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SUMMARY

A Real-Time Multiprocessor Simulator (RTMPS) has been developed at NASA
Lewis Research Center. The RTMPS uses parallel microprocessors to achieve
computing speeds needed for real-time engine simulation. This report describes
the use of the RTMPS system to simulate a small turboshaft engine. The process
of programming the engine equations and distributing them over one, two, and
four processors is discussed. Steady-state and transient results from the
RTMPS simulation are compared with results from a main-frame-based simulation.
Processor execution times and the associated execution time savings for the two
and four processor cases are presented using actual data obtained from the
RTMPS system. Included is a discussion of why the minimum achievable calcula-
tion time for the turboshaft engine model was attained using four processors.
Finally, future enhancements to the RTMPS system are discussed including the
development of a generalized partitioning algorithm to automatically distribute
the system equations among the processors in optimum fashion.

INTRODUCTION

Modern jet engines and their controls continue to become more and more
compliex. Over the years, engine designs have continued to increase thrust-to-
weight ratios. To gain this increased efficiency, the engines must operate
closer to surge conditions - conditions which can lead to catastrophic engine
stalls. Therefore, digital electronic engine controls are being developed that
provide close monitoring of engine parameters and precise control of fuel flow
and variable geometry.

Using a real-time simulation of an engine can facilitate the development
of these digital controls because it allows the actual control hardware and
software to be tested in a realistic fashion. If the real-time simulation 1is
implemented on a digital computer, the time required by the computer to com-
plete one pass through the equations representing the engine must not be
greater than the integration step size. However, because of the massive amount
of calculation required to model a complex engine, real-time simulation of
modern jet engines on a single processor requires a fast, dedicated main-frame
computer or simpiification of the engine model.

A Real-Time Multiprocessor Simulator (RTMPS) has been developed at NASA
Lewis Research Center to demonstrate the potential of using parallel micro-
processors for real-time engine simulation (refs. 1 and 2). 1In addition to the
RTMPS hardware, a structured, macro-based Real-Time Multiprocessor lLanguage
(RTMPL) (refs. 3 and 4) and a Real-Time Multiprocessor Operating System
(RTMPOS) (refs. 5 and 6) were developed to form an RTMPS programming environ-

ment. The RTMPL software allows engineering-ievel personnel to develop simu-

*Material, not previously published, presented at the 1986 SCS Multiconfer-
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lation programs for the RTMPS. The operating system allows the user to
interactively communicate with the RTMPS system

This report describes the use of the RTMPS system to simulate a small tur-
boshaft engine. The turboshaft simulation represents the first real applica-
tion of the RTMPS system. Therefore, the paper presents an evaluation of the
RTMPS from a user's point of view.

Key features of the RTMPL and RTMPOS and their use to develop the turbo-
shaft engine simulation are discussed and demonstrated. The process of pro-
gramming the engine equations in RTMPL and distributing the RTMPL equations
over one, two, and four processors 1s also discussed. Steady-state and tran-
stent results from the RTMPS simulation, obtained using the RTMPOS, are com-
pared with results from a mainframe-based simulation. Processor execution
times and the associated speed-up for the two and four processor cases are-
presented using actual data obtained from the RTMPS system. Included is a
discussion of how the minimum achievable calculation time for the turboshaft
engine model was attained using four processors. Finally, planned enhancements
to the RTMPS system are discussed including the development of a generalized
partitioning algorithm to automatically distribute the system equations among

the processors in optimum fashion.

THE REAL-TIME MULTIPROCESSOR SIMULATOR HARDWARE CONFIGURATION

A schematic of the RTMPS hardware is shown in figure 1. The RTMPS consists
of 2(n+1) processors (i.e., 16-bit, single-board microcomputers) 2n shared
memories (1.e., dual-port memory boards) connected via two data busses. Two
processors are reserved and the remaining 2n processors are available to oper-
ate on portions of the simulation. One reserved processor, designated the
Front End Processor (FEP), is the communication 1ink between the user and the
simulation. The FEP allows the simulation to run interactively. The user may
monitor the results coming from a simulation while 1t is running and may also
make changes to key simulation parameters "on-the-fly" while a transient is
being run. The other reserved processor, designated the Real-Time Extension
(RTX), 1s the communication 1ink between the simulator and external devices
such as actuators or controllers. The FEP and the computational (COMP) proc-
essors, are linked through the Interactive Information Bus. The RTX and the
remaining processors, called preprocessors (PREP), are linked through the Real-
Time Information Bus. In general, both the COMP and PREP processors can be
used for solving the simulation equations. For interactive simulation, only
the Real-Time Information Bus is used to transfer real-time data between the
processors. This is because the Interactive Information Bus may be busy

servicing user requests.

In each simulation channel, the COMP and PREP processors communicate
through the shared memory. If data are to be transferred between two COMP
processors, the data must be sent from the first COMP processor, through shared
memory, to its corresponding PREP processor, across the Real-Time Information
Bus to the PREP processor of the channel to receive the data, then finally
through that channel's shared memory to the COMP processor requiring the
information. Because of this round-about path, transfers of data between COMP
processors are avoided when formulating an RTMPS simulation.



THE REAL-TIME MULTIPROCESSOR LANGUAGE (RTMPL)

RTMPL 1a a structured, high-order language designed to facilitate the
development of error-free, time-efficient simulations in a digital multiproc-
essor environment (refs. 3 and 4). It is a macro-based language which offers
the advantage that any simulation written in the language i1s independent of the
processors on which it is to be executed. Simulation source code executed on
one set of processors need not be changed to be able to execute on another set
of processors. Only the macro-based language operations need be retargeted for
the new machine. An RTMPL language utility (translator) has been developed
that converts the RTMPL source code to a 1ist of macro calls.

‘An assembly language programmer performs a one-time systems task to develop
the optimum assembly code for the language operation macros. The execution of
the simulation is only as efficient as the pre-programmed macros.

For each processor (i.e., program) in the simulation, the user specifies
each constant and variable used in the program and their data type, precision,
scale factor, and value, as appropriate. The language utility keeps track of
the constants and variables associated with each processor, which values must
be sent from one processor to another, when a current value of each has been
calculated so that data transfer can begin, and when all processors have
completed the calculations assigned to them.

A small turboshaft engine simulation will be used later to further
11Tustrate features of RTMPL.

THE REAL-TIME MULTIPROCESSOR OPERATING SYSTEM (RTMPOS)

RTMPOS provides the user with a versatile, interactive means for control-
1ing and obtaining results from a simulation executing on the RTMPS. RTMPOS
resides on the Front-End-Processor (FEP) and serves as the interface between
the user and the simulator. It allows him to load, run, debug, and obtain
and/or monitor results from the simulation. The user may aiso use RTMPOS to
modify and specify the computational flow of the simulation while 1t is
executing.

The RTMPL translator produces "data base" files that contain information
needed for that interactive execution of the simulation. The RTMPOS uses the
data base information at run-time to allow the user to interactively execute
the simulation. RTMPOS also allows the data base to be edited; that is, it
allows changing/displaying values of constants and initial conditions on var-
iables at run time. This modified data base may then be saved on disk, if
desired, and any portion or all of it may be 1isted on a printer.

At run time the program control features of RTMPOS are used to load the
program modules from the disk files into the desired simulation channels and
to activate the execution of each of the program modules. Just as with an
analog or hybrid computer, three modes of program execution are available
through RTMPOS. They are: RUN, HOLD, and STOP. 1In the RUN mode all programs
are activated on the simulator and they run repeated update cycles of the
simulation until the user issues a STOP command or the simulator issues a halt
advisory. (A halt advisory results from an error condition in the simulator
and terminates the simulation execution.) In the HOLD mode, user specified
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variables in any or all program modules are held at current or preselected
values for a specified number of update cycles as requested by the user. 1In
the STOP mode, simulation execution is suspended and the simulator is halted.

A very useful feature of the RTMPOS is the creation of a permanent session
history disk file. This file saves all user commands, prompts, and messages
from the operating system during a user session on the simulator. Hence, the
entire session is self-documenting and the user can review the sequence of work
performed in the session. Successive session histories document the complete
development and debug process during the buildup of a complex simulation so the
user has a record of each step in the simulation development process. Further-
more, the commands in a session history file can be automatically read and
executed by RTMPOS, allowing the user to quickly return to a condition obtained
in a previous session.

Selected simulation parameters may also be sampled as a function of time
during any transient run of a simulation. These data are saved in a disk file
and they may be listed in tabular form or they may be transferred to a graphics
utility where they may be plotted to display functional relationships in visual

form.

Features of RTMPOS will be further illustrated using a simulation of the
small turboshaft engine model discussed in the next section.

THE SMALL TURBOSHAFT ENGINE MODEL

The process of testing and debugging the Real-Time Multiprocessor Simulator
(RTMPS) hardware and system software required the selection of a suitable
dynamic simulation model. It was decided to use an available aircraft engine
model. That model was felt to be representative of modern air-breathing
engines, yet simple enough to allow concentrating on the RTMPS system hardware
and software to be debugged. Simulating a more complex engine model would
hinder efficient debugging of the RTMPS hardware and software.

Selected ‘was a model of a small turboshaft engine in the 20 000 1b thrust
class. Included in the model are mathematical representations of the follow-
ing: a single-centrifugal-stage, five-axial-stage compressor that includes
variable inlet guide vanes and variable stator vanes for the first two stages;
an annular combustor; a two-stage, axial, air-cooled gas generator turbine
that drives the compressor rotor; compressor exit bleed air that cools the
turbine; a second two-stage turbine that is uncooled and that has a coaxial
drive shaft that extends forward through the gas generator turbine and connects
to the engine output shaft.

A digital computer simulation of the small turboshaft engine model had been
developed previously on a central, mainframe computer. The simulation had been
thoroughly debugged and was operational. 1In addition, a large base of data
from the simulation was on file. This information could be used to verify

results coming from the RTMPS.

As will be shown later, this small turboshaft engine model turned out to
be nearly ideal for verifying RTMPS operation. It was of sufficient complexity
‘to offer a challenging partitioning problem for the processors. 1In the process
of determining what equations should go on the various processors, much insight

4



was gained and generic partitioning algorithms were developed. Since the tur-
boshaft engine model only had six dynamic state variables, the simulation of
this engine model did not produce long execution times and bog down the check-
out of the RTMPS system.

For the purpose of checking out the RTMPS, results coming from the main-
frame simulation of the small turboshaft engine model were used as the standard
against which the RTMPS results would be judged.

RESULTS AND DISCUSSION

In the process of checking out the RTMPS hardware and software, three RTMPS
simulations of the small turboshaft engine were developed: a single-processor
simulation, a dual-processor simulation, and a quad-processor simulation. The
purpose of the single-processor simulation was to check the basic hardware and
software functions and to develop a data base of results from the RTMPS to be
used as a basis for further checkout of the system. The dual-processor simu-
lation exercised some of the interface software and hardware including the
ability of a computational processor and a preprocessor to exchange information
through a shared memory in a timely and effective fashion. The quad-processor
simulation further exercised the interface software/hardware system and demon-
strated the effectiveness of the dual-bus, parallel-processing concept. The
objective was to show that the RTMPS, together with the RTMPL high-order multi-
processor language and RTMPOS user operating system, provided an effective and
efficient environment for real-time simulation.

The Single-Processor Simulation

One of the first steps in developing an RTMPL simulation is the definition
of constants and variables. RTMPL is a structured language and, as such,
requires that all constants and variables used in the simulation be thoroughly
defined. The language allows no numeric constants to be used in the simulation
equations. Hence, each constant must be assigned an alphanumeric name in the
constant definition section of the program. A portion of the constant defini-
tions for the turboshaft engine model is shown in figure 2.

The definition section begins with the declaration CONSTANT. Following
this declaration is a 1ist of the constants used in the program. Notice that,
for each constant, its name is immediately followed by i1ts type and precision.
The type may be either integer (I) or scaled fraction (S). Integers are count-
ing numbers and do not have a decimal point. Scaled fractions are fixed point
numbers with an absolute value less than one. The precision is specified by
either 1, 2, or 3 with 1 signifying single precision and 2 and 3 specifying
double and triple precision, respectively. Scaled fractions require a further
specification, namely, a scale factor. Because the scaled fraction is Timited
to values between -1 and +1, a scaled fraction is obtained by dividing the raw
data value by some appropriate constant value called the scale factor. RTMPL
requires that the scale factor be a power of 2. So for a scaled fraction,
after the data type and precision, in the definition declaration, is a slash
(/) followed by the exponent of the power of 2 scale factor. Integers are not
scaled, so no scale factor exponent appears in their definition. Finally,
within brackets appears the value of the constant. If a data table is being



defined, the number of values making up the table i1s followed by brackets
holding the table values.

The definition for variables in the program follows basically the same
format. A portion of the variable definitions for the small turboshaft simu-
lation is shown in figure 3. The definition section begins with the declara-
tion VARIABLE. Following this declaration is a 1ist of the variables used in
the program. For each variable, its name is immediately followed by its type,
its precision, and 1ts scale factor exponent, if the variable is a scaled
fraction. This is exactly the same as was done for the definition of the pro-
gram constants. Within brackets for variables, however, are not only the var-
jable initial condition value, but also what is designated as a hold value.
This 1s the value that the variable will be set to by the RTMPOS if the vari-
able 1s chosen to be "held fixed" or "frozen" under the RTMPOS HOLD mode of
program execution. In figure 3, the slash (/) within the brackets signifies
that the number following is both the initial condition value and the hold
value for that variable. (A separate hold value for the variable would be -
specified by a number preceding the slash.)

The equations defining the small turboshaft engine model for this simula-
tion are contained in an executive section, a portion of which is shown in
figure 4. This section begins with the declaration EXEC, followed by the
executive name. Following this declaration is the collection of equations
making up the simulation. The operators used in these equations are defined
RTMPL operations and the program appearing in the executive section will not
change, no matter what computer system it is to be executed on. What will
change are the system macros which translate each RTMPL operation used in the
simulation into corresponding assembly code. RTMPL translates the EXEC code,
as input by the user, into assembly language source code corresponding to the
computer system to be used to execute the program. In addition to the assembly
language code, RTMPL automatically creates extensive documentation for the
user. Included in the documentation are references giving the relative loca-
tion of each constant and variable used in the program. The assembly language
source code file can then be assembled and T1inked to obtain an object file of
the program which can be executed on the target computer system. A file con-
taining the complete assembly code 1isting of the program to be executed is
created in the process. This file can be printed out to obtain a hard copy
record of the contents of each memory location used by the program.

The small turboshaft engine simulation was executed on the single processor
RTMPS at four typical steady-state operating conditions. Steady-state results
agreed very well with the steady-state results from the mainframe simulation
standard at the corresponding operating conditions. Typical results are shown
in table I where selected values at one of the steady-state conditions are
shown for the two simulations. The RTMPS results agree with the mainframe
standard to within 0.2 percent. These small errors occur mainly because the
RTMPS simulation uses scaled fraction arithmetic whereas the mainframe simula-
tion uses floating-point arithmetic. Also, the RTMPS simulation is run on a
Motorola Exormacs development system based on the M68000 microprocessor chip
with 16-bit memory. The mainframe computer was an IBM 370 with 32-bit memory.

Because of the excellent match between steady-state results from the RTMPS
and the mainframe standard, it was felt that the RTMPS hardware and software
were operating correctly. Also, RTMPL was proving itself to be an extremely
effective, high-order language. A careful examination of the program code
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revealed that 1t was producing assembly code that was 99 percent as efficient
as code produced by an experienced assembly language programmer. RTMPOS also
was proving itself to be a valuable tool. RTMPOS properly loaded the simula-
tion into the RTMPS, and allowed the user to monitor key parameters as the
simulation was achieving steady-state conditions.

A "stale data" error occurs when data from different calculation cycles are
mixed - for example, when a parameter value not corresponding to the current
calculation cycle is used to update parameters in the current cycle. Subtle
differences caused by these kinds of errors can mistakenly be attributed to
roundoff. To flag these, and other errors, if they existed, in comparing
single, dual, and quad-processor simulation results, engineering unit conver-
sions of the RTMPS memory contents were purposely printed in their entirety
using the RTMPOS. Printed in their entirety, corresponding engineering unit
conversions were expected to match exactly. The automatic unscaling of simu-
lation parameters by the RTMPOS was an extremely welcome feature of the oper-
ating system. The RTMPOS further allowed the user to change operating
conditions easily, and created a session history file in which to store the
results.

To examine the dynamic characteristics of the single-processor RTMPS simu-
lation and to check the data sampling and related features of the RTMPOS, a
40 sec transient was executed, starting at one of the four selected steady-
state conditions. The first 2 sec was a steadying out period, allowing the
simulation to reach a true steady-state condition. Then, during the next
7 sec, engine fuel flow was ramped from its design value to a value of 0.784
of design, which was held for an additional 18 sec. This was to allow the
transient response to settle out so that the simulation could again approach a
steady-state condition. Engine fuel flow was then ramped back up to 1ts design
value over the next 4 sec and that value was held for the remaining 9 sec of
the transient.

Figure 5 shows a graph of engine fuel flow versus time. Fiqures 6 to 8
show the corresponding time responses of gas generator turbine speed, compres-
sor discharge temperature, and gas generator turbine inlet pressure, respec-
tively. The agreement shown in figures 6 to 8 is representative of the
agreement found for other parameters in the simulation. The RTMPS transient
results agreed with the mainframe transient results to within 0.5 percent.

The Dual-Processor Simulation

As shown in the last section, the RTMPS single-processor results were in
excellent agreement with corresponding output from the mainframe standard.
This demonstrated the validity of the RTMPS single-processor simulation and
provided a basis for checking multiprocessor simulations of the small turbo-
shaft engine on the RTMPS.

When using a multiprocessing system, the simulation and its results should
remain unchanged; only the effective calculation time should be decreased.
Hence, if the single-processor equations are distributed among two or more
processors, the output data from the resulting simulation should agree exactly
with corresponding output from the single-processor simulation. Without exact
agreement, the system hardware and/or software would be judged to be not work-
ing properly.



To partition the simulation equations for solution on a multiprocessor
system, one must consider the execution times for each equation in the simula-
tion. The execution time for each equation in the single-processor RTMPS
simulation was obtained by summing estimated execution times for each operation
required to solve the equation. Hence, each equation then had an execution
time associated with it. Given this timing information, the small turboshaft
engine simulation equations could be divided to run on muitiple processors
thereby reducing the effective calculation time. The following criteria were
used to evaluate various partitioning schemes: 1) the time to complete the
calculations on each processor should be closely balanced; 2) processor use
should be maximized; that 1s, idle time waiting for data from other processors
should be kept to a minimum; and 3) the number of data transfers between

processors should also be kept to a minimum.

For the dual-processor case, the simulation equations were split as shown
in figure 9. The resulting calculation times for the processors were within a
few clock cycles of being equal. Neither processor wasted time waiting for
data from the other. And only nine transfers of data between processors were

required.

The nine data transfers between processors exercised the shared memory
between processors. When this simulation was first run on the dual-processor
RTMPS with the same transient used for the single-processor simulation, the
results did not agree with those coming from the single-processor simulation.
Several system software bugs and a timing flag error were discovered and cor-
rected before exact duplication of the single-processor results was achieved.
Without the capability of printing the engineering unit conversions in their
entirety, determining whether the two simulations agreed exactly would have
been a very time consuming task. It would have required accessing memory and
examining its hexadecimal contents to make sure that the simulation results
were the same. The operating system's ability to automatically convert these
hexadecimal numbers to very accurate equivalent engineering units allowed this
effort to be readily accomplished. It proved to be a particularly useful tool
in tracing the almost negligible differences between corresponding single and
dual-processor simulation outputs occurring midtransient. The criterion for
exact duplication of results, and being satisfied with nothing less, sparked a
long, persistent effort which led to the discovery and correction of the subtle

timing flag problem.

A portion of the steady-state output from the single and dual-processor
simulations is shown in table II. The corresponding results matched exactly.
Figures 10 to 12 show comparisons of time transients of gas generator turbine
speed, compressor discharge temperature, and gas generator turbine inlet pres-
sure, respectively, for the single and dual-processor simulations. The cor-
responding transients were exact duplicates for the two simulations.

Satisfied that the hardware and software were working for this dual-
processor case, further partitioning and distribution of the small engine
simulation equations could be pursued with confidence.

The Quad-Processor Simulation

To partition the simulation equations for the quad-processor RTMPS, 1t was
useful to compute "can start" and "can end" times for each equation in the
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single-processor simulation. The earliest that the calculation of an equation
"can start" is that time at which the caiculation of every parameter to the
right of the equal sign has been completed. The earliest the calculation of
an equation "can end" is its "can start" time plus its execution time. Equa-
tions with only constants or state variables (outputs of integrators) to the
right of the equal sign "can start" at time zero. 1In turn, subsequent equa-
tions (which depend on results from previous equations) "can start" at the
latest "can end" time of the parameters to the right of the equal sign. For
any simulation this information can be obtained using this purely mechanical
method. For the small turboshaft engine simulation, the information is shown
in figure 13.

The equation string culminating with the equation with the latest "can end"
time was placed on a processor by itself. The other equations were divided
among three other processors in a way such that the total execution time of
none of the three exceeded that of the first. The resulting distribution of
the equations among the four processors is shown in figure 14. Results
obtained with the quad-processor RTMPS matched exactly with the single and
dual-processor results. Time transients of gas generator turbine speed, com-
pressor discharge temperature, and gas generator turbine inlet pressure are
shown in figures 15 to 17, respectively. The transients shown in these figures
are exact duplicates of the corresponding single and dual-processor transients
shown in figures 10 to 12. A portion of the steady-state output for the
single, dual, and quad-processor simulations is shown in table III. The
steady-state data were identical. Results were not affected by running the
simutation on one processor, two processors, or four. Only the effective
calculation time was affected. )

Effective Calculation Time

As was alluded to in the introduction section of this report, the reason
for developing a multiprocessor simulator is to take advantage of any paral-
lelism in the simulation model for the purpose of decreasing the effective
calculation time. The single-processor simulation required 3.83 msec to com-
plete one pass through all the calculations. The dual-processor simulation
required 2.26 msec and the quad-processor simulation required 1.81 msec.

Thus, the dual-processor confiqguration executed the small turboshaft engine
simulation 1.7 times faster than did the single-processor configuration.
Ideally, all else being equal, one could expect two processors to complete a
given set of calculations twice as fast as i1f only one processor were avail-
able. Practically, this is not true. Some time is lost in multiprocessor
overhead, primarily because of data transfer requirements between processors.
Data calculated on one processor and needed by another requires that the RTMPS
transfer that data over the Real-Time Information Bus and/or through shared
memory. These transfer operations add to the effective calculation time.

Also, the simulation equations may not partition equally between the two proc-
essors. The effective calculation time will be dictated by the "critical path"
time. This latter effect will be discussed in the next section.

The data transfer time among processors is even more pronounced in the
quad-processor configuration. Ideally, four processors would complete a set
of calculations four times faster than only one processor. But for the RTMPS,
four processors execute the small turboshaft simulation 2.1 times as fast as
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the single-processor configuration. The "critical path" execution time, which
is 1.81 ms, is the dominant factor, as will be discussed in the next section.

The RTMPS multiprocessor system used for this study had relatively slow
16-btt processors by today's standards. Using, newer 32-bit microcomputer
boards will increase the processing speed by a factor of four or five. But
the existing system did demonstrate the effective time savings that can be
realized by taking advantage of parallelism present in a simulation model.

Partitioning and Effective Time Savings Limits

The "critical path" of a simulation consists of the sertal string of cal-
culations which requires the longest execution time. For the quad-processor
simulation of the small turboshaft engine model, the "critical path" resided
on processor B in figure 14. The last variable calculated on that processor,
NG, had the longest "can end" time as discussed in the Dual Processor Simula-
tion section. Also, for each equation, the variable appearing to the left of
the equal sign was required as an argument in the following equation. 0On an
equation basis, the equation set residing on processor B could not be distrib-
uted further among processors so as to be made to execute faster. If any of
the other three processors in the quad-processor simulation had a longer exe-
cution time than processor B, using additional processors to take advantage of
any further parallelism in the simulation model would have an effect on the
effective calculation time. This is so because the "critical path" execution
time is the minimum time within which the simulation can be executed. 1In the
case of the small turboshaft engine model, though, this was not the situation.

Timing studies showed that using four processors to simulate the small
turboshaft engine model yielded an effective speed up of 2.1 over using only a
single processor. As previously stated, this was the fastest that the turbo-
shaft engine model could be run on the RTMPS system using equation level par-
titioning. Using more processors would have no further effect at reducing the
calculation time since the "critical path" of the simulation model was already
on one processor by itself, and the execution time of no other processor was

greater than this one.

Partitioning of simulation equations involves a number of straight forward
tasks. However, they are rather time consuming to carry out by hand, as was
done for this study. To automate these tasks, development of a general parti-
tioning algorithm has been undertaken at the Lewis Research Center. The par-
titioning algorithm will use timing information from the RTMPL translator to
determine "can start" and "can end" times for each equation and will distribute
the equations among the available processors in optimum fashion. Details will
be presented in a forthcoming NASA report.

CONCLUDING REMARKS

A small turboshaft engine has been modeled and simulated on the real-time
multiprocessor digital simulator (RTMPS), developed at NASA Lewis. A general
purpose, macro-based, high-order, multtiprocessor language, RTMPL, was used to
program the RTMPS. An interactive multiprocessor operating system, RTMPOS, was
used to load the simulation programs and to control the operation of the RTMPS.
The RTMPS hardware and the RTMPL and RTMPOS software had previously been
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developed at NASA Lewis. The RTMPS hardware and software proved to be useful,
reliable tools for simulation.

The results of this study demonstrated that the RTMPS can take advantage
of parallelism in a simulation model and significantly reduce the effective
calculation time for the simulation. This result indicates that a digital
multiprocessor simulator such as the RTMPS can be a viable alternative to large
mainframe digital and analog/hybrid computers for achieving real-time simula-
tion of complex dynamic systems. In the current study, involving a turboshaft
engine model, an effective time savings factor of 2.1 was realized. Four
processors were used simultaneously to evaluate the simulation equations.
Other dynamic system models, containing more parallelism in the equations,
would benefit from using additional processors and would experience a greater
speedup. Partitioning at a level Tower than the equation level (at the opera-
tion level, for instance) might also improve performance. The use of state-of-
the-art processors and busses is expected to result in simulators that can
provide real-time simulation speed for a wide range of simulation applications.
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TABLE I. - COMPARISON OF SINGLE-PROCESSOR AND MAIN-FRAME
COMPUTER STEADY-STATE RESULTS

GINGLE FPROCESSOR MATNFRAME
NG = 41522, NG = 41516,
NE = 21194, NF = 21163,

FAl = 173.18 P41 = 173.14
P45 = 37,133 P45 = 3740116
T3 = 1164.0 TE = LLé4.0
WEB = 16321 W3 = 14314

TABLE II. - COMPARISON OF SINGLE-PROCESSOR AND DUAL-PROCESSOR
STEADY-STATE RESULTS

SINGLE PROCESSOR RESULTS

STSELCH2 L CoDHRATHA (LAY = 3,9887890425000000E+001
& (‘I 12« CADHATHS (LYY = 2 S ZOEZ77IABZEO00000E+001
120, DHAL LV = 1. B93281250000000 (]I 4002
2.CDHAT (LYY = 6, G05H07810
2o FARAL (LUY = L 4191482043945
.(.‘II JOWHZ (V) l.?1 F7E00000000000E+00
LTOH2 0 HES (LYY - LPNAH0PBZEO0000000E (]0
CHZ.CoH3 V) = 2?. «6BR01567 22068787
CH2 .0 ML AV = 5542 S300000000¢ _'I' . 4
2oCHAA (LYY = Z.9426875000000000E+002
2.CHAS (LMY = 3800 0000000000002
LCHZ . CoHA9 (LYY = 3. 15031250000000008+002

NUAL. FROCESSOR RESULTS

H2Z L CLDHATHY (LW
2.0.DHATHE (LW
20 DHAL (LYY ==

HZ L CLDHAE (LW &

H2 G FARGL (LYY = l uﬂ Q1L “Hﬂ?' A4

P F G HZ (LY = LL.ZLBTS000N0000000E+00E

2P HES (LUY = 1.904609375

H.«..I' HE (LYY == x..-xé 3 401 w1y

2.0 HAL (LYY ==

2 i... cHA% (L) = 'l

ZoCHAS LV = 3.80068

HZLCHF? (LMY = 31503

AOHE7ETEFD0E

GO00000Q0E+O0L
S000000000E+002
Oa00000000E+002
00000000000




TABLE III. - COMPARISON OF SINGLE-PROCESSOR, DUAL-PROCESSOR,
AND QUAD-PROCESSOR STEADY-STATE RESULTS
SINGLE FROCESSOR RESULTS

STOSELCHZ.CoTHTA4L (LYY = 4, 1074218750000000E+009
CHZ COTHTA4E (LYY = 2,9419863000512123E+000
SEICHZCOTORQC (LYY =  2.0830149650573730E+002
CHZ.CLTORA4Y V) = 2,0728629484448242E+002
CHZL CL.TORRAS (V) =  1.,20781534919494629E+005
CHZ.C.T285 (LV) = 8,12462500000000000E+002
S1CHZ.CLT2G02 (LYY = 1.4001584914062500E+000
STHELCHZ.CL. T30 (LUY =  1.,13496919250486828E+003

DUSL. FROCESS0R RESUL.TS

CHZ2.C.THTA41 (LYY = 4,1074218750000000E+000
CHZ WO THTA4E (LYY = 2,9419843000512123E+000
CHZ P TORAE (LYY =  2.0830149450573730E+002

CHZ.C.TORQAL (L) = 2.,07286294684418242E8+002
CHZ.CLTORAAD (LYY = 1. 20781534194944629E+002

STOEZCHZ . FL.T2S (LYY = B.A242500000000000E+002
ST SHZ WP T2802 (LV)Y = 1,4001584914062500E+000
8T SHZW P T30 (LYY = 1.134946219250488268E+0073

QuUAD FPROCESSOR RESULLTS

STEEACH3C.THTA4L (LYY =  4,1074218730000000E+000
STEEACHI3 W CL.THTA4S (LV) = Z,9419863000312123E+000

eT IOHZ oF  TOROBC (LYY = 2, 0830142650573730E+002
5T CH3 P TORA4L (LYY = Z,07286294684498242E+002

ST CH3.C. TORAAS (LYY = 1.2078L33919494462Z9E+004
STEEACH2.CL TZE (LU = 8.1242500000000000E+002
GTEEACHZ CLT25Q2 (LV) =  1.4001584214062500E+000
STEEACHZ .CL TR0 (LYY = 1, 1349671925048828E+003
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Figure 1. - Real-time multiprocessor simulator (RTMPS) hardware
configuration.
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Figure 2. - Portion of RTMPL constant
declaration section,



VARTAELES

DEL2 = S1/1,[/.9579515
RTTH2 = $1/1,0/.999%7 1}
WS3 = B2/-2yL/.163141%
T3 = §2/11,0/1164.13%
F3 = §2/9y(/184.541F
FS3 = 52/10,L/176.421;
FS2QR2 = 81/5,0/12.5322%
T302 S1/250/2.29191
T3C G2711,0/71164,123
XXX IVATIVE T3 xxx3
T3DT = G2/10.20/0, 13

NG = S2/146¢L/415146.1%
NGC = $2/165L/4195G3, 13
FCNGC = S1/7¢L/93.8561%
WA2C = S1/5,0/B.234513
HAZ = S2/4+0L/7.971412%

El = 6§1/~1,C/0.,3%

B2 = G1/-1,L/.0091}
WEB2S = §2/3,0L/.07174221%
HA3 = S2/4y0/7.089961%
WXQ2 = §1/-3+L/.084560613}
WE3 = S2/4,C/.6943510%
FA1 = 52/9:0/7173.141%
TERM1 = S2/5+L/11.4025
HWA31 = S1/4»0/7.208103
*xxX DERIVATIVE WG3 %xxx;
HS3DT = G2/4»20/0.1%

H3 = §2/9,C/282.,151}
FARAL = S1/-4:0/.01804282;3
H41 = S1/10,L/599.6881%

Figure 3. - Portion of RTMPL
variable declaration section,

EXECS STFEEXECL0]3

xxx ENGINE DYNAMICS xxxi

DEL2 = P2Z/FSTDF

BART(T2/TSTDY 3

KRAVIXWE3XTI 3

SPSTIXEI S

FE302 = FS3/F23

T302 = FUNILXPRC1eNFRCL ZTRC,FS3Q2135
T3C = T3Q2xT23

NGC = NG/RTTHZ;

FOCNGC = NGC/SNDESS

WAZC = MAFLCXFRC YFNGCy NPRC » ZW2C yPS3A2, FCNGC 13
HAZ = (WAZC/RTTH2)XDELZ2:

E1 = FUNL1LXFNGCyNFNGCsZEL,FCNGC I3
FUNLDXW2CE s NW2CE» ZB2, WAZC D}

= (B14B2)XWAZ}

HAB = WAZ-WEZT

WXQ2 = FUNLLXWZ2CyNW2Cy ZWXAZy WAZC D3
HWE3 = (WXQZ+S0025)%xWAZ}

WA3L = SQRT(SWASIXWSIX(F3-F41))i

H3 = SH3TIXT3I-584%

FARAL = STFELCHL.PHF/HA313

H41 = (H3+KDHEXFAR41)/(S1+FAR41)}
T41 = S3298XHA1+53083

THTA41 = STHE1IXT41+5085463%

WAL = HUGTREXC(FA1/SQRT(THTA41)) 3§
FRA%Q1 = F45/F41%

DHATHA = FUNIUXFRGTyNFRGT» ZDHGTQR.FRASQL 14
DH41 = DHATH4XTHTAA41:

TORQ41 = ((STRAALXDH41)/NGIxXWAL3
T25G2 = S115+5039%FS30Q23

Figure 4. - Portion of equations defining
simulation model.
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ok FROCEGSOR A xxx3

FRATQL = PAS/F413

KK VERIFY F3 wxx;

KX Y WG3 xax

WA31 SORT CHWASIXSTSEZCHZ P WE3$1X(STSE2CHZ, F F3~F41) )}
FAR4L = STSEZCHL.FJHF/WASLS

kX VERIFY H3 #oxx3

HA1 (STSEZCHZ P HI+KDHEXFARAL) /(S1+FAR41) 5
T4l = S3298xH41+53080;

THTA4L = STH41XT41450854

WAL = KUGTREX(F41/80RT(THTA41) )3

DHRTHA = FUNLCXFRGTsNFRGT s ZDHGTQPRASA1 D5
OHA1 = DHATHAXTHTA41:

xxK PRECESSOR [ xxx3

F3 = KROGV3XWS3IKT3IS

H3 = SH3T3IXTI-5a43

FS3 ST3*F35

FE302 FS2/F2%

RTTH2 = SORT(TZ/TSTD)
NGC = NG/RTTHZS

FCNGC = NGC/SNDESS

WAZE MAFLAFRC )y YPNGC s NFRCy ZW2Cy FS3A29 FCNGC 13
DEL2 PL/FGTD:

WAZ = (WAZC/RTTHZ)*DELZ}

w¥xX VERIFY WXQ2Z wxx3

WED = (GTSE2CHZ, C,WXR2+S0025)XKHAZ

T2GR2 = S5115+G039%XFS3A23

Figure 9. - Portion of dual processor equation split,
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Figure 10. -~ Gas generator turbine speed
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DELZ = F2/FSTDS
SART(T2/TSTD) §
H/GSECS
{RAVIXWG3RTI

T3aRzZ FUNICXFROL P NFRCLy ZTRCFS2Q2T3
T3C = TIAZXT23
NGC = NG/RTTHZ2S
FONGC NGC/SNDES 3
WAZE = MAFLXFRE » YFNGC ¢ NFRC s ZW2C yFEIR2»PENGC 13
WAZ = (WAZC/RTTH2)XDELZS
El = FUNILXFNGC»NFNGCs ZB1yPCNGC I3
B2 = FUNICXH2CE yNW2CE y ZE2y WAZC DS
225 = (R14E2)xWAZS
HWAB = WAZ-WEDSS
= FUNLILXWZC s NW2C » ZWXD2 rWARC TS
CWXQR2+S0025)%WAZ S
GART(SWASLIXUSI®(F3-F413) ¢
H3 = SH3T3xT3I-6843
WF/WA3L3
HA1 = (H3+KDHEXFARAY1) /7 (S1+FARYL) S
T4l = G3298xHAL+G3083
THTA41 = STHALXTAL+508%56+
Wel = KWGTREX(P41/SART(THTA41))}
FR45QL = P45/P415
DHRTHA = FUN1LXFRGTyNPRGT » ZDHGTOY FRASQRL I3
DH43 = DHATHAXTHTA41 3
TORR4AL = ((STREA1XDHA1) /NG *W41;
2502 = S115+S039%FS302 4
T25 = T2002%T23
H2G = S240%T253
HZ = S239%T2;
TORQC = STORQCXCCH3XWAB-HZXRAZHHZGXWEZS ) /NG §
H44 = HA1-DHA13
HAS = S2423%H443
TA4S = SBEB7xHAS+HL7 45
FA9/F453
HASE = FUNLICXFRETNFRPT » ZWASC » PRAPQE D5
THTAAS = STHASXTAG+G08D63
W45 = (FAS/SART(THTA45) YXHASCH
DHATHS = FUNILXFRPTy NFRFT» ZDHETQy FRA9Q5 5
DHAS = DHRTHIXTHTAMGS
TORQAS = ((STRARGXDHAS ) /NF)IXH453
HA9 = HA5-DHASS
NGDT = SNGDTx(TORQ41-TORQC) §
NFDT = SNFDTX(TORQAS-TORGLD) §
F41D7 (HUALIXT AL X (MATL-WA14WF ) §
FAGDT = (KUAGXKTATI X (WAL-WAGHG78ZHXWXQAZKWAZ) ¢
T3DT STALGX(TIC-TI) §
WS3DT = WAZ-WED-WA3L1;
NG = ADAMSLNGyNCDTsDELTAT+SFTNG 13
NP = ADAMSCNFy NFDT» DELTAT y SFTNP 33
F41 = ADAMSLP4A1,F41DTyDELTAT,SFTP41 13
F45 = ADAMSCF4S,FASDT»DELTATSFTFAGD;
T3 = ADAMGLTA TIDT»DELTAT»SFTT3 2%
WE3 = ADAMSLHSI WG3DT(DELTATSFTWEI S
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Figure 13. - ""CAN START' and ""CAN END'' times (in compute cycles) for
simulation equations.



xxx PROCESSOR A wxx;

XK ENGIHE DYNAMICS %xX3
F3 = RRQUIXWS3XTI
STEXF3 3
SI/P2E
TIXT3-G843
XORX XFER H3 xxx3
= S118+S03PKFS3IA23
T2OREXT25
S2H0xT257
FUNIEXFRCL s NFRCLy ZTRC,PS30213
T302xTZS
XK VERTFY FCNGC xxx3
Bl = FUNLLXPNGCy NFNGCy ZEL» STEEACHZ P W FUNGC D3
KK F

T3 = ADAMSLT3sT3DTyDELTAT»SFTT3IS
F2/FSTD}

IFY WAZE xxx3i

WAZ = (STSEACHZ.F WAZC/STSEACHZ F W RTTHZ) %DELZ3
XFER WAZ XX}
IFY WAZ2C xx%3
FUNLEL XWZC y NW2C » ZWXAZ s STSEACH2, B WARZE T3
ROWXQZ wxxs
(UXQZFS0025) *Wn2 i
ATE DERIVATIVE *xx3
Y WAG XXX
*EK UERIFY WAZL x&x3
WEBDT SEACH? Py WAS-WEB-GTSE4ACHD . CaWa3L:
*¥&K UFDATE INTEGRATOR xokx3
WSE = ADAMEL NG, HS3DTsDELTAT»SFTHE3 M}

Figure 14, - Quad processor distribution of
simulation equations.

xxx FROCEGSOR £ woxxg

axx ENGINE DYNAMICS (CRITICAL FATHY Xxx3

RTTHZ SART(T2/TSTDY 3

NGO NG/RTTH2+

FCNGC = NGC/SNDESS

*XxX VERIFY FG3Q2 kKX

WAZC = MAPLXFRE YPNGCyNFRCy ZW2Cy STEEACHZ . C FBIN2yFCNGC T4
B2 = FUNICXWZCE» NW2CEs ZE2yWAZC I3

xx% VERIFY E1 %XX3

X VERIFY WAZ xwcxj

WE2S = (STSEACH2,C,EL1+BE2)XSTSEACH2.Ca WAZS

Toaokk REVERIFY WAZ XX
Wa3 STOEACHZ . C WAZ-HE2S S

*¥X VERIFY H3 xxx3
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FY WAZ xXxx3
STEE4CHZ + C H3XWAZ-STSEACHS + P s HZXSTSEACHZ C o WA
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NG = ADAMSLCNGy NGDTsDELTATy SFTNG 1S

Figure 14, - Continued.



*xx FROCESSOR C oxxx;

wxx ENGINE DYNAMICS xxx3

wxx VERTFY WS3 xxx3

*xx VERTFY T3 xxxj

F3 = KRAV3XSTSEACHZ 2C WS3$1RGTEEACH2. 0, T3%1 5
wxxkx VERIFY P41 xxxj

TERML F3-STHEACH3. P F41%1}

*¥x¥ REVERIFY. WS xxx}

HWA31 = SORT(SHASIXETSEACHZ .C WS3BIXTERML) §
wxxx XFER WAZL woxons

X¥x VERIFY WF k%3

FAR41 STEEACHL JF W WF/HABL

*xx VERTFY H3 wxx3

HA41 = (STSE4CHZ. G H3+KDHEXFARYL) /{S1+FAR41) §
T4l = S3298xH41+83083

THTA4L = STHALXTAL+S08546 3

wxx VERTFY DHATH4 %xx3

DHA1 = GTSEACH3.F.DHRTHAXTHTA4L S

H44 HA1-DH41 3

87623xH443

S3TI7XHAT+EL74535

THTAS = STHAGXTAG+S08546F

xxx VERIFY P45 »xxi
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XK VERIFY DHATHS »xxx3

DHAS = STSEACH3.F.DHATHIXTHTAASS
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HA? = H45-DHASH

wxx UFDATE DERIVATIVE X%

*xxx VERIFY TORQLD @xx3

TERMA = TORQAS-STSEACHL . F. TORQLD 3

NPDT = SNFDTXTERMA}

*xx UFDATE INTEGRATOR x%x3

NP = ADAMSLNF y NFDTyDELTAT » SFTNF I3

Figure 14, - Continued.

*¥xx FROCESSOR D xxx3

xxx ENGIME DYNAMICS Xxx3

FRA%5GL = F45/F413

DHATHA = FUNLLXFRGTyNPRGTy ZDHGTQ,PRASQL 1

FRAPQS = FPAP/F453

WASE = FUNILLXF s NFRFT» ZWASC» FRA9Q5 13

DHATHS = FUNICXFRFTyNFRFT» ZDHFTQy FRA?GS 13

H2 = SZ3PxT2}

xxx XFER HZ %xxx3

xxx WALT 84 xxX3

*¥xx VERIFY THTAGL xxxj

WAL = HUGTREX(F41/SQRT(STSEACH3Co THTA41)) 3§

*x% VERIFY DHA41L xxx3

xxx VERTIFY NG xxx}

TORQ4L = ((STREALXSTSE4ACH3.C.DHA1) /STSEACH2Z . F NGS)LIXWAL S

xxx XFER TORQ41 xxx3

xxk UPFDATE DERIVATIVE »xx;

KK VERIFY WAZL XXX§

TERMS STSE4CH3,.C . WAZ1 W41}

ok VERIFY T41 Xxx;

FA41DT = (KV41xSTSE4ACH3.C.TA1)X(TERMS+STSEACHL JF  JWF) 3

e UFDATE INTEGRATOR »xx;

P41 = ADAMSLFAL,F41DTyDELTAT,SFTPAL1 D5

*xx% UFDATE DERIVATIVE xxx;

*xX VERIFY W45 xxx3

TERMS = WA1-5TSE4CH3.C.HASS

xxx VERIFY T4%5 xxx;

axx VERTFY WXQ2 wxxi

XXk VERIFY WAZ Xxx3j

FAESDT = (KUASxSTSEACH3 . C. TAS) X (TERMA+
57826XGTSEACHZ  C WXQZXSTEEACH2.C HAZY §

*xx UFDATE INTEGRATOR xxx3
P45 = ADAMSLPAS,FATSDT DELTAT»SFTPASYS

Figure 14, - Concluded.
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