https://ntrs.nasa.gov/search.jsp?R=19860007142 2018-02-20T04:35:08+00:00Z

g T §75 56

NASA-TM-87586 19860007142

NASA Technical Memorandum 87586

EXPERIENCES WITH A PRELIMINARY NICE/SPAR
STRUCTURAL ANALYSIS SYSTEM

CHRISTINE G. LOTTS AND WILLIAM H., GREENE

L j "%%"*ﬁ‘ﬂ\
Ja.ﬁ»gn vgz}J

JAN 4 13 19t

LANGLEY RESEARCH CENTER
LIGRARY, NASA
HAMPTON, VIRGINIA

OCTOBER 1985

ey
Fon Brren RENCE

S e ppa s
s m

HOT 1O 81 Y
< TAKEN PR G gy
< I8 ROow

NNASA

National Aeronautics and
Space Administration

Langley Research Center
Hamplon. Virginia 23665

TABLE OF CONTENTS

SUMMArY o ¢« ¢ o o s ¢ o 0 o 6 0 o o o
Introduction . « « & ¢« ¢ ¢« ¢ ¢ ¢ & & &
Integration of SPAR and NICE
Example Structural Analysis Problems .
Performance . « « o « ¢ o o o o o o o

Concluding Remarks . « « ¢ o« « ¢ o o o«

.

.

.
.
.
-
.
o (8] w

Table 1. Performance Comparison Between EAL and NICE/SPAR

for the Composite Toroidal Shell Example

. L4 . L] . L] L] . 7

Table 2. Performance Comparison Between EAL and NICE/SPAR
for the Cantilever Beam EXample . « « « « o « o« ¢ ¢« ¢« s« s 8

Figure 1. NICE/SPAR Input for the Composite Toroidal Shell
Example ® o e o e 8 e ¢ o & 6 e 6 ¢ & o 6 o s e o s e o 9

Figure 2, CLAMP Procedure for Transient Response Analysis
of aCantilever Beam . « « o ¢« « o o« o o o ¢« o s o ¢ o o« 12

Appendix A, NICE/SPAR USAEZE « « o o o o o o s o o o o

Appendix B. NICE/SPAR programmer interface subroutine

descriptions « « ¢« ¢ ¢ o ¢ ¢ s o o o o

Appendix C, NICE/SPAR module integration.guidelines

Appendix D. NICE/SPAR installed modules

Refel‘enoes ¢ 6 o & 8 6 ¢ o o ¢ @ ¢ 2 & & e ¢ e s ° 0o

e o o & o 17
¢« e o o o 19
s ¢ o o 0 28
e ° o o o 35
e o o o o 36

sl
' /vgzgff,/évéL/AEL

Sumnmary

Construction of a new structural analysis system based on the
original SPAR finite element code and the NICE System is described. The
system is denoted NICE/SPAR. NICE was developed at Lockheed Palo Alto
Research Laboratory and contains data management utilities, a command
language interpreter, and a command language definition for integrating
engineering computational modules. SPAR is a system of programs used for
finite element structural analysis developed for NASA by Engineering
Information Systems, Inc.. It includes many complementary structural
analysis and utility functions which communicate through a common database.
The work on NICE/SPAR was motivated by requirements for a highly modular and
flexible structural analysis system to use as a tool in carrying out
research in computational methods and exploring new computer hardware.
Analysis examples are presented which demonstrate the benefits gained from a
combination of the NICE command language with the SPAR computational
modules.

Introduction

Research in computational methods for structural analysis has been
severely hampered by the complexity and cost of the software development
process, Even though the researcher is usually interested only in a small
aspect of the overall analysis problem, he is often forced to construct much
of the supporting software himself. This time-consuming and expensive
approach is frequently required because existing sof'tware that the
researcher could potentially exploit is poorly documented internally, is
poorly designed and coded, or both., After enduring this time-consuming
software development effort, the researcher often finds that a thorough,
complete evaluation of his new method is still impossible due to limitations
of the software. This is true, for example, in many "research-oriented®
finite element codes which have a limited element library or have arbitrary
restrictions on how elements of different types are combined in a single
model.

To address the above difficulties in computational methods research,
the Computational Structural Mechanics Group at NASA Langley Research Center
has undertaken the construction of a structural analysis software "test
bed", The purpose of the test bed is to provide a system which can be
easily modified and extended by researchers. In part, this is being
achieved by exploiting advances in computational software design such as a
knowledge of the role of command languages and formal data management
techniques in ensuring program modularity.

The NICE (Network of Interactive Computational Elements) system
(refs. 1 and 2) developed at Lockheed Palo Alto Research Laboratories is an
example of a modern software architecture for supporting engineering
analyses. The NICE system consists of three major components: a data
manager, a command language called CLAMP for controlling analysis flow, and
a command interpreter called CLIP for interpreting CLAMP commands and
decoding general analysis input. Computational modules in the NICE system,
called processors, are semi-independent programs which perform a specific,
well-defined task. To enforce modularity, processors do not communicate
explicitly with each other but instead communicate only by exchanging named
data objects in the data base. To utilize these semi-independent processors

in a particular, complex analysis task, CLAMP procedures are written to
describe the analysis to be performed and the algorithm to be used.

The concept of independent processors communicating through a global
data base was demonstrated in the SPAR structural analysis system (ref. 3).
SPAR contains processors for a wide range of linear, static and dynamic
analyses, Typical processor functions include model definition, formation
of finite element system matrices, solution of linear equations, and
solution of a generalized eigenproblem. In addition to the modularity
achieved through the use of a global data base, the SPAR processors are
designed to be computationally efficient.

The decision to couple NICE and SPAR for the CSM test bed was based on
four considerations., First, the details of the data management system in
the original SPAR and NICE are quite similar. The data manager requests
within SPAR processors are compatible with the NICE entry points. Second,
the reliability, utility, and performance of the SPAR processors have been
proven by almost a decade of use, Third, the concept of a high order
command language controlling the execution of independent computational
modules has been validated with the highly successful, proprietary analysis
system denoted EAL (ref. 4). EAL has been used extensively for the past 8
years as the primary structural analysis tool at NASA Langley. Fourth, both
NICE and SPAR are public domain software.

This paper describes experiences associated with integrating NICE and
SPAR, Examples are presented to illustrate the input form and to
demonstrate the power of the CLAMP language in directing processor flow.
One concern is the computational overhead in terms of both CP (central
processor) time and number of disk I/0 operations associated with the data
manager. To address this question, a comparison is made between EAL, which
is quite efficient in this regard, and NICE/SPAR. Information is also
provided on operational differences and processor changes between original
SPAR and the current VAX/VMS version of NICE/SPAR.

Integration of SPAR and NICE

Because the data management philosophy of NICE is similar to the SPAR
approach, the installation of the SPAR computational processors under NICE
was relatively straightforward. SPAR data management usage is described in
reference 5. In NICE, however, the data library concept has been extended
so that all records of the data structure on the library (data sets) do not
have to be in physically contiguous locations on disk, In addition, NICE
includes with each data set, information describing its contents. This
feature tends to make the data sets more self-describing, allowing easier
interface by computational processor developers. This extended
library/data set concept is denoted GAL/82.

The specific steps in the installation process were as follows:

1. The SPAR data management routines were rewritten (DAL, RIO,
TOCO, LTOC, and DEL) to use NICE GAL/82 data library utilities.
The RIO calling sequence required modification to include
record numbers and data type.

2, SPAR routines RWINDZ, OUTZ, INZ, RRINZ were rewritten to use
NICE indexed record utilities for scratch libraries.

3. READ and FIN were modified to interface with the NICE command
language interpreter; READER was also modified to accommodate
changes to the input syntax as described in Appendix A.

4, The routines used to maintain the SPAR Table of Contents and
master index data structures (MATCH, NTOC, RDIND, STATIO,
WRTIND, WRTINX, XEVICT, XOPEN, XREWND) and low level SPAR I/0
routines (READX, WRITEX) were deleted.

5. Individual processors were modified to include additional
parameters required in RIO calls and to provide processor
identification in the NICE TOC; variables were added to common
blocks where required for accessing record counts, matrix row
size, and record data type; scratch libraries were opened where
required.

6. A main program was written to control executlon of individual
processors by calling them as subroutines.

Usage descriptions of the primary processor/NICE data management
interface subroutines are given in Appendix B. These routines (DAL, RIO,
TOCO and LTOC) are used by the existing NICE/SPAR processors as the brldge
between the SPAR data management method and the NICE nominal data set/named
data record utilities. The routines which interface with NICE command
language interpreter (FIN INTRO, READ, and READER) are also described in
Appendix B.

NICE/SPAR data libraries are written to disk files named NS.Lxx, where
xx is the library number (01-30). Most processors use library number 1.
However, by using the CLAMP #OPEN directive, a user can explicitly associate
any legal external file name with a library. The data libraries are
NICE/GAL82 format; data sets are nominal data sets using the same naming
convention as SPAR. Records of the data sets are named records (currently
implemented with all records simply named DATA.i); data sets are written as
one record per SPAR block, or one record per SPAR data segment. The current
NICE/SPAR data record contents are identical to the SPAR data set contents
described in reference 6.

Integration of new user-developed processors may be accomplished
according to the guidelines given in Appendix C. NICE/SPAR usage is
described in Appendix A.

EXAMPLE STRUCTURAL ANALYSIS PROBLEMS

During NICE/SPAR development, many analysis problems have been designed
and executed to verify the correctness of the system. Two of these problems
are presented here to illustrate the input syntax, analysis flow,and use of
typical CLAMP directives in describing analysis algorithms.

The first problem is the static stress analysis of a section of a
toroidal shell. The input for this example is shown in figure 1. The shell
wall consists of four layers of composite material with orientations
90°/0°/45/-45°, The finite element model consists of 337 nodes and 320
combined membrane-bending elements, (The SPAR designation for this element
is E43). This example demonstrates the relatively straightforward usage of

NICE/SPAR for a small, sequential analysis problem. Processors TAB and ELD
are used to input all geometrical and property data describing the model.
The JREF command in TAB is used to align the Joint reference frames with the
shell coordinate system. Both the applied loading (defined in AUS) and the
calculated displacements (from processor SSOL) are relative to these
reference frames. Later in the analysis, the calculated displacements and
reactions are converted to the global reference frame using the LTOG
(local-to-global) command in AUS and then printed using processor VPRT.
Stress information is calculated by processor GSF and then selectively
printed in three different formats by separate executions of processor PSF,

The second example is the dynamic analysis of a planar, cantilever
beam. The analysis is carried out using both a modal method and a direct
integration of the system equations of motion using the Newmark integrator.
This example shows how the SPAR processors and the NICE CLAMP command
language can work together to perform a fairly complex analysis task,

The input for this example is shown in figure 2 and consists of five
NICE CLAMP procedures. Procedure CANT_BEAM defines the beam model and
calculates system stiffness and consistent mass matrices. The beam is
excited by an initial displacement which is the static deformation shape
resulting from a unit applied displacement at the tip.

If a modal transient response is being performed, procedure VIBR_MODES
is called, followed by procedure TR_MODAL. A formal argument, nmodes, in
VIBR_MODES indicates the number of vibration modes to be calculated. A
similar parameter in TR _MODAL indicates the number of modes to be used in
the transient response analysis. SPAR processor DR integrates the modal
equations and performs the back transformation for selected physical
coordinates,

If a transient response calculation by direct integration of the system
equations is being performed, procedure TR_DIRECT is called, which in turn
calls procedure NEWMARK. Procedure NEWMARK implements the well known
Newmark integration method for second order, coupled systems. Parameters
such as system stiffness and mass matrix names, the time step, and the total
number of time steps in the analysis are formal arguments to procedure
NEWMARK. In NEWMARK, extensive use is made of the CLAMP macro expression
capability for calculating integration constants and controlling the
algorithm. The initial acceleration at time t = 0 is calculated from the
given initial displacement and velocity vectors. This is done by using
processor AUS to set up the equations of motion at t=0, and INV and SSOL to
solve for the acceleration. At each subsequent time step, processor AUS is
used to set up the recursion relations, and processor SSOL is used to solve
for the displacement vector at the next time step. Then velocity and
acceleration vectors can be calculated and selectively printed. Although
procedure NEWMARK is not intended as a "production" quality implementation
of the Newmark method, it does illustrate many of the features and the
potential of NICE/SPAR procedures.

PERFORMANCE

To assess the computational performance of NICE/SPAR, the two example
problems were executed under both NICE/SPAR and EAL. A processor-by-
processor comparison of execution time (CP TIME) and number of disk read or
write operations (I/0) is presented in Tables 1 and 2. The number of disk
I/0 operations is an important statistic because this can have a substantial
effect on overall elapsed execution time for an analysis. Accordingly, on
computers with fast central processors, the amount of disk activity is
weighted very heavily in the overall costing algorithm for executing jobs,

Consistently, NICE/SPAR requires substantially more computational
resources than does EAL. As shown in Tables 1 and 2, the ratios for CP time
range from about 1.0 to nearly 13.0 and I/0 operations range from about .9
to over 22,0, Where possible, EAL processors are used which have
capabilities similar to their SPAR ancestors. However, several "workhorse"
processors such as TOPO and INV have been completely redesigned in EAL and
some of the performance difference between the two systems can be attributed
to this fact. The relative performance of NICE/SPAR in executing example 1
is better than for example 2. This is true because example 1 is a simple
sequential analysis which places minimal demands on the NICE architecture.
Example 2 involves many executions of the AUS and SSOL processors which
results in a substantial overhead penalty in NICE/SPAR. Future work on
NICE/SPAR will be aimed at improving the performance of the system,

Concluding Remarks

Construction of a new structural analysis system based on the original
SPAR finite element code and the NICE system has been described.
This work was motivated by requirements for a modular and flexible
structural analysis system to use as a tool in carrying out research in
computational methods and exploring new computer hardware. Installation was
reasonably straightforward because of similar concepts in software
architecture between SPAR and NICE.

Example problems have been executed and are presented to verify the
correctness and performance of the system and to demonstrate the utility of
the NICE/CLAMP command language combined with the SPAR processors. The
utility and correctness of the system have been verified; however the
computational performance in terms of both CP time and direct disk I/0 of
NICE/SPAR has been found to be poor compared with EAL. Work is currently
underway to improve the performance and to enhance the functionality of the
system,

The NICE/SPAR procedure for direct integration of the transient
response equations demonstrates the power of combining a high level command
language (CLAMP) with a set of modular, command-driven computational
processors. With this concept, for example, numerous time integration
algorithms could be studied without any changes to the low level FORTRAN
code. Many other research activities in computational structural mechanics
should lend themselves equally well to this approach.

Table 1.

and NICE/SPAR for the Composite Toroidal

EAL EAL
PROCESSOR CP TIME I/0

(sees) (counts)
U1 5.2 45
TAB 5.0 60
DCU A 5
AUS | 17
ELD 3.0 60
E 4.7 172
EKS 33.9 106
TOPO 3.5 209
K 24,2 1090
INV 134.7 43
SSOL 11.9 344
AUS 5 51
DCU A 25
GSF 1.1 109
PSF 12.4 57
PSF 1.2 51
PSF 1.0 51
VPRT 3.7 63
DCU 5 26
TOTAL 247.3 3284

Shell Example

(S |
.

* e o
W - =3 Ot

n
NENa®
- =T ONTUIW
L]

.

L]
O NMNOTOUVTEOW DO

—-—
FWW N
.

431.9

NICE/SPAR NICE/SPAR
CP TIME
(secs)

I/0

(counts)

223
26
50

246

245
85

519

985

886

871
95
37

116

535

171

168

148
19

5025

1/0
CP TIME OPERATION
RATIO RATIO
1.1 3.7
2.3 5.2
5.0 209
1.0 4.1
1.1 1.4
2.5 .8
3.0 2,5
1.1 .9
1.8 1.2
1.8 1.4
3.0 1.9
2.3 1.5
2.4 1.1
1.0 9-“
2.7 3.4
3.2 3.3
1.2 2.3
1.7 o7
Average Average
1.7 1.5

Performance Comparison Between EAL

Table 2, Performance Comparison Between EAL and NICE/SPAR
for the Cantilever Beam Example

EAL EAL NICE/SPAR NICE/SPAR

No. of CP Time I/0 CP Time 1I/0 CP Time IO Op.
Processor Executions (Secs) (Counts) (Secs) (Counts) Ratio Ratio
AUS 114 96.6 7948 1246.4 62191 12.9 7.8
DCU 3 .9 36 2.2 127 2.4 3.5
E 1 oA 19 1.3 100 3.3 5.3
EKS 1 .1 5 4 32 4.0 6.4
ELD 1 .2 11 1.6 147 8.0 13.4
IN 3 1.1 77 1.8 151 1.6 2.0
K 1 .2 22 .6 T0 3.0 3.2
M 1 2 19 .8 7 4,0 4.1
SSOL 102 48.8 4134 417.0 19583 8.5 4.7
TAB 1 1.0 19 8.0 421 8.0 22,2
TOPO 1 .6 31 2.2 80 3.7 2.6

U1 2 5.9 54 - - - -
VPRT 11 2.1 113 11.%4 549 5.4 4.9
. Avg. Avg.
242 158.1 7 83528 10.7 6.7

12488 1693.

Figure 1. NICE/SPAR Input for the Composite Toroidal Shell Example

$!
$! NICE/SPAR DEMONSTRATION PROBLEM 13
$! COMPOSITE TOROIDAL SHELL
$!
$ SET VERIFY
$ SET DEF NICESPAR$DEMO
$ nicespar
#get echo=off
#®open 1, demo13.101 /new
[XQT TAB

ONLINE=0

START 337

title' composite toroidal shell

JLOC; FORMAT=2
2 650.0125 0, 0. 650.0125 5,2888 0. 21 16
3 650.1866 0. -.8754 650,1866 5.2888 -.8754 21 16
4 650.1866 +.8754 650.1866 5.2888 +.8754 21 16
5 650.6825 -1.6175 650.6825 5.2888 -1.6175 21 16
6 650.6825 +1.6175 650.6825 5,2888 +1.6175 21 16
7
8
9

651.4246 0, -2,1134 651.4246 5,2888 -2.1134 21 16
651.4246 0, +2,1134 651.4246 5.2888 +2.1134 21 16
652.3 -2.2875 652.3 5.2888 -2.2875 21 16
10 652.3 +2.2875 652.3 5.2888 +2.2875 21 16
11 653.1754 0. -2.1134 653.1754 5.2888 -2.1134 21 16
12 653.1754 0. +2.113% 653.1754 5.2888 +2,1134 21 16
13 653.9175 0. =1.6175 653.9175 5.2888 =1.6175 21 16
14 653.9175 0. +1.6175 653.9175 5.2888 +1,6175 21 16
15 654.4134 0, -.8754 654.4134 5.2888 -.8754 21 16
16 654,4134 0. +.875% 654.413% 5.2888 +.8754 21 16
17 654.5875 0. O. 654.5875 5.2888 0, 21 16
1 652,3 5.,2883 0.
MATC: 1 .114+07 0,28
BA: DSY 1 ,675-03 0. .675-03 0. .09 .270-02 : .
MREF: 1 1 2 1 .99574
JREF: NREF=-1: 1,337
CON=1: FIXED PLANE=2
SA(4)
FORMAT=1laminate: 1 . 4 LAYER COMPOSITE
-9.375-03 90. .00625> . LAYER 1, INSIDE SURFACE
1.8560+05 2,0010+03 7.1470+03 0. O. 4.0620+03>
6.0400-01 6.5140-03 2.3260-02 0. 0. 1.3220-02
-3.125-03 0.0 .00625> . LAYER 2
1.8560405 2.0010+03 7.1470+03 0. 0. 4,0620+03>
6.0400-01 6.5140-03 2,3260-02 0. 0. 1.3220-02
3.125-03 45. .00625> , LAYER 3
1.8560+05 2,0010+03 7.1470+03 0. 0. 4.0620+03>
6.0400-01 6.5140~03 2.3260-02 0. 0. 1.3220-02
9.375-03 =45, .00625> . LAYER 4, OUTSIDE SURFACE
0.
0

[=NeN-NoNoNoN)
.

[« =
o

1.8560+05 2.0010+03 T7.1470+03 O. 4,0620+03>
6.0400-01 6.5140-03 2.3260~02 0. 0. 1.3220-02

Figure 1. Continued

2 . 4 LAYER COMPOSITE DIFFERENT INPUT FORMAT
~.009375 90. .00625 185600. 2001. 7147. O. 0. 4062. .604 .0065 .023 0. O.
0132
-.003125 0.0 ,00625 185600. 2001, 7147. O, O. 4062, .604 .0065 .023 0. O.
.0132
.003125 45, ,00625 185600. 2001, T147. 0. 0. 4062, .604 .0065 .023 0. O,
.0132
.009375 -45, .00625 185600. 2001, 7147. 0. 0. 4062. .604 ,0065 .023 0. O.
.0132
3 . 4 LAYER COMPOSITE DIFFERENT INPUT FORMAT AND VALUES
-9.375-3 90. .00625 1.856+5 2.001+3 T.147+3 0., 0. 4.062+3
-3.125-3 0. .00625 1.856+5 2.001+3 7.147+3 0. 0. 4,062+3
3.125-3 45, .00625 1.856+5 2.001+3 7.147+3 0. 0. 4.062+3
9.375-3 =45, .00625 1. 856+5 2.001+3 T7.147+3 0. 0, 4,062+3
[XQT DpcU .
PRINT 1 SA .
[XQT AUS
SYSVEC: APPLIED FORCES 1
CASE 1: I=3: J=1: 1.0
CASE 2: I=2: J=1: 322,337: 0.058824
ALPHA: CASE TITLE 1
1* TRANSVERSE SHEAR LOAD
2' AXIAL LOAD
[XQT ELD
ONLINE=0
E43 -
GROUP 1* 0 TO 22.5 DEG.
2 18 193 1201
cnonp 2' 22,5 TO 180 DEG.
3 19 215 1207
GROUP 3' 180 TO 202.5 DEG.
17 33 32 16 1 20 1
GROUP 4' 202,5 TO 360 DEG.
16 32 30 14 120 7
E21: 1 322 3 16 1
ONLINE=1
[XQT E
T= .1-19,-.001,.0001,.0001,20.,.0001,.0001,.0001
[XQT EKS
[XQT TOPO
[XQT K
[XQT INV
ONLINE=2
[XQT SSOL
[XQT AUS
DEFINE D=STAT DISP
DEFINE R=STAT REAC
GLOB DISP=LTOG(D)
GLOB REAC=LTOG(R)
[XQT DCU :
TITLE 1* 337 JOINT COMPOSITE TOROIDAL SHELL
TOC 1

10

Figure 1. Concluded

{XQT GSF
E43: 1: 3 .

[XQT PSF

[XQT PSF
RESET DISP=2, CROS=0, NODES=0
DIV=1, .001 ,001 1,

[XQT PSF
RESET DISP=3, CROS=0, NODES=0
DIV=1., .001 .001 1.

[XQT VPRT

JOINTS=2,322,16: 9,329,16: 17,337,16: 10,330,16 .
TPRINT STAT DISP
TPRINT GLOB DISP

JOINTS=2,17
TPRINT STAT REAC

[XQT DCU

TOC 1

[xqt exit

1

Figure 2, Clamp Procedures for Transient Response Analysis of a
Cantilever Beam
$ SET VERIFY
$ set def ns$demo
$ del cbeam.101;%,cbeam.102;%,ns,*;#*, cbeam.128;#*
$ nicespar
®set echo off
#set plib = 28
#%open 28 cbeam,.128
%open 1 cbeam.101

*def/i jt = 11
#procedure CANT_BEAM
[xqt tab

start <jt> 3,4,5
Jloe

1 0. 0. O. 25. 0. 0, <jt>
mate

1 10.+6 .3 .101

ba

rect 1 1.0 .1

mref

1121 1.0

con 1

zero 1,2,6 : 1

con 2

zero 1,2,6 : 1
nonzero 2 : <jt>
[xqt eld

e21
Rdef/i jtml = <jtd> - 1>
12 1 <jtm1>

[xqt e

[xqt eks

[xqt topo

[xqt k

[xqt m

reset g=386.

. compute initial displacement due to a static end load

[xqt aus

sysvec : appl moti
i=2 : 3=<Jjt> : ~1.0
[xqt inv

reset con=2

[xqt ssol

reset con=2

[xqt dou

change 1 stat disp 1 2 u0 aus 1 1
[xqt dou

toc 1

Send

12

Figure 2, Continued

#*procedure VIBR_MODES (nmodes)

. computes "nmodes" vibration modes

%*def/i nmodes = [nmodes]

[{xqt inv

#def init = <min(<2%<nmodes>> ; <{<nmodes> + 8>)>
[xqt eig

reset init=<init>, nreq=<nmodes>, m=cem
[xqt vprt

vectors = 1, <nmodes>

print vibr modes

[xqt deu

toec 1

%*end

#procedure TR_MODAL (nmodes)

. performs transient response analysis (modal superposition)

#def/i nmodes = [nmodes]

[xqt aus
define x = vibr mode 1 1 1,<nmodes>
define e = vibr eval

. compute modal initial displacements
define id = 1 u0 aus 1 1
idm = prod(cem, id)
igx = xty(x,idm)

table(nj=<nmodes>) : xtmx : j=1,<nmodes> : 1.0
table(nj=<nmodes>) : xtkx : transfer(source=e)
table(ni=1,nj=<nmodes>) : td

#def/i sbase = <(<jt> - 1)%#3 + 1>
®show/macro shase '
" transfer(source=x, sbase=<sbase>, ilim=1)
[xqt dr
dtex(dt=.001) :
tr1(qxlib=1,q9x11ib=1,t1=0.0,t2=.12)
back
t=td :y=qx
z = zd aus
[xqt decu
toc 1
print 1 igx
print 1 td
print 1 zd
%®end

13

Figure 2., Continued

#procedure TR_DIRECT
. performs transient response analysis by direct integration
. of the equations of motion

[xqt aus
sysvec : ud0 . initial velocities = 0
~i=1:3=1:0.0
%open 2 cbeam.102
%#call NEWMARK (mname = cem; delt = .001; nstep = 100; pfreq
%end

10)

#procedure NEWMARK (-

: kname = k ; -= , first name of global k
mname = dem; ~~ , first name of global m
beta = ,25; ==
gamma = ,50; =~
delt = 0.0; == , time step
nstep $ -~ . number of time steps
slib = 2; =~ , number for temp. library
pfreq = 1 ~- , print frequency for results

)

. Performs dynamic analysis on a linear system using the
. Newmark-Beta implicit integration method

Initialization

8def/a kname = [kname]
8def/a mname = [mname]
fdef/e beta = [betal
%def/e gamma = [gamma]
#def/e delt = [delt]
#def/i nstep = [nstep]
%def/1 slib = [slib]

#if <{delt> /eq 0.0 /then
#remark error: time step (delt) = 0.0

#stop
fendif
#def/e a0 = (1.,0/<betad>/<delt>/<delt>)
%def/e al = (<gamma>/<betad>/<{delt>)
#def/e a2 = (1.0/<beta>/<delt>)
%def/e a3 = (1.0/2.0/<beta> - 1,0)
#def/e all = (<gamma>/<beta> - 1.0)
8def/e a5 = (<<{gamma>/<betad> - 2.0>%<{delt>/2.0)
#tdef/e ab = (<1.0 - <gammad>>¥<delt>)
8def/e aT = (<{gamma>®<{deltd>)"
fdef/e ma2 = <-<a2>>
%def/e ma3 = <~<a3>>

#show macro

14

‘Figure 2, Continued

[xqt aus
khat = sum(<kname>, <a0> <{mname>)

» calculate initial acceleration vector.

inlib = 3 : outlib = 3
define k = 1 <kname>
define u0 = 1 u
appl fore 1 =
[xqt inv
reset k = <mname>, kilib=3, dzero = 1,e-9

[xqt ssol

reset k=<mname>, kilib=3, qlib=3, reac=0

[xqt inv

reset k=khat

[xqt decu

copy 1, <slib> u0

copy 1, <slib> udo

copy 3, <8lib> stat disp

change <slib> u0 mask mask mask stat disp 0 1
change <slib> ud0 mask mask mask ud vec 0 1
change <slib> stat mask 1 1 udd vec 0 1

toc 1

toc <slib>

%*close 3 /delete

[xqt vprt

1lib = <slib>

format = 4

print stat disp O ' initial displacement vector
print ud vec 0 ' initial veclocity vector

print udd vec 0 ' initial acceleration vector

od(k, -1.0 u0)

. iterate for "nstep" time steps

[xqt aus

#%def/i pent = 1

’do $step = 0,<nstep>
inlib = 21 outlib = 21

?
define u = <slib> stat disp <$step>
define ud = <slib> ud vec <$step>
define udd = <slib> udd vec <$step>
define m = 1 <{mname)>

r1 = sum(<a0> u <a2> ud)
. r2 = sum(<a3> udd r1)
®def/1i stpt! = <<$step> + 1>
~ outlib = <slib>
applied force <stp1> = prod(m, r2)
[xqt ssol
reset k=khat, set=<stp1>, qlib=<slib>, reac=0

15

Figure 2. Concluded

[xqt aus
inlib = 21 : outlib = 21
define utdt = <slib> stat disp <stp1>
define ut <slib> stat disp <$step>
define udt <slib> ud vec <$step>
define uddt = <slib> udd vec <$step>

u! = sum(utdt -1.0 ut)
u2 = sum(<a0> utl <ma2> udt)
u3 =z sum(udt <a6> uddt)

outlib = <slib>
udd vec <stp1> = sum(u2, <ma3> uddt)
define utt = <slib> udd vec <stp1>
ud vec <stp1> = sum(u3 <a7> utt)
#show/macro pent
#if <pont> /eq [pfreql> /then

. print every pfreq'th solution

[xqt vprt

1ib = <slib>

format = 4

print stat disp <stp1> ' displacement vector
#%def/i pent = 1

[xqt aus

#else

#def/i pent = <<pent> + 1>
#endif

#enddo

*end

®call CANT_BEAM

#call VIBR_MODES (nmodes=4) -
#call TR_MODAL (nmodes=4)
#call TR_DIRECT

[xqt exit

16

Appendix A, NICE/SPAR Usagg

On the CSM VAX/VMS computer system, the NICE/SPAR executive is invoked
by typing NICESPAR in the interactive mode. The command used to invoke a
NICE/SPAR processor is "[XQT processor-name"; the command to exit a
processor and the NICE/SPAR executive is "[XQT EXIT". NICE directives
(prefixed by *) may be entered, intermixed with SPAR commands. Batch mode
processing is also available, with all commands and directives supplied from
a disk file.

Because NICE converts all input (except labels) to uppercase
characters, which SPAR requires, raw input data may be entered in either
upper or lower case.,

NICE directives are documented in reference 2, SPAR commands are
documented in reference 3. Differences between NICE/SPAR and the documented
version of SPAR are described below.

Modifications to SPAR Reference Manual For NICE/SPAR Usage

The section numbers below refer to the sections in reference 3 to which
the modifications apply.

2.2 The Data Complex
By default, the file names corresponding to NICE/SPAR libraries are
formed by appending the extension Lxx to a root file name ("NS"
currently) where xx is the library number (i.e., NS.LO1 for library 1).
The table of contents (TOC) is maintained by the NICE data manager in a
different format than the SPAR TOC, The NICE/SPAR TOC items displayed
by DCU are: sequence no,, date, time, lock code, no. of records, name
of creating processor, data set name. Other items in the SPAR TOC
which are required by the processors (data set length, record length,
no. of columns per block and data type) are obtained in NICE/SPAR via
GAL record level utilities,

2.3 Card Input Rules
The same input rules are followed except:

1) Real data input may contain "E®™ at the beginning of the exponent
field as in FORTRAN.

2) The comment character is # instead of $.

2.5 Data Set Structure
The SPAR data set structure is followed except:

1) NWORDS is always an integral multiple of NI¥#NJ.

17

2) In most cases, one SPAR block corresponds to a single NICE record,
However, in some data sets a SPAR block corresponds to a NICE
record group, where an individual NICE record corresponds to a
segment of the SPAR block.
2.5.1 Table
Tables can be of any SPAR data type; tables with ITYPE = + 1 may not
contain mixed data, but ITYPE = 0 tables may contain values of integer,
real or alphanumeric type.
4.2 K - The Stiffness Matrix Assembler
Under RESET controls, the default for SPDP is 2, so double precision
output is obtained because of the smaller word size on VAX,
5.1 AUS
5.1.3.1 TABLE
The command line is:

TABLE,U(NL = ni, NJ = nj, ITYPE = pn): N1 N2 n3 ni: data...

where the optional parameter ITYPE has been édded, being the
SPAR data type code of the data set,

The footnote should read:
® Loop-limit format is permitted for ITYPE = + 1 only,
- It is not permitted for ITYPE = 0 or 4.
5.2 DCU -~ The Data Complex Utility Program

The following commands are not implemented in the current version of
NICE/SPAR:

XCOPY, XLOAD, REWIND, TWRITE, TREAD, NTAPE, STORE, RETRIEVE

Section 8. EIG - Sparse Matrix Eigensolver
Instead of using the Cholesky-Householder method for solving the low=

order eigenproblem (4), the combination shift QZ algorithm described in
reference 8 is used.

18

Appendix B, NICE/SPAR User Interface Subroutine Descriptions

Subroutine DAL (NU, IOP, KA, KORE, IEA, KADR, IERR, NWDS, NE, LB, ITYPE,

NAME1, NAME2, NAME3, NAMEY)

Purpose: Read or write a nominal data set named NAME1.NAME2,NAME3,NAMEY in

library NU
Parameters:
NU library number (integer, input)
I0P operation code (integer, input)
= = 1, Rename current data set; set KADR to data set sequence
number
=0, Set up an entry in TOC for new data set; disable old
data sets of same name; set KADR to data set sequence
number
= 1, Same as O but also write one record of data from KA,
= 2, Same as 1 but does not disable old data sets,
= 10, Get TOC information without reading data; set IERR if
not found.
= 11, Same as 10 but also read one record (LB items) of data
~ into KA, '
KA initial address of array containing data to be read or
written; actual data type depends on ITYPE,
(input for write operation, output for read operation)
KORE number of words available for data set (integer, input)
- If LB>KORE and IOP>9, IERR set to 2. If KORE = 0, the check
for space is skipped. '
IEA error condition check code (integer, input)
= 1, Print message and return if error encountered.
= 2, Disregard error.
other, Print message and abort.
KADR Data set sequence number, = 0 if not found. (integer, output)
IERR error code on return (integer, output)
= 0, No error
= 1, data set not found
= = 2, Insufficient space for data set
NWDS number of words in data set (integer, input for write, output
for read)
NE number of columns per block (integer, input for write, output
for read)
LB record size (integer, input for write, output for read)
ITYPE SPAR data type code (integer,input for write,output for read)
= 0 integer data
=+ 1 real data
=+ 2 double precision data
=4 alphanumeric data
NAME1 1st component of data set name, Y4 bytes (alphanumeric, input)
NAME2 2nd component of data set name, 4 bytes (alphanumeric, input)
NAME3 3rd component of data set name (integer, input)
NAMEY 4th component of data set name (integer, input)

(any component of the data set name may be 4HMASK which is a
"wildcard" matching parameter) -

19

Functional description:

1.

2.

3.

Library NU is checked to be open; if not, it is opened as a GALS82
library on disk file NS.Lxx, where xx is the library number.

For writing, the name is entered in TOC via GMPUNT. KADR is set to
the data set sequence number of the new data set. If IOP = 1, one
record of LB words of the appropriate type are written via GMPUTN
or GMPUTC., If IOP = 2, old data sets are enabled.

For reading, the data set sequence number is located and the
matched data set name components are returned in common block
/TOCLIN/. The data set length, record length, rowsize, and data
type are returned in /TOCLIN/ and in the argument list., If IOP =
11, the available space (KORE) is checked and one record of data is
read via GMGETN or GMGETC,

For IOP = -1, the current data set is renamed. No other
parameters can be changed at this time in NICE/SPAR.

20

Subroutine FIN (NERR, NER)
Purpose: Terminate NICE/SPAR processor,
Parameters:

NERR error code (integer, input)
= 0 , no error
0 , 4-byte alphanumeric error code to be printed (AY4)
NER error no. to be printed if NERR = 0 (I10 format)
(integer, input)

Functional description:

1. Close libraries 1-20 and 27-30 conditionally; close libraries 21-26
unconditionally.

2. Print execution statistics (CPU, clock time, buffered I/0, direct
1/0).

3. Print error messages according to input parameters.

4, Chain to NICE/SPAR executive via CLPUT.

21

Subroutine INTRO (IDPROC)

Purpose: Log processor name with data manager and get unit assignment for
printed output file,

Parameter:
IDPROC - Processor name, in upper case (input, character®y)
Function description:

1. Call GMSIGN to enter processor name to be "signed" into data sets
created by the processor.

2, Call ICLUNT to get the unit number assigned to the print file and
assign this valve to the second integer variable in common block
/IANDO/. This variable is used by NICE/SPAR processors for normal
output,

22

Subroutine LTOC (NU, J, NAME1, NAME2, NAME3, NAME4)

Purpose: To get item from TOC

. Parameters:
NU library number (integer, input)
J TOC item number desired, 1-12 (integer, input)
NAME1 1st component of data set name, U4 bytes (alphanumeric, input)
NAME2 2nd component of data set name, U4 bytes (alphanumeric, input)
NAME3 3rd component of data set name (integer, input)
NAME}Y 4th component of data set name (integer, input)

Functional description:
1. Find data set in NICE TOC via LMFIND.
2, Get TOC information via GMGENT, GMGETN, and LMRECS.
3. Set function value to the value of the desired item,

The TOC items are:
1 Data set sequence no.
2-4 Unused
Number of words in data set.
Number of columns per block (for matrix type data)
Record size :
SPAR data type code
1st component of data set name
10 2nd component of data set name
11 3rd component of data set name
12 U4th component of data set name

O oo~3on,m

23

Subroutine READ (IA, IEOF)

Purpose: Get one unparsed user input record from NICE

Parameters:
IA input record contents, array of 80 words, one character of
input per word (integer, output)
IEOF end of input flag (integer, output)

0, successful input operation
1, no input obtained

Functional description:

1. Initialize IA to blank.

2. Call CLGET to get an input record using the 4 character prompt
string from common block /PID/. All macro expansions in the
record have been performed by CLGET prior to return.

3. Store individual characters from input record into IA, one
character per word, left justified.

24

Subroutine READER

Purpose: Get one line of user input and parse it according to the SPAR
command input syntax. Input data items are stored in common block
/INREC/. C

Functional description:

1. Call READ to get user input record via CLGET.

2. Parse the input according to the SPAR input syntax specified in
reference 3, with modifications described in Appendix A. Up to 40
items per record are allowed.

3. Return data items in common block /INREC/ described below.

4, If first item is "FIN ", call subroutine FIN to terminate the
processor,

5. If the first item is "RUN " or "[XQT", set NAME to "STOP",

" NICE/SPAR processors use this value of NAME as the end-of-input
flag.

Common block /INREC/ contents:

IDATA(40) Parsed input data items; actual data stored in
' IDATA may be of integer, real, or alphanumeric
type.
KIND(40) Integer SPAR data types of corresponding words in
IDATA,
NAME Alphanumeric command key; set to IDATA(1) if

KIND(1) = 4 (alphanumeric); set to "STOP" if
IDATA(1) = "RUN " or "[XQT"; otherwise = 0.

NA41 Integer index in IDATA where alphanumeric label
begins, if a label is included in this record.

NAj2 Integer index in IDATA where alphanumeric label
ends.

25

Subroutine RIO (NU, IWR, IOP, IDSN, KSHFT, KSHFT2, KA, L, ITYPE, NE)

Purpose: Read or write named records to NICE nominal data set.

Parameters:
NU Library number (integer, input)
IWR Operation code (integer, input)
= 1, Write records KSHFT:KSHFT2
= 2, Read records KSHFT:KSHFT2
= 10, Write records KSHFT:KSHFT2 and return next record
number in KSHFT,
= 20, Read records KSHFT:KSHFT2 and return next record
number in KSHFT,
I0P record location code (integer, input)
= 1 or 2, Read or write records KSHFT:KSHFT2
= 3, Append records to end of data set
IDSN data set sequence number (integer, input)
KSHFT initial record number to be accessed

(integer, input always, output if IWR>9)

KSHFT2 final record number to be accessed (integer, input)

KA initial address of array of data
(data type depends on ITYPE input for write operation, output
for read operation)

L number of data items to be read or written (integer, input)
ITYPE SPAR data type code (integer, input)
NE number of columns per block (integer, input for write,

dummy argument for read)
Functional description:

1) Get NICE data type code from ITYPE. Construct NICE record name.
2) For IOP = 1 or 2, if IWR=1 or 10, write records via GMPUTN or
GMPUTC; if IWR = 2 or 20, read record via GMGETN or GMGETC.
For IOP = 3, get number of records written on data set; construct
record name DATA.nrec+1: nrec+(KSHFT2-KSHFT), write records via
GMPUTN or GHPUTC

3) For IWR > 9, return next record number in KSHFT.

26

Subroutine TOCO (NU, NAME, IOP, NLINE)

Purpose: Find data set and return TOC information

Parameters:
NU Library no. (integer, input)
NAME 4 word array, data set name (alphanumeric and integer, input)
IOP operation code (integer, input)

= 1, find first matching data set
'# 1, Disable all matching data sets after entry NLINE

NLINE data set sequence number to start search at (integer, input,
output if IOP = 1)

Functional description:

1. Find all matching data sets via GMATCH; if no matches found, set
NLINE = - 1 and return.

2. For IOP = 1, set NLINE = seq. no., of first matching data set after
input NLINE. Get TOC information via GMGENT, GMGETN, LMRECS.,
Return TOC information in common block /TOCLIN/. -

3. For IOP # 1, disable matching data sets after NLINE. Set NLINE to
the number of disabled data sets. : ‘

27

