
d., Y,_7-17d-S6

NASA-TM-87586 19860007142

, NASA Technical Memorandum 87586

EXPERIENCESWITHA PRELIMINARYNICE/SPAR

STRUCTURALANALYSISSYSTEM

CHRISTINEG, LOTTSANDWILLIAMH, GREENE

[!_i_,A_V "_,_!_v

OCTOBER1985 JAN!3 19_i!i:i
LANGLEYRESkARCHCENIER

LIBRARY,NASA

HAMpTOn,. VIRGINIA

•_O1' I['O 8&' Tg_f(E_,¢_':"_':.,_,_l1'_llS ltO0_

Nattonal Aeronautics and
Space Administration

Langley Research Center
Hamplon Virginia 23665

https://ntrs.nasa.gov/search.jsp?R=19860007142 2018-02-20T04:35:08+00:00Z

TABLEOF CONTENTS

Summary I

Introduction I

" Integrationof SPARand NICE 2oooooeeoeooooeooeee

Example Structural Analysis Problems 3

Performance................ 5

ConcludingRemarks........................ 6

TableI. PerformanceComparisonBetweenEAL and NICE/SPAR
for the CompositeToroldalShellExample 7

Table2. PerformanceComparisonBetweenEAL and NICE/SPAR
fortheCantileverBeamExample............. 8

FigureI. NICE/SPARInputfor the CompositeToroidalShell
Example 9eoeooeeeeeeeeeeeeeeeeeee

Figure 2. CLAMP Procedure for Transient Response Analysis
of a Cantilever Beam 12

Appendix A. NICE/SPAR usage 17

Appendix B. NICE/SPAR programmer interface subroutine
descriptions 19

Appendix C. NICE/SPAR module inteErationguldelines 28

Appendix D. NICE/SPAR installed modules 35

References 36

i

•

•

Summary

Construction of a new structural analysis system based on the
original SPAR finite element code and the NICE System is described. The
system is denoted NICE/SPAR. NICE was developed at Lockheed Palo Alto
Research Laboratory and contains data management utilities, a command
language interpreter, and a command language definition for integrating
engineering computational modules. SPAR is a system of programs used for
finite element structural analysis developed for NASA by Engineering
Information Systems, Inc •• It includes many complementary structural
analysis and utility functions which communicate through a common database.
The work on NICE/SPAR was motivated by requirements for a highly modular and
flexible structural analysis system to use as a tool in carrying out
research in computational methods and exploring new computer hardware.
Analysis examples are presented which demonstrate the benefits gained from a
combination of the NICE command language with the SPAR computational
modules.

Introduction

Research in computational methods for structural analysis has been
severely hampered by the complexity and cost of the software development
process. Even though the researcher is usually interested only in a small
aspect of the overall analysis problem, he is often forced to construct much
of the supporting software himself. This time-consuming and expensive
approach is frequently required because existing software that the
researcher could potentially exploit is poorly documented internally, is
poorly designed and coded, or both. After enduring this time-consuming
software development effort, the researcher often finds that a thorough,
complete evaluation of his new method is still impossible due to limitations
of the software. This is true, for example, in many "research-oriented"
finite element codes which have a limited element library or have arbitrary
restrictions on how elements of different types are combined in a single
model.

To address the above difficulties in computational methods research,
the Computational Structural Mechanics Group at NASA Langley Research Center
has undertaken the construction of a structural analysis software "test
bed". The purpose of the test bed is to provide a system which can be
easily modified and extended by researchers. In part, this is being
achieved by exploiting advances in computational software design such as a
knowledge of the role of command languages and formal data management
techniques in ensuring program modularity •

The NICE (Network of Interactive Computational Elements) system
(refs. 1 and 2) developed at Lockheed Palo Alto Research Laboratories is an
example of a modern software architecture for supporting engineering
analyses. The NICE system consists of three major components: a data
manager, a command language called CLAMP for controlling analysis flow, and
a command interpreter called CLIP for interpreting CLAMP commands and
decoding general analysis input. Computational modules in the NICE system,
called processors, are semi-independent programs which perform a specific,
well-defined task. To enforce modularity, processors do not communicate
explicitly with each other but instead communicate only by exchanging named
data objects in the data base. To utilize these semi-independent prooessors

in a particular, complex analysis task, CLAMP procedures are written to
describe the analysis to be performed and the algorithm to be used.

The concept of independent processors communicating through a global
data base was demonstrated in the SPAR structural analysis system (ref. 3).
SPAR contains processors for a wide range of linear, static and dynamic
analyses. Typical processor functions include model definition, formation
of finite element system matrices, solution of linear equations, and
solution of a generalized eigenproblem. In addition to the modularity
achieved through the use of a global data base, the SPAR processors are
designed to be computationally efficient.

The decision to couple NICE and SPAR for the CSM test bed was based on
four considerations. First, the details of the data management system in
the original SPAR and NICE are quite similar. The data manager requests
within SPAR processors are compatible with the NICE entry points. Second,
the reliability, utility, and performance of the SPAR processors have been
proven by almost a decade of use. Third, the concept of a high order
command language controlling the execution of independent computational
modules has been validated with the highly successful, proprietary analysis
system denoted EAL (ref. 4). EAL has been used extensively for the past 8
years as the primary structural analysis tool at NASA Langley. Fourth, both
NICE and SPAR are public domain software.

This paper describes experiences associated with integrating NICE and
SPAR. Examples are presented to illustrate the input form and to
demonstrate the power of the CLAMP language in directing processor flow.
One concern is the computational overhead in terms of both CP (central
processor) time and number of disk I/O operations associated with the data
manager. To address this question, a comparison is made between EAL, which
is quite efficient in this regard, and NICE/SPAR. Information is also
provided on operational differences and processor changes between original
SPAR and the current VAX/VMS version of NICE/SPAR.

Integration of SPAR and NICE

Because the data management philosophy of NICE is similar to the SPAR
approach, the installation of the SPAR computational processors under NICE
was relatively straightforward. SPAR data management usage is described in
reference 5. In NICE, however, the data library concept has been extended
so that all records of the data structure on the library (data sets) do not
have to be in physically contiguous locations on disk. In addition, NICE
includes with each data set, information describing its contents. This i
feature tends to make the datasets more self-describing, allowing easier
interface by computational processor developers. This extended
library!data set concept is denoted GAL/82.

The specific steps in the installation process were as follows:

I. The SPAR data management routines were rewritten (DAL, RIO,
TOCO, LTOC, and DEL) to use NICE GAL/82 data library utilities.
The RIO calling sequence requiredmodification to include
record numbers and data type.

2

2. SPAR routines RWINDZ, OUTZ, INZ, RRINZ were rewritten to use
NICE indexed record utilities for scratch libraries.

3. READ and FIN were modified to interface with the NICE command
language interpreter; READER was also modified to accommodate
changes to the input syntax as described in Appendix A.

4. The routines used to maintain the SPAR Table of Contents and

" master index data structures (MATCH, NTOC, RDIND, STATIC,
WRTIND, WRTINX, XEVICT, XOPEN, XREWND) and low level SPAR I/O

. routines (READX,WRITEX)weredeleted.
5. Individualprocessors were modifiedto includeadditional

parametersrequiredin RIO calls and to provideprocessor
identificationin the NICE TOC; variableswereaddedto common
blocks where required for accessing record counts, matrix row
size, and record data type; scratch libraries were opened where
required.

6. A main program was written to control execution of individual
processors by calling them as subroutines.

Usage descriptions of the primary processor/NICE data management
interface subroutines are given in Appendix B. These routines (DAL, RIO,
TOCO and LTOC) are used by the existing NICE/SPAR processors as the bridge
betweenthe SPAR data managementmethod and the NICE nominal data set/named
data record utilities. The routines which interface with NICE command
language interpreter (FIN, INTRO, READ, and READER) are also described in
Appendix B.

NICE/SPAR data libraries are written to disk files named NS.Lxx, where
xx is the library number (01-30). Most processors use library number I.
However, by using the CLAMP *OPEN directive, a user can explicitly associate
any legal external file name with a library. The data libraries are
NICE/GAL82 format; data sets are nominal data sets using the same naming
convention as SPAR. Records of the data sets are named records (currently
implemented with all records simply named DATA.i); data sets are written as
one record per SPAR block, or one record per SPAR data segment. The current
NICE/SPAR data record contents are identical to the SPAR data set contents
described in reference 6.

Integration of new user-developed processors may be accomplished
according to the guidelines given in Appendix C. NICE/SPAR usage is
described in Appendix A.

EXAMPLE STRUCTURAL ANALYSIS PROBLEMS

During NICE/SPAR development, many analysis problems have been designed
and executed to verify the correctness of the system. Two of these problems

- are presented here to illustrate the input syntax, analysis flow,and use of
typical CLAMP directives in describing analysis algorithms.

The first problem is the static stress analysis of a section of a
toroidal shell. The input for this example is shown in figure I. The shell
wall consists of four layers of composite material with orientations
90_/0_/45t/-45_. The finite element model consists of 337 nodes and 320
combined membrane-bending elements. (The SPAR designation for this element
is E43). This example demonstrates the relatively straightforward usage of

NICE/SPAR for a small, sequential analysis problem. Processors TAB and ELD
are used to input all geometrical and property datadescribing the model.
The JREF command in TAB is used to align the Joint reference frames with the
shell coordinate system. Both the applied loading (defined in AUS) and the
calculated displacements (from processor SSOL) are relative to these
reference frames. Later in the analysis, the calculated displacements and •
reactions are converted to the global reference frame using the LTOG
(local-to-global) command in AUS and then printed using processor VPRT.
Stress information is calculated by processor GSF and then selectively
printed in three different formats by separate executions of processor PSF.

The secondexampleis thedynamicanalysisof a planar,cantilever
beam. The analysisis carriedout usingbotha modalmethodand a direct
integrationof the systemequationsof motionusingtheNewmarkintegrator.
Thisexampleshowshow the SPARprocessorsand theNICECLAMPcommand
languagecan worktogetherto performa fairlycomplexanalysistask.

The input for this example is shown in figure 2 and consists of five
NICE CLAMP procedures. Procedure CANT_BEAM defines the beam model and
calculates system stiffness and consistent mass matrices. The beam is
excited by an initial displacement which is the static deformation shape
resulting from a unit applied displacement at the tip.

If a modal transient response is being performed, procedure VIBR_MODES
is called, followed by procedure TR_MODAL. A formal argument, nmodes, in
VIBR_MODES indicates the number of vibration modes to be calculated. A
similar parameter in TR_MODAL indicates the number of modes to be used in
the transient response analysis. SPAR processor DR integrates the modal
equations and performs the back transformation for selected physical
coordinates.

If a transient response calculation by direct integration of the system
equations is being performed, procedure TR_DIRECT is called, which in turn
calls procedure NEWMARK. Procedure NEWMARK implements the well known
Newmark integration method for second order, coupled systems. Parameters
such as system stiffness and mass matrix names, the time step, and the total
number of time steps in the analysis are formal arguments to procedure
NEWMARK. In NEWMARK, extensive use is made of the CLAMP macro expression
capability for calculating integration constants and controlling the
algorithm. The initial acceleration at time t = 0 is calculated from the

given initial displacement and velocity vectors. This is done by using
processor AUS to set up the equations of motion at t=O, and INV and SSOL to
solve for the acceleration. At each subsequent time step, processor AUS is
used to set up the recursion relations, and processor SSOL is used to solve
for the displacement vector at the next time step. Then velocity and

acceleration vectors can be calculated and selectively printed. Although
procedure NEWMARK is not intended as a "production" quality implementation
of the Newmark method, it does illustrate many of the features and the
potential of NICE/SPAR procedures.

PERFORMANCE

To assessthe computationalperformanceof NICE/SPAR,the two example
problemswereexecutedunderbothNICE/SPARand EAL.A processor-by-
processorcomparisonof executiontime (CPTIME)and numberof diskreador

• writeoperations(I/O)is presentedin TablesI and 2. The numberof disk
I/Ooperationsis an importantstatisticbecausethiscan havea substantial
effecton overallelapsedexecutiontimefor an analysis.Accordingly,on
computerswith fastcentralprocessors,the amountof disk activityis
weightedveryheavilyin theoverallcostingalgorithmfor executingJobs.

Conslstently,NICE/SPARrequiressubstantiallymore computational
resourcesthandoesEAL. As shownin TablesI and 2, theratiosforCP time
rangefromabout1.0 to nearly13.0and I/O operationsrangefromabout.9
to over22.0. Whereposslble,EAL processorsare usedwhichhave
capabilltiesslmilarto theirSPARancestors.However,several"workhorse"
processorssuch as TOPO and INV havebeencompletelyredesignedin EAL and
someof the performancedifferencebetweenthe two systemscan be attributed
to thisfact. Therelativeperformanceof NICE/SPARin executingexampleI
is betterthanforexample2. Thisis truebecauseexampleI is a simple
sequentialanalysiswhichplacesminimaldemandson theNICEarchitecture.
Example2 involvesmanyexecutionsof theAUS and SSOLprocessorswhich
resultsin a substantlaloverheadpenaltyin NICE/SPAR.Futureworkon
NICE/SPARwillbe aimedat improvingthe performanceof the system.

5

Concluding Remarks

Constr_otion of a new structural analysis system based on the original
SPAR finite element code and the NICE system has been described.
This work was motivated by requirements for a modular and flexible
structural analysis system to use as a tool in carrying out research in
computational methods and exploring new computer hardware. Installatlon was !
reasonably straightforward because of similar concepts in software
architecture between SPAR and NICE.

i

Example problems have been executed and are presented to verify the
correctness and performance of the system and to demonstrate the utility of
the NICE/CLAMP command language combined with the SPAR processors. The
utillty and correctness of the system have been verified; however the
oomputatlonal performance in terms of both CP time and direct disk I/O of

NICE/SPAR has been found to be poor compared with EAL. Work is currently
underway to improve the performance and to enhance the functionality of the
system.

The NICE/SPAR procedure for direct integration of the transient
response equations demonstrates the power of combining a high level command
language (CLAMP) with a set of modular, command-driven computational
processors. With this concept, for example, numerous time integration
algorithms could be studied without any changes to the low level FORTRAN
code. Many other research activities in computational structural mechanics
should lend themselves equally well to this approach.

TableI. PerformanceComparisonBetweenEAL
andNICE/SPARfortheCompositeTovoldal

ShellExample

" I/O
EAL EAL NICE/SPAR NICE/SPAR CP TIME OPERATION

PROCESSORCP TIME I/O CP TIME I/O RATIO RATIO
- (sees) (oounts)(secs)(counts)

U1 5.2 _5
TAB 5.0 60 5.5 223 1.1 3.7
DCU .4 5 .8 26 2.3 5.2
AOS .1 17 .7 50 5.0 2.9
ELD 3.0 60 3.1 246 1.0 4.1
E 4.7 172 5.3 245 1.1 1.4
EES 33.9 106 85.8 85 2.5 .8
TOPO 3.5 209 10.8 519 3.0 2.5
E 24.2 1090 25.9 985 1.1 .9
INV 134.7 743 243.9 886 1.8 1.2
SSOL 11.9 344 21.4 471 1.8 1.4
AOS .5 51 1.5 95 3.0 1.9
DCU .4 25 .9 37 2.3 1.5
GSF 1.1 109 2.7 116 2.4 1.1
PSF 12.4 57 11.9 535 1.0 9.4
PSF 1.2 51 3.2 171 2.7 3.4
PSF 1.0 51 3.2 168 3.2 3.3
VPRT 3.7 63 4.5 148 1.2 2.3
DCU .5 26 .8 19 1.7 .7

Average Average
TOTAL 247.3 3284 431.9 5025 1.7 1.5

7

Table 2. PerformanceComparlsonBetweenEAL and NICE/SPAR
for the CantileverBeam Example

EAL EAL NICE/SPARNICE/SPAR
No.of CP Time I/O CP Time I/O CP TimeIO Op.

ProoessorExeoutions (Seos)(Counts)(Secs)(Counts) Ratio Ratio

AUS 114 96.6 7948 1246.4 62191 12.9 7.8
DCU 3 .9 36 2.2 127 2.4 3.5 "
E 1 .4 19 1.3 100 3.3 5.3
EKS I .I 5 .4 32 4.0 6.4
ELD 1 .2 11 1.6 147 8.0 13.4
IN¥ 3 1.1 77 1.8 151 1.6 2.0
K _ 1 .2 22 .6 70 3.0 3.2
M 1 .2 19 .8 77 4.0 4.1
SSOL 102 48.8 4134 417.0 19583 8.5 4.7
TAB 1 1.0 19 8.0 421 8.0 22.2
TOPO 1 .6 31 2.2 80 3.7 2.6
U1 2 5.9 54
VPRT 11 2.1 113 11._ 5_9 5.4 4.9

Avg. Avg.
242 158.1 12488 1693.7 83528 10.7 6.7

8

Flguee I. NICE/SPARInput for the CompositeToroldalShell Example

NICE/SPARDEMONSTRATIONPROBLEM13
COMPOSITETOROIDALSHELL

SET VERIFY
SET DEF NICESPARSDEMO
nlcespar

*set echo=off
*openI,demo13.101/new
[XQTTAB
ONLINE=0
START337
tltle' compositetoroldalshell
JLOC;FO_AT=2
2 650.0125 O. O. 650.0125 5.2888 O. 21 16
3 650.1866 O. -.8754 650.1866 5.2888 -.8754 21 16
4 650.1866 0. +.8754 650.1866 5.2888 +.8754 21 16
5 650.6825 0. -1.6175 650.6825 5.2888 -1.6175 21 16
6 650.6825 0. +1.6175 650.6825 5.2888 +1.6175 21 16
7 651.4246 0. -2.1134 651.4246 5.2888 -2.1134 21 16
8 651.4246 0. +2.1134 651.4246 5.2888 +2.1134 21 16
9 652.3 0. -2.2875 652.3 5.2888 -2.2875 21 16

10 652.3 0. +2.2875 652.3 5.2888 +2.2875 21 16
11 653.1754 0. -2.1134 653.1754 5.2888 -2.1134 21 16
12 653.1754 0. +2.1134 653.1754 5.2888 +2.1134 21 16
13 653.9175 0. -1.6175 653.9175 5.2888 -1.6175 21 16
14 653.9175 0. +1.6175 653.9175 5.2888 +1.6175 21 16
15 654.4134 0. -.8754 654.4134 5.2888 -.8754 21 16
16 654.4134 0. +.8754 654.4134 5.2888 +.8754 21 16
17 654.5875 0. 0. 654.5875 5.2888 0. 21 16

1 652.3 5.2888 0.
MATC:1 .114+07 0.28
BA: DSY 1 .675-03 0..675-03 0..09 .270-02 : .
MREF: 1 1 2 1 .99574
JREF: NREF=-I: 1,337
CON=I: FIXED PLANEr2
SA(4)

FORMAT=lamlnate:I . 4 LAYER COMPOSITE
-9.375-0390..00625> . LAYER I, INSIDESURFACE
1.8560+052.0010+037.1470+030. 0. 4.0620+03>
6.0400-016.5140-032.3260-020. 0. 1.3220-02
-3.125-030.0.00625>. LAYER2
1.8560+052.0010+037.1470+03O. O. 4.0620+03>
6.0400-016.5140-032.3260-020. 0. 1.3220-02
3.125-0345..00625> . LAYER 3
1.8560+052.0010+037.1470+030. 0. 4.0620+03>
6.0400-016.5140-032.3260-020. 0. 1.3220-02
9.375-03-45..00625> . LAYER 4, OUTSIDESURFACE
1.8560+052.0010+037.1470+030. 0. 4.0620+03>
6.0400-016.5140-032.3260-020. 0. 1.3220-02

9

Figure 1. Continued

2 . 4 LAYERCOMPOSITEDIFFERENTINPUTFORMAT
-.00937590..00625185600.2001.7147.O. 0.4062..604.0065.023O. O.
.0132
-.003125 0.0 .00625 185600. 2001. 7147. O. 0. 4062. .604 .0065 .023 0. 0. =
.0132

•003125 45. .00625 185600. 2001. 7147. 0. 0. 4062. .604 .0065 .023 0. 0.
.0132
•009375 -45. .00625 185600. 2001. 7147. 0. 0. 4062. .604 .0065 .023 O. O.
.0132
3 • 4 LAYERCOMPOSITEDIFFERENTINPUTFORMATANDVALUES
-9.375-390..006251.856+52.001+37.147+30.0. 4.062+3
-3.125-30..006251.856+52.001+37.147+30. 0. 4.062+3
3.125-345..006251.856+52.001+37.147+30. 0. 4.062+3
9.375-3-45..006251.856+52.001+37.147+30. 0. 4.062+3

[XQTDCU.
PRINTI SA .
[XQTAUS
SYSVEC: APPLIED FORCES I

CASEI: I=3:J=1:1.0
CASE2: I=2:J=1:322,337:0.058824

ALPHA:CASETITLEI
1' TRANSVERSESHEARLOAD
2tAXIALLOAD

[XQTELD
ONLINE=O
E43
GROUPII 0 TO 22.5DEG.

2 18 19 3 1 20 1
GROUP2' 22.5 TO 180 DEG.

3 19 21 5 1 207
GROUP3t 180 TO 202.5 DEG.

17 33 32 16 1 20 1
GROUP4' 202.5 TO 360 DEG.

16 32 30 14 1 20 7
E21:1 322 3 16 1

ONLINE=1
[XQTE
T= .1-19,-.001,.0001,.0001,20.,.0001,.0001,.0001
[XQTEKS
[XqTTOPO
[XQTK
[XQTINV
ONLINE=2
[XQTSSOL
[XQTAUS
DEFINED=STATDISP
DEFINER=STATREAC
GLOBDISP=LTOG(D)
GLOBREAC=LTOG(R)

[XQTDCU
TITLE 1 t 337 JOINT COMPOSITETOROIDALSHELL
TOC 1

10

Figure 1. Concluded

[XQTGSF
E_3:I:3 •

. [XQT PSF
[XQTPSF
RESETDISP=2,CROS=0,NODES=O
DIV=I..001.001I.

[XQTPSF
RESETDISP=3,CROS=O,NODES=0
DIV=I..001.001I.

[XQTVPRT
JOINTS=2,322,16:9,329,16:17,337,16:I0,330,16.
TPRINTSTATDISP
TPRINTGLOBDISP
JOINTS=2,17
TPRINTSTATREAC

[XQTDCU
TOCI
[xqtexit

11

Figure 2. Clamp Procedures for Transient Response Analysis of a
Cantilever Beam

$ SETVERIFY
$ set def nsSdemo
$ del cbeae.lO1;e,cbeam.lO2;e,ns.e;e,cbeam.128;m
$ nlcespar
eset echo off
eset pllb ffi28
Ropen 28 cbeam.128
eopen 1 ebeam.101

mdef/l Jt = 11
Wprocedure CANT_BEAM
[xqt tab
start<it>3,4,5
Jloc
10. O.O. 25. O. O. <it>
marc
1 10.+6 .3 .101
ba

rect 1 1.0 .1
auger
11211.0
con I
zero 1,2,6 : I
con 2

zero1,2,6 : I
nonzero 2 : <Jt>

[xqt eld
e21
mdef/lJtml= <<Jt>- 1>

1 2 1 <Jtml>
[xqt e
[xqt eks
[xqt topo
[xqt k
[xqt m
reset g=386.

. compute initial displacement due to a static end load

ixqt aus
sysvec : appl moil
1=2 : J=<Jt> : -1.0
[xqt inv
reset oon=2

[xqtssol
reset con=2

[xqt dou
change 1 stat dtsp 1 2 uO aus 1 1

[xqt dou
too 1

mend

12

Figure2. Continued

mprocedureVIBR__MODES(nmodes)

• computes "nmodes" vibration modes

mdef/i nmodes = [nmodes]
[xqt inv
mdef init = <min(<2m<nmodes>> ; <<nmodes> + 8>)>
[xqt elg
reset init=<inlt>, nreq=<nmodes>, m=cem
[xqt vprt
vectors = I, <nmodes>
print vibr modes
[xqt dcu
toc 1

mend

mprocedure TR_MODAL (nmodes)

• performs transient response analysis (modal superposltlon)

mdef/inmodes= [nmodes]
[xqt aus

define x = vibr mode 1 1 1,<nmodes>
define e = vibr eval

• compute modal initial displacements
define id ffi 1 uO aus 1 1

idm = prod(cem, id)
iqx = xty(x,idm)
table(nJf<nmodes>):xtmx:J=1,<nmodes>: 1.0
table(nJf<nmodes>) : xtkx : transfer(source=e)
table(nifl,nJf<nmodes>): td

mdef/isbase= <(<Jr>- I)m3+ I>
mshow/macrosbase
transfer(source=x,sbase=<sbase>,illm=1)

[xqt dr
dtex(dt=. 001)
trl(qxlib=I,qx111bffiI,tlffiO.O,t2=.12)
back
t = td : y ffiqx
z = zd aus

[xqt dcu
toc 1

. print 1 lqx
print 1 td
print I zd

mend

13

Figure 2• Continued

mprocedure TR_DTRECT

• performs transient response analysis by direct integration
• of the equations of motion

xqt aus
sysvec : udO . initial velocities ffi 0
i = 1 : J = I : 0•0

eopen 2 obeam. 102
moall NE_4ARK (mname = oem; delt = •001; nstep = 100; pfreq ffi 10)
mend

mprooedure NE_4ARK (--
kname = k ; -- • first name of global k
mname = dem; -- . first name of global m
beta = •25; --
gamma = .50; --
delt = 0.0; -- . time step
nstep ; -- . number of time steps
slib ffi 2; -- . number for temp. library
pfreq ffi I -- . print frequency for results

)

• Performs dynamic analysis on a linear system using the
• Newmark-Beta implicit integration method

• Initialization

_def/a kname = [kname]
mdef/a mname = [mname]
edef/e beta = [beta]
edef/e gamma = [gamma]
Wdef/e delt = [delt]
mdef/I nstep = [nstep]
mdef/I slit = [slib]
mtf <delt> /eq 0.0 /then

mremark error: time step (delt) = 0.0
Wstop

mendif
mdef/e aO = (1.0/<beta>/<delt>/<delt>)
mdef/e al = (<gamma>/<beta>/<delt>)
Udefle a2 = (1.0/<beta>/<delt>)
mdefle a3 = (I. 012• Ol<beta> - I. O)
mdefle a4 = (<gamma>l<beta>- 1.0)
mdefle a5 = (<<gamma>l<beta> - 2.0>m<delt>12.0)
Wdefle a6 = (<1.0 - <gamma>>m<delt>)
mdef/e a7 = (<gamma>m<delt>) '
edef/e ma2 ffi <-<a2>>
Wdef/e ma3 = <-<a3>>
mshow macro

14

Figure 2. Continued

ixqt aus
. khat = sum(<kname>, <aO> <mname>)

• calculate initial acceleration vector.

inlib= 3 :outlib= 3
definek = I <kname>
defineuO = I uO
applforeI = prod(k,-1.0uO)
[xqt inv

resetk = <mname>,kilib=3,dzero= I.e-9
[xqt ssol

reset kf<mname>, kilib=3, qllb=3, reac=O
[xqt inv
reset k=khat

[xqt dcu
copy I, <slib> uO
copyI,<slib>udO
copy 3, <sllb>stardisp
charge<slib>uO maskmaskmaskstatdlsp0 1
change<slib>udO maskmaskmaskud veo 0 1
charge<sllb>statmask I I udd veo 0 1
tocI
too <slib>
Wclose3 /delete
[xqt vprt
lib = <slib>
format = 4

print stat dlsp 0 ' initial displacement vector
print ud veo 0 ' initial veclocity vector
print udd vec 0 ' initial acceleration vector

• iterate for "nstep" time steps

ixqt aus
Wdefli pont = I
mdo Sstep = O,<nstep>
inlib = 21 : outlib = 21

define u = <slib> stat disp <$step>
defineud = <slib>ud vec <$step>
defineudd = <slib>udd veo <$step>
definem = I <mname>

rl = sum(<aO> u <a2> ud)
r2 = sum(<a3>udd rl)

Idef/i stpl = <<$step> + I>
outlib= <slib>
applied force <stp1> = prod(m, r2)

[xqt ssol

reset k=khat, set=<stp1>, qlib=<slib>, reac=O

15

Figure 2. Concluded

[xqt aus
inlib = 21 : outlib = 21

define utdt = <sllb> stat dlsp <stp1>
define ut = <slib> star disp <$step>
define udt = <slib> ud vec <$step>
define uddt = <slib> udd veo <$step>
ul = sum(utdt -1.0 ut)
u2 = sum(<aO> ul <ma2> udt)
u3 = sum(udt <a6> uddt)
outlib = <slib>

udd veo <stp1> = sum(u2, <ma3> uddt)
define utt = <slib> udd veo <stp1>
ud vec <stp1> = sum(u3 <aT>utt)

msbowlmacro pont
mif <<pont> leq [pfreq]> /then

• print every pfreq'th solution

xqt vprt
lib = <slib>
format =

print stat disp <stp1> ' dlsplaoement vector
Wdefli pont = I
[xqt aus
melse
mdefli pont = <<pont> + I>
mendif
menddo
Wend

mcallCANT_BEAM
#callVIBR_MODES(nmodes=4)
#callTR_MODAL(nmodes=4)
moallTR_DIRECT
[xqt exit

16

AppendixA. NICE/SPARUsage

On the CSM VAX/VMScomputersystem,the NICE/SPARexecutiveis invoked
by typingNICESPARin the interactivemode. The commandused to invokea
NICE/SPARprocessoris "[XQTprocessor-name";the commandto exita
processorand theNICE/SPARexecutiveis "[XQTEXIT". NICEdirectives

. (prefixed by *) may be entered, intermixed with SPAR commands. Batch mode
processing is also available, with all commands and directives supplied from
a disk file.

Because NICE converts all input (except labels) to uppercase
characters, which SPAR requires, raw input data may be entered in either
upper or lower case.

NICE directives are documented in reference 2. SPAR commands are
documented in reference 3. Differences between NICE/SPAR and the documented
version of SPAR are described below.

Modificationsto SPARReferenceManualFor NICE/SPARUsage

The sectionnumbersbelowreferto the sectionsin reference3 to which
themodificationsapply.

2.2 TheData Complex

By default,the filenamescorrespondingto NICE/SPARlibrariesare
formedby appendingtheextensionLxx to a rootfilename ("NS"
currently)wherexx is thellbrarynumber(i.e.,NS.L01for libraryI).

The tableof contents(TOC)is maintainedby the NICEdatamanagerin a
differentformatthantheSPARTOC. The NICE/SPARTOC itemsdisplayed
by DCU are: sequenceno.,date,time,lockcode,no. of records,name
of creatingprocessor,dataset name. Otheritemsin the SPARTOC
whichare requiredby theprocessors(dataset length,recordlength,
no. of columnsper blockand datatype)are obtainedin NICE/SPARvia
GAL recordlevelutilltles.

2.3 CardInputRules

The sameinputrulesare followedexcept:

I) Realdatainputmay contain"E"at the beginningof the exponent
fieldas in FORTRAN.

2) The commentcharacteris # insteadof $.

2.5DataSetStructure

TheSPARdatasetstructureis followedexcept:

I) NWORDSis alwaysan integralmultipleofNI*NJ.

17

2) In most cases, one SPAR block corresponds to a single NICE record.
However, in some data sets a SPAR block corresponds to a NICE
record group, where an individual NICE record corresponds to a
segment of the SPAR block.

2.5.1 Table

Tables can be of any SPAR data type; tables with ITYPE = _ 1 may not
contain mixed data, but ITYPE = 0 tables may contain values of integer,
real or alphanumeric type.

4.2 K- The Stiffness Matrix Assembler

Under RESET controls, the default for SPDP is 2, so double precision
output is obtained because of the smaller word size on VAX.

5.1 AUS

5.I.3.I TABLE

The commandllneis:

TABLE,U(NI= nl, NJ = n_.ITYPE= n): NI _: data...

wheretheoptlonalparameterITTPEhas beenadded,beingthe
SPARdata type code of the data set.

The footnote should read:

m Loop-limit format is permitted for ITYPE = ± 1 only.
It is not permittedfor ITYPE= 0 or 4.

5.2 DCU- The Data Complex Utility Program

The following commands are not implemented in the om-rent version ofNICE/SPAR:

XCOPY,XLOAD,REWIND,TWRITE,TREAD,NTAPE,STORE,RETRIEVE

Seotlon 8. EIG - Sparse Matrix Eigensolver

Instead of using the Cholesky-Householder method for solving the low-
order eiEenproblem (4), the combination shift QZ algorithm described An
reference 8 is used.

18

Appendix B. NICE/SPAR User Interface Subroutine Descriptions

SubroutineDAL (NU, IOP,KA, KORE,IEA,KADR,IERR,NWDS,NE, LB, IT_PE,
NAMEI,NAME2,NAME3,NAME4)

" Purpose: Reador writea nominaldataset namedNAMEI.NAME2.NAME3.NAME4in
library NU

Parameters:

NU llbrary number (integer, input)
IOP operation code (integer, input)

ffi- I, Rename current data set; set KADR to data set sequencenumber

= 0, Set up an entry in TOC for new data set; disable old
data sets of same name; set KADR to data set sequence

number

= I, Same as 0 but also write one record of data from KA.
= 2, Same as I but does not disable old data sets.
= 10, Get TOC information without reading data; set IERR if

not found.

= 11, Same as 10 but also read one record (LB items) of data
into KA.

KA initial address of array containing data to be read or
written; actual data type depends on ITYPE.

(input for write operation, output for read operation)
KORE number of words available for data set (integer, input)

If LB>KORE and IOP>9, IERR set to 2. If KORE = 0, the check
for space is skipped.

IEA error condition check code (integer, input)
= I, Print message and return if error encountered.
= 2, Disregard error.
other, Print message and abort.

KADR Data set sequence number, = 0 if not found. (integer, output)
IERR error code on return (integer, output)

= 0, No error
= I, data set not found

= - 2, Insufficient space for data set

NWDS number of words in data set (integer, input for write, output
for read)

NE number of columns per block (integer, input for write, output
for read)

. LB record size (integer, input for write, output for read)
ITYPE SPAR data type code (integer,lnput for wrlte,output for read)

= 0 integer data
- = _ I realdata

= ± 2 double precision data
= 4 alphanumericdata

NAMEI Ist component of data set name, 4 bytes (alphanumeric, input)
NAME2 2nd component of data set name, 4 bytes (alphanumeric, input)
NAME3 3rd component of data set name (integer, input)
NAME4 4th component of data set name (integer, input)

(any component of the data set name may be 41_4ASKwhich is a
"wildoard" matching parameter)

19

Functional description:
1. Library NU is checked to be open; if not, it is opened as a GAL82

library on disk file NS.Lxx, where xx is the library number.
2. For writing, the name is entered in TOC via GHPUNT. KADR is set to

the data set sequence number of the new data set. If IOP : 1, one
record of LB words of the appropriate type are written via GMPUTN
or GMPUTC. If IOP = 2, old data sets are enabled.

3. For reading, the data set sequence number is located and the
matched data set name components are returned in common block
/TOCLIN/. The data set length, record length, rowsize, and data
type are returned in /TOCLIN/ and in the argument list. If IOP =
11, the available space (KORE) is checked and one record of data is
read via GMGETNor GMGETC.

4. For IOP = - 1, the current data set is renamed. No other
parameters can be changed at this time in NICE/SPAR.

2O

Subnoutine FIN (NERR, NER)

Purpose: Terminate NICE/SPAR processor.

Parameters:

NERR error code (integer, input)
= 0 , no error

0 , 4-byte alphanumeric error code to be printed (A4)
NER error no. to be printed if }/ERR = 0 (110 format)

(integer, input)

Functional description:

I. Closelibraries1-20and27-30conditionally;closelibraries21-26
unconditionally.

2. Printexecutionstatistics(CPU,clocktime,bufferedI/0,directi/0).
3. Printerrormessagesaccordingto inputparameters.
4. Chainto NICE/SPARexecutivevia CLPUT.

21

Subroutine INTRO (IDPROC)

Purpose: Log processor name with data manager and get unit assignment for
printed output file.

Parameter:

IDPROC - Processor name, in upper oase (input, oharaoter*4)

Funotion desoription:

1. Call GMSIGNto enter processor name to be "signed, into data sets
oreated by the prooessoP.

2. Call ICLUNT to get the unit number assigned to the print file and
assign this valve to the seoond integer variable in oommon block
/IANDO/. This variable is used by NICE/SPAR pPooessors fop nonmal
output.

22

SubroutineLTOC(NU,J, NAMEI,NAME2,NAME3,NAME4)

Purpose:To getitemfromTOC

Parameters:

NU library number (integer, input)

+ J TOC item number desired, 1-12 (integer, input)
NAMEI Ist component of data set name, 4 bytes (alphanumerlc, input)
NAME2 2nd component of data set name, 4 bytes (alphanumeric, input)
NAME3 3rd component of data set name (integer, input)
NAME4 4th component of data set name (integer, input)

Functional description:
I. Find data set in NICE TOC via LMFIND.

2. Get TOC information via GMGENT, GMGETN, and LMRECS.
3. Set function value to the value of the desired item.

The TOC items are:

I Data set sequence no.
2-4 Unused
5 Number of words in data set.

6 Number of columns per block (for matrix type data)
7 Recordsize
8 SPAR data type code
9 Ist component of data set name
10 2nd component of data set name
11 3rd component of data set name
12 4th component of data set name

23

SubroutineREAD (IA, IEOF)

Purpose:Get one unparseduser inputrecordfromNICE

Parameters:

IA input record contents, array of 80 words, one character of
input per word (integer, output)

IEOF end of input flag (integer, output) _
= 0, successful input operation
= 1, no input obtained

Functional description:

I. InitializeIA to blank.

2. CallCLGETto get an inputrecordusingthe4 characterprompt
stringfromcommonblock/PID/. All macroexpansionsin the
reeord havebeenperformedby CLGETpriorto return.

3. StoreindlvldualcharactersfrominputrecordintoIA, one
eharaoterperword,leftJustified.

24

SubroutineREADER

Purpose:Get one lineof user inputand parseit accordingto the SPAR
commandinputsyntax. Inputdataitemsare storedin commonblock
/INREC/.

Functionaldescription:

• I. CallREAD to get user inputrecordvia CLGET.
2. Parse the input according to the SPAR input syntax specified in

reference 3, with modifications described in Appendix A. Up to 40
items per record are allowed.

3._ Return data items in common block /INREC/ described below.
4. If first item is "FIN ", call subroutine FIN to terminate the

processor.
5. If the first item is "RUN " or "[XQT", set NAME to "STOP".

NICE/SPAR processors use this value of NAME as the end-of-lnput
flag.

Common block /INREC/ contents:

IDATA(40) Parsed input data items; actual data stored in
IDATA may be of integer, real, or alphanumeric
type.

KIND(40) Integer SPAR data types of corresponding words in
IDATA.

NAME Alphanumeric command key; set to IDATA(1) if
KIND(1) = 4 (alphanumeric); set to "STOP" if
IDATA(1) = "RUN " or "[XQT"; otherwise = O.

NA41 Integer index in IDATA where alphanumeric label
begins, if a label is included in this record.

NA42 Integerindexin IDATAwherealphanumericlabel
ends.

25

SubroutineRIO(NU,IWR,IOP,IDSN,KSHFT,KSHFT2,KA,L, ITYPE,NE)

Purpose: Reador writenamedrecordsto NICEnominaldataset.

Parameters:

NU Library number (integer, input)
IWR Operation code (integer, input)

= I, Write records KSHFT:KSHFT2
= 2, ReadrecordsKSHFT:KSHFT2
= 10, WriterecordsKSHFT:KSHFT2andreturnnextrecord

numberin KSHFT.
= 20, ReadrecordsKSHFT:KSHFT2and returnnextrecord

numberin KSHFT.
IOP recordlocationcode•(integer,input)

= 1 or 2, Reador writerecordsKSHFT:ESHFT2
= 3, Append records to end of data set

IDSN data set sequence number (integer, input)
ESHFT initial record number to be accessed

(integer, input always, output if IWR>9)
KSHFT2 final record number to be accessed (integer, input)
KA initial address of array of data

(data type depends on ITYPE input for write operation, output
for read operation)

L number of data items to be read or written (integer, input)
ITYPE SPAR data type code (integer, input)
NE number of columns per block (integer, input for write,

dummy argument for read)

Functional description:

I) Get NICE data type code from ITYPE. Construct NICE record name.
2) For IOP = I or 2, if IWR=I or 10, write records via GMPUTN or

GMPUTC;if IWR = 2 or 20, readrecordvia GMGETNor GMGETC.
For IOP = 3, get numberof recordswrittenon dataset;construct
recordnameDATA.nrec+I:nrec+(KSHFT2-KSHFT);writerecordsvia
GMPUTNor GMPUTC.

3) ForIWR> 9, returnnextrecordnumberin KSHFT.

26

SubroutineTOCO(NU,NAME,IOP,NLINE)

Purpose: Finddataset and returnTOC information

Parameters:

NU Library no. (integer, input)

NAME 4 word array, data set name (alphanumeric and integer, input)
- IOP operation code (integer, input)

= I, find first matching data set

I, Disable all matching data sets after entry NLINE
NLINE data set sequence number to start search at (integer, input,

output if IOP = I)

Functional description:

I. Find all matching data sets via GMATCH; if no matches found, set
NLINE = - I and return.

2. For IOP = I, set NLINE = seq. no. of first matching data set after
input NLINE. Get TOC information via GMGENT, GMGETN, LHRECS.
Return TOC information in common block ITOCLIN/.

3. For IOP _ I, disable matching data sets after NLINE. Set NLINE to
the number of disabled data sets.

27

AppendixC. NICE/SPARProcessorIntegrationGuidelines

A majorgoalof the NICE/SPARsystemis to providemechanismsfor easy
interfaceof user-suppliedcomputationalprocessors.Processorscaneitherbe
writtencompletelyfrom"scratch"or existingprocessors can be modified.
The most critical issue faced by the developer or modifier of a processor is
maintaining compatibility with existing processors.

Compatibility with the system is insured by making the input and output
data structures (data sets) "match" those of other processors and making the
capabilltes of the new or replacement processor complement those of existing
processors. The integral structure of many NICE/SPAR data sets is described

in reference 6. If the intent of a processor developer is to completely
replace an existing processor, then typically both the input and output data
sets and capabilltes would at least be equal to the replaced processor.
Processors developed to merely augment existing processors do not have so
rigorous a requirement. As long as their input and output data sets agree
with those of processors with which they interact, compatibility is assured.

Sometimes this is easy and sometimes more difficult. A couple of
examples serve to illustrate these extremes. The first example is the
addition of a new, special-purpose processor to do interactive plotting of
the geometry of a finite element model. It would be necessary for this
processor to read the data sets containing Joint locations and connectivity
information for different elements. These data sets are relatively simple to
access. And since no output data sets need be produced, no compatibility
problem is introduced. A more difficult processor development task would be

the replacement of the existing, system matrix factorizatlon processor, INV.
SPAR uses a storage scheme for system matrices that involves storing only
the non-zero blocks in the upper half of the (assumed) symmetric matrix.
Processor TOPO performs the complicated task of determining the necessary
information required for assembly and factorization of these matrices. A

capability compatible with TOPO would not be easy to produce. Finally, the
data set output by INV has a special form and several processors in the
system expect this particular form. As a result, development of a new IN¥
with identical input and output data sets would require careful study. The
alternative of replacement of the basic system matrix data structures would
have an impact on many processors in the code. Consequently the effect of
this type of change on computational efficiency, generality, and
extendabllty would have to be carefully considered.

Steps in Processor Integration

1. The name of the processor should be no longer than 4 characters; thls
should be the name of the source file with the extension ".FOR".
This name must not be one of the installed processor names llsted in
Appendix D.

2. The processor should begin with a FORTRAN main program. It should
include a common block named /PID/ with a CHARACTER*4 variable to which
the processor name should be assigned at the beginning of the processor
execution. A call to subroutine INTRO (Appendix B) with the processor
name as the only argument should also be included at the beginning of
executable statements in the processor.

28

