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SUMMARY

An investigation of the properties important for the design of stochastic adaptive
controilers for the higher harmonic control of helicopter vibration is presented.
Three different model types are considered for the transfer relationship between the
helicopter higher harmonic control input and the vibration dutput; 1) Nonlinear,

2) linear with slow time varying ccefficients, and 3) linear with constant
coefficients. The stochastic contrcller formulations and solutions are presented

for a dual, cautious, and deterministic controller for both linear and monlinear

transfer models.
Extensive simulations are performed with the various models and controllers. It

is shown that even for a linear model the cautious adaptive controller can sometimes
result in unacceptable vibration control including an apparent controller diver-
gence. This is found to occur for both constant parameter conditions representative
of steady flight and time varying parameter conditions representative of maneuvering
flight conditions.

A new second order dual controller is developed which is shown to modify the
cautious adaptive controller by adding numerator and denominator correction terms

to the cautious control algorithm. The new dual controller is simulated on a
simple single-control vibration example and is found to achieve excellent vibration

reduction and significantly improves upon the cautious controller.
Nonlinear, time varying coefficient and constant coefficient systems are each

found to exhibit distinctive characteristics using the adaptive controllers. Simula-

tion and analysis are presented in an attempt to further understand the closed loop

behavior.
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1. INTRODUCTION

The use of adaptive controllers for higher harmonic control (HHC) to eliminate
helicopter vibration has been investigated in numerous analytical s#udies [1,

2, 3, 4, 5], wind tumnel tests [1, 7, 8 ] and flight tests [9, 10]. The
effectiveness of higher harmonic control has been experimentally verified and found
to work exceptionally well in most cases. However, specific cases have been found
where the use of an adaptive controller either failed‘to converge to the true mini-
mizing solution, failed to simultaneously reduce several vibration components, or
have shown a tendency for divergence. This has been reported in analytic studies
[17, 22], wind tunnel tests [1, 7] and flight tests [9, 10].

The adaptive closed loop controllers can be considered to have attained the proof
of concept status. However, there is a lack of understanding of the intrinsic con-
troller properties. Specifically, there does mnot exist at this time a stability
analysis for the closed loop system. Cases exist where the controller fails to
fully minimize vibrations and this is not fully understood. The problem is further
complicated by the various model descriptions of the helicopter HHC input to vibra-
tion output. The helicopter vibration model which is assumed to be in quasi-steady

state can exhibit nonlinear, linear time varying, or linear constant coefficient

belkavior. 1In addition, the vibration model is in a sense stochastic since the trans-
fer matrix varies in an unknown manner to a certain degree with flight condition and
since the measurements are contaminated by random noise. ) .

Because of the diversity of helicopter vibration model types and the stochastic
nature of the environment, it is difficult to generalize the properties of the closed
loop system. A solution which shows excellent convergence during one flight condition
may be unacceptable during another condition. The difficulty is further complicated by
the fact that the adaptive control algorithm is itself nonlinear and its properties
cannot be analyzed by linear methods.

There are several variations for the implementation of the adaptive controllers
used for helicopter vibration minimization. These have been referred to as local or
global models. They can be implemented with and without stochastic proverties (such
as cautious and probing) and can be designed to minimize various optimization criteria
to include specific vibration states, HHC control inputs and rate of change of HHC
input. Extensive simulations have been done using the various controllers as

reported in detail in [1-8 ]. Although the various controllers can

12



be implemented differently they all contain an adaptive parameter identification
algorithm followed by a controller which utilizes the identified parameters.

It is of importance to further understand the closed loop adaptive system
properties. The adaptive control implementation can result in a divergence. In
addition, depending upon the nature of the random disturbance the controller can
fail to minimize vibrations under certain conditions. This behavior would

‘cérfainly be unacceptable for use on production helicopters. . T

This report presents results for the three helicopter vibration model descrip-
tions; 1) nonlinear, 2) linear time varying and 3) linear constant coefficient.
Simulations are presented which show specific conditions when the closed loop
adaptive controller exhibits divergence, or fails to fully minimize vibrations. An
investigation of the properties of the closed loop controllers is presented and a new
dual controller is developed.

A stochastic adaptive control formulation is presented for nonlinear and linear
model descriptions. A new second order dual control solution is developed in an
attempt to improve upon the non-dual controller (i.e. cautious or deterministic).

The new dual controller is such as to modify the cautious adaptive controller by
adding numerator and denominator correction terms to the cautious control algorithm.
Conditions are simulated where the cautious controller fails to minimiie vibration
and the new dual controller is found to achieve excellent vibration reduction and
convergence. Although, the new dual controller is developed for a multi-input/multi-
output vibration problem, the simulations are presented for a scalar example.

The theoretical background and HHC problem formulation is presented in section
2. Stochastic control solutions are presented for both the linear and nonlinear
problem descriptions in section 3. The simulation models used are discussed in
section 4 and the details of the various closed loop simulation results are pzesented
in section 5. The derivation of the new second order dual controller is presented

in the appendicies.



2. THEQRETICAL BACKGROUND

Helicopter vibration can be reduced by active blade control using'controllers »
employing stochastic control theory. Various control policies are available and
research is on going to extend these ideas for further improvement in vibration
reduction. A summary of the vibration problem and various control approaches is

provided here.

2.1. Higher Harmonic Control Problem Formulation

The linear multivariable model representing the higher harmonic control
(HHC) input to output yibration is
x(ktl) = c(k) + B(k) u(k) ' (1)
where c(k) is an unknown vector and B(k) is a matrix of unknown parameters. The
unknown elements of c(k) and B(k) are denoted as 9(k) with covariance matrix P(k).
These unknown parameters are time varying and their variations are modelled as
B(k+1l) = A 06(k) + v(k) 2)
with
E{vw(k)} = 0 and E{v(k) v'(j)} =V o (3

In equilibrium flight the steady outputs (vibrations) at zero control is c(k).
This is a static model where it is required to find the control u(k) which reduces
the uncontrolled wvibration c(k).
The measurement equation is
y(k) = x(k) + w(k) ' (4)
where

E{fw(k)} = 0 3 Elw(®w' (i)} =W Sk,
J
(5)
Efw(k)v'(i)} =0
and x(k), y(k) being n dimensional vectors. The general control criterion to be

minimized is the expected value of the cost from step O to N

N .
J() = e{c®}=8{ & x'(k) Qx(k) + u'(k-1) Ru(k-1)} (6)
k=1 ’ '

The nonlinear HHC problem formulation is given next. The nonlinear relation-
ship between HHC input and vibration output can be approximated by the Volterra
harmonic series developed in [17]. The input-output nonlinear relationship

including up to third order terms is,

14



x(k+1l) = c(k) + B(k)u(k) + % u'(k) S(Kuk) + u'(k) T(k) uz(k) @))

This relationship represents both the steady and the varying flight conditions.
During varying flight conditions the coeffiéients c(k), B(k), S(k) and T(k) vary
according to Equations 2 and 3. The measurement equation and the control criterion
are the same as before.

The solutions to these problems are given in Section 3.

2,2 Stochastic Control Theory Background

In most real world systems there are inherent uncertainties that prevent
the use of deterministic control theory. These uncertainties, either in the
system itself or in the measurements made on the system, can be appropriately
modelled as stochastic processes. An open-loop controller does not require
any measurement of the system. It is a function of the initial state and time. The
feedback controllers uﬁilize real-time observations.

In a stochastic environment the control has a dual effect [11, 12]: it
 affects the system's state as well as the uncertainty in the estimated parameters,
This dual effect can be utilized for designing good controllers for the vibration
reduction in a helicopter. It enhances estimation of the unknown parameters but

keeps the output at a recommended level.

Let us consider a stochastic system with unknown parameters O where the

state of the system at time k, x(k) evolves according to the equation

x(k+1) = A(O®) x(k) + B(O) ulk) + v(k) (8)

where u(k) is the control applied at time k and wv(k) is the process noise.

15



The measurement is given by
y(k) = H x(k) + w(k) (9)
where w(k) is the measurement noise.

We are interested in a fixed end-time problem and the performance index to be

minimized is

min J =min E{ CC0, £, 0" } (10)
-1 A1
where |
N-1
co, £, Y = x'an) x@) + T x'(k) Qk) x(k) + u'(KRK) ulk) (1)
k=0
N-1
™t 8 {uw 2} (12)
=0
N
& £ { x(1) } (13)
i=0

In an equivalent deterministic situation, (known © and no noises) the parameters
and the state variables are known exactly and we are interested in
X N’ -1
min c(o, X7, UN. b) (14)
UN—l

The deterministic controller is

D
U7 (k) = L[k,0] x(k) (15)

If the parameters were known, but the noise existed, then the stochastic con-
troller for this problem (IQ) has the Certainty Equivalence (CE) property [12,20,21]
(k) = LIk, 0] x(k|k) (16)

For a plant with unknown parameters the stochastic controllers are adpative in

nature and the parameter O is estimated in real-time.

16



A stochastic controller that ignores the uncertainties in the parameter

estimates is the Heuristic Certainty Equivalence controller

FEG) = Lk, 8(k)] x(k|K) (17)
In the Self Tuning Regulator (STURE) perfect state observations are available
and unknown parameters are estimated in real time. The controller is

GSTURE (13— Lik, 8(k) ] x(k) (18)

A cautious controller belongs to the feedback class [12,20,21] and makes use
of the uncertainties in the parameter estimates. It is given by

WCAUTIOUS (1) _ 1k, 8(K), B(K)] x(k|K) (19)

assuming

P(3) = B(k) ¥ j >k 2a)

All the above mentioned controllers exhibit dual effect in a stochastic environ-
ment (non-neutral) but none of the above uses the dual effect in its design. The
dual controller incorporates this and thus belongs to the closed-loop ciass and
anticipates future learning. It takes into account the functionél dependence of
future covariances on the current control u(k). It is given by

W) = arg min 37 [k, 2|0, 600, PG l3), >kl QD
u(k) -
This often leads to a heavy computation load [13’ 14, 15, 16]. Our idea

is to get a control of the form
N a~ - . N
a(l) = Llk, 800, P, SEEE 5> 1] x(k[) 22)

which is simpler to handle and analyse.
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3. STOCHASTIC CONTROL SOLUTION

This section presents the control solutions for the deterministic, the

cautious, the first order dual and the second order dual controller based upon

a linear transfer matrix vibration description. In addition, the nonlinear

stochastic formulation and solution is also presented. These controllers are

evaluated by simulation in subsequent sectioms. i
The general linear and the nonlinear problems are formulated in previous

sections and the various stochastic control policies are discussed in Section 2.

The different solutions to the linear and the nonlinear problems are given here.

Three objective functions for the design of the controllers are:

Deterministic: J T = {x"(k)Qx(k) + u'(k-1)Ru(k-1) + Au'(kfl) R Au(k-1)} (23)

DE
Cautious: JCAUT = ﬁ{JDET} 4 (24)
N
Dual: Jy... = E{izl JDET} (25)

A dual solution is presented for N = 2 based upon an approximate

linearization.
Solution to the Linear HHC Problem
For the linear HHC problem with R = 0 we have the following control solutions
derived in [3,4] and Appendix A:

uP(0) = -[B'()Q B(K) + RITT[B'(K) Q c(l)]; (26)

W 0) = -[B"(0)qB(O) + Lo PLC0) + RI7H [B'(0)Qe(0) + L PR @n
=1 =1

~ A n ~ ~
=1
o L
oy (92 TeO F £ 28

where the vector fﬂ is
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L

n n

* oP, (1)
f£= 5 5 %— ajé (1) . i,] (29)
i=1l j=1 P, . (1) ou(0)
1,3
(D

The superscript (1) in uDUAL(O) indicates the dual solution is derived based
upon a first order Taylor series expansion as developed in [3,4]. The partials are

evaluated at the nominal cautious control u(0), the parameter 6(0) and the nominal

covariance §(ll;, The new dual control (Appendix A) is
*(2) - Av > 2 ' b -1 o e
3TN0 = -[8700) QB0 + B (ap By(0) + Ep) + RIT [B(0) Q2(0)
. 1
- 2
RN ORER) G30)

=1

where the matrix FK and the vector f[ are
n n * * SPL )
- Zl(BJ(l) 13 8J(l))3 i,] (31)
L ] z N A ou(0)  du(0) -
=1 5=l 7 ey () 0 98D o’ (0),6(0),B(2)
n n * ow BPK @)
e - 3o oifa’@ 1 ;,ag(l)) 1,3
£ o151 2\t Ly 2 aef(l) aefcl) 9u(0)
£
oP, . (1)
3 i,j I
‘ u”(0) ~ (32)
ou(0) ou(0) | ) uI(O),G(O),ﬁ(l)

where £ =1, 2, ..., n row of B and P, , is the 1i,jth element of the covariance

9
matrix P.

The superscript (2) in ugélL(O) indicates the dual solution is derived based
upon a second order Taylor Series expansion as developed in Appendix A.

3.2 Solution to the Nonlinear HHC Problem

The deterministic nonlinear problem is to determine the HHC which minimizes
the quadratic criterion of Eq. (23) subject to the nonlinear model of Eq. (7). The
stochastic one-step problem uses the criterion of Eq. (24) and the stochastic

multi-step problem uses the criterion of Eq. (25).

19



The nonlinear equation shown in Eq. (7) is a global nonlinear model (using

the definition of [3,4]). Taking the difference between two successive time points

results in a local nonlinear model (this was formally done in [22] for the linear

casé). Ignoring nonlinear terms in Eq. (7) results in the global linear model.

Ignoring nonlinear terms in the local nonlinear model results in the local linear

model. Thus, four possible representations can be derived from Eq. (7) ;

1) global nonlinear, 2) local nonlinear, 3) “global linear, and 4) local linear.
The development to follow will only consider the global nonlinear model of

Eq. (7) and deterministic criterion of Eq. (23). Although it is possible to treat

fhe stochastic criteria and local nonlinear models, this will not be included here.

A subsequent section discusses a nonlinear stochastic solution.

3.3 Open Loop and Adaptive Higher Harmonic Control

The minimization of the deterministic cost function Eq. (23), subject to the
global nonlinear model Eq. (7) is a problem in nonlinear programming. This is
equivalent to open-loop (or off-line) optimization. There are many optimization
techniques available for optimization of a nonlinear function of many variables
and [24] provides a detailed examination of such techniques. Two optimization
techniques which require explicit calculation of the gradient of the cost function
are the gradient method and Newton's method [24]. Two optimization methods which
do not require explicit gradient calculation are Powell's method and Rosenbrock's
method [24].

Newton's method is presented here as an example of an open loop optimization
method. It will also be shown that under suitable approximations this method
leads to the open loop global adaptive controller of [1, 3, 4, 22].

Newton's method [24] for minimization of the cost function J of Eq. (23)

subject to the nonlinear model (Eq. 7) is

I

ul = o571 - oc[sz];fl I (33)

I-1
where I represents the iteration number, o is a scalar step length parameter
(0 < @< 1), VJ represents the gradient of J with respect to ul~l and VJ
represents the second gradient (Hessian).

The gradient VJ and Hessian VZJ arebcomputed at I-1 from Eq. (23) which

yields
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ox'

VJ=‘3TQX+RU+RAL1 (34)
2 5 ox' ax' ox
‘I='3—J E—Q X +—81_1—Q—$+R+R (35.)

where the vector x represents the vector of vibration components of Eq. (7).

In order to use the open loop Newton control of Eq. (33), the gradients
ox' ax'
5 and-sa o x 1in Eq. (34) and (35) must be explicitly determined.

A second algorithm is developed using an approximation to VZJ. A simplification
to Eq. (35) results if the second gradient terms are ignored. Thus an approximation
form for VZJ is
ox' ox
T _3_1;+R+R (36)

Thus, an approximate Newton algorithm using Eq. (33), Eq. (34) and Eq. (36) is

ox' ox -1
I I-1 N
u =u - a[;a— Q-ﬁa + R+ R-} .

VZJ ~

ox'
QX +R R (37)

If we assume a linear transfer matrix for Eq. (7) (i.e. S =T = 0, in Eq. (7)
then
X = c + Bu . (38)
where B represents the linear transfer matrix.

Substitution of Eq. (38) into Eq. (37) and assuming R = 0 yields

N a[B'QB + R]‘l[B'Q(c + BuI'l) + R uI'l] (39)
If we assume 0 = 1, Eq. (39) reduces to
I . 1.,
u” = - [B'QB + R] "[B'Qel (40)

which has the identical form as the global linear adaptive controller with on-
line identification of B and ¢, For on-line identification the iteration number

I is replaced with time step number i.
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Thus, the global linear adaptive controller of [1,3,4] can be viewed as a on-
line version of a Newton method of optimization using an approximation to the
Hessian VZJ and assuming a linear transfer matrix. It is also possible to start
with the local nonlinear model formulation and under suitable approximation
develop a on-line Newton type algorithm which uses the local linear transfer
matrix approximation.

The above example development of a Newton type adaptive controller provides
insight into convergence behavior since off-line Newton algorithms have been
extensively'researched. In [25] (pp. 392-400) a further comparison of two
iterative methods for solving the roots of a nonlinear equation is discussed.

The first method called the Method of Chords is analogous to the global linear

model assumption. The second method called the Method of Tangents is analogous

to the local linear model assumption. Convergence behavior of the adaptive

controllers is further understood with comparison to these two iterative methods.
The global linear cautious controller of [1,7,22,23] is found to exhibit

good convergence to a local minimum solution for a nonlinear transfer relationship.

The caution property is a result of including the parameter covariance matrix

in the control solution [1]. The improved convergence with the caution property

is similar to the off-line nonlinear optimization method referred to as the '

Marquardt method in [26]. The Marquardt method [26] is similar to Newtons method

where the control is iterated using

ol = ot VT + oclI]'l VI , (41)

where 0y is a scalar parameter multiplied by the identity matrix I. Eq. (41)
is identical to the Newton algorithm of Eq. (33) with o=l if a1=0 in Eq. (41).
The term a,I in Eq. (41) is used to improve convergence. When the control
is far removed from the minimum solution %y is set to a very large number then
the matrix inverse in Eq. (41) is a small value approximately equal to I/al. Thus
the algorithm is similar to the gradient method
uI - qul

- 1/06l vJ C (42)

The gradient method is known to converge better than the Newton's method when far
removed from the minimum solution (i.e. when the control is in a very non-
quadratic region). As the minimum solution is approached %y is then set to a small

number approaching zero and Eq. (41) behaves like Newton's method of Eq. (31).



Newton's method has superior convergence to the gradient method in the vicinity
of the minimum solution (it has quadratic convergence).

4 Eq. (41) is seen to be very similar to the global linear cautious controller
I in Eq. (41). The co-

1
variance matrix is set to a large number initially and decreases as the parameters

where the covariance matrix PI—l is used to replace O

are more accurately identified. Thus the cautious controller can be viewed as
behaving initially like a gradient algorithm and then like a Newton-type algorithm
as the minimum solution is approached. This explains the excellent comvergence
behavior observed in most cases with the cautious comtroller.

Adaptive controllers require on-line estimation of the parameters of the
model of HHC input to vibration output. If the nonlinear model (Eq. (7)) is used
then the parameters are contained in ¢ , B, S, and T. A linear Kalman filter
can still be used since the parameters enter linearly.

This section presents a brief treatment of open-loop and adaptive HHC for
the nonlinear problem. A large number of both open-loop and closed-loop adaptive
algorithms can be developed using the formulation presented. Four categories of

plant model are possible:

Model Criterion Controller Estimator
Global . Nonlinear;
Nonlinear Deterministic Newton ¢, B, 5, T
local Modified Linear;
Nonlinear Cautious Newton c, B
Global :
Linear Dual Other(l) Other(z)
Local

Linear

(1) Nonlinear Programming Methods
(2) Off-line or on-line based upon Nonlinear Programming Method Chosen

As is apparent from these four categories a large number of combinations exist
for both open-loop and adaptive algorithms. Although both the local and global
linear adaptiﬁe controllers successfully converge to local minimum values of the
cost function for a nomnlinear vibration model (this is shown in [22, 23]) two specific
problems remain due to nonlinearity; 1) multiple minima solutions exist,some of

which do not yield sufficiently low vibration levels and 2) adaptive HHC
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algorithm divergence. The nonlinear formulation presented in this section provides

the mathematical framework to further analyze these two specific problems.
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3.4 Nonlinear HHC Theory and the Dual Solution

The dual theories ‘developed earlier may be extended in a straightforward
manner to a nonlinear model. It is assumed that for at least some flight conditions
the mathematical model representing the helicopter vibration is nonlinear. A non-
linear model has been proposed in [17, 22]." This provides the motivation to extend
existing dual control solutions {13,14,18] to handle a nonlinear model. For
simplicity, here a scalar nonlinear model is selected and the algorithmic steps
are summarized. There is a distinctive difference in the complexity of this algorithm.
This will be indicated in the proper context but thé concepts are similar to that of
the linear case.

Let us consider a plant

x(ktl) = d + eu(k) + fu’(k) (43)
where d, e, f are unknown, but time invariant scalars. These unknown elements 4, e,
f are denoted as 6(k) with covariance matrix P(k). Since the parameter set

{(d,e, £) € 68(k)} is time invariant we represent it as

B(k+l) = 8(k) (44)
The measurement of x(k) is according to
y(k) = x(k) + w(k) ' ' : (45)
where
E(w()) =0 and Efw(0w(i} =W 8, (46)

The control criterion to be minimized is the expected value of the cost from

step 0 to N

J(0)

N 2 2
E{c}=8{ 2 qx“(k +ru(k-1} 47
k=1

where N = 2 for the two-step ahead criterion.
The minimization of (47) with respect to u(0) and u(l) subject to (43)-(46)
is obtained from the Stochastic Dynamic Programming equation [19,20].
J*(k) = min E{C(k) + J*(k+1)]1k} k=N-1, ... , 1, 0 (48)
ulk)
where J*(k) is the "cost-to-go" from k to N and Ik is the cumulated information
at time k when the control u(k) is to be determined. For N = 1, Eq. (48) is

3°(0) = min Efq ¥2(1) + r u2(0) + 3@ 1°} (49)
u(0)
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where J*(1) is the optimal cost at the last step and is obtained by minimization

of J(N-1) for N = 2.

Thus,
Ried min E{q x2(2) + r uz(l)lIl}

u(l)

min E{q ( d + eu(l) + fuz(l))2+ T uz(l)[Il}
u(l) :

min E{q(d2+e2u2(l) + f2u4(l) + 2deu(l) + deuz(l)
u{l)

]

+ 2ef u3(1) + r uz(l)lll} (50)

The control ukl) can be computed only by a search procedure on this stochastic
surface J*(l). Here the method differs from that for the corresponding linear
plant case and no explicit elimination of u(l) in terms of the plant parameters
is possible.

Combining (49) and (50) we get,

min E{qxz(l) + ruz(O) + J*(l)ro}
u{®)
2,22

min E{q@Zte2u?(0) + £2u%(0) + 2deu(0) + 2£u3(0) + 2d£u’(0)) + ru>(0)
u(0)

+ min E{q@Ze2u?(1) + £2u*() + 2deu(l) + 22fu3(1) + 2d£u%Q))
u(l)

+ ) 1%} (51)

J*(O)

From ( 50)and ( 51) it is evident that

%
J (1)

£,(6(1), P(D), u(@)) (52)

from which
*
u (1)

£,(8(1), P(L)) (53)
Combining (52) and (53) we get, .
35 = £,16D), P(D, £,(801), P(1))] e

where fl(.,.,.) is an explicit fgpction but fz(.,.) is not one, because u*(l) can
be obtained only by a search if ©6(1), P(1l) are known. Thus unlike the linear case,
u(0) also has to be obtained by a search and no explicit formula can be derived for
it. However, an algorithm based on the dual control ideas applied to a linear

plant [ 13,14,18 can be summarized as follows:
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(1) use a nominal cauticdus control u(0) obtained by a search method
(2) get a nominal P(1)

(3) obtain another contral u(l) = f2 (6¢0), P(1)) again by search and
(4) 1linearize J(1) about 6(0), P(1l), u(0) as

x N 33" (1) -
J (1) =J [6(0), P(1)] + () « (P(1) - P(1))
w(1)=5(1) 3(1),6(0),B(D)

a * ~ N

+ o0 A ) - (8(1) - 6(0))
8L 5c0y,5(0),a0L)
1.2 ~ 32 * 1 2 -

+3 6 -0y S 6 - 80 (55)

98 60y, B(1),acL)

The covariance P(l) is influenced by u(0) according to the linear Kalman

Filter equation. Thus we may linearize P(l) about the control u(0) according to

P = B + ek © (a(0) - B(0))
3(0),2(0)
1 . 2%P (1) , -
+ 2(u(0) - (o) 22D © (a(0) - T(0)) (56)
R ORI

Using (51),(55), (56) we get u(0) by a final search method. Conceptually,
the extension to the nonlinear plant is not difficult but the complexity is increased

many fold.
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4. SIMULATION MODELS
This section discusses the three distinct mathematical models used to represent
-the relationship-between the helicopter higher harmonic control inputs and its
vibration outputs. "The model descriptions are:
1) a nonlinear transfer matrix model
2) a linear time varying transfer matrix model, and
3) a scalar model representing a single HHC input to a singlé vibration

output.

4.1 Nonlinear Model

A third order polynomial model has been derived in [23]. The identified
longitudinal hub force polynomial model at 120 knots flight condition is shown in
Figures 1-3. This longitudinal hub vibration model as a function of the two
and 9§

control inputs 6 3s is described by the polynomial equations,

3c

xl(k+l) = 108.9 - 74.84ul(k) - 51.04u2(k) - 6.515ui(k) - 2.825u§(k)
. 3 5 .
- 1.Q4ul(k)u2(k) + 7.77ul(k) + 22.27u2(k)u1(k) (57)
2 - 3.
+ 5.92ul(k)u2(k) + 4.17u2(k)
xz(k+l) = -89.74 + 53.31u1(k) - 82.56u2(k) - 7.42ui(k) + 7.34u§(k) + l.9lul(k)u2(k)
+5.63uS(k) + 26.24u. (K)u2(k) - 7.09u, (K)u>(k) + 6.54us (k) (58)
1 2 1 1 2 2
where
X, = longitudinal hub force (cosine component of vibration), LBS.

>
1]

2 longitudinal hub force (sine component of vibration), LBS.

[+
[

cosine component input, 63c, deg.

=
I

2 sine component input, 838' , deg.

and measurements according to

y (0 = % (&) + w (k) (59

¥, (0 = %, (1) + w, (k) (60)
where it is assumed that

E{w(k) w'(i)} = W 6 . = diag (10.89%, 8.97%) (61)

kj
Figures 1 and 2 show the longitudinal ¢osine vibration x., and the sine

1
vibration X, respectively vs. the control inputs 638 and 83c. The nonlinearity is

clearly shown for 16331-2 1° and ]easl_g 1°, The total longitudinal cost function

2 2, . .
x] + x, is shown in Figure 3. 28



4.2 Linear Time - Varying Multivariable Model
The parameters of the helicopter vibration model can be rapidly
varying during an acceleration o0Y deceleration maneuver. A simulation of
this situation is done using a linear transfer matrix model with varying
parameters. The current  algorithms are evaluated on this mpdel. The HHC
problem formulation for time varying parameters assumes that the transfer matrix
elements B(k) and the vibration components without control c(k) are modelled as a

random walk

B(k+1) = 8(k) + w(k) ‘ (62)
where

{c, B & 6} (63)
The plant process noise V(k) is zero mean white gaussian of
covariance V . The "process noise covariance V is assumed a value of 30% of the
initial parameter values so that they simulate a rapid maneuver.

The linear vibration model used is ’

x(k+1l) = c(k) + B(k) u(k) (64

where x(k+1l) is the vibration when HHC u(k) is applied. This vibration is measured

y(k) = x(k) + w(k) ' (65)
~ The measurement noise w(k) has a standard deviation of 10% of the uncontrolled
vibrafidn at time t=0. The random walk model of (62), (63) can describe the
helicopter in any number of transient flight conditions.
" (1) Helicopter transition from hover to forward speed (or from forward
speed to hover)
(2) Helicopter in a windy environment
(3) Maneuvering flight conditions, and
(4) Nonlinearity (assuming nonlinear effects can be modelled as
linearized time-varying parameters).
The simulation model described by (62)-(65) does not describe just one
helicopter model. Monte-Carlo simulations with various noise levels on the model
of (62)-(65) can describe the helicopter in several different transient modes or

perhaps even different helicopters as well in different f£light conditions. Thus
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the model is quite general and can be used to evaluate the existing algorithms under

different conditions. The simulation is started with the initial linear plant as

xl(k+l) 108.9 - 74.84u1(k) - 51.04u2(k) (66)
xz(k+l) = -89.74 + 53.31u1(k) - 82.56u2(k) A (67)

and the measurements are according to (59), (60).

4.3, Scalar Model

A scalar model is used to evaluate the new dual solution based upon

the second order Taylor series expansion and is given by

x(k+1) = ¢ + b(k)u(k) (68)

b(k+l) = a b(k) + v(k) (69)
and the measurement 1is according to

y(k) = x(k) + w(k) (70)
with

E(v(k)) =0 , EW@®v'(@) =V Skj D

B() = 0, E@(w (1) = W 8, '

Elw(K)v'({D}=0

For the time varying case, the parameters used are

B(0) = .05 , P, (0) =1.0 , Vv=.1 , c=1.0

W= .01 and W= .1 , a= .9
For the constant case, the parameters used are

b(0) = .05 , P (0) =10 , V=0 ,c=1.0

W = .0l andW=.1L , a=1.0
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5. SIMULATION RESULTS

This section presents the results of the cautious and the dual adaptive

controllers presented earlier in Sections 2 and 3 using the simulation models

presented in Section 4.

5+l gipulation Model for the Time Varying

Multi-variable Linear Model

These two controllers are based on the linear time varying model discussed
earlier in Section 4. The process noise covariance of the parameters is selected
so that it represents a rapidly varying flight condition. The process noise standard
deviation is selected as 10%, 30%, and 50% of the initial parameter values. These
three cases are referred to as the 107 noise case, 30% noise case and 507 noise
case. Each simulation run is performed for 40 time steps for 100 Monte-Carlo runs.
Fig. 4 shows a time history of the cost function using the cautious control for
these three noise levels. The 10% noise case (circle in Figure 4) shows excellent
vibration reduction. The vibration reduction is poorer with 307 noise (triangle
in Figure 4) and the 50% noise ( + symbol). The 30% noise case shows poor vibration

reduction for O < k < 16 and 32 < k < 40 and good reduction for 16 < k < 32, k being
the time step. The 30% noise case is selected for more extensive evaluation. Figures

5 and 6 show the cosine and sine longitudinal components respectively of the amplitudes

squared for the 30% noise. The Kalman filter of Figures 4-6 is initialized with
parameters taken from a random number generator with a standard deviation equal

to the magnitude of the true parameter values. This represents an acceleration run
of a helicopter where the parameters are poorly estimated at hover. A second case
is also run in which the parameter estimates were initialized as true values with
the standard deviation equal to 107 of the true parameters. This represents a
transient deceleration run after the parameters have been accurately identified

in steady flight conditions. Figures 4 through 6 provide the motivation for
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studying in depth the effect of the cautious and the first order dual controller
[13]on the time varying parameter model. ‘A summary of the results for two cases
of initialization is discussed next. A detailed discussion of the second case

will be discussed later om.

5.2 Controller Performance for the first case
(Kalman Filter Initialization with large Initial Covariance)

Figures 4-6 show that the cautious controller is not able to reduce the
vibrations for the regions 7 < k < 16 and 32 < k < 40. Referring to Figure 4

(30% noise case) three regions are defined as follows:

Region 1: k=7 tok=16
Region 2: k=16 to k = 32
Region 3: k=32 to k = 40

The cautious controller demonstrates good performance in Region 2, but poor
results in Regions 1 and 3. The dual controller based upon the first order
linearization [13]is used next and a performance comparison is plotted in Figures

7-9 for the same Monte Carlo simulations. The design parameter B is set to 1 and 2
[13]. For B = 2 the results are worse than that for the cautious controller and for
B = 1 they are the same as that for the cautious case. Here it is to be noted that
Regions 1 and 3 are uncontrollable i.e., a control which neutralizes the vibrations
does not exist within the limits of + 2°. However Region 2 is controllable but since
the cautious controller performs so well in this region, the dual controller can offer
no further improvement. Figures 10-15 show the true parameter variation, the
estimated parameters and the associated + one standard deviation band from the
Kalman filter. Figures 11 and 12 show poor identification of the parameters 62

and 63 in Region 2 but reasonably good control performance. This is because the
true and estimated parameters for 92 gnd 63 are far from the zero i.e., still in

a controllable mode. A different feature will be demonstrated in the next case.

5.3 Controller Performance for the second case
(Kalman Filter Initialization with True Initial Parameters
and very small Initial Covariance)

For this run the Kalman filter is initialized with the true parameter values
and the initial parameter standard deviation is 10% of the magnitude of the initial
parameters. This simulation differs from the previous one only in the Kalman
filter initialization.

Figures 16~20 compare the cost using the cautious control (solid line) with

the cost using no control (dashed line). The three regions are clearly marked in
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the figures and the controller demonstrates no improvement over no control in Regions
1 and 3. From examining the determinant, Region 2 is controllable but Regions 1 and
3 are not. Thus Region 2 can be improved upon by a dual controller. Figures 17 and
18 show the cautious controls uy and u, . The controls sometimes go to zero and thus
turnoff occurs. Figures 19 and 20 show the contribution from the individual states.
Figures 21-26 show the true, estimated parameters and their associated variances.
These figures indicate the cause of the poor performance of the cautious controller.
The improvement in Region 2 by a dual controller will be discussed in detail in a
later sub-section. Figures 27 and 28 show the variation of the determinant of the
transfer matrix (measure of controllability) and that of the ratio of its eigenvalues

(degree of controllability).

5.4 Controllability Condition for the Plant

For a plant with known parameters the controllability condition requires that
the transfer matrix composed of the parameters 62, 6,, © 66 has an inverse, 1.e.,

3> °5°
6266 —6395 # 0

This condition may be violated due to various reasons:
1) all or some of the parameters individually are simultaneously zero

2) the transfer matrix consists of linearly dependent rows or columns.

When such a situation occurs it is impossible to control the vibrations with only a

limited amount of control, Eor a plant Yith unknown parameters, the matrix consisting
of the estimated parameters 62, 83, 65, 96 also has a role to play. Sometimes, as
in Region 2 of Figure 16, the parameters are poorly estimated as near zero with
the wrong sign. In such a case, turn off may occur and the vibration may not at
all be reduced even though the true transfer matrix is controllable. Probing helps
in such instances and this has been observed using the dual controller. Detailed

analysis of these phenomena are discussed next,

5.5 Detailed Discussion of the controller performances for
the second case of initialization; Scope of Probing;
Uncontrollable regions

Here the Kalman filter is initialized with the true parameter values and the

initial parameter standard deviation is 10% of the magnitude of the initial parameters.

The simulation is carried out in a Monte Carlo fashion for 100 runs. Both the
cautious and the dual controllers are used. Each of these 100 runs is made for 40
time steps. The results of the average cost per run are tabulated in Table 1,
using no control, the cautious controller and the dual controller (B’= 1) [13].

The average cost over all runs is given at the bottom of the table. Applying no
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control, the average cost is 50,531. Applying the one step ahead cautious control,
the average cost is 18,051. This is a reduction of 64.3%. The dual controller
yields 17,141, a reduction of 66.1%. These figures do not give us any insight into
the conditions of the plant when probing is useful. Each run requires individual
analysis. Comparative plots of the performance of no control, cautious control,
and the dual control for the first 20 runs of this Monte Carlo study are given in
Figures 29-48., The symbols in these figures are circle- no control, triangle-
cautious control, and plus symbol- dual control (B = 1). These coﬁparative plots
show clearly that there exist some situations when the dual does better than the
cautious and when both the dual and the cautious perform well. Four runs are
selected from Table 1 and are discussed in detail. The runs and the 7 cost
reductions are shown below.

COST REDUCTIONS FOR 4 SELECTED RUNS
FROM 100 MONTE-CARLO RUNS

Cautious Control Dual Control
No Control .
Run No. Cost
Cost % Reduction Cost % Reduction
1 28583 20215 29.2 15764 44,8
2 43381 12067 72.2 12571 71.0
11 28091 3360 88.0 3230 88.5
18 28850 17064 ’ 40.8 12511 56.6

From the above table it is clear that dual control sometimes yields larger
cost reductions, and at times both the controllers perform equally good. Thus
each run needs to be analysed individually in order to discover whether the
prevalent conditions are congenial to the use of the dual control. The issues of
- controllability of the true plant and the controllability of the estimated plant

are of concern to the analyst., These are discussed next.

Run Number 1

Referring to Figure 29; one can clearly see that the dual control improves
over the cautious control's performance for the region 16 < k < 28, by probing
effectively during 13 < k < 15. The rest of the plot is similar to that of the
cautious controller.

Let us first consider the cautious controller. From Figure 27 it is seen that
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the determinant of the estimated parameter transfer matrix is zero between the

time steps 11 and 25. This corresponds to the case of the ratio of smaller to

the larger eigenvalues being zero in Figure 28 (also a Run 1 case). The controls in
Figures 17 and 18, however, are still bounded because of the caution terms present

in the control design. From figures 21-26 we see that in Region 1 07 is estimated
with the wrong sign. This leads to a large contribution from the cosine component.
In Region 2, 93 has a wrong sign. In addition to this the controls are almost turned
off and the sine component has a major share in the vibration. In Region 3, 93 is
estimated well but it is close to zero. Both the sine and the cosine components

contribute here.

For the dual we see from Figures 49, 50 that the cosine component contributes in
Region 1 and both the sine and the cosine components contribute in Region 3. The
controller probes the system and the control values in Figures 51, 52 are non-zero.
Next we refer to Figures 53-58. 6
1. 63
but its true value is close to zero. In Region 3, 63 has the wrong sign. In Region
3, 66

of the estimated parameter matrix is not zero between the time steps 11 and 25.

2 is estimated again with the wrong sign in Region

is estimated correctly between the time steps 10 and 13 and between 34 and 35

is close to zero again. It is clear from Figures 59, 60 that the determinant

The main improvement is in Region 2 and this leads to a reduction in the

average cost from 20215 (Cautious) to 15762 (Dual).

Run Number 2

Referring to Figure 30, one sees éiearly that both the dual and cautious
controllers perform poorly between the time steps 6 and 8 and between 15 and 25.
In these regions the vibrations are more than that obtained by applying no control.
For this run, reference is made to Figures 61-68. There is a large contribution from
the cosine compgnent between the time Sgépéilsiaﬁd 25 (Fig. 61). B |

It is observed clearly from Figures 69f72 for both the controllers, the true
transfer matrix is singular, corresponding to an uncontrollable mode. The parameters
82, 63, 65 are responsible for this. The estimation of the parameters is reasonably
good. Under this situation applying no control is the most judicious choice. Any
other controller could make the situation worse, which is clearly demonstrated here.
At other time steps, when the plant is, in fact, controllable, both the controllers
perform well. This uncontrollable situation can be handled by considering a reduced
order model or by applying some switches on the state and control weights. This will

be discussed later on in detail.
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Run Number 11

From Figure 39 it is clearly seen that both the cautious and the dual controllers
are successful in bringing down the vibration to a satisfactory level. Both of them

reduce the vibration by 887 of that of no control.

Both the controllers perform well because the plant is controllable. The contribu-
tions from the sine and the cosine components are reduced substantially. The detailed
performances are portrayed in Figures 73-80. The determinants of the matrices composed
of the true and the estimated parameters and the ratio of their eigenvalues are

plotted in Figures 81-84. They are far from zero.

Run Number 18

A comparative plot showing the performances of the no control, cautious and the
dual controller is given in Figure 43. Poor performances are observed between the
time steps 9 and 20 and again between the time steps 29 and 33. In the first
region, at time step 11, the performances are worse than that of the no control.
Beyond time step 11 until time step 16; the dual controller improves the situation, but
the cautious still performs poor. The detailed performances are given in Figures 85-92.

The.determinants of the matrices composed of the true and the estimated paraé
meters and the ratio of their eigenvalues are plotted in Fiéures 93-96. For the
cautious controller, the estimated parameter transfer matrix has a small value for
its determinant between the time steps 11 and 16. The dual controller starts probing
earlier around time step 9 (Fig. 87, 88, 91, 92) and its estimated parameter
transfer matrix has a non zero value for its determinant during the same time steps.
Moreover, during the time steps 16 and 20 the true plant is close to uncontroll-

ability and nothing can be better than no control.

From the detailed study discussed above one may conclude the following:

1) Both the controllers behave poorly whenever the true system is uncontroll-
able. The controllers have no information, whatsoever, about the present
or the future controllability of the plant. In such a situation, the
correct diagnostic is to apply no control at all.

2) The cautious controller behaves poorly if the estimated parameters

define an uncontrollable situation although the true system is controllable.
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In such situations, the dual controller can offer significant improvement

over the cautious controller, by probing to better estimate the parameters.
Optimal Control Requirements for the Runs 1, 2, 11, 18

In this section the cautious and the dual controllers are used on the linear
model whose unknown parameters are time varying. The stochastic controllers are
used in conjunction with an estimator, which supplies the controllers with the
parameter estimator. An optimal controller, on the contrary, assumes perfect know-
ledge of the plant parameters and attempts to control the plant. In this subsection, a
study is made on this optimal controller. Plots of the two required optimal controls
are given in Figures 97-104. While plotting, the controls are passed through a
hard limiter with limits between -10"and +10". When the true plant is uncontroll-
able, an optimal controller demands an infinite amount of control and thus it
hits the boundary of +10° or -10". From these plots, it is evident that for all but

Run 11, the plants are uncontrollable at some time during the 40 time steps.
Effect of switches on the control weights R

It has been discussed earlier that in uncontrollable situations the proper
diagnostics is to apply no control at all. The control can be switched off by
exercising exceedingly large caution or by putting large control weights R in
the control design. In Run 2, the region between time steps 15 amd 25 is known
to be uncontrollable. Thus'Between these regions the control weights are increased
from R = diag (0,0) to R = diag (104,0) and R = diag (104,104), keeping the state
weights Q = diag (1,1) as before. The case 'R = diag (104,0)'switches off the
control u; and the second case 'R = diag (104,104)'switches off both the controls
u; and u,. The total and the individual costs are plotted in Figures 105-107. This
switching is quite successful in reducing the vibrations in uncontrollable

situations.
Effect of switches on the state weights Q

During uncontrollable situations, it is impossible for the two controls to
affect both the states. Nevertheless, it may be possible to handle one state only
at the expense of allowing the other staﬁe to run free. This can be done by
choosing properly the state weights Q. For Run 2 again, Q is chosen as diag (1,.1)
and diag (1, .01) for R = diag (0,0) and R = diag (.01,.01). The total and the
individual costs are plotted in Figures 108-113. The cases Q = diag (1,.1) and
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and Q = diag (1,.01) put less constraint on the second state. Thus these switches
reduce the first state, allowing the second state to go free. The performances

hardly differ for the cases R = diag (0,0) and R = diag (.01,.01).

Effect of Initial Covariance of the Parameters
on the Controller's Perfiormance
(first method of initialization)

Two methods of initialization have been discussed and their performances
have been analysed in detail earlier. This study refers to the first method of
initialization where the Kalman filter is initialized with parameters taken from
a random number generator with an initial covariance. Both the cautious and the
dual controllers are used on this plant. The parameters are slowly varying with
time (process noise of 10%). A Monte Carlo simulation of 100 runs is made for
40 time steps. The average cost is computed over all runs for each time step.
Three choices are made for this initial covariance. The normal initial variance
specified on the plots is the square of the magnitude of the true initial parameters.
The average performances of the no control, cautious and the dual are plotted in
Figures 114-117. The dual controller offers improvement in the case of large
initial variance (Figure 116). It has always an initial jump for this large initial
variance (Figure 114,116). This is not observed when the initial variance is small
(Figure 115). This initial jump can be avoided by using a cautious controller in

the beginning and switching to the dual after time step 2 (Figure 117).
5.7 Simulation Results for the Nonlinear Model

The nonlinear model describing the longitudinal hub vibration model is used
‘with the global linear adaptive cautious controller of [12]. The alternate form
of the Kalman filter which retains better positive definiteness of the covariance
equation is used. The exponential weighting form of the equations is also used
with the forgetting factor A set equal to .99 to discount past data. The initial
covariance is taken as a large quantity 250000 (compared to approxi?ately 10000 for
the original covariance) to better account for nonlinearity. The graphical descriptions
of the cost function of Figures 1-3 indicate the presence of multiple minima solutions.
The plots can be broadly divided into the following regions:

<42, -2<u, <0

Region I : 0 <u 2

1

Region 11 : 0 < ul_§ 2, 0 < uz_f 2
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Region III : =2 <u, <0 , 0 <u
Region IV: -2 <u, <0 , -2<u, <0

These definitions of the regions provide easier interpretation of the per-
formance of the controllers. Figures 118-122 show the convergence plots of the
cautious adaptive controller for 100 time steps. Figures 118-120 are for the
3 5%x10™%) and R = diag (10~

case Q = diag (10~ ,10—4). These weights primarily

concentrate on reducing the state x, while allowing less restriction on the state

1

b4 There are more than one occasion before time step 80 when the cost increases

X
sharply. The controls are allowed to move within the limits of +2. At these

points the control is operating in Region II. In this region state x, is highly

nonlinear and appears to possess a saddle point. At a saddle point tﬁe second
gradient of a function is zero. This corresponds to an uncontrollable situation
as is clear from the equations of [1L7]. Figures 121-123 discuss the case for
which Q = diag (1,1) and R = diag (0,0). Here both the states X, and x,are
equally weighted. In this case convergence occurs rapidly with the controls
going to Region I. From figures 1,2 it is clear that the two individual
states X, and x, are well behaved in this region and a fast convergence occurs.

5.8 Simulation of the Scalar Model using the Cautious, Dual

and the Dual Adaptive Control based upon Sensitivity Functions
(Appendix A and B)

A new adaptive dual coﬁtrol solution based upon the sensitivity functions of
the expected future cost is derived and analysed in the Appendices A and B. The
controller design and its performance on a scalar model are given in Appendix A.

The performance is compared with that of the cautious controller and the first order
dual cbntroller. This section discusses in further detail the results shown in
Appendices A and B and includes several other figures from the 100 Monte Carlo

runs for both the constant parameter and the time varying parameter cases.
Time Varying Parameter Case (Example a)

The details of the simulation model used are presented in Appendix A for
the time varying parameter case. Run numbers 7 and 14 are discussed in the Appendix
A. Runs 2 and 21 are discussed here. The cautious control is shown by the circle
symbol, the first order dual by the triangle, and the second order dual by the plus

symbols. Figures 124-126 describe this run. The second order dual performs better
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than the other two right from the start. Figures 127, 128 gives the time history of
the control for runs 7 and 14 respectively. Figures 129-~131 describe Run 21. The
nature of the performance of all the controllers is the same but in most occasions
the second order dual (denoted by the plus symbol) performs better than the other
two (see Tables 2, 3, and 6).

Constant Pérameter Case (Examble b)

In this case (Section 4) the true parameter is close to zero (i.e., b(0)=.05)
but constant. This corresponds to the uncontrollable case. A control magnitude of
-20 is required to handle this sitvation. Runs 26 and 80 are discussed in the
Appendix A. Figures 134 and 137 show the time history of the control for Runs 26
and 80. Figures 132 and 133 describe Run 18. Here the first order dual tends to

go unstable in the 11 to 15 time step and the cautious is slow in its convergence.
Figures 135 and 136 give the cost and tle control time history of Run 44. Both the
duals work better than the cautious. In all runs of this constant psrameter case
the new dual shows better results than the other two. It always goes to the right

direction of estimation by properly probing from the start (see Tables 4, 5, and 7).

40



6. CONCLUSIONS

Helicopter vibration can be effectively reduced by applying adaptive
control techniques. Although adaptive controllers often show excellent vibration
reduction, it has been shown that there exist certain conditions which yield unsat-
.isfactory behavior and thus require improvements. It is shown that the existing
cautious controller often exhibits problems like slow convergence, turn off
phenomenon, and instability. Also, nonlinearity in the helicopter model is shown
to have a significant effect on the HHC convergence behavior. The performance
of the cautious controller has been evaluated based upon 100 Monte-Carlo simulations
of a linear time varying multivariable model representative of helicopter vibration
during maneuvering flight conditions. The cautious controller has been shown to
yield unacceptable reduction in vibration whenever the determinant of the estimated
parameter model is near zero. This results in an uncontrollable model. The first
order dual controller of [13] avoids this situation by probing and estimating the
parameters better. It however is still deficient under certain conditions and
sometimes yields poor results.

The problems of the previous controllers are overcome by the new adaptive dual
control solution developed in Appendix A. The second order dual controller takes
into account the dual effect better by performing a second order Taylor series
expansion of the expected future cost. It is shown to modify the cautious control
solution by introducing numerator and denominator correction terms. These three
controllers have been evaluated on both a simple scalar constant parameter model
and a time-varying parameter model representative of maneuvering flight. In
each case 100 Monte-Carlo simulations are used. The new dual controller improves
upon both the constant and the time varying case and provides improved convergence.
In the case of the constant parameter model, whenever the unknown parameter is
close to zero (i.e. near singular), the cautious and the first brder dual control-
lers have demonstrated slow convergence and turn off. The new second order dual
controller consistently demonstrates faster convergence. It avoids problems of
turn off, slow convergence and always goes toward the right direction of estimation

by properly probing. It has the potential to be used on a multivariable
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model and the detailed sensitivities have_béen presented

in this report. It is yet to be implemented on this multivariable model. Moreover,
its properties and the behavior of the correction terms that enable better performance
in the scalar case are not yet fully understood. Computationally, it is complex

and may be difficult to use in real time. However, investigation of its properties

is thus warranted in order to develop a practical implementation.

In addition to the above linear simulation studies, the global linear adaptive
cautious controller has been used on a nonlinear model describing helicopter vibration.
Nonlinearity has a significant effect on the convergence behavior. Multiple minima
solutions can exist and the algorithms are slower in convergence and can be unstable.
To accommodate the nonlinearity, the initial covariance on the parameter estimates
is taken as a large quantity. This accounts for the nonlinearity by introducing
more caution. Reduction of vibration is possible in most regions of the nonlinear
surface. Vibrations cannot be reduced when the nonlinear surface possesses a
saddle point. At a saddle point the second gradient of the cost function is zero.
This corresponds to an uncontrollable situation and can result in algorithm
divergence. ,

The linear and nonlinear simulation studies investigated in this report clearly
demonstrate the need for further research to better understand the convergence
properties of the adaptive controller for reduction of helicopter vibration. In the
present studies the analytical ground work has been presented. Further analytical
work and simulation is required to fully understand the properties of the adaptive

controller for helicopter vibration reduction.
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APPENDIX A

DUAL ADAPTIVE CONTROL BASED UPON SENSITIVITY FUNCTIONS

A new adaptive dual control solution is presented for the control of 'a class
of multi-variable input-output systems. Both rapidly. varying random parameters
and constant but ynknown parameters are included. The new controller is based
upon a on-line Newton type algorithm which is shown to result in a controller which
medifies the cautious control design with a numerator and denominator correction.
The new centroller is shown to depend upon sensitivity functions of the expected
fauture cost. A scalar example is presented to provide insight inte the properties
vf the new dual controller. Monte-Carlo simulations are performed which show

improvemant over the cautious controller and the Linear Feedback Dual Controller
of 10 (13) and (14). .

Al. TITRODUCTION

Malti~variable systems which are characterized by uncertain parameters with

arge rendom variations are a difficult challenge for most control design techniques.

o

=3

he assumed random nature of the parameter variations often precludes the use of gain

(G]

cheduling (non adaptive) control design. Stochastic adaptive control theory
provides a principal design approach for systems of this type. Exact solution of
the stochastic problem with unknown parameters requires solution of the Stochastic
Dynamic Programming equation and this is not feasible for practical implementation.
The solution is known to have a dual effect [13, 14] that can be used to enhance

the real-time identification of system parameters as well-as provide good control.



Many suboptimal dual solutions have been suggested [11,13,14,27-32]. The various
approaches which have incorporated this dual property can be loosely divided into ’
two classes. 1In the first class [28-31], the optimal eontrol problem is
reformulated to consist of a one-step ahead criterion to be minimized, augmented
by a second term which penalizes the cost for poor identification. This approach
is attractive due to the analytical tractability of the solution; however, the
solution is based on a one-step criterion and does not fully exploit the dual
property of a multi-step solution. Padilla and Cruz [34] give a dual control solution fo1
such a plant by minimizing the control objective function subject to an upper
bound in the total estimation cost. Their objective function includes a standard .
control objective function and also a second constraint term which reflects the sen-
sitivity of the parameters to the state of the system. Thus the solution adjusts itself
to exercise better estimation for such sensitive parameters within the upper bound.
The second class [21,32,33] utilizes the stochastic dynamic programming equation
directly and performs linearization of the future cost in order to obtain a solution.
Previous control solutions among this second class require a numerical search pro-
cedure which poses difficulties for a practical solution for on-line control for
multivariable systems.

A linear feedback dual controller was presented in [13,14] based
uponn a linearization of a two-step criterion and found to offer some iﬁprovement
ever the non-dual cautious control based upon a one-step criterion. The results
were based upon a simulation model with constant but unknown parameters. Although
the dual control offers some improvement over the cautious controller therimprove—
ment is not significant for most practical applications where the system éontains
constant parameters and the objective is to contrql in steady state operation.
lHowaver, for random parameter variations, dual control can sometimes offer signifi-
cant improvement over non-dual controllers [28,32].. The approximete dual control
in [13,14] 1is attractive due to its simplicity (it is comparable to the
cautious control design in algorithm complexity and does not require numerical
search). The objective of the present study is to evaluate the céutious controller
and the approximate dual controller of [13,14] for large random parameter
variations modeled as a random walk. Monte-Carlo simulations are performed and
cenditions gquantified under which the dual controller offers significant improve-

ment over a non-dual cautious controller.
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The approximate dual control of [13,14] although offering a reduction
in the average cost is found to be unacceptable in many cases. This is attributed
to the sensitivity of the expected future cost whenever the system is characterized
by limited controllability. An extension of the linearization procedure of
[13,14] is presented to account for this sensitivity. The new dual controller
inherently includes a robustness property in that the controller accounts for

sensitivity of the expected future cost due to parameter estimates and their uncer-

tainty. Simulations are piesented which show the improvement of the new dual
controller over the cautious controller and the approximate dual controller

of [13,14]. The new dual controller uses a Newton type search procedure
and is developed for multi-variable systems. One of the main advantages of the
new dual control presented herein is that it modifies the cautious controller with
a numerator ''probing"” term and denominator correction term. Although the new

duzl control is still considered too complex for practical implemeéntation,

the structure of the control solution is in a form which permits practical design

changes to the cautious controller to include the dual properties.
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A2. PROBLEM FORMULATION

The multivariable system under investigation is
x(k+1) = c(k) + B(k) u(k) (A2.1)
where c(k) is an unknown vector and B(k) is a matrix of unknown parameters. The
unknown elements of c(k) and B(k) are denoted as 6(k) with covariance matrix P(k).
These are represented by a discrete random model

8(k+l) = AB(k) + v(k) '(A2.2)

1

E()) = 0 and EG(v' () = V s 233
The meésurement equation is
y(k) = x(k) + w(k) (A2.4)-
wbere
E(w(k)) = 0 and E(w(k)w'(j)) =W akj (A2.5)

E(w(k)v'(j)) = 0

and x(k), y(k) being n dimensional vectors. The control criterion to be minimized
is the expected value of the cost from step 0 to N
N
J(0) = E{C(O)]fE{Z x"(k) Q x(k) + u'"(k-1) R u(k-1) (A2.6)
<=1

where N = 2 for the two step ahead criterion.

A3. APPROXIMATE DUAL CONTROLLER FOR TWO STEP CRITERION -
The minimization of (A2.6) with respect to u(0) and ﬁ(l)‘subject'to (A2.1) -

(A2.5) is obtained from the Stochastic Dynamic Programming equation [19,20]

J*(k) - min E{C(k) + J%(k+1)xyk} k = N-1,
.u(k)

5 k
where J*(k) is the '"cost-to-go" from k to N and Y

...,1,0 (a3.1)

is the cumulated information at
time k when the control u(k) is to be determined. For N = 1, eq. (A3.1) is

J%(0) = min E {x'(1)Qx(1) + u'(0) Ru(0) + J*(1) |[¥°} (43.2)
u(0)

where J*{(1) is the optimal cost at the last step and is obtained by minimization

of J(¥-1) for N = 2. Assuming diagonal Q= diag(qz) this results in [13,14]

A ~ n .

IR = ¢'(Qe) + I qRi(D)
£=1
. A' A 12: £ I\' A n z _1.
-~ [e*()eB(1) + qucB(l)] [B'(1)QB(1) + I qﬁ?B(l) + R]

£=1 - £=1 '

~ A n 4&
[B"(1)Qe(1) + X qﬁ?Bc(l)] (A3.3)
| )
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and

u*(l) = ~[B'(1)QB(1) + X qz?é(l) + R]’l[B'(l)Qc(l) + I q£?§ (1)] (a3.4)
£=1 2=1 ¢
where
Z £
1
by - R - (43.5)
z £
P (1) Pp(1)

P(1) is the expected value of (6(1))2for time step 2 given measurement y(1)
at time step 1. The index £ is used to represent the row number in Eq. (A2.1) and
P7(1l) is the associated parameter covariance.

A
A

The parameter estimates 0(1) and covariances P(l) are obtained from the Kalman

filter. Since W is diagonal one can decouple the estimation. Then

5 (1) = ge(O) + K,(1) v,(1) - (A3.6)
AR
Lo 2 -1
Kp(1) = PT(OH'(Q) [HL)PT(OH' (1) + Wyl . (a3.7)
#' = Yo - guweto e
Pz(l) = Aﬁz(l)A' + Vv : ' . ::(A3.9)
where
v, (1) = y,() - B &%) L (a3.10)
H(1) = [1 v (0)] o (a3.1D)
of1) = [ey(») BT, £=1,2,...0 row of B . (A3.12)

As discussed in - [13,14] * J*(1) is a nonlinear function of the

parameter estimates 6(1) and covariances P(1l) and thus a linearization was per-
formed. In [14]  a scalar formulation was presented and a first order llnearl—
zation was performed about the nominal parameter estimate Squared (9(0)) and nominal co-
variance P(l). Also in [13,14] the vector case was presented and linear-
ization to first order performed. To more accurately account for the dual effect
a second order Taylor Series expansion is presented about 8(0) and a first order
expansion about the nominal covariance P(l). 1In addition (as will be presented sub-
sequently) the covariance P(1l) will include a linearization to second order in
u{0). 1In [13,14], P(1l) was linearized to first order. It is believed
that linearizations to second order are necessary to better account for the non-
linearity in P(1l) and 5(1) of Eq. (A3.3) and in u(0) of Eq. (A3.7) and (A3.8).
addition a nonlinear Newton algorithm is used in the second order approximation.
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Linearization of Eq. (A3.3) about -.the nominal &(1) = 6(0) and P(1) ﬁsing the

nominal u(0) results in

3 = 31, 60, B 1+ D B0y 501+ 2b-80 1" T 3150y
Q6(1) 367 (D)

n n n
+ ¢ § p 2@

oy el £
£=1 i=1 j=1 31’1,3'(1)

; . . . . th
where the superscript £ represents the covariance matrix associated with the £

[1 ) -5 ] (43.13)

rov of parameters and P, j(l) is the i-j th element of the covariance matrix P(l).
2

Eq. (A3.6) is rewritten as
oty - o = Ko@) v () ,  £=1,2, ...n (A3.14) -
Using (A3.14) the expected éaiue of (A3.13)Ais o

N 2 Lo
EL7(1) 1¥°] = J%[1, 68(0), BT + = trl S3EI) w(1y) EfuCnvi (L) [¥°} K1) ]

2 a2
n mn n . _
+ 3 1 % -3-%1ill et LD - Pf (D] (A3.15) .
2=1 i=1 j=1 e~ . (1) 1,] 2]
i,]
Using the innovation covariance
E{vz(l) vk(l)lY°} = H(1) szO)H'(l) + W, - (A3.16) -

“and (A3.7) and (A3.8), Eq. (A3.15) can be written as

. A n n n . )
E{3#(1) [¥°] = J#[1, 60), BCL)] + £ % % {- > 2 3J’(1)[—f (1B, (0)-vf .]
£=1 i=1 j=1 30,(D) 38, (1) Lol %

+ 2@ . Ly - % (1)]} (A3.17)

L
oP . 1 ,J
1,j( )
The expected future cost is shown to be a function of the pre-
. , L . s . e aJ*(1)
dicted covariance P,  (l)with a multiplier given by the sensitivity 7 o
1,1 oP’; .(l)

1,1

g 93*(1)

= Since the covariance Pij(l) depends on the control u(0) the
o¢ (1)3g (L) ' ,
ceh trol‘%as the dual effect. It should be noted that the importance of the dual
effect depends upon the sensitivity of the expected future cost with respect to both
the covariance and parameter egtimate.
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The optimal control u(0) can be computed by minimization of €A3.2) using
(A3.17). Since P%

1,
This is accomplished using a second order linearization in u(0).

j(l)is nonlinear in u(0) a numerical search procedure is
required.

Thus Eq. (A3.8) is linearized to second order about the control uI(O), which

is in the vicinity of the optimal control.

3 s (1) | I S 0 .
( ) (1) + —a—dg——m— 1 [u(0)~ut(0)] + —[u(O) —u (0] ——-’J—-— Iu(O)—u (o>J
1,3 u 0) 3 2(0)
(0)
(A3.18) -

The expected future cost as given -by (A3,17) and (A3.18) is quadratic in u(0)
and thus a closed form solution u*(0) is obtained by minimization of (A3.2).

The optlmal dual control u*(0) can HOW’be computed from (A3.2) using (A3.17)
and (A3 18) It is obtained by solv1ng - i

<

—2— B {x"(1)Q x(1) + u"(0)Ru(0) + Ji(1l) ]Y = 0 (A3.19)
aa )

The optimal u*(0) is thus

= _ A' A . n £ —l A' A n £
uw(0) = - [B"(D)QB(0) + EEl quPB(O) + FK) + R] .T[B'(0)Qc(0) + 251 (qz?gc(O) + fz)]
(A3.20) -
where the matrix F, and the vector £, are
L Lz
non 57%(1 1 5 a7%(1 ' 5 BPli’.(l)
o= 3§ o§ (2 1 J (1) L A | (A3.21)
Camigm 2\t 2 st edta du(0) Bu(0) | p T
] 1,9 i i u(0),8(0),B(1)
L , L
Lt v adare 1o arw)( FadP o T »uI(O) (43.22).
£ 11 31 2 an @) 2 Blbf(l) 39?(1) au(0) du(0) du(0) uI(O),e(O),ﬁ(l
2 J

Initially the nominal value of u(0) is computed from (A3.20) with FE and
FK 2qual to zero. Then a gradient search is performed until in the vicinity of
the optimal u*(O). Then (A3.20) - (A3:.22) are used until convergnece

~
)

iz achieved. This iteration procedure is essentially Newton's method for minimization

¢f a nonlinear function. The gradient search is used because the stochastic cost
1n (A3 2) belng minimized is a high order nonlinear equation and the gradlent :

nrocedure is used until u (Q) is in the vicinity of the minimum before switching
=L
tc the Newton method. The nominal covariance P (1) is computed from (A3.7) -

(A3.11) with u(0) = u(0). The sensitivity (partials) in (A3.21) and
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(A3.22)“ef the cost J*(1) are computed from partial derivatives of J*(1) qu. (A3.3))

and pY(1) (Eq. (A3.7) thrbugh (A3.9)) evaluated at the nominal. The partials of the

covariance are evaluated at uI(O) which is evaluated at the previous iteration I.
The approximate two-step ahead dual control of Egs. '(A3.20), (A3.21). and (A3:22)

can be interpreted as a modification to the cautious controller by the terms F£

and fﬂ These terms depend upon the sensitivity of the future nominal cost J*(1)

with respect to the parameters 9 (1)6 (1) for all i, j and their covariance P£ (1) for

each row £ of parameters. Whenever these sensitivities are large the terms Fz’and

fz will be significant (that is the dual effect will be important). Thus the

sensitivities take into account in the control solution the sensitivity of the

nominal future cost due to parameter variation and uncertainty. The larger this

sensitivity the more important will be the dual effect.

The resulting dual controller (A3.20).exhibits a robustness property with
respect to parameter variations and uncertainty of the future cost by including
a term which appears in the denominator of the dual controller. In
addition, a probing term also appears in the numerator.

A4, SCALAR EXAMPLE WITH ONE UNKNOWN PARAMETER

To further understand the dual control solution a scalar example with one
unknown parameter b is presented (a multi-variable simulation is currently under
development). The approximate dual control solutjon for the scalar case from
Eqs. (A3.20), (A3.21) end (A3.22) using Q =1, R = 0, is

u’(0) = s - | (A4.1)
b (0)+’) (0)+F Fp
. 2 P, (1
_ifate 1w | 2 e
F2 2 B N R R, ETORNO) (A%.2)
b 3b(1) 5b(1) u u
x 9 P, (1) 2p_(1) :
c _ 1 (a I 1 1 )( b 37 ux(o)) (36.3)
£ 2 an(l) 2 ag(l)ag(l) 2u(0) BU(O)Su(Q)
337D 2020 |
’%?"'(1‘)’! - s b (0) o (Abs 4)

2
|b(0) P (D (b (0)+Pb(l))
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(1)-302(0) 1
(A4.5)
(b2 (0)+5 (1) J

325% 1) (
oAb = - 2% (D)
CLIOEIENI R

3P, (1) 2P2(O)W uI(0)82 ‘
u™(0) (e, (0)u"" (0) 4112
2 12
o Pb(l) 9 W——3Pb(0)u €)] 9
—— | 1 = =2P (0O)W 5 a (A4.7)
ou(0) 3u(0)|u (0) (Pb(O)uI (0)+w) >

where the nominal u(0Q) and ?b(l) are

30 = - o 20e (A4.8)
b (0)+Pb(0)
2, =2 2
P (0)u”(0) a“P, (W
P-:b(l) = 32 (Pb(O) - b 5 l‘i‘ vV = ‘—‘é-—é———-—— + Vv (A4.9)
i Pb(O)u (0)+w5 Pb(O)G (0)+W

AN

The parameter estimate b(0) and Pb(O) are computed using data up to
k=0 (i.e. y(0)).

The future cost evaluated at the nominal is

N

I\z -~
2 2 __ b7(0) (A4.10)

7, b0, B = F - P B
b (0)+Pb,(1)

and the expected future cost based upon the linearization of Eq. (A3.17)

12257, (-, (0)-v) + 2L L) MO (e, (1)-F, (1))

rTW ) = 5¥a, b, B - 2
b7 (1) aP (l)

(A4.11)
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A4.1 Evaluation of the Cautious Controller

The performance of the cautious controller can be evaluated using (A3.2)

with u(0) evaluated at the nominal

300) = [E&x°(1) [¥°} + E{J*(l)[Yo}]u(0)=G(o) 1oL (A4.12)

The first term in Eq. (A4.12) represents the expected cost at k = 1 and the second
term in Eq. (A.12) represents the expected future cost at k = 2 using the cautious
control at k = 2 (i.e. u(l)) and using the cautious control at k = 1 (i.e. u(0) =

u(0)). Eq. (A4.12) is evaluated using data Y°.

Eq. (A4.12) is evaluated for the scalar example using (A4.10), (A4.11) and
(A4.7) - (A4.9), which results in

' 2,..-2
"2 2 "2 2. % P, (0)u”(0)
30y = f ey 22 b O 2 ES . b T (44.13)
b (0)+Pb(0) b (O)+Pb(l) 9b“ (1) Pb(O)u (0)+w
35w
where ~—7§~;- is computed from (A4.5).
3b (1)

The last term in (A4.11) is zero since Pb(l) evaluated at the nominal
control (i.e. cautious control) equals fb(l).

The first two terms in (A4.13) represent the average cost at step k = 1
and the last three terms represent the expected future cost at k = 2 using the
cautious control,

Eq. (A4.13) can be used with a simple example to demonstrate when the cautious
control is expected to behave poorly.

Assume” a scalar example with one unknown b parameter and let

b(0) = .05 s P(0) = .5 > a= 1.0 (A4.14)
v =.1 , W = .1 , c¢=1
The expected cost at k = 1 and k = 2 is computed from the nominal, G(O),
2%
- 73 (1) . .
P, (1) and —xg— which yields
b ab™ (1)
. . SRAeD)
u(0) = ~-.1 , Pb(l) = 575 s TRy T -3.47 . (A4.15)
ab~ (1)
and
‘ 2 2
J(0) =c” + ¢ , c=1 (A4.16)-
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Thus the cautious control applied at k = 0 results in no reduction in the
cost at k = 1 due to large uncertainty P(l) and also no reduction in the future

expected cost since u(0) is small and no improvement in parameter accuracy occurs
at step k = 1.

AL L2 Evaluation of the Dual Controller

The dual controller given by (A4.1) - (A4.9) can be evaluated by computing
the average cost of (A4.12) using (A4.7) - (A4.11) and the covariance

Ph(O)W

Pg(l) - + v | (A4:17)

pb(O)u2(0)+w

The expected future cost (A4.1l) reduces to

' - 2 *2
X 2 2. % P (O)u (O)
z{J (l)tYo} = c2 - c2 7?r~ll~ggl—~ + % aAg (1) b e
. b (0)+§b(l) ab (1) P. (0)u “(0)+W
ray b
u (0)
2 %2 2, ..=2
331 Py (0)u “(0) P, (0)T7(0) o
T oep, (1) %2 - ) (A%.18)
b Pb(O)u () +wW Pb(O)u (0)+wW

and the total expected cost at k = 1 and k = 2 using (A4.12) is

J*(o) = E{xz(l)]Yo} + E{J*(1)|Y°} , - (A4.19)
4" (0) u*(0) |
where
22 [} = &+ 26(0)u(0)e + (b2(0) + P, (0))u"2(0) (A4.20)
4 (0)
Examination of (A4.18) shows that the dual control can reduce the expected

future cost over the cautious control since the last two expressions in (A4.18)
can be megative if u*Z(O) > EZ(O). Thus the dual property can have a desirable
2ffect on the future cost.

The cost J*(O) is computed using the scalar example previously discussed

for the cautious controller. A search procedure is used on (A4.19) using
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. ) . *
(A4.18) and (A4.20) with the parameter values from (A4.14), and u (0)

is iterated until in the vicinity of the minimum yielding

at) - o075 |, I = -3.47 TV 382
B (D) |-, I S e () ) I PP ’
b 3(0)=-.1 3b°(1) |3(0)=-.1 ul(0)=-.6
2, (1)
—_— = +1.0 Fp= .87 , £, = .85 (84.21)-

3u?(0) |ul(0)=-.6
Eq. (A4.21) was evaluated in the vicinity of the optimal uI(O) = -,6 and Pb(l) = ,278,
The optimal control u*(0) is from Eq. (A4.1) using ul(0) = -.6

b(0) ¢ + .85

u*(O) 5
b (0) + Pb(O) + .87

c=1 - (A4.22)

= -.62 ,
Eq. (A4.22) shows that u®(0) is considerably different than the cautious control

E(O).u'_.i_and'is a rgsult of large galues of'Fz and~f£ which in turn are dus
o 1

to large values of 3—§h£—) and 7%t££l)
ou () 3b" (1)

The corresponding future expected cost using Eq. (A4.19) is

2 %2
2. P, (0)u “(0)
- 7': Lo ]
E{1 (1) [Y7} = o” o+ % aAg (L b 5
| % ab” (1) P, (0)u " (0)+W
O !
2
= e’ - % (3.47)(.321) 2
~ ¢ - .557 o2
2 R
x 4472 ¢ R c =1 ' (A4.23)

The result of this example shows that the dual control of Eq. (A4.22) reduces
the expected future cost to 447 of the original c2 with no control. The cautious

contrel resulted in no reduction of the future cost. The terms responsible for the
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3%p (1)
)

improvement with dual control are the second order sensitivities and
2%
573 (1)

9°(1)

The dual contrbl of Eq. (A4.22) differs from the cautious control by the terms

F£ = .87 in the denominator and f£ = ,85 in the numerator. The denomigator term
in effect provides more "caution" whereas the numerator term is an additive probing
effect. The term Fﬂ provideé a "robustness" property in that the sensitivity of
the future cost to parameter uncertainties as they appear in the controller

(i.e. 32(0)) are minimized. Thus a new interpretation of the dual control is:

that it contains robustness and learning (via probing). These concepts are applic-
able to the multivariable dual controller in Eq. (A3.20) -through Eq. (A3.22).

A5, SIMULATION RESULTIS |

Performance was evaluated from 100 Monte Carlo runs for the following
controllers where g(O) was set equal to b(0) with covariance Pb(O):
1. Cautious Controller
2. A two step dual based on the first order Taylor Series expansion [13,14]
3. The new dual controller based on the second order Taylor Series expansion.
The above algorithms were tested for two cases:

a) Time varying case, b(0) = .05, Pb(0)4= 1.0, V=

|
=
-
(¢
I
e
L]
o

W

%) Constant case, with b(Q)

.01 and W= .1 |, a= 0.9
.05, Pb(O) =1.0, V

i

]
[}
(]

Il
-
o

W =.01 andW.= .l , a=1.0

Table 6 summarizes the results of the simulation runs. All three algorithms
were tested on this example for two different levels of measurement noise covariance,
W= .0l and W = .1, 100 Monte Carlo runs were performed, each of 40 time steps.
For each run, an average cost was computed over 40 time steps and then the averages
over 100 runs are tabulated in Table 6. and Table7 . The tables clearly indicate
that the dual controller based on the second order sensitivity functions shows the
lower cost. The dual effect shows a larger improvement for larger measurement
noise (i.e. W = .1). Run numbers 7 and 14 of the 100 Monte Carlo runs were selected
for plotting. The cautious control is shown by the circle symbol, the first order
dual by the triangle, and the second order dual by the plus symbols. The cost and
parameter value are plotted in Figures - 138 - 141. It is evident that the

second order dual improves upon the other two on the average.
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Example b
In this case the true parameter was close to zero (i.e., b(0) = ,05)
but constant. Table 6 summarizes the result. The average cost obtained by
the second order dual is much lower than the other two. The second order dual
was always found to exhibit excellent convergence whereas the other controllers
performed poorly. 1In addition the new controller consistently avoided turn off
and burst [28).. This was an important common feature in all the Mbnge Carlo rums.
Runs 26 and 80 are plotted in Figures 142 and 143 respectively, as typical exampleé.
The simulation study has shown that the new dual controller improves upon
the cost on the average. The magnitude of the improvement on the éverage appears
to be relatively small for the noise levels used. However, the real advantage
of the new dual controller is the improvement in those instances where the cautious
controller and the dual controller of [13,14] yields una?ceptable results.
Although the dual controller of [13,14] shows improvement over the cautious
controller, it has been found to be unacceptable at many time points.

Ab. CONCLUSION

A new adaptive dual control solution based upon the sensitivity functions
of the expected future cost has been presented. This controller takes into
account the dual effect better by performing the second order Taylor series
expansion of the expected future cost. The form of this controller is a modification
of the one step cautious controller. The approximate dual control of [13,14]
did - mnot -.. have the denominator correction term like the present ome. This
adds stability to the new control design. Simulation results of a scalar model

have shown the improvement obtained using the new dual algorithm.
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APPENDIX B

DERIVATION OF THE SENSITIVITY FUNCTIONS FOR
THE SECOND ORDER DUAL CONTROLLER FOR A
TWO STATE VECTOR MODEL

The concept of a dual controller is introduced in Section 2.2 and a dual

controller based upon a second-order Taylor's series expansion is derived in

Appendix A. This controller s given by

A ~ n ~ oA
u*(0) = -[B'(0)Q B(O) + I (q By(0)+ Fp) + RITV[B'(0)Qe(0) +

g=1
n Q, °
L (q,p, (0) + £,)]
=1 £ Be 2
where the matrix F% and the vector fg are
n n %* % BPR' (D
F o= 3 3 1 3J (1) _ 13 I (1) 3 i,j
Poamrgn 2 et oo 2 eet seln ] O O
1,3 1 J
n n % * BPQ (1) BPQ (1)
s ¥ 1f 337°(1) 1 3 aJ (1) i,j _ 9 i,j
i=1 3=1 2 \ %8} PRI Lied 36?(1) 0u(0)  2u(0)  2u(0)

(B.1)

(B.2)

L0, 60),B (L)

uF(0) (8.3)
ut(0),800),5 )

This approximate two-step ahead dual control is a modification of the cautious

controller by the terms Fz and £,. These terms depend upon the sensitivity of

L ~

2 ~4 »
the future expected cost J*(l) with respect to the parameters Gi(l) Gj(l), for

all i,j and their covariance Pi .(1) for each row % of parameters.

3

The sensitivity

evaluations of the future covariance Pi j(l) with respect to the current control

b

u(0) are also necessary. These functions are derived in detail in the following

sections of this appendix.
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Variable Definitions

For the sake of completeness, we may rewrite Eq. (3.3) of Appendix A here, -
assuming Q = diag (qQ), as
n

*.
J() = ¢'(1) Qe(l) + I

%
q, P (1)
=1 ¥ ©

~ ~ n ~ A
- [e'(1) Q B(D) + S?E qy Pi'B(l)][B'(l)QB(.l) +
=1

gk + RN Qe + 3 4Py (D] (B.4)
2=1 | =1 ¢
The plant equations are described by
xl(k+l) = el(k) + ez(k) ul(k) + 63(k) uz(k) (B.5)
xz(k+l) = 64(k) + Gs(k) ul(k) + 86(k) uz(k) (B.6)

whose measurements are according to

y (0 = x () + w (B) (5.7
Yo (k) = x,(k) + w,(k) (B.8)
with
E(w(k)) = 0
A (B.9)
Elw(w'(3)} = Wﬁkj 3ow(k) = (k) w, (k)7
and the parameter of Eqn. (B.5) and (B.6) varying as
O(k+1l) = (k) + v(k) (B.10)
where
E() = 0 5 E{v(k) v'(i)} = Vo,
] (B.11)
A
Ew(®v' (D=0 ;5 vk = (vi&) v,0&)"
Following the notations of {13] we have,
. 8. (1) . 6,(1)  6,(1)
e() = |1 , B = | A2 3 (B.12)
64(1) 65(1) 86(1)
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and the future expected cost,

W = q (@) + B, (W) + g (85D + B, (D)

1
CD—E2

(FZD - 2FGE + GZC) (B.13)

where Pm n(l) is the m-n element of the covariance matrix P(l)? and
>

C= ql(gg(l) +2, ) + qz(ég(l) + By (1) + 1y

D= Q@) 7y ) +a B0 P (D) + 1,

E = ql(gz(l) 63(1) + P2’3(l)) + qz(gS(l) 56(1) + P5,6(l)) (B.14)
F =g (8(D) 8,(1) + 7y ,(1) + ay(8,(D) B5(1) + 2, (1)

6 = q (0 (1) 8,(1) + By 3(1)) + q,(8,(1) B(D) + P, (1)

*
First Order Sensitivity-—éi—gll—
k. . (1)
i,j
W 515,
BPl’l(l) 1 .
@y - fflfff:fﬁi, (B.16)
%y,20 (cp-E%)
aJ*(ll o 2q, (GC-FE) (8.17)
3y 3D (cp-£%)
2 2 2 2. _
aJ*(l) _ ql{c (CD-E”) ~ (F D-2FGE+G" C) D} | (5.18)
aP2’2<1) . (cp-g2)?
2 2 o2
* q,1(-2FG) (CD-E”) ~(F"D-2FGE+G"C) (-2E) }
sy 1y _ 11 : (5.19)
®, (1) (CD_Ez)z .
% q {FZ(CD-EZ)-(FZD-ZFGE+G2C)c}
31 (1) 1 . (5.20)
ap3’3(1) (CD_Ez)z

*
The derivatives of J (1) with respect to the variances of the parameters

involved in the second state (B.6) are the same as above with replaced by .
. 4 12
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(

A

5]

%
First Order Sensitivity égrﬁll

Bei(l)

’ *
Using equations (B.13) and (B.14) we derive below jgéill
36(1)
& X 2q, ( ¥D8, (1)~EG, (1) ~FEO,(1)+GC0, (1))

21 (1) 2q, 8,(1)- 1 2 2 ‘ 3 5.21)
ael(l) : (Cp-E™)

23" (1) - - - 27 2

L) o 9q, {(FDB, (1) -GEB, (1)~FGO,(1)4G"0, (1)) (CD-E")

862(1) (8.22)
2 2 o \ 2.2
- (F°D-2FGE+G C)(ﬂé})D~63(L)E)} / (CD-E7)

AL . 2q1{(F253(1)uFEél(l)~FG§2(1)+9051(1)) (CD—EZ)_
36,5(1) . (5.23)

- (FZD-zFGE+GZC)(053(1)~E52(1)} / (CD—Ez)z

The partials of J*(l) with respect to the parameters of the second ééate
B.6) are similar to the above with 9 replaced by d9s and the parameters

1’ @2, 63 by(§4? 55, 66) respectively ones.

60



23"
Second Order Sensitivity = —x

861(1) aej (D

2 %
9°J (1) 1 272 27 ~ 272
= = 2, - ———— -+ (2q505()D - 4q56,(1)6,(1E + 2¢565(1)0) (B.24)
36%(11 1- (CD—EZL 172 - 412 3 173
BZJ*(I) ‘ l 2/\ ~ 2/\ A 2/\2
AR {(quel(l) 62(1)1) - 2qlel(l) 93(1)13 - 2q163(l)F
36%1)362(1) (CD-E7)
22 A 2
+2q36,(1)6,(1)G - 26Eq, + 2FDq,) (CD-E7)
(B.25)
- (quez(l) FD ~ 2q162(l)GE - qu 3(l)FE
+ 2q,605(1)GC) (2q,6,(1)D - 2q163(l)E)}
82\]*(1) l 2/\ A 2/\ ~ . 2/\2
= x = - —5— * {(2q76,(1) 0,(1)F - 2q76; (1) 6;(L)E - 2q;6,(1)G
ael(l) 363(1) (CD-E™) _
2% A 2
- 2FEq, + 2GCq; + 2q76,(1)85(1)C) (CD-E)
(8.26)
- (2q;8,(1)FD - 2q;6,(1)GE - 2q,68,(1)FE + 2q;6,(1)GC) -
(C-2q193(l) - Zquez(l))}
3217 (1) 1 272 20 2 2 2
~> = - 5 [{(quel(l)D - 4qlel(1)63(1)c + 2q,6 ) (CD-E®)
862(13 (CD-E7)

- (#’D - 2FGE + 6°0) (2q,D - Zqiei(l)ﬂ (cp-e%)?
- {(quel(l)FD - 2q161(1)gE - 2q;8,(1)FG + 2q;6,(1)6") (B.27)
2 2 2 ~ -
(CD-E) - (F'D - 2FGE + G"C)(2q,0,(1)D ~ 2q193(l)E)}

- 20(cD-E%) (24,8,(1)D - 2q,6,(1)E) }]
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321% (1)

382(1)863(1)

¥ty

2
893(1)

(CDfE2)4 ({2430, (1) 8,(1)F + 2426, (1) 8,(1)6 - 2q°62(DE
- 2q,FG) (CD-E%) + (qu§3(1)F2 - quél(l)FE
- qu§2(1>yc + qugl(l)GC) (2q,6,(1)D qul§3(1)E>
- (qugl(l)FD -qual(l)GE - 2q1§3(1)FG + quézcl)cz) .
(zq153(1)c - 2q1§2(1)E) - (£2D - 2FCGE + czc)(2q§§2(1)§3(;)
- 2q,8)} (cp-E%)? - {(zq183(1)F2 - qugl(l)FE (B.28)
-2q,8,(1)FG + 24,8, (1)GC) (cD-ED) - (F°D - 2FCE + 620) -
(2q,8,(1)C - 2q,8,(DE)} {2(CD-E?) (24,0, (1)D - 2q; 6, (DE}]
f'253%55§2 [{(quFz - 4qi51(1)52(1)y + Zqigi(l)c)(CD—Ez)
- (#*p -2FGE + G°0) (2q,C - 2q§8§(1))} (cp-£%)2 (5.29)

”~

A 2 ~ A 2
- {(2q163(l)F - 2q;8,(1)FE - 2q,6,(1)FG + 2q161(1)GC)(CD-E )
- (F°D - 2FGE + GZC)(2q163(1)C ~ quaz(l)E)} {Z(CDfEZ)(2q163(1)C

~2q,68,(D) 1
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P %P (1)

First and Second Order Sensitivities
9u(0) 3u” (0)
3 (1) 3P (1)
Next we shall compute the terms - and ——= . Referring to
ou(0) auz(o)

(B.5-B.11) we know that at any time the covarience is block diagonal. The
parameters in (B.5) are uncorrelated with those in (B.6). The measurement

matrix H(k) composed of the controls is also block diagonal. Thus we write

the following.

e PN 0
P(k) 2 (B.30)
0 p? 1)
H{k) 0
H(k) = (8.31)
0 H(K)

Following any covariance update equation (3.8) of Appendix A we need

H(1)P(0)H'(1). Thus

CH(1) o P(l)(O) 0 Aﬁ'(l) 0
H(L)P(O)E' (1) =
o EQ) o W] Lo =W
112 (0)r' (1) 0
- (8.32)
i 0 11 2? (yr' (D

Let us look into H(l)P(l)(O)H'(l) further.
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Py,1000 By o0 Py 400
BEP @R = (1 w0 6,0 ] | r, 0 B, 0 B, 0] -

RERACRER AN RIC)
1

ul(O)

uz(O)

=Py 10+ zul(0)91,2<0) + 2uy (0P 5(0) + 2u; (0)u, (0P, 4(0)

, (.33)
+ Uy (07, ,(0) + uy(0) 2y 5(0)
Similarly,
B WP Om' @ =2, 40 + 20 (02, ((0) + 2u,(0) B, ((0)
(B.34)

+ 2u) (0)u, (075 ((0) + ui(O)?S,SCO) + u§<0)1>656<0)
Thus

[ 2 B'@) + w7 - [f; Z] (8.35)

where

A=W ara) + Wy

(B8.36)

B = 5(1)p? (0) B'(1) + W,
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The innovation covariance in equation (3.8) of Appendix A is

pP )y o @) o 1B ofaw o 7 [P o
1
T T AB
o Pl o w]| o Al o =D o 22
e D (oyur (mu e () 0
1
- - (8.37)
0 2® o wrwr? o)
With our standard notation P(l)(O)H'(l)H(l)P(l)(O) may be rewritten as
?l,l(o) Pl,Z(O) Plg3(0) 1 Pl,l(;()) PLZQO) 1)193(01‘
= 2,00 2, L@ 2y @] [ w @ 100 u,0]]F, ;0 P, 0 P, 0
_P3,1(0) P3’2(0). P3,3(0)_J _uZ(O)J | _P3’1(0), P3b2(0) 93,3(0‘1
-a
= B fa B ¥]
y
(B.38)
az af ay
= |ga 8% By
Yo v8 v
with

o = Pl’l(O) + Pl,Z(O)ul(o) + Pl,B(O)UZ(O)

= Pl,Z(D) + Pz’z(ﬂ)ul(O) + P2’3(0)u2(0) (B.39)

w
|

Y= Py 3(0) + B, 4(0uy(0) + Py 5(0)uy(0)
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Further introducing ,

[
l

= P4’4(O) + P4,5(0)u1(0) + P4,6(O)u2(0)

<
1

= P4’5(0) + PS,S(O)ul(O) + PS,G(O)UZ(O)
$ = P4&6(O) + P5,6(0)u1(0) + P6,6(0)u2(0)

we may write the innovation covariance as

- 2 -

AUl

AU2

BU1

BU2

Bo Bag Bay
2
BaB BB BBy
2
1 Bay BBy By
AB

//,a\\\ AS®  AsY
< Asp  apE Ay
'*\_,/// | ase  Aps  Ae”

Let us define

sff?ai = 22y 5(0) + 2u,(0)P, 4(0) + 2u (0P, ,(0)
35??67 = 28; 3(0) + 2u; ()R, ;(0) + 2u (0P, 4(0)
55%(’0‘)‘ = 2, 5(0) + 2u,(0)P5 ((0) + 2u (O)B; S(0)
333?57 = 22, ¢(0) + 2u ()P ((0) + 2u)(0)R( ((0)

(B.40)

(B.41)

(B.42)

(B.43)
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Thus we may next evaluate gigé; nd 9 g(l)
ou” (0)
These are given below.
2
31’1 l(l)' 3 0‘2 2(1?1 Z(O)A ~ o AUl
50, (0) B (0 \TA )T T T (8- 40
uy (O) ! A° ‘
- * 2 .
aPl,l(l) ) 5 (M Ei) - ZaPl’B(O)A - o+ AU2 (5.45)
Buz 0) 8u2 0 A A?_
aPlsz(l) 3 3 (_ g_ﬁi) o Pl,Z(O)BA + astz(O)A - afAUL (8. 46)
aul(O) Bul(O) A AZ ,
aPl,Z(l) ) 3 (- _‘}ﬁ_)= _ Pl,3(o) BA + aP2’3(O)A - af-AU2 (B.47)
Buz 0) du, (0) A AZ
3P153(1) ) 5 (_ .Q‘_Y_)= ) Pl,Z(O)YA + aP2,3(_O)A - ay-AUL (5. 48)
Bul(O) au1(0) A AZ_
3P1,3(l) ) 3 (_ E_I) _ P1,3(0)YA + aP3’3(0)A - ay-AU2 (B.49)
9u2 [4)) auz (0) A AZ
' 2
3P2,2(1) ) 5 (_ __B_Zj_)= _ ZBPZ,Z(O)A - 8 -AUL (B.50)
Bul(O) aul(O) A A2
2 N
3P2’2(1) ) 3 (— ﬁi)= _ 28P2’3(0)A - B -AU2 (8.51)
du, (0) du, (0) A - A2



3P2’3(l) 5
aul(O) aul(O)
3P253(l) 5
Buz(O) auz(O)
3P323(l) 5
aul(O) 3u1(0)
Py 3(1) 3
Buz(O) auz(O)

_ PZ,ZCO)YA "' BP

2,3

(0)a ~ BY-AUL

A

2

) 92,3(0)"”‘ + BP3’3(0)A ~ ByY-AU2

A

2

2
ZYPZ,B(O)A - ¢« AUL

ZYP3’3

A

2

(O)A - v*+AUZ

A

2

(B.52)

(B.53)

(B.54)

(B.55)
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2
3P @B
1,1
— L1 L L 0% _(0)a - o®p. .(0)) A% - (20 P
K 1,2 2,2

Bui(O)

2
l,Z(O)A -«

2
a Pl,l(l)
Bul(O)Buz(O)

1 ‘
- K [2(91,2(0)P1’3(0)A + oP. .(0)AUL - aAUZPl’Z(O)

1,3
- azP (0))A2 - (2aP (0OA - aZAUZ)(ZA-Anlﬁ]
2,3 : 1,3

-~

2

- (Pl’z(O)YA + aP2’3(O)A - ayAUL) (2A-AUL)]

-AUL) (2A-AUL) ] (B.56)

(B.57)

§°P, (1) 4
___}Jl;___ - };_ 2 2 2 2
Bug(o) == K [2(P1’3(0)A - a P3’3(0))A - (2aP1’3§0)A - o -AU2)(2A.AU2)] (B.58)
3291 , (1) 1 , -
—2 . o +
Sui(o) T K [ZCPI’Z(O)PZ’Z(O)A - aBPZ,Z(O))A «~(Pl,2(O)BA + uPz’Z(O)A (8.59)
- oBAUL) (2A-AU1)]
S INEN . |
aul(o)auz(o) = -'ZZ[(P1’3(O)P2’2(O)A + Pl’3(O)BAUl + Pl’z(O)P2,3(O)A-+ aP2’3(0)AUl
- By ,(0)8AU2 - aP, ,(0)AD2 - ZaBPZ,B(o))A? (B.60)
- (7 3(0)BA + oP, 3(0)A - aBAU2) (2A-AUL) ]
8291 PY¢5 I , |
auz(o;— = ";Z [2(Pl’3(0)P2’3(0)A - aBP3’3(O))A - (P1’3(O)BA + sz’B(O)A
i ' (B.61)
- aBAU2) (2A-AU2)]
e (1) ) .
Suz(O) = "Xz [2(?1,2(0)P2,3(0)A - asz’z(o))A -
' (B.62)
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2
3 P1’3(l) 1

= - ;; [(Pl’3(O)P2’3(O)A + Pl’B(O)YAUl + Pl,Z(O)P3’3(0)A

aul(O)auz(O)

+ aPy 5(0)AUL - Py ,(0)yAU2 - 0P, 5(0)AU2 (B.63)

- 2012, 5(0))&” - (B} ;(0)ya + @By 3(0)A - ayAU2)-(24-AUL) ]

2

37P; (1) 1 2
.__;_5____ = =5 [2(R) (0P, 3(0)A - ayPy 5(0))A7 - (B 3C0)¥A + o5 5(0)A
~ 3u,(0) '\
(B.64)
- ayAU2) (2A-AU2)] '

2, () ) 2 2 2, .
—Z2 “Z'[2(P2 ,(0a - 8 P, 2(0))A - (28p, ,(0)A - B AUL) (2A-AUL)]  (B.63)

du; (0) A ’ ’ ’

azpz (1) 1

- - ;;-[2(?2’3(0)P2’2(0)A + 8P, 3(0)AUL - gAlZP, ,(0)

aul(O) au?(o) (B.66)

2 2 2
- B P2,3(0))A - C28P2’3(0)A - BAU2) (2A-AUL)]

2

3P, (1)
—52 ~ oL 2l 4 - 8%, (0087 - (282, J(0)A - BPAU2) (2A-AUD)]  (B.67)
Buz(O) A ’ ’ ’
asz 3D 1 2
—h— T g (20 (008, j(0)A - 81, L) - (2, H(O)¥A + 6P, H(O)A
ul(O) A
(B.68)
- BYAUL) (2A-AUL))
azpz 5D
’ 1 .2
= - = [PZ _(0)A + P. .(0)YAUL + P, .(0)P. .(0)A + BP. _(O)AUL
20, (0) 21, (0) W& 2,30 A T By s 2,24 %33 3,3
- Pz,z(O)yAUZ - BP2’3(0)AU2 - By 2P2’3(0))A2 (B.69)

- (P2’3(0)YA + BP3,3(O)A - BYAU2) (2A-AUL) ]
70



2

3P, 5(1) 1 2
‘-a‘u—g—(;— = - FIZ(P2’3(O)P3’3(0)A - BYP3,3(0))A - (P2,3(0)YA + BP3,3(0)A (B.70)
- BYAU2) (2A-AU2)]
E’2133 31 1 2 2 2 2
———5_-2-——- = - [2(P2 3(O)A - YR, 2(0))A - (2yP2 3(c)A ~ Y AUL) (2A-AU1) ] (B.71)
aul(O) A 4 ’ . ’ )
32?3 3(1) 1
3, (0) 3u,(0) ~ T [2(P, 3(0)P5 3(0)A + v, 3(0)AUL - vP, 4(0)AU2
| (B.72)
- YZPZ’S(O))AZ - (2y2; 4(0)A - Y2AU2) (2A-AT1) ]
2
e (1)
—5— = - i 20k A - v, 08 - 2vp, (0A - ViAW) - a-au2)] (B.73)
33 (0) A ’ , , o

) The partials of the covariances associated with the parameters of (B.6) are
similar to the above with o, 8, ¥, A, AULl, AU2 replaced respectively by &, ¥, o,

B, BUl, BU2 and the appropriate covariances of the parameters of (B.6).
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LONGITUDINAL HUB SHEAR STATE X1

225

2.0

Fig. 1 Longitudinal hub cosine state
x1, vs the control inputs 03, and 0345 from the
identified third-order nonlinear model obtained
from G400 simulation data (120 knots)
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LONGITUDINAL HUB SHEAR STATE X2
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Fig. 2 - Longitudinal hub sine state
x7 vs the control inputs 63, and €35 from the

identified third-order nonlinear model obtained
from G400 simulation data (120 knots)
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LONGITUDINAL COST

102717

Fig. 3 Total longitudinal hub cost
xJ + x2 vs the control inputs 63, and 835 from

the identified third-order nonlinear model obtainad
from G400 simulation data (120 knots)
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Fig. 118  Time hgstory convergence of cost for the
global linear adaptive cautious controller showing the
divergence points when the control values are in a very
nonlinear region. Q=diag(10=2, 5x10-8) ; R=diag(10-4, 10-%4)
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Fig. 119 Time history adnvergence of Control 1 for
the global linear adaptive cautious controller showing the
divergence points when the control values are in a very
nonlinear region. Q= dlag(lO"S, 5x10-8) ; R=diag(10- 4 10-4)
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Fig. 120  Time history convergence of Control 2 for the
global linear adaptive cautious controller showing the divergence

points when the control values are in a very nonlinear region.
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Fig. 121 Time history convergence of cost for the
global linear adaptive cautious controller showing the
divergence points when the control values are in a very
nonlinear region. Q=diag(l,l) ; R=diag(0,0)
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Fig. 122  Time history convergence of Control 1
for the global linear adaptive cautious controller showing

the divergence points when the control values are in a very
nonlinear region. Q=diag(l,l) ; R=diag(0,0)
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Fig. 123 Time. history convergence of Control 2
for the global linear adpative cautious controller showing
the divergence points when the control values are in a
very nonlinear region. Q=diag(l,1) ; R=diag(0,0)
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Fig. 124  Comparison of the costs using the cautious, the first

order dual and the new dual (Time varying parameter case.
Run 2 from 100 Monte Carlo Runs)
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Fig. 125 Comparison of the controls using the cautious, the

first order dual and the new dual (Time varying
parameter case. Run 2 from 100 Monte Carlo Runs)
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Fig. 126 Time history of the true parameter
for Run 2 from 100 Monte Carlo Runs (Time Varying Case)
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Fig. 127  comparison of the controls using the cautious, the first

order dual and the new dual (Time varying parameter case:
Run 7 from 100 Monte Carlo Runs)
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Fig. 128 Comparison of the controls using the cautious, the first
order dual and the new dual (Time varying parameter case:
Run 14 from 100 Monte Carlo Runs)
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Fig. 129 Comparison of the controls using the cautious, the first

order dual and the new dual (Time varying parameter case:
Run 21 from 100 Monte Carlo Runs)
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Fig. 130 Comparison of the cost using the cautious, the first order
dual and the new dual (Time varying parameter case:
Run 21 from 100 Monte Carlo Runs)
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Fig. 131 Time history of the true parameter for
Run 21 from 100 Monte Carlo Runs (Time varying case)
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Fig. 132 Time history of the cost using the cautious, dual and the

new dual solutions (Constant parameter case: Run 18
from 100 Monte Carlo Runs)
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Fig. 133 Time history of the control using the cautious,
dual and the new dual soluticns (Constant parameter
case: Run 18 from 100 Monte Carlo Runms)
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Fig. 134 Time history of the control using the caﬁtious,
dual and the new dual solutions (Constant parameter
case: PRun 26 from 100 Monte Carlo Runs)
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Fig. 135 Time history of the cost using the cautious, dual
and the new dual solutions (Constant parameter case:
Run 44 from 100 Monte Carlo Runs)
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Fig. 136 Time history of the control using the cautious, dual
and the new dual solutions (Constant parameter case:
Run 44 from 100 Monte Carlo Runs)
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Figure 138. Time history of cost comparing
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Figure 141. Time history of parameter
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Runs (Time Varying Case)

145

A - lst Order Dual’
4+ - 2nd Order Dual



W=.,V=.0,B=.05 P=1.0 W=.,V=.0,B=.05 P=1.0
RUN NUMBER 26 RUN NUMBER 80

o~ & - Cautious 1.2 . ® - Cautious

A - lst Order Dual™? ~ A - 1st Order Dual]"2

o + - 2nd Order Dual -+~ 2nd Order Dual
iy _

4

v L
b .8
AY
r‘-—f'}'/
CoST

- 4
= ) 13 ..L&; M""W . ) ,
0. 8, 16. 24, 32. 40. O-AWMM“%.__
' ) TIME STEP 0. 8. 16. 24, 32. 0.

TIME STEP

E‘iguré‘l&Z. Time history of cost comparing

the new dual, dual of Reference 1 and 2, .
comparing the n dual,

and the cautious controller (Constant P & ew dua dual of

. Run No. 26 f 100 M Reference 1 and 2, and the cautious
Zarameter case: hun Ho. Lrom onte controller (Constant parameter case:
Zarlo Runs) - N

Run No. 80 from 100 Monte Carlo Runs)

Figure 143. Time history of cost

146



FIRST ORDER
DUAL
CONTROL

CAUTIOQUS
CONTROL

NO
CONTROL

COLUMMN
COUNT

ROW

OO et DALO ST M ANON AN NN pd e SO

& 8 6 & & 4 0 0 8 0 0 B 0 b O A 82 b8
| NN O et D Qe N SO OO md VNS e

COINGE AN CANNO C 0 (i [N edemt GNP 0
MU OO IR TN O N N G I~ 0 10 G DN
VN F N O F ORI L O = NGOGt I~

Coemled Netelen WOV N N (Ot W O

o et N OGN Nt M P O O U S G 0T O
..-ooooo-obooo.-.uaooooﬁ
NP G ADOTU D CIC GGG OO OS T
AL M d o et O ON N = D O e QOO U X e O
200462858039439140653170
CAINC M N 0O NS OO IS ANSE GO
Nt (N0t O N M Neisd W0 T

O 4 & & o % 4 0 4 b a8t s 4 b ah e
GO 2 AN T e D O T D G I O
CUENONMMAOEC U PO et G Y
NN NN C O T T O NN
NN N TN G OO0 e OO0
N w0 et O OGO = ONAO N (N T i Y
ol e

4.

3
€3349,

269

1

et ONNF IO O Cr et (NN T BNVAD N OO Ot NS
end gt gund gren] e et Bk g 44 gl O\ OV OO\ ON)

AN COF N OV OO O et O T U ot o G ot
.0..»..0.0..-......o.-..t
WU O st o O et (VO N T DD N e 00 DN Ot et U
G M SNTDCO BT NN SN
AUV AT N O C U =LA OO et (O =l 2
OISt ;e O MU ot I AN TG O N0 LN L0 C
o=t ) ot ot N -t e oF et ot

NG @ = OG- SO S Nolo Pt ety aloato VoY v ol o
..-..0.....0#..0.0.00.0.
o gk LN Q5 U ot et A ot S G AN P O P D Lt i oANT -0 00
O OB P e 0L DO AF N0 o (PO INOT SO
PG OO IT NG C et W P et (N N ot (U S
OO L C NGO LWL N Qo U NN = e O

=1 O\] et i (Al otond el o - 00

--.-.o.oo..-ooo.ooo-
RN OGNNSO TV NG O N il
631..?.;06?.57«31—.«103[15.n7./05.&.7,2/4.
P e 0 (O et O TN G N0 O
OO FOT - P et O G OG- O N0 O
N e NN O OO T VDL (et O N0
ond -~

OO0 O OimM Gt D=8 O OIS O O
NNAINAIM O o e S GG T

147

Process Noise (No Control, Cautious Control, First

- Cost Values for the 100 Monte-Carlo Runs For 30%
Order Dual Control)

Table 1.
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DUAL DUAL
COL M r1 co r2
COUNT 150 170 190
ROYW )
1 3.293A00 24294120 3 282500
2 J.183000 Geo 1756800 D 170NN
3 N, 4NN 20N V7.347600 N,227300
4 u.57363ﬂ De BTTIOIG D BR2TON
5 N .33970D N.343590 3.2756900
5 S3+511L730 34%919723 D e 453332
7 3« 42T BRG . 410240 De%143710
S % 4222700 G0 425977 Te415920
19 1 .535000 J. 905600 0.522an0n0
11 0. 710600 }. 702100 De 752400
12 0 .358904 D e 347405 D¢ 34D2050
12 0.742500 NgT64100 N, 70180N
14 ,3158500G 3.312350 N,?293853"
15 e 371400 J. 453100 DL 4N6100
156 N. 369600 Na36T1IN0 N,373000
17 NLTTIN2DE A TT2ITAC Je 7590027
18 N 442300 Ne 431200 De&a183400
19 D.741700 D.,722300 N, 7560710
20 i« 5235400 B, 520800 (e 922083
21 Nb624250 D, 607507 O.55150N0
22 N,2373360 Ne2377370 F.22T1340
23 3 eH2AHTNG e BEIDNG D« BRIZNN
24 N.134800 Ne 123200 N.125770
25 N, 402 597 "L.3293N%N 023727
24 N,160450 Ne 1359000 G.111100
27 DeB786N0 J.56933D0 U.553890
28 0.17543ﬁ 3175100 De 1893200
29 DL.,72400Q0 Qs 740900 0. 740000
30 N.296A30 3292830 34298435
31 N.560°3N00 N, 610400 Ne 524300
32 N.L.565300 D.8557200 ),52397N0
33 0.,4307300 F. 433 TRG De 451900
34 0,7272400 Ja 700200 e 578100
315 3. A13ATTD Je5924370 d.556569310
26 3 e279NDG De 2RI 200 ,20810"
37 0.,327100 d,323900 J.330100
3p ﬁ.é?ﬁﬁ?? JebH837710 NahT4ELN
39 N ,429300 Us 468000 D.4326900
40 N.373300 J.36750) 0.341100
41 N.162800 71688050 Ne 1844702
42 0.615100 De522300 Ge535K711
43 N.61A2720 1. 623657 D ehABTLIN
44 34210060 N 622120 T.458873M
45 D.724200 D« 8000ND Ne 651930
4h 55832379 Je 5832729 Je56757)
47 D.210400 Ne 203400 N.215000
4 8 Ne737 300 1,581290 0,627330
49 3«5V TR Ve 4TG0 Jo LTNNGD
59 N, 420200 DN.517830 Ne4530009
51 2.5131%49 JeSu5 130 NG 4567200
52 Y FATINGD Vo534 A30 5, B2 26010
532 N ,585201) 3.573400 N, 565 880N
54 TV eBI43INN Nebh15927 3.6“”@3”
58 042933009 N, 305300 0.2301370

Table 2. - Cost Values for the 100 Monte-Carlo Runs for the time
varying scalar model, using the cautious, first order
dual and second order dual controllers (b(0) = .05,
Pb(O) =1, V= .1, ¢= 1, W= .01, No Control Cost = 1)
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Table 2.
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ﬂ.&ﬁﬂ!ﬁﬂ
a,592A400
ﬁ.Z??QGQ

FIRST ORDER
DUAL
et 1:31140)
I B37T4600
Je 375600
Yo 3635250
3. 544 gﬁﬁ
0.2971300
~ 1445777
0,451 800
A.57100N0
Do AR 2G4
VALK 60D
F.427530
N, 482160
N.193200
Ve &2THYD
2. 233C0D
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ORIGINAL PAGE IS
OF POOR QUALITY

CAUTIOUS FIRST ORDER SECOND ORDER
DUAL DUAL
COLIMN c1 ' c2 3
CaUMT 100 100

R

-
o T ]
> LI
w3

1 Ny37720 N, 2 £L.314009
2 0.24700 N.24900 N.179600
3 £.380,04 37370 e 4HRLN)
4 N.59300 0,74590 0. 68067
5 2.51 779 2.53640 3 4QLATN
A e 53234 e 87 83D O45116T0
7 ﬁ 73070 N.77D30 N.425400)
8 T.5R1ED n,5735% D 33MAGN
1N Ne9108NG N,R80650 0, 620370
11 C.92020 5.8857n DeA13200
12 N,&NTTH 0.34300 Ne34670H0
13 N, 72754 2.TH820 NLANEQIN
14 3BT BAG s 36210 N,2A3R/A0
15 0, 43750 0 R AN D, 4250710
16 N,e3A72N ?.?67%@ Je331537
17 Q,024520 .94 370) (e RGQRNN
12 Ne8704ND D.SGQQO (,422G67)
19 N,98940 Je 338G 7, TRA]MN
20 C 70T N N ﬂ593ﬂ 0N, AGA20N
21 2,725810 3.7?45‘ Fe 7R2T75N
22 N,4221% Ne 22980 Ne19564M
23 NT6T76D N, 73550 D.ATOAN0
24 n,22740 3421437 N,12874%
25 N,421089 D.45810 J.4THA0N
26 0.419110 N.21630 0,20020%0
27 D.655937) DeTH2RG ,585844
29 D 174210 0.17340 H.17090N
2Q .P255% T.8253% D.%81637
39 $.29274) D.29520 f,29619n
31 0.32551) D,93770 N 59250
32 Fe5H661 NL,AR8D Jen14a27%0
33 0705490 D.74210 NeBRTTILN
34 0.39050 N,91810 N,711s800
35 D.93330 N.72410 e FLOBLN
35 N,37420 0.55320 N,27030N
27 N, 47037 Je2 150 ML, 3946020
38 e T4R2ND 0,72170 ) EBRTHT
29 N,62200 N.53430 D, 670900
49 3«AIN3N D.575275 1,3975%7
42 N, 73480 ND.74770 0, 794200
43 QG T2420 D.7239N DB, 678130
44 De42820 D4T430D e 4R4TON
45 B, 77454 N.7%520 Deb417TI0
4 A NeH3INLI e AGAN s A2R3N0
47 Ne34 190 0,3027340 4232000
48 Y TAODTH T.73827 .719727
49 ﬁ.77530 D.6385%0 D, 615000
50 N, 7TR1AN J.75330 D,55246400
=1 N,79230 G.R75621 Mo GORRIG
52 N, 75490 N.72380 D.7114A0N
53 2.9%695 3,01871H 54657320
54 noBS(ﬁqQ ’).66?‘;@ e 79013'

Table 3. - Cost Values for the 100 Monte-Carlo Runs for the time
varying scalar model, using the cautious, first order
dual and second order dual controllers (b(0) = .05,
Pb(O) =1, V= .1, ¢= 1, W= .1, No Control Cost = 1)

151



SECOND ORDER
DUAL

FIRST ORDER
DUAL

CAUTTIOUS

NL,4T7T3000

VLARAANG
D 7N EHIT
J,28527N0

0,44530
Y.5421"7
D, 33970
N e43240

Lond it
—
IRV S o
i Tl d ol
S ag

¢ o O o

cCOo

[ Yol of aalt o]
[TalTatiaTe

cCeconOeror oo coocooococe ool cecon AT
333?13@3));0@373;3«33§r33033diﬁ3$0~30)ﬁ)3ﬂ
3811752360227?_&\ ST Yo S T T s iV el o X aR Tal oaleatotoNe a and o N oNY o ite o T SUEN. of ol o V1
I SO =N G ﬁ??799196086a0320c518R31Q?5600
1:72Q?QZ13~2)53335525?Q392L156@18381@43673
[AaEV oL aRN G B SR S oo oK PG o BN F T RN IR0 ] e sl N A SIC ¥ N o s 0T A SN RN o T SRN SO\ o of R AT SRV S TaR Vol UGN aff o all QVAN 4
0...00.!0.'0.l)'.l....l.... .0...00.......

L]
OO Or OO DT QC OOl OO IO CoG O O T o

r‘\

OO0 T OQWP EAI D e O O e G ONOQCOONLCROORCC O
C OO0 Ol Q0N P e 0 N S 0t OO O O P e D e OO I e 000 N G O
2.1658399227_1110 [l oaF QU TTaY uill o ate a¥ SIS shincl oo T ot (¥ oo Te TN STaR sl u] Vo Roalte 8 L RV oL oA\ o
CoeOt O T R O T N I U O o 0O LT P e VOGN QO ACAN DD QD et O e O OO O
R TG I TT TERVGN, L STRTTRN ol oWl Tall noloal o MY o BN o sl Ta¥a o ¥ RN sRVall vall TSl Ll ol s e Nl it i oo TR Vol oRES
a0 # & 0 0 8 6 g % 6 % & & S B g & 0 s 0 8 g P g 0t N o 9t e 0 g 8 " g &t 09 oo

TOCCOCOMOONOOCRC OO OOOOACHOONC o C.OrCOlOmCC

e O T e O T T O OO DOl CECC O™
R F 00 G Rl O (e O G 22?66461ﬂ4533?R201uA
OO NN C L i T 0459117AQBQZZFS?\;B?QQ?A....ﬁ.&%.c..,uSon
NENNS Y- ST VoS o (NI S UAF ool SRTRIN 8 SR (ate SIS 0 SUGRCEC JEoE LTSIV X Foad Uk aiieal Sl oS hs Sanbond T ol o
45&5564Q552Q?7A7Q7QQ6Q4376674A7R 7%73ﬁ7A74
o 8 & & & & & & P 2 A P g o s @ P B8 PR & s o B g e g & s » e " a o ¢ ¢ o 0
MO OO CCOOCCIEOlOOCQCr mORQ oo RO nn OO CCCO

O C A GO O et i F I OO C N FICC O C N O O C
[TalNe RV s RValN RV QRV RN, BV Tl S R e e S e S N A oAl s sl oRealeals g ey oX s ol oal s N ol ¢ S e ead el aall 0S¥ o L
—

152

.60787

.62293
Average Second Order Dual = .51389

Average First Order Dual =

Average Cautious

(Cont.)

Table 3.



ORIGINAL PAGE 1S
OF POOR QUALITY

CAUTIOUS FIRST ORDER SECOND ORDER
DUAL DUAL
CoLumy c1 c»2 C3
COUNT 109 160 100
ROW
1 T.1193200 D BRGDOG Ge 102250
2 53.00000 ﬁ.065200 N, DA11ON
3 3.172323 15372 NeNEREDT
A 3 .005250 ne 62 600 1,15524
5 D.,117700 ﬂ N&L 300 N.NE210N
1Y Te14353"0 ;.1?933ﬁ ,593%0
7 A.161000 Ne DRTNOD NGOR14NN0
q 0.086200 S ELE- 1T 0B,N95790
Q 5. 090 304G T URE3IN N, 3636730
in NL,102400 N, 3RAYTON 0., 066000
11 Y.O85103 N.03532720 A,05243"7
12 Nel764400 Ue 165770 T e HARBGN
13 D.NRO60DN 0.073700 O, 064500
14 2,0N725G0 M. 68530 I 546050
15 N.160000N0 Do NBAAND N,1342CH
16 0.11&900 N, NRINAN 0N,0585%0
17 Y, MA5ENGN NL.O85A0 14 13B 7900
18 ﬁ.?OﬁDOO 1, 082930 N,M65A09
19 “.“’93" De}728530 G. T30
20 3 eURN1D Ae BE3 4T Je61 750
21 32973470 N, 65000 3.0854530
22 (16450 2eABRTHAN N eith 1AM
23 N.104300 N N8I T700 N.070800
24 D1DNADD D, NB48)0 N,NARQ4LNAN
25 3 .083354 0o NHABNHG 3, 358550
26 (1, NR8070N D.07260N 0,06930nN
27 3475732 3.062533 3.1155900
29 2 D94 ANT 3.087200 . DAL 100
29 0. 0975ﬂ0 2.091100 0.091000
34 W.1444 V.,39%3 720 N.55932 1
31 ﬂ.lﬂ33G T NGESRN0 NeNDH18IN
32 0.087700 DeDTT7TH0ON 0,430
33 0 .162240 0. 062800 (. N5885N
34 0.138200 N.0O8720N0 N, NB1 39N
35 D.791539 1,825 0 3.N6T7134%
36 3.128930 e 09T 500 Ue175210
37 0.037300 3.073700 N, 069000
38 1,308170 1,"838"n0 G."MEQ9%0
319 N.N8924A00 N, NA1 200 ﬂ NS 2409
40 N.117400 N 147400 9.034100
41 N LOTBEEDD e J63NGNH 1e NS EH{IG
472 2.100500 N.N91 600 N, N8Q30N
43 T R38N NL,30320n0 3.129820
44 5.,09n100 3. 09} ARG A, 107800
55 e 109970 V.85 700 DNBB7NN
46 N,137A07 n,364090 N NANTAN
47 §.,120700 N. 0535073 3.054000
4Q 3.076300 0.,373500 0. 065990
49 N.122109N0 Y 2NR A5G0 D.NT78 34
50 SIS LT n.AaL 100 J.n0R99N
51 nL.o7820N 1.ATLETIN R 64340
52 2 ,188050 Y. 102000 Y, AL
53 3.115200 0.023000 N.192700
54 2.177370 JeMRD AN Y. 842D
55 N ,134900 1. 165700 ). N2 4509

Table 4. - Cost Values for the 100 Monte-Carlo Runs for the
constant parameter scalar model, using the cautious,
first order dual and second order dual controllers

(b(0)=.05, P _(0)=1, V=0, c=1, W=.01, No Control Cost=l)
b
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Average Cautious = ,10907

Average First Order Dual = .08739

Average Second Order Dual = .06927

(Cont.)

Table 4.

154



DUAL

SECOND ORDER

o
Hewd

OF POOR QUALITY

ra
100

FIRST ORDER
DUAL -

ORIGINAL PAGE |

CAUTIOUS

\’T

on
ﬂﬁ

N X o o SAR W S Suell ant S L il G G A ol G el sl ol ST o nl ool e ¥ a4
T O N £ (o £ £ £ T o T 5 (o £y € e £ o 874
2..17 7Q,31L7717..406Q;6.Hon7 Q,?O,Ql,»/.:/i},n_/_j
O ANOC OO LU OO A OO T ed O OO et O YN C o 6
I e F O O T O D et 2T i N e (VO e N sF et 712 0O O
et g e § el d e gt ond gt g e e 0 gend (N1l ymed ] pd f e e g guan | o ot gt et
® 2 & 2 9 ® & & & D s S e s " 20 8 " 50 et e 2 oe e "o

[asl v qul oY suEnn wiPoc T ool wnk Setep Lord 4 endut¥ wid St and Tl et LAY el e ond S0l

Lo CoUCQSCCORCe e TCiICooTemOm
E T ALY T L Wil o il sict-o B ol oo ¥ o ol s KT el o Voo T opuuel 5B e T4l v ¥ GRX bf ste
GO AN AHINGOF OO GO O 0N CNO
[ O abe o ¥ all Y QWYL SN Vol R Y ST ¥ SRl s TRANAT A PR Fo o S S o sTaeTs o8 SN e a¥ ol o
O E GO NSO T LN O C o red O e LD G D
ONNE e e O 00 00 ed e ) ! (F et b O O N OO OO0 O e e 0N
s P ® 5 0 5 & 8 g 8 8 0 & % 8 0 g @ 8 g t e AN e 0O 249 a0
[ R oo T il AR ST d o § Al ST e diie Ll o ¥ oo ool AR o lep ¥ ol wail St ¥ sndlonsl S0 vkl 401

COQOOCCoC Qoo
.J..Jnm,a).)aj\).lxy}ﬂzz.n [l T I T Tl sl T ol
[ AR auBN o pe N AR o e M e A ol i o X T X SRVORVSY o o
T aREAg T SN o IXa TS RRVaR N g FORVOR st JTaT.l SN Eari (Rl Ul AN offs'ed
Z?]ﬁ%RRABOQIQQRQ754?575905
OO OO OO P LT O SE D ONUSE T et O T O T OO e et et O

9 8 & 8 a0 & g 0 st ® e 0 S 5 0 6 e 2o e a0

Sl ol el Lot ool el it e ot

Sl gt e § o ined ol and ooy ol o
S
¢

\’) .27""'6‘413
ﬂ. 40330”

-
(Lot Ltk Kl Gl anfond il wis S ook ol gl 8

.lUw12%4567QQﬂ!?34567@931234567RQ3

pod et et g g gt e e e e LOC OO OO O N o

(3

o~

T COCOQU O Qoo T
Qe D OO T Waﬂﬂ NS ™
Wi FEC i @ e Lo F e OO oG ¢
CF OO OGN0 Lo
O C e G QOO T AT N O e 0T
vt gmed ot v ot L e el e | ped P g ] O ok e (G e et

qm

o
~
(o
o
—
A -

(o o
cCo
xR

~

e & » O & 0 & 2 ¢ N 0o 8 P " 0 O @ B 0 e s e 2
CLCOT OO Qe OO )....;,una 2.
[wZaplaTa Lty el el vl ool ol Oﬁﬁlﬁ:ﬂ [ ol S Y Y e
ﬁ??ﬂnraf0303%0 A T
TN Rt Xl e aal= oo 2 o¥) SNRE s N PN Tl SN LoV N o ¢

[aR RS RN Y RN T SR Tat (ol e AN L 0ol v ol SR I QYT AN 0 S QW BN Y., oF o
(S gls NeT viE o YorkVal il e PR TS AV JNToaRN o pu¥o 2o o TN o ak e AN, o
(ARt aNT oN Yo of . TN TN QURE L Py o S o N L L oS SRR W RoSY SHR  oN
® 8 & A4 ® 0 & 4 5 F o ® G 8 S 0 6 0 9 & O e g
e I C O T O IR e O C e T

CeoCCDCCTOEI T OQR ,.nnw. CCeCoo
CeilD CL OO QCInC e ﬁ\,!\ﬂa:ﬁ.
O TG U D USRI I e 63
COMOT MU CC e CO LMo U e
(TotonlT ol oF ST St ls of TARX I o3 il o o ¢ 4 QN 6 AR TR T o oL sl Vol
COLOJLNCT M WO OO N = 00 O et O O O O OO O o0 F 00
s & & o 8 & 8 8 4 v & g 8 s e e 0 e e s 00
TN O DT OO O CCmC e

OGN OO O C MG IO O O et 0 (0
[aa¥anioa¥ BT af s ot aaT Su s o RN G X JEX, N N SN N JEX SN T8 T Vol TatTel

155

.1, No Control Cost=1l)

1, V=0, c=1, W

.05, P,(0)

first order dual and second order dual controllers

- constant parameter scalar model, using the cautious,
(b (0)

~ Cost Values for the 100 Monte-Carlo Runs for the

Table 5.
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Average First Order Dual = .250
Average Second Order Dual = .142

Average Cautious = .359

(Cont.)

Table 5.



Measurement:
Noise Covariance

Average Cost

W Cautious First Order Second Order
Dual Dual
% .01 475 469 .458
i .1 .623 .608 514
Table 6. Average Cost for the three controllers on the time
varying parameter model (b(0)=.05, Pb(0)=l’ V=.1, c=1)
?
; Measurement Average Cost
% Noise Covariance
i W Cautious First Order Second Order
| Dual Dual
.01 .109 .087 .069
!
i .1 . 359 .250 142
Table 7. Average Cost for three controllers on the Constant

Parameter Model (b(0)=.05, Pb(0)=l ,

'V:O, C=l )
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