reducing the
calculation time since the "critical path" of the simulation model was already
on one processor by itself, and the execution time of no other processor was
greater than this one.

Partitioning of simulation equations involves a number of straight forward
tasks. However, they are rather time consuming to carry out by hand, as was
done for this study. To automate these tasks, development of a general part1-
t1on1ng,algor1thm has been undertaken at the Lewis Research Center. The par
titioning algorithm will use timing information from the RTMPL translator to
determine "can start" and "can end" times for each equation and will .d1stribute
the equations among the available processors in optimum fashion. Details will
be presented in a forthcoming NASA report. .

CONCLUDING REMARKS

A small turboshaft engine has been modeled and simulated on the real-time
multiprocessor digital simulator (RTMPS), developed at NASA Lewis. A general
purpose, macro-based, high-order, multiprocessor language, RTMPL, was used to
program the RTMPS. An interactive multiprocessor operating system, RTMPOS, was
'used to load the simulation programs and to control the operation of the RTMPS.
The RTMPS hardware and the RTMPL and RTMPOS software had previously been

10

developed at NASA Lew1s. The RTMPS hardware and software proved to be useful,
re11able tools for s1mulat1on.

The results of th1s study demonstrated that the RTMPS can take advantage
of paralle11sm 1n a s1mulat1on model and s1gn1f1cantly reduce the effect1ve
calculat10n t1me for the s1mulat1on. Th1s result 1nd1cates that a d1g1tal
mult1processor s1mulator such as the RTMPS can be a v1able alternat1ve to large
ma1nframe d1g1tal and analog/hybr1d computers for ach1ev1ng real-t1me s1mula
t10n of complex dynam1c systems. In the current study, 1nvolv1ng a turboshaft
eng1ne model, an effect1ve t1me sav1ngs factor of 2.1 was rea11zed. Four
processors were used s1multaneously to evaluate the s1mulat1on equat1ons.
Other dynam1c system models, conta1n1ng more paralle11sm 1n the equat1ons,
would benef1t from us1ng add1t1onal processors and would exper1ence a greater
speedup. Part1t1on1ng at a level lower than the equat10n level (at the opera
t10n level, for 1nstance) m1ght also 1mprove performance. The use of state-of
the-art processors and busses 1s expected to result 1n s1mulators that can
prov1de real-t1me s1mulation speed for a w1de range of simulat10n applicat1ons.

REFERENCES

1. Blech, R.A.; and Arpas1, D.J.: An Approach to Real-Time S1mulat1on Us1ng
Parallel Process1ng. Proceedings of the 1981 Summer Computer S1mulat1on
Conference, AFIPS Press, Arlington, 1981, pp. 355-360.

2. Blech, R.A.; and Arpas1, D.J.: Hardware for a Real-T1me Mult1processor
S1mulator. D1str1buted S1mulat1on 1985, P. Reynolds, ed., Soc1ety for
Computer S1mulat1on, La Jolla, 1985, pp. 43-52.

3. Arpas1, D.J.: RTMPL - A Structured Programming and Documentat1on Ut111ty
for Real-T1me Mult1processor Simulat1ons, NASA TM-83606, 1984. (also pub-
11shed 1n the, Proceed1ngs of the 1984 Summer Computer S1mulation
Conference)

4. Arpas1, D.J.: Real-T1me Mult1processor Programming Language (RTMPL):
Users Manual, NASA TP-2422, 1985.

5. Cole, G.L.; Operat1ng System for a Real-T1me Mult1processor Propuls1on
System Simulator, NASA TM-83605, 1984. (also pub11shed 1n the, Proceedings
of the 1984 Summer Computer S1mulation Conference)

6. Cole, G.L.; Operat1ng System for a Real-T1me Multiprocessor Propuls1on
System S1mulator.~ Users Manual. NASA TP-2426, 1985.

11

TABLE I. - COMPARISON OF SINGLE-PROCESSOR AND MAIN-FRAME

COMPUTER STEADY-STATE RESULTS

s:rNGLE PFWCE!3Sm~ MAINFF~At1E
-_ _.--_ .. _ --_ -_ .. _. _._ _ .. _.

NG 415~"!Z. NG .ql.~:;l.b.

NP _ .. ~~l F14. NP _ .. ~~ :l:t. 6::~ •

P4l .. - :L7~l.10 P41 .. - :1.73.:1.4

P4~; _ .. ~l7 • :I.~l3 PLt~5 ._. :37.1.:1.6

T:3 1:1.6'1.0 T3 -- :!.l.6'1.1

wsa .1.b::l~~:I. WB3 • 11.1~)j:'l

TABLE II. - COMPARISON DF SINGLE-PROCESSOR AND DUAL-PROCESSOR

STEADY-STATE RESULTS

m:NGLE PFmC[SSClf~ HEElUL."Hl

BTBEtCH2.C.DHCHH4 (un
STBEl.CH2.C.DHQTH5 (LV)
STSE1CH2.C.DH41 (L.V) =
BTSE1.CH2.C.DH45 (LV) =
STSE1CH2.C.FAR4:1. (LV)
!:>T!:lEl.CH2. C. H2 (LV) ::::
sn;ElCI·-1~~.C.H~~~:; (LV) ::::
STSEl.CH2.C.Ha (L.V) =
gr!:lEtCH2.C.H41 (LV) -
STSEl.CH2.C.H44 (L.V)
STSE:l.CH~~. C. H'l~:i (LV)
BT!:lEl.CH2.C.H49 (L.V)

a. (?B:')7!3".;>O"':I~?~:;O 0 0 0 0 0[+0 0:1.
2.2b77734375000000E+001

:I..5932812500000000Ct002
6.50507B1.250000000E+001

1.6:1.91482543945312E-002
:I..2137500000000000E+002

1.9060937500000000E+002
2.68'10156722068787E+002

5.5428t25000000000E+002
3.9496875000000000E+002
3.0006250000000000E+OO~

3.1503125000000000E+002

!:lTS[2CH2.C.DHQTH4 (LV) -
STS[2CH~~ • C • [)1'IOTH~5 (LV)

3.9037890625000000E+001
:;~. ~?'6777:H37~:iO 0 000 OE·H) 0'1

1.5932812500000000[+002
6.5050781250000000E~OOl

1.619:1.4825439'153:1.2E-002

STSE2CH2.C.DH41 (LV) =
ST!:;E~:'CH2. C • DI·14::) (LV) ::::
STBE2CH2.C.FAR41 (LV)
!3TSE~?,CH~'~ • P • H~? (LV) ==
STBE2CH2. P • H~:'~:i (L~}) ::::
!3TBE2CH;~. P. H:,) (LV) ::::
STSE2CH2. C .I·Y! 1 (LV)
!3Tf:;E~?,CH~'~ • C .I·yt"l (L',I)
STSE2CH2.C.H45 (LV)
grSE2CH2.C.H19 (LV)

1..21a7500000000000[+002
1.9060937500000000E+002

2.6810156722068787E+002
5.5428125000000000E+002
3.9496875000000000E+OO~
3.8006250000000000E+002
3.1503125000000000E+OO~

TABLE III. - COMPARISON OF SINGLE-PROCESSOR, DUAL-PROCESSOR,

AND QUAD-PROCESSOR STEADY-STATE RESULTS

~[NGLE PROCESSOR RESULTS

STf:lE1CH~·~. C. THT('~41 (LV)::. 'I + :l 07421B750 0 0 () 0 0 llE·f·O 00
STBE:I.CH~~. C. THTA ... t~:j (LV) :": 2.94 :1. 9El63ll 0 051Z:t.23E+O 0 0
STSE1CH2.C.TORQC (LV) = 2.0E~30119650573730E+002
STBE1CH2.C.TORQ41 (LV) 2.072El6296El444El212E+002
!3Tf:lE:t.CH~~. C. Tmm4~:5 (LV)"" :t. • (;.> 0 n11534:l949"1·t"Z9E+ 0 0:2:
STBE1CHZ.C.T25 (LV) = 8.:t.26Z5~OOOOOOO()OOE+002

1.6001586911062500E+OOO STf:lE:I.CH2.C. T~~5(~2 (LV)
STBE1CH2.C.T3C (LV) = 1. 134969192504882ElE+003

DUAL PROCESSOR RESULTS

BTSE2CH2.C.THTA41 (LV) =
BTSE2CH2.C.THTA45 (LV) =
STSE~~CH~~. P • TmmC (LV) ::::
STSE2CH~? • C • TDFW4:1. (I .• V)
STSE2CH2.C.TORQ45 (LV) =

1.1074Z18750000000E+OOO
2. 94:t.986300 05:t.2:t.Z3E+0 00

2.0El30:t.49650573730E+002
~~. 07ZB62(;'>6B414B21~?E+O ll~!

1.9078153419191629E+OOZ
!3TSE2CH~?. P • T2!::; (LV) :":
ST!3EZCI··I;~. P • T~~~j(n (LV) •..
!3TBE~!CH~?. P. T:3C (LV) "'

8.:t.Z62500000000000E+002
1.600:t.5El69:t.1062500E+OOO

:t..134969:t.925048B2BE+003

G!llAD PFWCESSDF~ RESULTS

STBE1CH~I. C. THTM:t. (LV)::" 'I.:t. 07421B7500000() llE+OO()
BT!:;E'tCH::I.C.THTA4~j (LV) :": ~~.9.(t:l9B6300051;~1~~::IE+OOO

BTSE"I·CI··I~·~.P.TDF~I:~C (LV)::" ~?,.OB::l01.496~505737:30E+002

f:lT!3E.(ICH::I. P. TClRCFI:t. (LV) ~?. 07~~862(;.'6El4't.q82't2E+0 OZ
SnlE1CI··13.C.TDFm1~:.:; (LV)::' 1 .• (;.'07B1!.':j::141(;>1916;~9E+OO::>'
BTSE1CH2.C.TZ5 (LV) = 8.126Z500000000000E+002
rrrBE4CH2.C.T25QZ (LV) 1.60015B6914062500E+OOO
STBE'tCHZ.C.T3C (LV) = 1. 134969192501BB28E+003

--

--

Real-time information 6us

H H H
Real

Ch. 1 Ch. n time
inter- pre- ••• pre-

face proc. proc.

[H] - Shared - [H] memory

User
inter- Ch. 1 EJ face compo ••• compo
(FEP) proc.

H H H
Interactive information bus

Figure 1. - Real-time multiprocessor simulator (RTMPS) hardware
configuration.

CONSTANT:

HDIlB ::= Sl/1.~5,[182:1.0. J;
~(fmV3 :=: 51/0,[.97:1.74J;
nWA31 == B1./~i,[27 .'1'23];
PSTD :::: 51/4,[14.696],
TSTt> :::: Sl/10,[51t3.67J;
SF'ST3 =: 81/1,[.9~56];
SNDES :::: 5:1./9,[,(."17 4 J;
S002~) ".~ [)1/·_·3,[. 002~.:j];
58,{. = 82/9,(1).4J;
SH3T3 := 51/-2.,[.2496J;
5:)08 :::: Sl/12,C:1Il0.];
S329B :::: 51/2,[:3.298];
SOO~)6 ~." 52/4,[.08~=:i6J;
sn""11 = G1/--8,C .OOlS:.J26];
I(WGTt.:D ::: 81/-3,[.0876J;
t(V41 :::: 51/3,[6.17J;
STfW41 :::.:: Sl/13,[7.q29.3~.n;
SO:3? Sj'/-~hC .039J;
6115 ~": 82/1,[1.15J,
8240 =~ 81./-2,[.240];
8239 =: ~J1/-'2,[.239J;
STOF,OC ;::: Sl/1~h[7.q29.35];
SNGOT Sl/8,[214.~59];

89623 :::: ~)1/0,[.9623];
XW2CB :::: ~31./'tr4[O.O,3.0,.q.'i8,12.0J;
NW~~C[: :::: 11,2[2,0];
ZBZ:::: 81,/·-1,4[.01057,.01057,.0090,.0090J;
XW2C :::: [a/4,'1[3.0,8.3,10.0,12.0J;
NW;:!.C ~~ 11,2[2,8);
ZWXQ2 =: Sl/<h4[.OD51, .084f.H .OC15, .0779];

Figure 2. - Portion of RTMPL constant
declaration section.

DEL.2 = Sl/t.[/.'15795J;
HTTH2 ::II (31/1.[/.98957];
WS3 := 8Z/-2,[/.16314];
T3 = 82/1t.(/116lJ.1Ji
P3 := 52/9,[/18".5"];
f'S3 ... 82/10,[/176.42];
F'S3QZ = 51/5,(112.532];
T302 = 81/2,[/2.2919];
T3C = S2/11,(/116Jl.iJ;:
lunK OERIV~TIVE T3)IOIOK;

T3DT =:: SZ/10.2(/O.];:
NG = 52/16,(/11516.]i
NGC c: 82/16,(/41953.];:
f'CNGC = 81/7,(/93.856J;
WA2C = Sl/5,[/O.23JlSJ;
WAZ ... 52/.,,(/7.9714J;
(:1:=1 51/-1,(/O.J;
82 == 51/-1,[/.009J;
WB25 = 5Z/3,(/.07174Z2J;:
WA3 = 5Z/.q,C/7.8996];
WXQZ = 51/-3,(/.0846061];:
WE:3 =- 5Z/1,(/.69435J;
PAll = 82/9,[/173.11J;:
TERNi = 82/5,C/11.40J;
WA:3:1 =:: 51/4,[/7.2051J;
1l0KlK OEfaVATIVE WS3 *lK)I(;

WS3DT := 52/4,2(/0. J;:
H3 ::II 52/'1',(/282.15];
FAR~l = Sl/-~.[/.0180~28J'
H.q1 c: 51/10,[/599.88J;:

Figure 3. - Portion of RTMPl
variable declaration section.

EXEC: STFEEXEC[0];:

lK)llK ENG]:NE DYNAMICS lion:;

DELZ "" PZ/f'STD;:
faTH2 := SORT (TZ/T8TO) ;:
P3 =" Kf<QV3)1(I-IS3)1(f3;
f'S3 == SF'5T3)1(P3;:
PS3(]Z = F'S3/F'2;
T302: = FLJN1[Xpr~Cl,NF'RC1,ZTRC,F'S3Q2J;:
T3C II:: T3Q2*T2;:
NGC =:: NG/HTTHZ;:
F'CNGC =:: NGC/SNDES;
WA2e = NAPe Xf'RC, YPNGC, NF'RC, ZW2C, PS3QZ, F'CNGC];:
HA2 = (HA2.C/RTTH2) *DEL2;
Bl ::; FUNlrXF'NGC,NPNGC,ZB1,F'CNGCJ;
E:2: = FUN1[XH2CB,NW2CB,Z[:2,WA2CJ;
HE:25 = (Bl~B2)*WAZ;
WA~J "" WA2-WD25;
WXGZ = FUN1CXW2C,NW2C,ZWX(~2,WA2CJ;
WD3 = <WXOZ+S0025>*WA2;
WA31 = Smn(SWA31)1(WS3)1(P3-PAll»;
H3 == SH3T3*T3-GBi;
FAr~.ql :::: STFEl.CH1.P.WF/WA31;
H.ql = (H3-t+WHE:*FARil)/(Sl+FAR~1) ~
T41 "" S3290)l(H.ql+5300;
THTAi1 = STHil*T41+S085b;
W11 II' ~(WGTRE:*(F'Al1/SnRT(THTAAll»;

F'Ri~)Ql = F'45/F'~J1 ~
DH(:nH~ = FUN1[XF'r'GT.NF'RGT.ZDHGTtloPR~5tllJ'
DH~l = DHtlTH4"'THTMU
TORQ41 :::: «STRQA11)1(DHil)/NG)*WJtl;
T2502 = S115+S039)1(F'S3QZ;

Figure 4. - Portion of equations defining
simulation model.

c
0> .v;
Q)

"0
u.. :;:
u:
:;:

c
0> .v;
Q)

"0
<.!)
Z
C3 z

1.025

. 975

.925

.875

.825

.715'--_-'-__ 1.--_--'-_--''--_-'

1. 01

1.00

.99

.98

.97

o 8 16 24 32 40
Time, sec

Figure 5. - Engine fuel flow versus lime.

0 Main-frame results
RTMPS results

Time, sec

Figure 6. - Gas generator turbine speed versus
time. Single processor.

1.01

.99

c:
.~
~
Q.)

.97 "0

"" I-

'" I-

.95

1. 02

.98

c:
.~ .94
Q.)

"0
-' ..,.
Co.

~ .90
Co.

.86

0 Main-frame results
RTMPS results

Time, sec

Figure 7. - Compressor discharge temperature
versus time. Single processor.

o Main-frame results
RTMPS results

Time, sec

Figure 8. - Gas generator turbine inlet pres
sure versus time. Single processor.

f"'R4':jOl :;: P45/P.q 1 ;
:t(:tClIC. VERIFY F'3)Ion:;
:.':)101(VERIFy HS3 :U()I(;

WA31 == SQf~T(SI .. h-''\31)1(STSEZCHZ.P.WS3$1.(STSE2CH:2.P.F'3-F'41»;
FAR"ll ::: STSE2CH1.P.WF/I-IA3U
':t()(:t(VEFUFY H3)l(lIC.)I(;

H"ll == (STSEZCHZ.P.H3t-J{DHE:*rAH"l1)/(Sl+FAR.ttl);
PH == S3298*H"l1 +8300;
THT()11 == STH41.,.41·H;085b;
W"ll == 1(I-IGTf.:r:lK(P"l1/StU<:T(THTA41»;
DHIHH.tt == FUN 1 [XF'HGT, Npr~GT , ZOHGTG, PR4~m 1 J t
DH.ttl "" DHGTH4*THTA41;

lK)()I(f"'RECESSClH D .::«lK;

F'3 :::: ~mOV3*WS3l1(T3;
H3 == SI··13T3::.:T~-S84;
PS3 == sr'ST:llKF'3;
r'S3QZ =: PS3/F'Z;
RTTH2 == SORT (T2/TSTD) ;
NGC ::: NG/HTTH2;
PCNGC :::: NGC/SNDES;
WA2C == MAF'(XF'r~c, YPNGC, NF'r..:c, ZWZC, F'S3G2, F'CNGC J t
CELZ == PZ/PSTD;
WAZ == (WAZC/RTTHZ)lKDELZ;
)1(::«* VERIFY WX(]2)1(::«*;
WB3 == (STSE2CHZ.C.WXQZ+SOD25»)I(WAZ;
T25llZ == Sl15+S03(1')(F'S3GZ;

Figure 9. - Portion of dual processor equation split.

c:
0>

1.01

1.00

.99

.98

.97

.~ .96L-____ -L ____ -J ______ L-____ ~ ____ -"

'C (a) Single processor.
<.:> z
C3
z

.99

.98

.97

8 16 24
Time, sec

(b) Dual processor.

32

Figure 10. - Gas generator turbine speed
versus time.

40

1. 01

.99

.97

.95

c:
.~ .93
'" "0

~ 1. 01
~

.99

.97

.95

(a) Single processor.

8 16 24 32 40
Time, sec

(b) Dual processor.

Figure 11. - Compressor discharge tempera
ture versus time.

1. 02

.98

.94

.90

.86

c:
.~

.82 '" "0
-.:
~ 1. 02
-.:
c..

.98

.94

.90

.86

.82
0

(a) Single processor .

8 32
Time, sec

(b) Dual processor.

Figure 12. - Gas generator turbine inlet
pressure versus time.

40

STMT
TIME

218
770
211
Z'l6
122
204
590
132
~34

198
2131.,
~~92

598
610
122
30

598
130
974
1.42
22.q
3~6

122
1.2~?:
830
230
598
110
390
134
118
111
126
594

54
114
122
230
598
122
052
610
118
390

42
578
560
338
494
507.
130
204
204
196
198
184
206

OELZ = PZ/PSTOi
RTTHZ = SORT (TZ/TSTD) ;
WF = WFPH/SSEC;
1'3 = ~(RQV3::«WS3)KT3 ;
F'S3 = riPST3*:F'3;
F'S3Q2 = PS3/P~!;
T3llZ = FUNICXPRCl ,NF'RCl ,ZTRC,PS3QZJ;
T3C = T302:.:T2;
NGC -- NG/RTTHZ;
F'CNGC = NGC/SNDES;
WA2C ~= MAP[XF'F~C, YF'NGC, NPI:;:C, ZW2C, PS3Q2, peNce];
WA;~ = (WA2C/rnTH2) lKDELZ;
[:1 = FUN1[XF'NGC ,NF'NGC, ZB1 ,PCNGC];
[:2 = FUN1CXWZCB ,Nw2cn,ZB2 ,WAZe];
"m2~"5 = (Bl+B2)::«WAZ;
WA3 = WA2-\.·m25;
WXll2. = FUN1[XW2C, NW2.C ,ZWX02 ,HAZe];
1<(:3 .. (J,JXQ2+S00Z5)>>:WAZ.;
WA31 = SQRT(SWA31lKWS3)1(F'3-Polll») ;
H3 = SH3T3lKT3-SB4 ;
FAR41 == WF/WA31 ;
H41 :: (H3HmHB*FAF',41.)/(S1+FAH41);
Hi = S3Z9n*H411·~J308;
THTMl = 8TH"1 *T'f1 +5005(1;
W41 = f(WGmE::«(P111SIJRT(THTM1» ;
F"'F~,lf!}Ql - P,lfS/P41;
OH(JTH4 .. FUN1[XPRGT ,NF"RGT ,ZDHGTQ, PH45Q1 J;
OH41, = DHOTH't*THTA"1:1. ;
TOFU~'tl = «STR041*DH"1l) /NG)*W41;:
T2502 = Sl1.5+S039*F"S302 ;:
T25 = T2~:iQ2*T2;
H25 = 52",,0*T25,
HZ = S2:39*T2;
TORoe -- STOF'~Or::)I(((H:-J*WA3-·H2*WA2+H;~5)1(WB2~i) /NG) ;
H14 = H'tl-OH41 ;
H.qs = S9623)kH"l"l;
T"l5 -- S:3537*H"l5Hi17'15;:
Pk.t.t9QS = P49/P4'5;
W't5C = FUNi[XPRPT, NPHPT, ZWl5C, PIi:'tf"/Q'S J;
HiTA't5 = STH't5:«T't5+S0856 ;:
W'15 - (P"l5/S0ra (THTAJfS))xW"l5C;
mlQTH5 = rUNl.CXPfWT ,NF"'RPT ,ZD~IPTQ, pr~49Q5J;
DHq5 = DHQTI·i5*THTA'I5;:
TORQ't5 = ((Snm.q5)1(DH't'5) /NF') ~Wl5;
IH9 = HQ5-DH4S;
NGDT = SNGDT:«(TOFm"11-TOm~C) ;
NF'OT -- SNF'OT)I(TOI=l:O'l5-TORGLD) ;
P41DT = O<V'tl*T'tl»)I((WA-:::I1-W41+WF);
F'4~:;OT = (~'V't5*T45):' (W.q1-·W.qS+S7826*WXQZ:lKWA2) t
T3DT = ST3L.G*(T3C-T3) ;
WS3DT .. \olA3-WB3-·-WA31 ;
NG = ADAMS[NG,NGDT, DEL. TAT ,SrTNG J;
NP = AOAMS[NP ,NPDT, DELTA,. ,SF"TNPJ;
P41 = ADAMS[P't1 ,P410T ,DeL TAT ,SFTP.q1Ji
P45 = ADAMS[F'45, F'4~mT, DEL TAT, SFTP45J;
T3 = ADAMS[T3 ,T:mT, DELTAT ,SF'TT3J;
WS3 = ADAMS[WS3 , WS3DT , DEL TAT, SFTWG3 J;

"GAN
START"

246
368
572

1170
770

1204
1402
3538
1402
3530
41 l m
4270
3538
4136
2~6

0
1220
1444
1790
1912
203"

0
230

2034
2872

572
706
824

0
4300
~?:152
2206
2320

230
2'1'12
256't

230
256"1
3116
2682
4894
3806
2872
4136
1302
4300
5'172
4366
:l210
4630
1804
1430

"GAN
END"

Z1B
770
21"\
Z46
36n
~37Z

1170
1302
1204
1402:
35::18
3830
2000
4140
4270
4300
.q13/)
'l2b6
1220

142
144~

1790
1912
2034
2B72

230
828

2152
3262

706
B24
930
12A

4894
2206
2320
2'1'12

230
028

2564
3'1U)

840
2682
3806
2724
5472
4366
3210
41.:.30
11304-
4430
5676
4570
3406
,lffJ;~8

1980
4636

Figure 13. - "GAN START" and "GAN END" times (in compute cycles) for
simulation equations.

)!IDle« F'ROCE'JSOF~ A)lOIOI(j

:«:t: ENGn~C DYNAMICG :u(;
P3 "" ~(fWV3:tCW~)3*T:l;

f'S3 := ~;PS"3)1(P:J;

r'S:;;Q2 == PS3/P~!;

H',] == SWIT3*T3·-S0"1;
)I()I(lk XrEr~ HJ 1IOK*;

T2~':; == T2502::«T2;
H2.5 == U240*T25;
T3U2 ;~ FLJN1[XPRC1,NPf;:Cl,ZTf~C,f"S:JQ2J;

r:lC == T302)1(T2;
lklU(V[JG:FY PCNGC)l(ll(:t::;

Bl == FUN1[XNJGC,t~PNGC,ZE:l,STSElICH2.P.f'CNGCJ;
)I(:«:t:: UPDATE: DE:FUVATIVE ':::«)1(;
TEF~M7 == T:JC-T3;
T3DT =" ST3LG)I(TEF.:M7;
)I()I(lI(UPDf'.ITE INTE~GRATOn)IOk»:;
T3 ::; rtOAMSCT3,T3DT,DELTAT,SFTT3];
D[:L2 :: P2/PSTD;

HAlT :2 *»:)1(;
vcr-nry ~Az.C lIOI()I(;

»:)1(:« Vr:FUFY HTTHZ)I(~.)I(;

1,.lI;Z == (STSE'ICH2. P. W(~2C/STSE.qCH2. P. RTTHZ) :tCDEL2:;
)1010'(XH~T\ HA2)n,:«;
:« f.:EvcrnTY \.4f:;;~C :f(:«:t::;
WX02 rlltH[X~~2C, Nhl2C, Z\.4Xn2, STSF4CHZ. P .WA2C];
)t::)t::)1(XFCR WXQ2 *)1(*;
~J8~:) ;:: (\.4XQ2+S0025)lKHtiZ;
:':'.Ol(UPDATE OCHIVATIV[W'lK:t::;

lC«:V vnnFY WA3 lK)I(:«;
»":«)1(VEFnFY WA::U)In(:t(;

ws;mT ::: ~nSFlfDI2.P.hlfi3-WD3-""ST~;L.(iCH3.C.WA31;
:':'~:l(UPDA"T E INTEGRAnm :.::«:.:;
I"'S~~ =~ (\DN1S[WS3,~~S3DT,[)ELTAT,SF-TWO::;3J;

Figure 14. - Quad processor distribution of
simulation equations.

:t::«* ENGJNE DYNAMICS (CHIT:rCAL PATIn *:«;I(j
FHTH2 ;:;: SORT (TZ/TSTD) ;
NGC = NG/F.:TTH2;
f'CNGC NGC/£)NDES;
)1()1(VErUFY F'S3UZ)1()1(;
WAze ::: MAP[XPF~e, YF'NCC, NF"'r~c, zwzc, STSElfCH2. C. F'S3Q2., peNce J;
E:2 ::: FllN1CXW2CB,NW2C8,ZCZ,WA2CJ;
:tDU(VERIFY E:1. :':)Ir()I(;
»:'«)1(VeRIFY WA2)t:::tt:::«;

~.j[:25 ::: (STSE4CHZ.C.E:l+E:2»)I(STSC.qCH2.C.HAZ;
r~EVER:rFY WAZ)t()I()\(;

WA:3 :; cn;c 4CH2 • c. ~~A2-W[:25;
:':*)1(VERIFY H3)1(:«)1(;

::t:*::t: VnUFY HZ :'::«)1(;
)I()IOtC r.:EVETaFY HA2 lIO«*;
TERMZ =: STSE'tCHZ.C .H3*WA3-STSE4CH3.F' .HZ)I(STSE"1CtI2.C .j..tAZ;
)I()I(* VERItY H25)t::U(;

TO Rae STmwc*((TERMZ+STSE.qCH2.C.HZ5*WE:25)/NG);
)I()I(1I(UPDATE OEH:rVATIVC)1(:«)1(;

*** VER1TY TOF~tl'11 :.::«*;
TERM:3 ;:; STSE4CH3.F'. TOI:O:041-TORQCi
NGDT ::: SNGO"T lKTE::r~M3;
)t()I(Ur-'DATE INTEcr~ATOR lIO':;
NG =: ADt;MSCNG,NGDT,DELTAT,SFTNGJ;

Figure 14. - Continued.

F'fmCESSOR C lK)IOk;

)1(*)1(ENGINE DYNAMICS lKlKlK;
)1(*)1(VUUFY WS3)1(*)1(;

*** VERIFY T3 lIOK*;
P3 :;: ~{R(~V31t'STSE.qCHZ.C.WS3$1:t:STSEllCHZ.C.T3$1;
*)I(lK VERIFY P41)I()I()I(;
TEr~Ml =: P3-STSE.qCH3.P.F'''l1$1;
lK)I()I(RCVERIFY- WS3 ::«:11::)1(;
WA31 =: SORT(SWA3i*STSE4CH2.C.WS3$lXTERM1);
»::*)1(XFER WA31)I()I()I(;
llOI'* VERIFY WF)1(**;
FAR"ll :::: STSE4CH1.P.WF/WA3U
Jt:*)1(VCFaFY H3 Jr.**;
H"ll =: (STSE"ICH2.C.H3"I.mH[:)I(FAF.:"I1)/(Sl+FARlll);
T"ll =: 83298*H"I1+8308;
THTA'fl :;: sn"Ftll11:,-..ttl+S0El56;
lk VEfUFY DHQTH.q)1(;
DH41 := STSE"lCH3.F'.mmTH"l*THTA'fl;
H"l-q =: H"l1-"DH4U

Pl5 =: S:~537lKH"l5+S17"l5;

THTA"lS =: STH.q~.'i)l(T45+S0D56;

lI()I()I(VERIFY P45 *)1(*;
)1(*»: VEFaFY W"l5C lIOI(lk;
W"'l5 =: (STSE'tCH3.P.P1fS<J;1/S0Rl(THTA"'15))*ST~)E"lCH3.P.W45C;
lU()I(VEr.:IFY DH(]TH5 lK)I(*;
nH'f~"j == STSE"lCH:3.F'.OHOT.15lKTHTA"'lS;
TOR045 :;: « STR04S*DH1-5) INF') _Wlt5;
H41, == H.q~jHHDH45;

X)I(* UPDATE DERIVATIVE:)101')1(;

*** VERIFY TormLD)K**;
TERM1- :::: TORCFl-5-STSC4CH1. P. TORQLD;
NPOT :r:: SNPDT*TEF~M"'l;
)1(** UPDATe INTEGf,ATor.: *)I(lK;

NP :::: ADf."JMS[NP,NF'OT,DLLTAT,SFTNF'J;

Figure 14. - Continued.

*)1()1(PHOCESt)OH D ***;

*:4(:1(ENGINE DYNAMICS ***;
PF.:45Q1 = P45/P41;
DHQTH1 :;: FUN1[XF'r.:GT,Nf'F~GT,ZOHGTQ,PR.lt501Jt
PRJt9Q~~ = PJt9/PllS;
W.q5C = FLJN1CXPF\PT,NF'F"PT,ZH"l5C,pr':19Q5J;
mmTtl5 = FUNICXPRPT,NPRPT,ZmIPTQ,PR411'05J;
HZ =: SZ39*TZ;
)I()I(* XFEH HZ *)I(lK;

)I()I()I(WA1:T 81 *)1(*;
*** VERIFY THTA41)1(**;
W"'11 :;: ~(WGTRE:*(p41/SQr\T(STSE4CH3.c.nITA41»;

VERIFY DH41 *:4(*;:
)I()I(* VE:FnFY NG lk*lK;
TORQlfl = «STR041*S"SE1CH3.C.()H41)/S"SE4CH2.F'.NG$~»)t(H41;
)1(** XFER TOR041 ***;
lIe)l(* UF'OATE DEHIVATIVE **lk;:
*** VERIFY ~A31 ***i
TEF~M5 = STSE4CH3.C.WA31"H·~41;
)1(VERIFY T41. ***;
P41DT = (HV"'l1*STSE4CH3.C. T"ll »)I(TERM5+STSE4CH1.P,WF);
lk UPDATE INTEGRATOR *;
P41 = ADAMSCP41,f'"'llDT,OELTAT,SFTP41J;
)1(UPDATE OEr~IVATIVI! *)1(*;:
)l(XlI(VERIFY H.tt5)l(I()I(;

TERM6 = H"'l1-STSE"'CH3.C.W"l5~
)1(:'«* vcr.:Ir"y ,...,.5 *lk* t
)1(VERIFY WXOZ **)1(;
llOIOI(VnUFY WAZ)I{)I{)I(;

P4~jDT "" (.'V4S)l(STSI;:4CH3.C.T45)*(TERH6+"
S7B26l11:STSE4CHZ.C. WXQZ:t:STSE4CH2.C. HAZ) ;

UPDATE IN1EGRATDR ***;

Figure 14. - Concluded.

c:
c:n .;;;

'" "t::I
(!)

z
<:3
z

c:
.~
'" "t::I

~
~

c:
.~

'" "t::I

;:1
c..

~
c..

1.01

l.00

.99

.98

.97

1. 01

.99

.97

.95

.93
0

Time, sec

Figure 15. - Gas generator turbine speed
versus time. Quad processor.

Time, sec
40

Figure 16. - Compressor discharge temperature
versus time. Quad processor.

1. 02

.98

.94

.90

.86

.82L-__ -L __ ~~ __ -L __ ~~ __ ~

o 8 16 24 32
Time, sec

Figure 17. - Gas generator turbine inlet
pressure versus time. Quad processor.

40

1. Report No. 2. Government Accession No.

NASA TM-872l6
4. Title and Subtitle

Simulating a Small Tuiboshaft Engine in a Real-Time
Multiprocessor Simulator (RTMPS) Environment

7. Author(s)

Edward J. Milner and Dale J. Arpasi

9. Performing Organization Name and Address

National Aeronautics and Space Administration
lewis Research Center
Cleveland, Ohio 44135

12. Sponsoring Agency Name and Address

National Aeronautics and Space Admlnlstration
Washington, D.C. 20546

15. Supplementary Notes

3. Recipient's Catalog No.

5. Report Date

6. Performing Organization Code

505-40-74

8. Performing Organization Report No.

E-2876

10. Work Unit No.

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

Material not previously published, presented at the 1986 SCS Mu1tlconference,
sponsored by the Society for Computer Simulation, San Diego, California, January
23-25, 1986.

16. Abstract

A Real-Time Multiprocessor Simulator (RTMPS) has been developed at NASA Lewis
Research Center. The RTMPS uses parallel microprocessors to achieve computing
speeds needed for real-time engine simulation. This report describes the use of
the RTMPS system to simulate a small turbos haft engine. The process of program
ming the engine equations and distributing them over one, two, and four proces
sors is discussed. Steady-state and transient results from the RTMPS simulation
are compared with results from a maln-frame-based simulation. Processor execu
tion times and the associated execution time savings for the two and four proc
essor cases are presented using actual data obtained from the RTMPS system.
Included is a discussion of why the minimum achievable ca1cu1at1on time for the
turbos haft engine model was attained using four processors. Finally, future
enhancements to the RTMPS system are discussed including the development of a
generalized partitioning algorithm to automatically distribute the system equa
tions among the processors in optimum fashion.

17. Key Words (Suggested by Author(s))

Digital SimUlator; Parallel processlng;
Real-time Simulator

18. Distribution Statement

Unclassified - unlimited
STAR Category 07

19. Security Classlf. (of this report)

Unclassified
20. Security Classlf. (of this page)

Unclassified
21. No. of pages

"For sale by the National Technical Information Service, Springfield, Virginia 22161

22. Price·

End of Document

