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Abstract

The physical properties of the commonly used second-order closure models

are examined theoretically for rotating turbulent flows. Comparisons are made

with results which are a rigorous consequence of the Navier-Stokes equations

for the problem of fully-developed turbulent channel flow in a rapidly

rotating framework. It is demonstrated that all existing second-order

closures yield spurious physical results for this test problem of rotating

channel flow, In fact, the results obtained are shown to be substantially

more unphysical than those obtained from the simpler K-s and K-_ models.

Modifications in the basic structure of these second-order closure models are

proposed which can alleviate this problem.

Research was supported by the National Aeronautics and Space
Administration under NASA Contract No. NASI-17070 while the author was in

residence at the Institute for Computer Applications in Science and

Engineering, NASA Langley Research Center, Hampton, VA 23665-5225.
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1, INTRODUCTION

The ability to accurately predict rotating turbulent flows could have

a wide variety of important applications ranging from the analysis of

turbomachinery to the description of turbulence in the atmosphere or in

oceans. However, with the exception of some recent work on the limiting

case of two-dimensional turbulenceI-3, there appears to have been little

work which accounts for the effects of rigid body rotations on turbulence

modeling by a direct analysis of the Navier-Stokes equations. In fact,

much of the work in modeling rotating flows has been conducted utilizing

the K-_ (or K-_) model of turbulence which requires the effects of rotations

to be accounted for by the use of a variety of ad hoc empiricisms (c.f.,

Majumdar, Pratap, and Spalding4, Howard, Patankar, and Bordynuik5, and

Galmes and Lakshminarayana6). While such approaches can be useful in

correlating experimental results for a particular class of rotating turbulent

flows, they do not form the basis for a general theory which is needed if

models are to be developed that truly have a predictive value.

The purpose of the present paper is to examine the consistency of

various second-order closure models with results which are a rigorous

consequence of the Navier-Stokes equations in a rapidly rotating framework.

Although there have been a few previous studies of rotating turbulent flows

using second-order closure models (c.f., So7, So and Peskin8, and Mellor

and Yamada9), only a narrow range of flows have been considered so that

no definitive conclusions could be drawn about the correctness of the models.

In this paper the test problem of fully-developed turbulent channel flow

in a rapidly rotating framework will be considered. It will be proven,

as a rigorous consequence of the Navier-Stokes equations, that the Reynolds



stress tensor for this problem must be two-dimensional (as a direct conse-

quence of the Taylor-Proudman theoremI0) and must have a non-zero Reynolds

shear stress in the plane of the flow. The commonly used second-order

closure models yield completely opposite results (i.e., a three-dimensional

Reynolds stress tensor with vanishing Reynolds shear stresses), and, hence,

are fundamentally inconsistent with the Navier-Stokes equations for turbulent

channel flow in a rapidly rotating framework. It is also demonstrated

that the results obtained from these second-order closures are substantially

more unphysical than those obtained from the simpler K-a or K-£ models.

Modifications in existing second-order closure models which can alleviate

this problem will be explored. By the addition of one term to the second-

order closure obtained by Haworth and PopeII from a generalized Langevin

model, it will be shown that consistency with the Navier-Stokes equations

in a rapidly rotating frame can be achieved. Other possible modifications

wfll be discussed briefly in the last section along with the prospects for

future research.



2, SECOND-0RDERCLOSURE MODELS AND ROTATING CHANNEL FLOW

The turbulent flow of a homogeneous and incompressible viscous fluid

in a rotating frame of reference will be considered. The velocity field v

and pressure P will be decomposed into ensemble mean and fluctuating

parts, respectively, as follows

v =_+ u, p =_+ p (1)

Of course, the decompositions in Eq. (i) are solutions of the mean and

fluctuating parts of the Navier-Stokes equations and continuity equation

which, in a steadily rotating frame of reference, take the form12

_v
~ + v-Vv = - V_+ vV2v- V.T - 2_ xv (2)
_t .........

Bt + v'Vu~~~ = - u'Vu~~~ - u'Vv~~~ - Vp~+ _V2u~+ V'T~- 2_~x u~ (3)

V'V = 0 (4)

V.u= o (s)
~ ~

where _ is the kinematic viscosity of the fluid, _ is the angular velocity

of the reference frame relative to an inertial framing, and T is the kinematic

Reynolds stress tensor given by

T = u--u (6)
~ ~~

M

It should be noted that P in Eq. (2) is the modified mean pressure which

includes the centrifugal and gravitational body force potentials.



The Reynolds stress transport equation is obtained by taking the

ensemble mean of the symmetric part of the outer product of Eq. (3) with u.

12
This equation takes the form

DTk£ _£ _'k 3 (UmUkU_)
Dt + Zkm 3x + Z£m 3x - 3x

m m m

3p + 3p 3uk 3u£
- (u k _ u£-_k ) - 2X; 3x 3x + x)V2Tk_,m m

+ 2 Emkn_mTn£ + 2gm£n_2mTnk (7)

in a rotating frame of reference. In (7), Cartesian tensor notation is utilized

where the Einstein summation convention applies to repeated indices and Ek£m

represents the permutation tensor. Second-order closure models are obtained

when closure relations are provided that tie the higher-order turbulence

correlations in (7) to the Reynolds stresses (along with their spatial

gradients), the mean velocity gradients, and the length scale of turbulence.

The closure relations used for the higher-order correlations (i.e., the

triple velocity correlation, pressure gradient-velocity correlation, and the

dissipation rate correlation) in an inertial framing are of the general form

UkU_Um = Ck_,mQ,V!,_) (8)

m

3p 3p 3_% 3vk _

uk -_ u_ -- = - CI m ++ _xk (_km 3x T£m _m ) + Ak£(T'VT'D'£) (9)

_u k _u£
2v DX Dx = Bk.%(_,D,Z) (10)

m m
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respectively(seeMellor and Herring13, Launder,Reece, and Rodi14, and

Lumleyl5). In (7)-(10), C1 is a dimensionless constant, _ is the length

scale of turbulence which must be obtained from a separate transport equation,

and

Dt _t + v'V (Ii)

- l _k _V_
Dk_ = _(-_ + -_xk) (12)

are, respectively, the mean substantial derivative and rate of strain tensor.

By extending (8)-(10) to rotating frames of reference (see Speziale2) and then

substituting the results into (7), it is a simple matter to show that all

existing second-order closure models are of the form

DTk£ _V£ _k _ C , _(T,VT,_)D--t----+ (I-CI)(Tkm _x + T£m-_) = _x mK_ ~ ~~
m m m

- Ak%(_,V_,_,%) - Bk%(I,_,%) + vV2Tk_

+ (2-CI)(gmkn_mTn_ + 8m%n_mTnk) (13)

in a rotating frame of reference. It should be noted that in the Rotta-

Kolmogorov model13 the constant C1 = 0 and in the Launder, Reece, and Rodi14
15

and Lumley models, C1 is a non-zero constant which does not equal 2.

Hence, the Coriolis term on the right-hand-side of (13) survives in all

existing second-order closures where it constitutes the only non-inertial term.
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Now, we will consider the test problem of fully-developed turbulent

channel flow in a rapidly rotating framework (see Figure i). This fully-

developed channel flow is maintained by a constant axial mean pressure gradient

_P
_-f= G (14)

while the channel is subjected to a steady spanwise rotation with the

angular velocity (see Figure i)

= ak (iS)

The mean velocity field is given by

v = u(y)i {16)

and the Reynolds stress tensor is of the form

= _(Y) (17)

since the flow conditions are fully-developed. Hence, the axial component

of the Reynolds equation (2) in a rotating channel flow is given by

d2U dTx! + G = 0 (18)
dy 2 dy

Since it is well known that the axial velocity profile in fully-developed

turbulent channel flow is not parabolic like its laminar counterpart, it is

clear that

"Cxy _ 0 (19)



(also see the experimental results of Johnston, Halleen, and Leziusl6).

The y and z- components of the Reynolds equation (2) take the form

-- dT

: 0 (20)
3y dy

3p dTyz
3z dy - 0 (21)

Since there is no forcing in the z-direction,

- 0
_z

and (21) can be integrated to yield the result

z = 0 (22)yz

since T must satisfy the no slip condition at the channel walls. Similarly,

it can be shown that

Txz 0 (23)

The vorticity transport equation in a steadily rotating framework (where

i0
= ? xv) takes the form

D_

_-Vv 2_-Vv
Dt -= + vV2_ + (24)

A rapidly rotating framework is defined as one in which

f_t >> i (25)o
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where to is the time scale of the turbulent fluctuations. For a rotating

channel flow where _ = _k, (24) can be written in the equivalent form

D0]

1 ~ 1 a-Vv + v
Dt - [_~ ~~ _ V2_ + 2k.Vv~~~ (26)

As a result of (25), equation (24) yields the approximate constraint (in

a rapidly rotating framework) that

2k.Vv = 0 (27)

It, thus, follows that

_V

= 0 (28)3z

Since the walls of the channel are parallel to the axis of rotation, (28)

has the exact solution

v = v(x,y,t) (29)

which is valid throughout th____echannel. Hence, the flow must become two-

dimensional (in a strong approximate sense) as would be expected from the

Taylor-Proudman theorem.I0 Since, _ = U(y)i, it is clear that the fluctuating

velocity is of the approximate form

u = u(x,y,t) (30)

in a rapidly rotating channel flow. It will now be shown that since there

is no mean forcing along the axis of rotation (i.e., since _ = _P/_z = 0) itz

follows that

u = 0 (31)z



This result can be easily seen by examining the z-component of the fluctuating

momentum equation (3) which reduces to the form

_u _u _u _u
z z _ z z _V2u

_t + _ _x u u + (32)x _x y_y- z

since _p/_z = 0 (the flow is unforced in the z-direction). Once U, Ux, and

u are determined from the x and y-components of the momentum equations C2]
Y

and (3), equation (32) constitutes a linear partial differential equation

for the determination of u . This equation has the simple solution u = 0
Z Z

when solved subject to the no slip condition at the channel walls. Hence,

the solution

T = u u = 0 (33)
XZ X Z

T = u u = 0 (34)
ZZ Z Z

is consistent with the Navier-Stokes equations. It is thus clear that,

as a rigorous consequence of the Navier-Stokes equations, the Reynolds

stress tensor in a rapidly rotating channel flow takes the two-dimensional form

I "_xx(y) "Cxy(y) 0 1

= "Cxy(y) Tyy (y) 0 (35)!

0 0 0

This differs from T for turbulent channel flow in an inertial framework only

in that T is zero -- a result which is a direct consequence of the Taylor-zz

Proudman reorganization that occurs in a rapidly rotating framework.



i0

It will now be demonstrated that all existing second-order closure

models yield results that are fundamentally inconsistent with (35) and, hence

are in serious violation of the Navier-Stokes equations for rotating channel

flow. By establishing a one-to-one correspondence between (x,y,z) and

(Xl,X2,X3), the general form of second-order closures given by (13) reduces

to the equation

1 D_k% _% _k 1 _Cmk%(T'VT'%)
[D--t-- + (l-Cl)(Tkm _x + T_m _-x)] - _ _x

m m m

1 (_,w,_,z)1 Bkz(!,_,z)+ v V2-_ AkZ .... -_ _ TkZ

+ (2-CI)(_3knZn_+ g3_nTnk) (36)

where we have made use of the fact that _ = _k and we have divided through

by _. Taking the limit of (36) as _ . _, we conclude that all existing

second-order closure models yield the constraint

(2-CI)(_3knTn_ + S3_nTnk) = 0 (37)

for a rapidly rotating channel flow. As noted earlier,

2 - c1 _ o (3s)

for all of the existing second-order closures (in fact, C1 = 0 for the

Rotta-Komogorov model and C1 < 1 in the Launder modelsl4). It is then a

simple matter to show that (37) has the general solution

= T (39)Txx yy

Txy 0 (40)



ii

Hence, all existing second-order closures predict a state of transverse isotropy

for turbulent channel flow in a rapidly rotating framework -- a result which

is in conflict with the Navier-Stokes equations as demonstrated earlier.

In fact, this constitutes a completely spurious physical result since it

is well known that a turbulent shear flow must be accompanied by a non-zero

turbulent shear stress. Furthermore, since the Coriolis term vanishes in

the zz-component of all existing second-order closures (see Eq. (13)), it

is clear that these models predict that

T _ 0 (41)zz

as they do for a turbulent channel flow in an inertial framing. This result

is inconsistent with the Taylor-Proudman theorem for rotating channel flow

as discussed earlier. These inconsistencies arise because all existing

second-order closure models violate the principle of material frame-indifference

in the limit of two-dimensional turbulence -- a result which is a rigorous

consequence of the Navier-Stokes equations as proven by Speziale.I'17 To

be more specific, the inertial terms in (13) do not vanish in a two-

dimensional turbulence unless it is isotropic. In the next section, it will

be shown how these deficiencies can be remedied.
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3, ALTERNATIVETURBULENCEMODELS FOR ROTATINGFLOWS

As a prelude to examining alterations in existing second-order closure

models which can remedy the deficiencies discussed in the previous section,

we will consider the consistency of the simpler _ or _ models of

turbulence with the Navier-Stokes equations for rotating channel flow. In

the _s or _ models of turbulence, the Reynolds stress tensor takes the

form

2 I _k _Z

TkZ = y K 6kZ - _K2_-___%+ _k ) (42)

where

1
K = -_• (43)mm

is the turbulent kinetic energy per unit mass which is obtained from a

modeled version of its transport equation, % is the length scale of

turbulence, and _ is a dimensionless constant. For the K-% model of turbulence,

is either specified algebraically or is determined from a modeled

transport equation obtained from the contracted form of the evolution

equation for the two-point velocity correlations.13 In the K-s model,

the length scale is given by

- _ (44)

where E is the dissipation rate of the turbulence which is obtained from a

modeled version of its transport equation.14 Since the tensorial dependence

of (42) is only on the Kronecker delta and the symmetric part of the mean

velocity gradients which are frame-indifferent,20 these traditional K-g

or K-% models are of the same form in a rotating frame as in an inertial
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framing. The only way that the effects of rotation are accounted for is

through a change in the length scale which is usually done with ad hoc

empiricisms (see Howard, Patankar, and BordynuikS). This result (along

with the fact that the mean flow is unidirectional so that the Coriolis

acceleration in (2) affects only the mean pressure17) guarantees that

the basic structure of the Reynolds stress tensor predicted by the K-€ or

K-£ models will be the same in an inertial or a rotating frame of reference.

To be more specific, the Reynolds stress tensor obtained from K-8 or K-£

models of turbulence will be of the form

T T 0
xx xy

~T = Txy Tyy 0 (45)

0 0 T
ZZ

(where T = T = T ) for rotating channel flow or for channel flow in
xx yy zz

an inertial framing. Of course, the specific values of the non-vanishing

components of T can be different in the rotating frame as a result of changes

in the length scale. While (45) is not correct for a turbulent channel flow

in a rapidly rotating framework (since T _ 0) it is substantially less
ZZ

unphysical than results obtained from existing second-order closures where

T is zero.
xy

More recently, G almes and Lakshminarayana6 developed an algebraic

model for rotating flows which is given by

2 2K 1
Tk_ = 3- K_k_ ( ( +

Cl_ i-7 C2) _kmn_2mTn£ _mn_lmTnk)

K(1-C2) 2 + k
+ CI_ [3-Tmn -_n 6k_ - (Tkm _Xm %£m Yx--)] (46)m
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where C1 and C2 are dimensionless constants that take on the approximate

values of 1.5 and 0.6, respectively. For rotating channel flow where

= _k

Eq. (46) can be written in the equivalent form

1 2 K 2K 1

Tk£= -3_ _k_ + _i _ (i - -_C2)(_3kn_n£ + _3£n_nk)

K _1-C2) 2 _V _VZ _km

+ g2Cl_ [3" Tmn _"-_n _k.% - (Tkm _m + "r_%m"_-x)]m (47)

which, in a rapidly rotating framework (i.e., for fl. _), yields the approximate

constraint

g3knTn% + g3%nTnk = 0 (48)

Eq. (48) requires that T = T and T = 0. Hence, the algebraic Reynolds
xx yy xy

6
stress model for rotating flows proposed by G almes and Lakshminarayana

yields the same spurious result for a rapidly rotating channel flow (i.e.,

a vanishing Reynolds shear stress in a turbulent shear flow) as that predicted

by existing second-order closure models. This problem arises since the

inertial term in (47) does not vanish for a two-dimensional turbulence

and, hence, (47) is in violation of the principle of material frame-indifference

which is a rigorous consequence of the Navier-Stokes equations in the two-

dimensional limit.
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It will now be demonstrated that these problems can be overcome by making

a small modification in the second-order closure recently obtained by

Haworth and PopeII from a generalized Langevin model. In this Langevin

model, a Reynolds stress closure is obtained which, in an inertial framing,

takes the form

DTk£ _V£ __k
Dt Zkm _x T£m Sx _x (UmUkU£)m m m

+ GkmTm£+ G£mTmk+ Co _6k£ (49)

where Co is a dimensionless constant and G is a second rank tensor which

is assumed to be of the general functional form

G = G('c, V_',_) (50)

It should be noted that in this Langevin model it is not necessary to model

the triple velocity correlation_uu; this term is closed since it arises

from the convection in physical space of the joint probability density

function which is obtained from a separate transport equation. H aworth

ii
and Pope arrived at a model for G of the form

i
Gk£ = (2+81) _x% 2K B1 -_ Tm%+Hk%(!'_'g) (51)m

where 81 is a dimensionless constant and H is a frame-indifferent function

since it depends only on the frame-indifferent quantities T, D, and _. Hence

the Langevin model (49) is, in an inertial framing, given by the equation



16

DTk_ _Z _Vk
Dt Tkm _x T_%rn_x - _x (UmUkU£)

m m m

+ _31(l:km _x + _:%m-3_ -) - 2-K (_-_- ZmnTnZ
m m m

z
+ _ TmnTnk) + HkmTmZ + H_%m_mk+ Co86kZ (52)

m

where the reader is referred to H aworth and PopeII for the precise form of

H. It is a simple matter to show that in a rotating framework (with angular

velocity _ = _k), Eq. (52) is given by

DTk% _ SVk
Dt _km _x _m S--x--= _x (UmUkU_)

m m m

k B1 k
+ _l(1:km3x + T£m _-x") 2-K(-_-x--l:mnTn£

m m m

+ _ TmnTnk) + HkmTm£ + H£mTmk + Cog6k£
m

1
- BlS2183£mTkm + E3kmT£m 2K (g3kmTmnTn£+_3£m_:mnTnk)] (53)

ii
Haworth and Pope proved that the inertial term in (53) vanishes for a

two-dimensional turbulence and, hence, this Langevin model satisfies the

principle of material frame-indifference in the two-dimensional limit unlike

all other existing second-order closures, llowever, these authors also
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showed that this model does no____tgive rise to a Taylor-Proudman reorganization

in a rapidly rotating framework. In fact, it can be shown that for a turbulent

channel flow in a rapidly rotating framework, (53) yields a stress tensor

of the form (45). While this is a substantial improvement over what is

predicted by all other existing second-order closures, it is still not

completely correct in that T should vanish in the limit as _ . _.
ZZ

It will now be demonstrated that by making a small modification in the

model for the tensor G proposed by Haworth and PopeII, a second-order closure

can be obtained that gives rise to a Taylor-Proudman reorganization in rapidly

rotating turbulent flows, thus, alleviating the problems discussed above.

This proposed modification to (51) is as follows:

82
= 6k£GkZ _ IWmnWnp_pm - K WnWnml 1/2

_k 1 _k

+ (2+BI) _x£ 2K BI -_m Tin%+ Hk_(!'_'_) (54)

where

_k _Z

Wk£ = _(_ _--_k) (55)

and B2 is a dimensionless constant (for B2 = 0, this model reduces to that

of Haworth and Pope). Since the new term containing the coefficient B2

vanishes in a two-dimensional turbulence, it follows that this model also

satisfies the principle of material frame-indifference in the limit of

two-dimensional turbulence. In a rotating framework with an angular

velocity _ = _k, this modified expression for G gives rise to a [angevin

model of the form
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DTk£ _'v£ _'Vk
Dt Tkm _-_---_n _x - _x (UmUkU£)

m m m

+ 61('Ckm S_- + Z£m _'--x ) - _ (-_'- "_mn'Cn£
m m m

+-_- T + + H + Co_6k£mnZnk) H kmTm£ £mTmkm

- Bl_[S3£mTkm + E3kmTm_- 2_83kmZmnZn£

2[32

+ 83.%mnZmn'Cnk)] K1/2 [(Ln _3mnf2)(Wnp

- E3npf2)Tpm- K(_ n - 83mnf_)(W--nm- g3nmf2)]l/2Tk£ (563

If we consider the case of a rapidly rotating framework (i.e., the limit as

. _), equation (56) yields the constraint

1
- _31[_3£mTkm + S3km'r£m 2K (E3km'rmn'rn_%+ _3£mTmn'rnk )]

2B2

+ -_2 ]SSmng3npTpm - K E3mng3nm ]1/2 Tk£= 0 (57)

A straightforward, although somewhat tedious calculation shows that (57)

is satisfied if and only if the Reynolds stress tensor takes the two-

dimensional form
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I Txx _xy 0 ]

= Txy Tyy 0 (58)

0 0 0

The key result that Tzz must be zero can easily be seen by examining the
±

zz-component of (57) which reduces to

2B2 312

KI/2 Tzz = 0 (59)

It is thus clear that with just one minor modification, the Langevin

second-order closure of l_worth and Pope yields a turbulence model that is

consistent with the Taylor-Proudman theorem and is, thus, suitable for the

description of rapidly rotating turbulent flows unlike all other existing

turbulence models.

k

No constraint is placed on Txx, Txy, and Tyy since Eq. (57) vanishes

for a two-dimensional turbulence.
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4, CONCLUSION

It has been proven that all existing second-order closure models

are fundamentally inconsistent with the Navier-Stokes equations in a

rapidly rotating framework. In particular, it was demonstrated that,

for the test problem of fully-developed turbulent channel flow subjected

to a rapid spanwise rotation, all existing second-order closures yield

the spurious physical result of a vanishing Reynolds shear stress and are

inconsistent with the Taylor-Proudman theorem. The type of results

predicted for this problem by these second-order closures are, in fact,

substantially more unphysical than those obtained from the simpler K-_

or K-£ models of turbulence as indicated in Section 3. By adding one

term to the second-order closure of Haworth and Pope obtained from a [angevin

model, it was demonstrated that these problems can be overcome. This

modified [angevin model appears to yield the first Reynolds stress closure

that is generally consistent with the Navier-Stokes equations in a rapidly

rotating framework.

Future calculations should be conducted on rotating turbulent

flows with this modified [angevin model. This is quite important since

the closure model for G given in _54) is not the most general and, hence,

there may be other terms which could have been overlooked. Unfortunately,

such a computational study is quite involved and is beyond the scope of

the present paper. Future research is also needed on the effect of

rotations on the evolution of the joint probability density function since

such evolution equations play an important role in all [angevin models.

Few, if any, studies along these lines appear to have been reported.



21

With some additional refinements, turbulent closure models can be

developed that apply to rotating flows for a wide range of rotation rates

without the need for ad hoc empiricisms. Such a development could have

a profound effect on the analysis of a wide variety of turbulent flows that

are of interest to engineers and geophysicists.
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FIGURE i. Fully-Developed Turbulent Channel Flow Subjected to a
Spanwise Rotation after Johnston, Halleen, and Lezius (1972).
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