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ABSTRACT 

A refined, third-order plate theory that accounts for the 

transverse shear deformation i s  presented, the Navier solutions are 

derived, and its finite element models are developed. The theory does 

not require the shear correction factors of the first-order shear 

deformation theory because the transverse shear stresses are represented 

parabolically in the present theory. 

uses independent approximations o f  the displacements and moment 

resultants, and a displacement model that uses only displacements as 

degrees of freedom are developed. 

A mixed finite element model that 

The mixed model uses Co elements for 

all variables and the displacement models use C1 elements for the 

transverse deflection and Co elements for other displacements. 

Numerical results are presented t o  show the thickness effect on the 

deflections, and the accuracy of the present theory in predicting the 

transver;e stresses. 

finite element models o f  the present theory with the experimental and 

the three-dimensional elasticity theory shc,vs that the present theory i s  

more accurate than the first-order shear deformation plate theory. 

A comparison of the results obtained using the 



1. BACKGROUND: REVIEW OF THE LITERATURE 

The classical laminate theory (CLT), which is an extension of the 

classical plate theory (CPT) to laminated plates, is inadequate for 

laminated plates made of advanced filamentary composite materials. 

is because the effective elastic modulus to the effective shear modulus 

ratios are very large for such laminates. In addition, the classical 

plate theory is plagued with the inconsistency between the order o f  the 

differential equation and the number of boundary conditions (see Stoker 

[l]), An adequate description of the transverse shear stresses, 

especially near the edges, can be achieved with the use o f  a shear 

deformation theory. 

This 

The shear deformation plate theories known in the literature can be 

grouped into two classes: (1) stress-based theories, and (2) 

displacement-based theories. 

plate theory i s  due to Reissner 12-41. 

distribution of the inplane normal and shear stresses through the 

thickness, 

The first stress-based shear deformation 

The theory is based on a linear 

where ( u l , a 2 )  and a6 are the normal and shear 

are the associated bending moments (which are 

stresses, (MI, M2) and M6 

functions of the inplane 

coordinates x and y), z is the thickness coordinate and h is the total 

thickness o f  the plate. The distributicn of the transverse normal and 

shear stresses ( a 3 ,  a4 and a5) is determined from the equilibrium 

equations of the three-dimensional elasticity theory. The differential 
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equations and the boundary conditions of the theory are obtained using 

Castigliano's theorem of Least Work. 

The origin of displacement-based theories is apparently attributed 

to Basset [5], who begins his analysis with the assumption that the 

displacement components can be expanded in series o f  powers o f  the 

thickness coordinate z. 

along the x-direction in the N-th order theory is written in the form 

For example, the displacement component u1 

N 

n= 1 
Ul(X,Y,Z) = u(x,y) + c znp(x,Y) 

where x and y are the Cartesian coordinates in the middle plane of the 

plate, and the functions $in) have the meaning 

Basset's work has not received as much attention as it deserves. In a 

1949 NACA technical note, Hildebrand, Reissner and Thomas [ 6 ]  presented 

(also see Hencky [ 7 ] )  a first-order shear deformation theory for shells 

(which obviously can be specialized to flat plates). 

following displacement field [a special case of Eq. (2a) for N = 11, 

They assumed the 

Ul(X¶Y,Z) = U(X,Y) + z @x(x,Y) 

U2(X'Y,Z) = V(X,Y) + z bY(X,Y) 

U3(X,Y,Z) = W(X9Y) 

(3) 

The differential equations of the theory are then derived using the 

principle o f  the minimum total potential energy. This gives five 

equilibrium equations in the five generalized displacement variables, 

u, v, w, ox and 'JI Y' 
The shear deformation theory based on the displacement field in Eq. 

(3) for plates is often referred to as the Mindlin plate theory. 
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Mindlin [ 8 ]  presented a dynamic analysis of Hencky's theory [ 7 ] ,  and 

used the displacement field g.iven by Eq. (3) for the vibration of 

isotropic plates. Historical evidence (from the review o f  the 

literature) points out that the basic idea of the displacement-based 

shear deformation theory came from Basset [5] and Hencky [ 7 ] .  The shear 

deformation theory based on the displacement field given by Eq. (3) will 

be referred to as the first-order shear deformation theory. 

Following these works, many extensions and applications of the two 

classes of theories were reported in the literature (see [9-351). 

Gol'denveizer [16 ]  has generalized Reissner's theory [Z-41 by replacing 

the linear distribution of stresses through thickness [see Eq. ( l ) ]  by a 

distribution represented by an arbitrary function $(z): 

= a2 = M . 2 $ ( z ) Y  a6 = M6@(Z)' 

Kromm [14,15] presented a shear deformation theory that i s  a spec 
(4)  

a1 

case of Gol'denveizer's extension of Reissner's theory. 

theory, the function +(z) ,  instead of being arbitrary, is determined 

In Kromm s 

such that the transverse shear stresses vanish on the bounding planes o f  

the plate. The displacement field in Kromm's theory is of the form 
9 

2w 3 4 zc  u1 = u - z - + - z(1 - - -)* ax 2 3 h 2  x 

2 aw 3 4 2  u2 = u - 2 - + - z ( 1  - --)$ aY 2 3 h 2  Y (5 )  

u3 = 

where u, v, w, q~ and $ are displacement functions which are functions 

of x and y only. Schmidt [ 29 ]  presented an extension of Kromm's theory 

by accounting for moderately large deflections (i.e., in the von Karman 

sense). 

X Y 
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Extension o f  the disp 

deflections case is due to 

laminated plates is due to 

acement-based theory to the moderately large 

Medwadowski [17] and the extension to 

Whitney [23] and Whitney and Pagano [24]. 

The second- and higher-order displacement-based shear deformation 

theories have been investigated by Nelson and Lorch [ 27 ] ,  Librescu [ 2 8 ]  

and Lo, Christensen and Mu [30]. These higher-order theories are 

cumbersome and computationally demanding because with each additional 

power of the thickness coordinate an additional dependent unknown is 

introduced (per displacement) into the theory. 

Levinson [ 32 ]  and Murthy [33) presented a third-order theory that 

assumes transverse inextensibility. The nine displacement functions 

were reduced to five by requiring that the transverse shear stresses 

vanish on the bounding planes of the plate. 

also Schmidt 1291) used the equilibrium equations of the first-order 

theory in their analysis. As a consequence, the higher-order terms of 

the displacement field are accounted for only in the calculation of the 

strains but not in the governing differential equations or in the 

boundary conditions. Recently, Reddy [34,35] corrected these theories 

by deriving the governing differential equations by means of the virtual 

work principle. The theory presented in [34] accounts for moderately 

However, both authors (and 

in I351 

1 ement 

report 

on the 

large rotations but is limited to orthotropic plates, while that 

is for the small-deflection theory o f  laminated plates. Finite 

models of these theories were presented in 136,373. The present 

contains a summary of the research reported in references [34-37 

development and analysis of a higher-order plate theory. 
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2. MATHEMATICAL FORMULATION OF A HIGHER-ORDER THEORY 

Consider a rectangular laminate with planform dimensions a and b 

and thickness h as shown in Fig. 1. The coordinate system is taken such 

that the x-y plane coincides with the mid-plane of the plate, and the z- 

axis is perpendicular to that plane (XI = x, x2 = y and x3 = z). The 

plate is composed o f  perfectly bonded orthotropic layers with the 

principal material axes o f  each layer oriented arbitrarily with respect 

to the plate axes. 

2.1 Displacement Field 

To obtain a parabolic distribution o f  the transverse shear stresses 

through the thickness, a cubic expansion in the thickness coordinate z 

[i.e., set N=3 in Eq. (Za)] is used for the inplane displacements and 

transverse inextensibility (i.e., the transverse normal strain E _  is 

zero) is assumed. The additional displacement 

in terms o f  the five displacement functions in 
h transverse shear stresses to vanish at z = 4 7 

displacement field is given by 

L 

functions are determined 

Eq. (3) by requiring the 

. The resulting 

where ul, u2 and u3 are the displacements in the x-, y- and z- 

directions, respectively. 

midplane o f  the plate are denoted by u, v and w; +, and ~t 

rotations o f  the normals to the midplane about the y- and x-axes, 

respectively. 

The displacements of a point (x,y,O) on the 

are the Y 

The assumed deformations o f  the transverse normals in 



various plate bending (displacement based) theories are shown in Fig. 

2. 

The strains o f  the von Karman theory (i.e., only the products and 

squares o f  aw/ax and aw/ay in the strain-displacement equations of the 

large deflection theory are retained) can be obtained from Eq. (6): 

where 
2 

ax 
O = - + -  au 1 (-) aw 2 0 -  - -  avX 2 -  4 + -+ a w 

€1 ax 2 ax * ‘1 ax ‘1 - - 2 K 

2.2 Stress Field 

Assuming that each layer of the laminate possesses a plane o f  

material symmetry parallel to the x-y plane, the constitutive equations 

for the k-th layer can be written as 
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where ii and Ei (i = 1,2,4,5,6) are the stress and strain components 

referred to lamina coordinates and 0, j ’ s  are the plane-stress reduced 

elastic constants in the material axes o f  the k-th lamina, 

and Eiy vij and Gij are the usual engineering constants. 

2 . 3  The Principle of Virtual Displacements: Governing Equations 

The equations of equilibrium can be obtained using the principle o f  

virtual displacements. In analytical form, the principle can be stated 

as follows (see [38]): 

[ ( 6 U  + 6W)dV + 6 V  = 0 (11) 
n 

where U is the total strain energy density due to deformation, W is the 

potential of distributed external loads, V is the potential of discrete 

external loads, and n is the volume of the laminate and 6 denotes the 

variational symbol. InteJrating the expressions in Eq. (11) through the 

laminate thickness, integrating by parts with respect to x and y, and 

collecting the coefficients of 6u, 6v, 6w, 6 0  and 6 c  the following 

equations of equilibrium are obtained: 
X ’  Y’ 

6U: - 

6V: - 

6W: - 

N + N  = O  1,x 6,Y 

N + N  = O  6,x 2,Y 
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4 ) = o  4 
( 1 , x+'6 , y + - R  - 

- "x: M1,x+M6,y- Ql h 2  '- 3h2 

= o  4 4 
yo 60 M6,x+M2,y- Q2+ R2- (p6,x+p2,y' 

where 

h / 2  3 (Ni,MiyPi) = o i ( l , z , z  )dz (i=1,2,6) 
-h/2 

2.4 Laminate Constitutive Equations 

The laminate constitutive equations are relations between the 

stress resultants (13) and the strains (7). Using Eqs. (7) in (9) and 

the result in Eq. (13) ,  we obtain 

A12 '11 I"- %: '161 

A22 A26 B26 

sym . A66 sym . '66 

symme t r i c 

i- '12 '161 1f11 F12 

D22 '26 F22 

Ym '66 sym . F66 
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A44 A45 D44 045 

A55 D45 D55 

F44 F45 

.sym F55 “5 (15) 

where Aij, Bij, etc., are the  laminate s t i f f nesses ,  def ined by 

(A. B..,Dij,Eij,F ,H..) = f h/2 Q . . ( l , z , z  2,3 , ,z 4 ,z 6 )dz  ( iyj=1,2,6) 
i j ’  i j  i j  1 J  4 1 2  1J  

(16) 
2 4  h/2 

(A..yD..,F..) = f Q . . ( l , z  ,z )dz (i,j = 4,5) 
1J 1J 1J -h/2 1J 
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3. EXACT CLOSED-FORM SOLUTIONS 

In 

1 ami nat 

the general case of arbitrary geometry, boundary conditions and 

on scheme, exact analytical solutions to the set of differential 

equationas in Eq. (12) cannot be found. However, closed-form solutions 

for the static case exist for certain 'simply supported' rectangular 

plates with two sets of laminate stiffnesses (see Reddy [34.,35]), as 

described below. 

It is possible to obtain the Navier-type solutions for the 

following two types of simple supported boundary conditions. 

S - 1  
and : 
S-2 

P2(x,0) = P2(x9b) = Pl(O,y) = Pl(a,y) = 0 

M2(x,0) = M2(x,b) = Ml(O,y) = Ml(a,y) = 0 

Ilix(X,O) = lJx(x,b) = dy(OYY) = Q y h Y )  = 0 

Here a and b denote the planform dimensions along the x and y 

coordinates, respectively, and the origin of the coordinate system is 

taken at the lower left corner o f  the rectangular plate (see Fig. 1). 

in Y The Navier procedure involves expressing u, v, w, ox, and o 

terms of the Fourier series with undetermined coefficients. The 

functions in the series are selected such that they satisfy the boundary 

conditions of the plate. 

satisfying the equilibrium equation, Eq. (12). 

The coefficients are then determined by 
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Exact solutions can be obtained for rectangular plates with the 

combination of boundary conditions given in Eq. (17) and with the 

following zero plate stiffnesses [see Eqs. (14, (15) and (16)l: 

For S-1 boundary conditions [Eqs. (17a) and (17c)l: 

D16 = D26 = 0 

H16 = H26 = 0 (W 
A16 = A26 = B16 = BZ6 - - 

E16 = E26 = F16 = F26 - - 

A45 = D45 = F45 = o  

For 5-2 boundary conditions 
AI6 = A26 = 611 = BIZ - - 

Ell = E l 2  = F16 = FZ6 - - 

A45 = 
= F45 = 0 

Eqs. 

D16 - 

H16 - 

- 

- 

17b) and (17c)l: 

026 = 0 

HZ6 = 0 W b )  

The stiffnesses of the general cross-ply laminate satisfy Eq. (18a) 

while the stiffnesses o f  the antisymmetric angle-ply laminate satisfy 

E q .  (18b). 

[381. 

A complete discussion of the exact solutions is presented in 



4- FINITE-ELEMENT MODELS 

4.1 Displacement Model 

Although the present higher-order theory has the same five 

generalized displacements as the first-order theory, second-order 

derivatives of the transverse deflection w appear in the total potential 

energy expression of the higher-order theory. An examination of the 

total potential energy functional o f  the higher-order theory reveals 

appear in the geometric boundary that u, v, w, o 

conditions. Therefore, the finite element model based on the total 

potential energy requires the Co-continuity of u, v, ox and 9 

aw aw and - and n' 9s' an 

and the Y 
CL-continuity of w across interelement boundaries. 

interpolation of u, v, +x and oy, and the Hermite interpolation o f  w are 

required. Consequently, the classical plate bending (i.e., Hermite) 

element can be obtained as a special case from the present element by 

suppressing 6, and 0 degrees of freedom. 

four-node rectangular element with u, v, w, ox, ( J ~ ,  

nodal degrees of freedom is used. 

Thus, the Lagrange 

In the present study, the 

and 2 as the 
Y 

aY 

The elemental equations of the displacement model are of the form 

(see [361) 

[Ke] {ne} = {Fe} (19) 

where {ae] denotes the vector o f  generalized nodal displacements 

and {Fe\ is the force vector that contains the applied transverse load 

as well as the contributions from the boundary of the element (see Reddy 

WI). 

4.2 Mixed Model 

To relax the continuity requirements placed in the displacement 

model described above (i.e., to reduce the C1-continuity to the Co- 
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continuity on w), a mixed formulation o f  the problem is considered. In 

a mixed model, independent approximations of the displacements and 

stress resultants are used. A close look at Eq. (12) shows that a mixed 

variational formulation of these equations can be obtained by treating 

u, v, w, $,, $y, MI, M2, M6, PI, P2 and P 6  as the nodal degrees of 

freedom. The governing equations for u, v, w, qX and $ are given in 

Eq. (12). The equations for the other six variables (Ml, M2, M6, Ply P2 

and P6) are provided by the laminate constitute equations (14) and (15). 

Y 

The mixed model is of the form (see [ 3 7 ] )  

[Ke]{Ae} = IFe] (20) 

where [Ke] , {ae} and {Fe} are the generalized element stiffness matrix, 

element displacement vector and element force vector, respectively. 
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5. NUMERICAL RESULTS 

Numerical results obtained using the displacement and mixed finite 

element models described herein are presented for the bending of 

laminated anisotropic plates. 

here. For additional results, see Refs. 34 thru 37. 

Only respresentative results are included 

In all the problems considered, the individual layers are taken to 

be of equal thickness, and only two sets of material properties are used 

(these values do not necessarily indicate the actual properties of any 

material, but they serve to perform parametric studies): 

Material 1: 

E1/E2=25, G 12 /E 2- -0.5, G23/E2=0.2, vI2=O.25 

Material 2: 

E1/E2=40, G /E -0.6, G /E =0.5, ~ ~ ~ ~ 0 . 2 5  12 2- 23 2 

It is assumed that 613 = G12, ~ 1 3  - - v I 2 .  

first-order shear deformation plate theory (FSPT) , unless stated 
For the analysis based on the 

otherwise, the shear correction coefficients are taken to be 
K1 2 2  = K 2  = 5/6. 

First, the (mixed) element was evaluated for its sensitivity to 

locking by using different integration rules. A two-layer, cross-ply 

[0/90] , simply supported square plate under uniformly distributed 
transverse load was analyzed using the uniform 4x4 mesh of linear 

elements and 2x2 mesh o f  quadratic elements (in a quadrant), and various 

types o f  integration rules. Full integration refers to the usual 

integration rule (2x2 for the linear element and 3x3 for the quadratic 

element) for evaluating both bending and transverse shear terms of the 

stiffness matrix. Reduced integration refers to one point less (in each 



coordinate direction) than that used in the usual integration scheme. 

Mixed (selective) integration refers to the use o f  the full integration 

rule for bending terms and the reduced integration rule for the shear 

terms, From the numerical results presented in Table 1, it is clear 

that full integration for very thick plates (4 I a 5 l o ) ,  mixed 

integration for moderately thick plates (10 5 i I 25) and reduced 
integration for thin plates (50 I i) give the best results. 
quadratic element is less sensitive to integration rules than the linear 

element. 

entire range of thicknesses. 

Also, the 

In general, mixed integration gives the best results for the 

5.1 Thickness Effect 

The accuracy of the present higher-order theory over the first- 

order and classical plate theories is demonstrated using a specific 

problem. Consider a four-layer [0/90/90/01 square cross-ply laminated 

plate (Material 1) subjected to sinusoidally distributed transverse 

loading. The plate is simply supported along all four edges with the 

in-plane displacements, unconstrained in the normal direction, and 

constrained in the tangential direction. The deflections and stresses 

are non-dimensionalized as follows: 

- a a  100E2h’ 
w = w(- 0) 

q0a4 2’ 7’ 



where qo denotes the intensity of the distributed transverse load, 

q(x,y) = go sin - sin a. The exact maximum deflections obtained by 

various theories are compared for various side-to-thickness ratios in 

Fig. 3. The deflections predicted by the present higher-order shear 

deformation theory (HSDT) are in excellent agreement with the 3-0 

elasticity solutions of Pagano and Hatfield [40]. 

medium to thick plates (5 5 

ITX 
a a 

In the range of 

5 ZO), the HSOT yields more accurate 

results than the f irst-order shear deformation theory (FSDT). 

effect o f  shear deformation on the deflections is apparent from the 

The 

difference between the deflections predicted by the classical laminate 

theory (CLT) and the two shear deformation theories. The shear 

deformation causes a reduction in stiffness of composite plates and this 

reduction increases with decreasing side-to-thickness ratio. 

the CLT is adequate in predicting the deflections of thin laminates 

(a/h ? 50)- 

Clearly, 

5.2 Through-the-Thickness Distribution of Transverse Shear Stresses 

The exact stresses o4 E ayz and a5 E oXz computed using the 

constitutive equations of the HSDT are greatly improved over the results 

obtained using the CLT (classical laminate theory) and FSOT (first order 

shear deformation theory) as shown in Fig. 4a. The shear stresses 

obtained using the constitutive equations are on the low side of the 3-D 

elasticity solutions. This error might be due to the fact that the 
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stress continuity across each layer interface is not imposed in the 

present theory. As in the case of the classical laminate theory (CLT), 

the transverse shear stresses can also be determined by integrating 

equilibrium equations (of three-dimensional elasticity in the absence o f  

body forces) with respect to the thickness coordinate: 

h /2 

h /2 

The foregoing approach not only gives single-valued shear stresses at 

the interfaces but yields excellent results for all theories in 

comparison with the three-dimensional solutions. Despite its apparent 

advantage, the use o f  stress equilibrium conditions in the analysis of 

laminated plates is quite cumbersome. Typical stress distributions of 

through the thickness (a/h = 10) are shown in 
- - - - 

and a4 = u 

Note that the stress discontinuity at the laminate interfaces 
O 5  = O X Z  YZ 
Fig. 4b. 

i s  due to the mismatch of the transformed material properties. 

5.3 Relative Magnitudes of Transverse Stresses 

The orders of magnitude of the stresses can be assessed by 

comparing the solutions of the higher-order theory with those of the 

three-dimensional theory of elasticity. To this end, an analytical 

solution is developed using the plate equations and boundary conditions 

in three dimensions following the procedure of Pagano [40]. The 

results, for specific problems, are shown in Tables 2 and 3. 

The ratios of stresses in a simply supported square isotropic plate 

under sinusoidally (SOL) and uniformly (UDL) distributed transverse 

loads are given in Table 2. The number of terms used in the double- 



TABLE 1 E f f e c t  o f  Reducsd I n t e g r a t i o n  and Type of Mesh on the  Accuracy 
o f  the So lu t i on  
P la te  Under UDL; Mater ia l  11) 

(Cross-Ply [0/90] Simply Supported Square 

Type o f  Mesh** Type o f  Mesh 
$1 4X4L 2x29 4x4L 2x2Q 

Type o f  
I n teg ra t i on  

F u l l  3.0792 6,9705 1.4784 1.7479 
3.1045 3.0723 2o 1 . 7475 1.7534 
3.1145 3.0769 1.7576 1.7548 

M i  xed 
Reduced Sol. 
Exact 3.0706 3.0706 1.7509 1.7509 

F u l l  2.5728 2.5813 1.3261 1.7252 
2.5990 2.5808 25 1.7270 1.7334 

5 2.6090 2.5850 1.7371 1.7348 
M i  xed 
Reduced 
Exact S o l ,  2.5791 2.5791 1.7310 1.7310 

4 

F u l l  1.8409 1.9192 0.2826 1,6789 
1.9185 1.9193 1.6927 1.7001 

10 1.9288 1.9218 1.7029 1.7014 
M i  xed 
Reduced 
Exact Sol .  1.9173 1.9173 1,6977 1.6977 

* -  w = wE2h 3 100/qoa 4 - 
** 

4x4L = 4x4 uni form mesh o f  l i n e a r  elements 
2x2Q = 2x2 uni form mesh o f  quadrat ic elements 
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TABLE 2 Stress Ratios in a Simply Supported Square Isotropic Plate 
Under Different Loadings (SS -Sinusoidal Loading, UDL-Uniformly Distributed Loading) (E = 10 I5 psi, v = 0.3, q, = 1.0 psi.) 

SSL UDL (m = n = 30) (a) 
0 / a  uz/'x 0 xz 1. x y  uZ/aX xz x y  

4 
5 
6.25 
10 
12.5 
20 
25 
50 
100 

0.28740 
0.19069 
0.12478 
0.04989 
0.03210 
0.01261 
0.00808 
0.00202 
0.00051 

0.53731 
0.43579 
0.35207 
0.22262 
0.17859 
0.11197 
0.08964 
0.04486 
0.02244 

0.20363 
0.13338 
0.08667 
0.03443 
0.022 12 
0.00868 
0.00556 
0.00139 
0.00035 

0.58287 
0.47597 
0.38747 
0.24861 
0.20048 
0.12654 
0.10148 
0.05092 
0.02548 

e: 0 = u and D~~ = (J 
X Y  YZ 

a h ~ x , ~ y , ~  values are at (x  = y = 7, z = -) Z 2 
u is at ( x  = 0, y = -, z = 0) 

a 
u is at(^=^ y = O , z = O )  

0 is at ( x  = y = 0, z = -) 

a 
xz 2 

YZ 
h 

XY 2 

TABLE 3 Stresses in a 4-ply [0/90/90/0] Square Plate Under 
Sinusoidal Loading: Material 1 (4, = 1.0 psi.) 

XY 
-0  

YZ 
0 -0 

Z xz -U 0 
X Y 

(a) U 

4 11.524 45.240 1 .o 0.8773 4.5975 0.8356 
10 55.861 93.344 1 .o 3.0137 4.8842 2.7503 
20 217.13 256.74 1 .o 6.5632 7.0610 9.2083 
50 1348.3 1388.70 1.0 16.870 15.505 53.924 

100 5388.5 5429.0 1.0 33.880 30.374 213.54 

a 
2 u is at ( x  = 0, y = -, z = 0) a h 

u is at ( x  = y = -, z = -) 
X 2 2 XZ 

h a h 
7) 0 is at ( x  = -, y = 0, z = - -) Y 2 YZ 2 2 

a u i s  at ( x  = y = - ,  z = - 

tl i s  at ( x  = y = 7, z = 2) Z XY 2 CJ is at ( x  = y = 0, z = -) a h 
(J 
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Fourier series, for the UDL case, is m=n=30, and for SDL, we take m = n 

= 1. 

normal stresses and u is very small (less than 5%) for moderately 

thick plates and very thin plates i.e., (10 I f I 100). However, the 

transverse shear stresses aXZ and u 

stress, u for moderately thick plates (10 5 I 25). In Table 3 ,  

similar results for a 4-ply [0/90/90/0] laminate are presented (Material 

1 and sinusoidal loading); the same trend as described for isotropic 

plates is seen, confirming the fact that the transverse shear stresses 

should be considered before considering the transverse normal stress for 

moderately thick and thin plates. 

I t  is clear that the ratio o f  normal stress uZ to the inplane 

Y 

are about 25% of the inplane shear YZ 

XY , 

5.4 Geometric Nonlinearity Effect 

Next, the results o f  the von Karman (nonlinear) theory are 

presented. In Figures 5 and 6, the mixed finite element results o f  the 

higher-order theory are compared with the experimental and thin plate 

theory results of Zaghloul and Kennedy [41,42]. 

deflection versus the load intensity are presented for a simply 

supported, orthotropic, square plate (a = b = 12 in., h = 0.138 in.) 

under uniform loading. 

E 2  = 1.28~10~ psi, G12 = GI3 = GZ3 = 0.37~10 6 psi, v = 0.32. 

element results are in excellent agreement with the experimental 

results. The thin plate theory results [41 ]  are in considerable error, 

which can be attributed to the neglect of transverse shear 

deformations. In Figure 6, the center deflection of a clamped 4-ply 

symmetric bidirectional [0/90/90/0] square plate (a = b = 12 in, h = 

0.096 in) under uniform loading is presented. 

used are: 

In Figure 5, center 

6 The material properties used are El = 3x10 psi, 

The finite 

The material properties 

El = 1.8282~10 6 psi, E2 = 1.8315~10 6 psi, G12 = GI3 = G Z 3  = 
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.3125x106 psi, v = 0.23949. 

the higher-order theory are almost the same as those obtained using the 

first-order theory, and are in better agreement with the experimental 

results than those obtained using the classical theory. The difference 

between the experimental and higher-order theory solutions is attributed 

t o  inexact simulation of the experimental boundary conditions (clamped), 

which have significant effect on the deflections in composite laminates 

(because of the degree of orthotropy) than in homogeneous orthotropic 

plates. 

The finite element results obtained using 
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6. SUMMARY AND CONCLUSIONS 

A higher-(third-)order shear deformation theory is presented and 

its accuracy i s  demonstrated by comparing with the 30 elasticity theory, 

the classical plate theory and the first-order shear deformation 

theory. 

described. 

compared with experimental solutions and found to be in good agreement. 

Mixed and displacement finite element models of the theory are 

The finite element solutions for nonlinear bending are 

The higher-order shear deformation theory gives, in general, more 

accurate solutions for the bending of laminated anisotropic plates than the 

classical plate theory and the first-order shear deformation theory. The 

present observations concerning the effects of shear deformation, and 

coupling and material anisotropy on the bending of plates are in conformity 

with other investigators' findings (see [23,24]). The first-order shear 

deformation theory (FSDT) is found to overpredict the deflections, and to 

underestimate the natural frequencies and buckling loads (results not 

included here) for medium to thick anti-symmetric cross-ply and angle-ply 

plates. In FSDT, the shear correction factors play a crucial role in the 

determination of deflections. No such corrections are required in the 

present higher-order theory. In addition, the finite element based either 

on the displacement formulation or the mixed formulation is less 

susceptible to locking than the element based on the displacement 

formulation of the first-order theory. 

The present theory gives accurate through-the-thickness distribution 

of the interlaminar shear stresses but does not contain the transverse 

normal stress. 

wo(x,y) + Z$~(X,~), which would increase the number of nodal degrees of 

freedom by one. 

It is possible to account for uZ by expanding w as w(x,y) = 

The discontinuity of the stresses (obtained using 
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constitutive equations) at layer interfaces can be eliminated by imposing 

continuity requirements, which might lead to a more complicated 

computational model. 
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Figure L The geometry and the coordinate system for a 
rectangular pl ate . 
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