
NOV1985 "
RECEIVED,

NASASHFAQUEC
- ACCESS QEHL

THE fVlYSTRO SYSTEM:

/\ COMPREHENSIVE TRANSLATOR
TOOLKIT

by

W. Robert Collins Ss Robert E. Noonan

College of William and Nlary
Williamsburg, Virginia 23185

June 1985
(NASA-CR-176350) THE HYSTRO SYSTEM: A N86-16913
COMPREHENSIVE TRANSLATOR 100IKI1 Final
Report (College of William and Mary) 37 p
HC A03/MF A01 CSCL 09B Unclas

G3/60 04831 .
REPORT

NASA Langley Research Center

Grant NSG-1435

Mystro Final Report -

TABLE OF CONTENTS

Introduction 2

History A

Novel Features

Portability fi

Skeletons 9

Iterative Enhancement 10

Ambiguous Grammars 12

Code Generation 13

Syntactic Error Recovery 14

Current Status 17

Conclusions... 20

References 22

Appendices

A: Project Milestones 26

B: Publication List 26

C: Sample Syntactic Error Recovery .31

D: Sample Tree Transformer Grammar....34

' Mystro Final Report - 2

INTRODUCTION

Mystro is a system that facilities the construction of compilers,

assemblers, code generators, query interpreters, and similar

programs. It provides features to encourage the use of iterative

enhancement4. Mystro was developed in response to the needs of

NASA Langley Research Center (LaRC) and enjoys a number of

advantages over similar systems.

There are other programs available that can be used in

building translators^ 12 21 26. These typicalV build parser tables,

usually supply the source of a parser and parts of a lexical analyzer,

but provide little or no aid for code generation. In general, only the

front end of the compiler is addressed. Mystro, on the other hand,

emphasizes tools for both ends of a compiler.

Even in the construction of the front end of a compiler, our

experience with other systems has been that the tedious task of

table generation is always automated, but the equally tedious task of

managing the text of a translator is largely ignored. A minor change

to the grammar may require major changes throughout the

translator. In addition to replacing the parser tables, the semantic

actions may have to be reorganized, new constants controlling sizes

in array declarations may be necessary, a new lexical analyzer may

have to be developed, and so on. This is particularly frustrating

when using iterative enhancement to implement a language

incrementally.

Mystro Final Report - 3

Consequently, an important part of Mystro is the ease and

safety with which an evolving translator can be updated.

Professional programmers have been able to build translators rather

quickly by taking advantage of Mystro's convenience. Students in our

compiler construction classes at William and Mary have been able to

add new language features to their project compilers as their skills

and understanding increase. Using Mystro, they have been able to

create compilers, complete with code generation for real machines,

in one semester. Our experience has been that this was generally

impossible before, even using a parser generator, simply because of

the source text management problems.

Another distinguishing aspect of Mystro is its portability. The

system can be obtained In versions explicitly designated for several

machines, including PRIME'S. VAX's, and CDC Cybers. Mystro is

designed to be portable across a wide variety of machines without

sacrificing features.

In the sections which follow, we discuss the history of the

project, we summarize the novel aspects of Mystro, and finally, we

give a brief overview of the current system. More complete

documentation of Mystro is contained in the appropriate manuals.

" Mystro Final Report - A

HISTORY OF K/IYSTRO

The Mystro system began as an effort to develop an LR parser

generator^ 2 to facilitate the development of translators and

compilers for embedded computers. Since NASA LaRC used CDC

, Cyber machines and William and Mary had an IBM 370/158, the

resulting program had to be reasonably portable. A summary of the

project milestones is given in Appendix A; in the remainder of this

section we discuss only the highlights of this history.

The first version of the Mystro parser generator (PARGEN)

produced SLR(1) parse tables whose table sizes, however, had to be

manually edited into the parser program. It was quickly realized that

having PARGEN automatically merge constants and other text into the
/

translator under development would be a valuable addition and was

added to the next version. At this early stage text management was

recognized as an important part of Mystro.

In a separate code generation project (in the summer of 1978),

Noonan22 invented a language (erroneously) named CGGL based on

earlier work by Donegan13. By late 1978 most of the effort was

concentrated on developing the first CGGL translator using the

parser generator as a tool. This was to become a standard mode

of operation: using a newly developed tool in some other project

would lead to further improvements in the tool.

By the spring of 1979 the CGGL translator was sufficiently

complete to allow two test cases to be implemented: an Intel 8080

'" Mystro Final Report - 5

code generator for a small subset of HALMAT and a GE 703 code

generator for a larger subset of HALMAT. (HALMAT is the

intermediate code produced by the HAL/S front-end.)

Two conjectures were confirmed by the code generation

experiments. Both PARGEN and CGGL were viable, useful tools, which

necessitated the first set of user manuals, and the experience

gained with the CGGL translator confirmed the Importance of text

management in Mystro. The fact that Mystro parsers needed a

syntactic error recovery mechanism also became apparent.

A more powerful CGGL translator (Version 2) was proposed

and some enhancements for the HALMAT code generators were

implemented. The new code generators were table-driven;

previously, the code generators used automatically-produced,

voluminous Pascal code. This was a significant improvement for a

non-virtual memory machine like the CDC Cyber. These HALMAT

code generators became the basis for the CODEGEN skeleton.

Work was also begun on an Ada 79 compiler. To our

knowledge the Ada 79 parser produced at William and Mary was the

first full parser which did not change the syntax of the language.

In 1979, both PARGEN and CGGL were transported to NASA

LaRC and installed on the CDC computers by Computer Sciences

Corporation. From this point onward, the CDC (NASA) and IBM (W&M)

versions of Mystro began to diverge, with much cross fertilization of

ideas but little reuse of code. The divergence arose from the lack of

Mystro Final Report - 6
.7 '

a standard for Pascal and from differences in the CDC and IBM

computers and operating systems.

By the summer of I960, Version 4 of PARGEN had been

produced separately both at NASA LaRC and at William and Mary.

The implementation of CGGL 2 at William and Mary was nearly

complete, although improvements would continue to be added for

another two years. On the parser side, the first really good syntactic

error recovery scheme based on a one-token repair had been

developed and incorporated into the standard parser skeleton. This

error recovery scheme was retrofited Into the CGGL translator. A

panic mode error recovery scheme based on the notion of fiducial

symbols was also incorporated into the existing parsers.

However, the Ada effort was set back when both the syntax

and semantics of the language were revised at the Ada debut held

in September 1980. While the grammar for Ada was easily revised,

this necessitated many semantic changes in the ongoing compiler

effort.

In the summer of 1961 Mike Donegan left William and Mary for

Rice University. Most of the original code in PARGEN and CGGL was

written by Mike. With his leaving the Ada compiler effort effectively

died, although some work would continue for more than a year.

However, the incomplete Ada compiler served as the basis for later

compiler skeletons.

In 1982 we undertook the conversion of Mystro from the IBM

computer to William and Mary's new Prime supermini computers. As

Mystro Final Report - 7.

part of this conversion, it was decided to merge the best features of

the IBM and CDC versions of Mystro. Furthermore, a single master

copy of Mystro was kept at William and Mary and specific versions

extracted. This has proved to be an effective scheme.

Some of the portability considerations that were Incorporated

Included identifier length, support for underscores in identifiers,

interface to the file system, presence of a value statement, etc. A

site-specific Mystro system, Version 6, contained approximately 15K

source lines of Pascal, while the all-site system contained almost 22K

lines. Several utilities were constructed to aid in producing a specific

copy of Mystro.

In 1983, a tree transformer skeleton was generated; this tool

was motivated by a compiler done by Collins and Knight for a

Pascal-like language for the Intel 8748 chip0. As part of this effort,

PARGEN and associated parsers were enhanced to allow for

syntactically ambiguous grammars, whose parse could be

disambiguated using semantic information. This has proved to be

one of the most useful and powerful enhancements made.

In 1984, PARGEN was upgraded from NQLALR to full LALR, using

an algorithm that uses less space and runs considerably faster. In

addition, a new panic mode error recovery scheme was

incorporated into the compiler skeletons. The one-token error

recovery scheme was augmented with a spelling error corrector

and the ability to always back up one token.

Mystro Final Report - 8,

NOVEL FEATURES

Mystro includes a number of novel features that are not found

in other parser generator systems. These have evolved from the

research and development activities undertaken by NASA LaRC. Each

, of these features will be discussed in turn.s

Portability

Portability of the entire system has been a major consideration

from the beginning. Most other systems have ignored the portability

issue. For example, YACC21 will run only under the UNIX™ operating

system.

Mystro was developed on an IBM 370/156 and then ported to

CDC computers at NASA LaRC. These machines differ widely: they

have different character sets, different word sizes, one has virtual

memory and the other does not, and so on.

In order to miminize portability problems, Pascal was chosen

as the implementation language, despite the lack of a standard

Pascal. Despite the current Pascal standard, problems still persist.

Some compilers (e.g., Berkeley Pascal) are not compatible with the

ANSI Pascal Standards.

Other problems result from the fact that the new Pascal

Standard closely follows the original definition of Pascal promulgated

'UNIX is a trademark of A T & T Bell Laboratories.

Mystro Final Report - 9.

in 19752°. Many widespread language features are simply omitted

from the standard. For example:

• separate compilation,

• the value statement,

• the otherwise construct on a case statement,

• the use of underscores in identifiers.

Additional problems result from compiler-dependent Issues:

• the presence and syntax of include directives,

• the presence and syntax of compiler options,

• the number of significant characters in an identifier,

• the maximum size of a set,

• character set dependencies.

Problems are Introduced by the computer and/or operating system:

• the presence or absence of virtual memory,

• the interface to the file system,

• the interface (if any) to the command Fine.

Mystro has consciously addressed all these issues, although our

solutions may not please everyone. Further discussion of these

issues is contained in the Mystro Installation 6uide24.

Skeletons

- Mystro excels as a system in providing standard collections of

partial translators or parsers, known as skeletons. Although the

skeletons must be enhanced with application-dependent code, they

have many useful utility routines: for converting digit strings to

numbers, constructing symbol tables, producing a cross reference.

Mystro Final Report - 10.

etc. These skeletons are equipped with many useful debugging aids,

which have proved invaluable to those with a minimal knowledge of

LR parsing.

Since the skeletons are (usually) complete programs,

developers can execute PAR6EN on their grammars, then compile

's and execute resulting applications. Before adding -semantics,"

developers can present sample input, trace the parse tree as it is

built, and otherwise "test" their grammars.

Skeletons are provided for constructing compilers, assemblers,

code generators, query interpreters, tree transformers, and menu-

based programs. Although all are LR parsers, each skeleton differs

considerably from the others. For example, the compiler skeleton

contains routines for maintaining block-structured symbol tables and

for full syntactic error recovery; the others do not. The tree

transformer's scanner and parser repeatedly read and parse a tree

until no further changes are possible.

Complete details of the various skeletons are provided In the

Mystro Skeletons Reference Manual25.

Iterative Enhancement

Many parser generators, such as YACC and Mystro, provide a

mechanism for translating references to grammar sysmbols in the

semantic code to references to a semantics stack in the executing

parser. A few, such as LR28, provide no such help with semantics.

Mystro Final Report - H

Again, the support provided by Mystro is superior to other systems

with which we are familiar.

Consider YACC: It provides for references to a semantics stack,

as does Mystro. However, YACC uses a positional notation rather

than a named notation. For example, consider the following
s production:

<expr> ::- <expr> + <term>

In the associated semantic code, YACC would refer to the <term>

as "S3," while Mystro uses "<term> ." If at some later time, this

production should be modified so that <term> no longer appears in

the production, YACC would still have a valid but erroneous

reference, while Mystro would detect the error at translation time.

Mystro provides the translation facility not through the parser

generator (as does YACC), but through a separate utility called

DEREF. This allows a user to modify the parser directly, rather than

edit the grammar and then re-execute the parser generator. This is

convenient whenever the grammar itself is not changing. The inverse

utility RESTORE maps semantic stack references back to grammar

references.

Another major difference occurs otter the generated translator

has undergone many modifications. YACC provides no facility for

extracting a grammar and associated semantics from a translator

under development. Mystro provides the EXTRACT utility. For

example, one application of EXTRACT was in the transition from

CGGL 1 to CGGL 2.

" Mystro Final Report - f2

In practice we find that EXTRACT gets heavily used because of

our reliance on a development philosophy known as iterative

enhancement4. Using this methodolgy we rapidly develop a

prototype and put it in production. Based on experience gained with

the prototype, enhancements are designed and added, and the new

, version put into production. And the cycle repeats itself. Unlike

other uses of rapid prototyping, we almost never throw the

prototype away, although it may get heavily modified on each

iteration.

Ambiguous Grammars

Many parser generator systems allow some form of

syntactically ambiguous grammar. For example, most allow shift-

reduce conflicts to exist In a parser state, choosing to shift In all such

instances. This provides a simple but effective solution to the

"dangling else" problem In Pascal and other programming

languages.

Unlike most systems, Mystro permits syntactically ambiguous

grammars in which the ambiguity is resolved via semantic

constraints. This feature has proven to be enormously powerful and

useful. All of the skeletons support this form of ambiguity; a few,

such, as the tree transformer and Glanville17 1Q skeletons,

absolutely require it.

Our exploration of the power of semantically disambiguated

grammars has literally just begun. Indeed, Collins and Feyock10

Mystro Final Report - 13.

have noted the similarity of grammars to the use of logic in Prolog.

Using ambiguous grammars they have been able to produce a few

simple expert systems for aircraft fault diagnosis.

Code Generation

A significant portion of the effort in Mystro has gone into the

development of tools to support the code generation process. Much

of what has been developed is a result of the early efforts to

produce table-driven code generators for HALMAT and for Pascal/48.

One product of this research was the CGGL translator14.

Besides being used in both the HALMAT and Pascal/48 code

generators, it has been used extensively in the compiler construction

course at William and Mary. It is also being used in the Modulo 2

compiler under construction.

Another product to aid in code generation is the tree

transformer skeleton, which has a number of uses. For example. In

the Modulo compiler it is used not only to "shape" the intermediate

code tree Just prior to code generation, but also to do all constant

expression evaluation, to insert coercion operators where needed,

and to simplify relational expressions. Appendix D has a tree

transformer example.

Research continues on the development of a language (and

translator) for expressing all of the information needed in doing tree

transformation, code generation, and peephole optimization.

Mystro Final Report - 14,

Syntactic Error Recovery

The early Mystro parsers contained no mechanism to handle

syntax errors in the language being parsed. For example, the early

CGGL translators aborted upon discovering a syntax error.

The earliest error-handling mechanism incoporated into Mystro

parsers was analogous to the methods used in recursive descent

translators and in YACC. In the presence of an error the input was

scanned until a trustworthy symbol was recognized. This required

popping several symbols off the parser stack, replacing them with

some nonterminal; there was, however, no simple way to determine

the "semantics" associated with the nonterminal. Although this

scheme fixed the syntax error, the translator often aborted while

processing the semantics of the phantom nonterminal.

Consequently, we established these criteria for a reasonable

error recovery scheme.

1 The scheme must be automatically generated from

the grammar, in particular, the Mystro user cannot

be expected to be knowledgable of either LR

parsing or syntactic error recovery.

2 The recovery mechanism must never back up the

parser stack and Implicitly undo semantic actions.

However, input symbols may be freely deleted or

modified In any way.

: Mystro Final Report - 15.

3 The quality of the repair should be commensurate

with the error. In particular, one token errors

should always be recognized.

What has emerged Is a two level scheme. The first level

attempts one token repairs In the neighborhood of the detected

error. The second level attempts to repair the error by adding

and/or deleting multiple Input tokens.

In the first level, errors are corrected using a single token

repair scheme .̂ The attempted repairs are:

1 Check to see if the current symbol is a misppelled

reserved word.

2 Insert legal shift symbols before the current symbol.

3 Replace the current symbol with legal shift symbols.

4 Delete the current symbol

The first of these repairs which succeeds is accepted. A successful

repair is one that allows the parser to continue for a fixed number of

input tokens without detecting a subsequent error.

If none of these repairs succeed, then the parser backs up a

token, if possible, and the entire process is repeated. Currently, the

compiler skeleton parses out of phase with the semantics6, ensuring

that the parser can always back up at least one token. This is useful

since an error may not be detected until one or more symbols past

the point of the actual error.

If the second process fails to find a successful correction, then

the best near-correction is taken, provided that such a correction is

Mystro Final Report - 16

able to shift the symbol immediately past the original error point.

The best near-correction is taken to be the first one that is able to

shift the most symbols.

An example of level one recovery is given in Appendix C, using

a subset Ada™ grammar. An especially interesting repair occurs on

' line 13 when the parser successfully corrects the misspelling of the

reserved word BEGIN, which is not even detected until line 14.

The level two error recovery is based on the computation of

continuation symbols2? for each parser state. (Using separate error

productions15 is too expensive for an erroneous source program.)

These symbols give the shortest possible legal input which can

"complete" the current parse. Continuation input is matched against

the actual input looking for a symbol in common. If a common

symbol is found, then all input tokens up to this symbol are replaced

by the required continuation symbols. Otherwise the continuation

symbols are used as input, allowing the parser to complete normally.

The second example in Appendix C shows how level two or

panic mode error recovery is able to cope with repairs requiring

Insertion or deletion of more than a single token.

™Ada is a trademark of the U.S. Government (Ada Joint Project
Office).

'' Mystro Final Report - f7

CURRENT STATUS

The current Mystro system (Version 7.3) consists of major tools

and utility support programs, Pascal code fragments called

skeletons, sample grammars, and supporting documentation. In

addition, a number of aids have been created to support the

portability of the system.

PROGRAMS

Pargen

CGGL

Treegen

Mela

Extract

Deref

Restore

TOTAL

PORTABLE?

yes

no

no

no

yes

yes

yes

LINES

4,649

5.O5O

3,823

800

7O8

1,O34

1,O34

17,298

Table 1 - Tools and Utiliti

PARGEN, CGGL, EXTRACT, DEREF, and RESTORE have already

been described. TREEGEN generates abstract syntax trees directly

from a grammar. The META utility converts BNF extended with

iteration and alternation to standard BNF. These programs and their

sizes (in deliverable lines) are enumerated in Table I. The skeletons

are in reality parsers that have been customized for application

areas. For example, the two compiler skeletons include code for full

Mystro Final Report - 16

SKELETON

Compiler

Compiler Tree

Assembler

Tree Transformer

Query

Menu

Glanville

Code Generator

Glanville Triples

TOTAL

PORTABLE?

yes

yes

yes

yes

no

no

no

no

no

LINES

3368

3289

1875

871

888

1567

1034

326

1O13

14,231

Table 2 - Skeletons

syntactic error recovery. These skeletons are enumerated in Table 2

and documented in the Mystro Skeletons Reference Manual25.

Also included with Mystro are approximately twenty grammars

of various kinds, Including programming language grammars (Pascal

and Ada), assembler grammars, and query grammars. Manuals and

User Guides for the major Mystro components are summarized in

Table 3.

To make Mystro portable across a number of compilers, we

use portability tools available only at William and Mary. Some are

Pascal programs and are potentially useful in other environments.

Others are "scripts" of commands, which are used in many cases to

Mystro Final Report - 19

Manual

Pargen

CGGL

Skeletons

Installation

Meta Program

Tape Documentation

TOTAL

PAGES

26

33

26

6

6

2

99

Table 3 — Manuals

"glue" separate filters together into a single "command." These are

enumerated in Table 4.

SUPPORT AIDS

Version Extract

Longline

Fix Idents

Crossref

Port All

Port

Copy to Tape

TOTAL

TYPE

Pascal Program

Pascal Program

Pascal Program

Pascal Program

Command Proc

Command Proc

Command Proc

LINES

444

62

540

487

53

64

37

1,687

Table -4 - Portability Aids

Mystro Final Report - 20

CONCLUSIONS

Under a number of distinct measures, the Mystro system is a

success. With little publicity other than "word of mouth," Mystro has

been distributed to more than thirty distinct sites, including

universities, industry, and government. Indeed, NASA LaRC has

versions running on the Cyber computers under NOS, on the Primes,

on a VAX running VMS, on a VAX running UNIX, and on an Intellimac.

Many of our early sites had Cyber computers. More recently,

most of the sites requesting Mystro are VAX's running UNIX, despite

the availability of YACC. For example, the Blaze language project at

ICASE is using Mystro for both the parser for the language and for

code generation.

Mystro has been used on a large number of projects

sponsored by William and Mary, NASA LaRC, and NASA Lewis Research

Center (LeRC). A partial list of these (as reported to the Mystro

group) includes:

Project Site

Modulo 2 compiler W&M

Blaze compiler ICASE

Pascal/48 compiler̂ NASA LaRC

NSSC II assembled LaRC

SAGA Software Management System? LaRC

various microcomputer assemblers^ w&M

executive, Intel database machine10 LaRC

Mystro Final Report - 2-1

SCMS interface language26

generating Cyber and VPS JCL26

hardware design In the FEM project

H-Code machine simulator

distributed Ada precompiler11

PL/STAR

PL/99

real-time expert systems1O

LaRC

ICASE

LaRC

LaRC

NASALeRC

LaRC

LaRC

LaRC

? Mystro Final Report - 22

REFERENCES

1 Aho, Alfred V., and Johnson, Steven C. "LR parsing,"

Computing Surveys, 6 (June 1974), pages 99-124.

2 Aho, Alfred V., and Ullman, Jeffrey D. Principles of

'• Compiler Design. Addison-Wesley, 1977.

3 An American National Standard: IEEE Standard Pascal

Computer Programming L anguage. IEEE, 1983.

4 Basili, Victor R., and Turner, A. Joseph. "Iterative

enhancement: A practical technique for software development."

IEEE Transactions on Software Engineering, SE-1 (December

1975), 390-396.

5 Berger, W. F. "BOBSW 3.0 — a parser generator."

University of Texas at Austin Technical Report 67, (November

1978).

6 Burke, M., and Fischer, G. A. "A practical method for

syntactic error diagnosis and recovery." Proceedings of the

SIGPLAN 1982 Symposium on Compiler Construction, (June

1982), 67-78.

. 7 Campbell, Roy H., and Kirslis, Peter A. "The SAGA project: a

system for software development." SIGSOFT/SIGPLAN Symposium

on Practical Software Development Environments, (April 1984).

' Mystro Final Report - 23

8 Collins, W. Robert, Knight, John C., and Noonan, Robert E. "A

translator writing system for micro-computer high-level languages

and assemblers." NASA-AIAA Workshop on Aerospace

Applications of Microcomputers, (November I960), 179-186.

9 Collins, W. Robert, Noonan, Robert E., Gregory, Samuel T.,
s Knight, John C., and Hamm, Roy W. "Comprehensive tools for

assembler construction." Software — Practice and Experience,

13, (1983), 447-451.

10 Collins. W. Robert, and Feyock, Stefan. "Syntax

programming, expert systems, and real-time fault diagnosis."

Proceedings of the 1965 Eastern Simulation Conference,

Norfolk, Virginia (March. 1985).

1 1 Collins, W. Robert, Feyock, Stefan, King, Laurie A., and Morel!,

Larry. "Moving target, distributed, real-time simulation using Ada,"

Proceedings of the 1985 Eastern Simulation Conference,

Norfolk, Virginia (March 1985).

12 DeRemer, F.f and Pennello, T. J. The MetaWare ™ TWS

User's Manual. MetaWare, Santa Cruz. Ca.. 1981.

Donegan, Michael K. "An approach to the automatic

generation of code generators." Ph.D. Thesis, Rice University, 1973.

14 Donegan, Michael K., Noonan, Robert E., and Feyock, Stefan.

"A code generator generator language." Proceedings of the

1979 SIGPLAN Symposium on Compiler Construction, (August

1979), 58-64.

' Mystro Final Report - 24

Fischer, C. N., and Mauney, J. "On the role of error

productions in syntactic error correction. Computer Languages, 5

(1980), 131-139.

Fishwick, Paul A. "HILDA: The Flexible Design and

Implementation of a Database Machine Executive." MS thesis,

College of William and Mary, 1983.

17 Ganapathi, Mahadevan, and Fischer, Charles N.

"Description-driven code generation using attribute grammars."

Ninth Annual ACM Symposium on Principles of Programming

Languages, (January 1982), 106-119.

Glanville, R. Steven, and Graham, Susan L. "A new method

for compiler code generation." Fifth Annual ACM Symposium on

Principles of Programming Languages, (January 1978), 231-240.

Graham, S. L., Haley. C. B., and Joy, W. N. "Practical LR

error recovery." Proceedings of the 1979 SIGPLAN Symposium

on Compiler Construction, (August 1979). 166-175.

20 Jensen, Kathleen, and Wirth, Niklaus. Pascal User Manual

and Peport. Springer-Verlag, 1975.

21 Johnson, S. C. "YACC — Yet another compiler-compiler."

UNIX Programmer's Manual. Bell Laboratories, (January 1979).

22 Robert E. Noonan and Patricia Timpanaro. "The application

of software engineering techniques to the design of relatively

machine-independent code generators." NASA/AIAA Workshop on

5 Mystro Final Report - 25

Tools for Embedded Computing Systems Software, (Nov. 1978),

45-46.

23 Noonan, Robert E., and Collins, W. Robert. "The Mystro

System, Version 7.3: Parser Generator User's Guide." College of

William and Mary Technical Report 65-O1,1985.
\

24 Noonan, Robert E., and Collins, W. Robert. "The Mystro

System, Version 7.3: Installation Guide." College of William and

Mary Technical Report 85-O4,1985.

25 Noonan, Robert E., and Collins, W. Robert. "The Mystro

System, Version 7.3: Skeletons Reference Manual." College of

William and Mary Technical Report 85-O1,1965.

26 Noonan, Robert E., and Collins, W. Robert. "Construction of

a menu-based system," Software — Practice & Experience, (to

appear, 1985). Also /CASE Report No. 85-16, ICASE, NASA Langley

Research Center, Hampton, VA.

27 R6hrich, Johannes. "Methods for the automatic construction

of error correcting parsers." Act a Informatlca, 13 (I960), 115-139.

28 Wetherell, C., and Shannon, A. "LR — Automatic parser

generator and LR(1) parser." IEEE Transactions on Software

Engineering, SE-7 (May 1981), 274-278.

Mystro Final Report - 26

APPENDIX

PROJECT N/IILESTONES

Spring 1976 PARGEN, v. 1 — produced SLR(1> parse tables.

Summer 1978 Proposal for a Code Generator Generator
Language.

Fall 1976

Winter 1979

Spring 1979

Summer 1979

Fall 1979

PARGEN, v. 2 — included table optimization and text
merging phases.

CGGL, v. 1 — first production use of PARGEN.

HALMAT (HAL/S intermediate code) subset code
generator produced for Intel 6060 using CGGL.

HALMAT subset code generator for GE7O3.
Ada 79 parser produced — first one in nation which
did not change syntax of language.

PARGEN and CGGL ported to the Cybers at LaRC.
First PARGEN and CGGL manuals.

Winter 1980 First version of EXTRACT utility.

Summer 1960

Fall 1980

PARGEN. v. 4. produced — Improved scheme for
text management.
Improved EXTRACT in use at W&M and LaRC.
First versions of the DEREF and RESTORE utilities.
CGGL, v. 2 — produces table-driven code
generator.

One token syntactic error recovery incorporated
Into compiler skeleton and into CGGL translator.
Four distinct skeletons in use.
First program to help maintain Pascal code.
System now approximately 15K lines of Pascal plus
documentation.

Mystro Final Report - 27

Spring 1981

Summer 1981

Fall 1981

Spring 1982

PARGEN, v. 5 — uses BNF grammars rather than
van Wijngaarden notation grammars.

Mike Doneganx, who wrote much of the original
code in PARGEN and CGGL, leaves W&M and Mystro
project.

Bob Collins leaves CSC Mystro group, joins W&M
Mystro project.
System now consists of 3 manuals, PARGEN 5,
CGGL 2,5 utility programs, and 6 skeletons.

First Prime version of Mystro.
Complete rewrite of PARGEN (v. 6).

Summer 1982 First portable version of Mystro. Compilers
supported include IBM, CDC, Prime, and ANSI
standard. Total system now 22K lines.
First utilities to help with portability.

Summer 1983 Support for semantic disambiguation of parsing
added to PARGEN and all skeletons.
Tree transformer skeleton produced.

Summer 1984

Spring 1985

LALR computation in PARGEN rewritten.
Glanville code generator skeleton produced.
New panic mode syntactic error recovery added
to compiler skeletons; also one token repair
enhanced to Include spelling error correction and
the ability to always back up one token.

Menu skeleton produced.
Subset Modulo compiler produced.
System now approximately 30K lines of Pascal,
excluding Modulo compiler

y Mystro Final Report - 26

APPENDIX B

PUBLICATIONS

Robert E. Noonan and W. Robert Collins. "The parser generator as

an applications generator." Submitted for publication (1985). Also

NASA Contractor Report (1985).

Robert E. Noonan and W. Robert Collins. "Construction of a menu-

based system." Submitted for publication (1985). Also NASA

Contractor Report 172560(1985).

Robert E. Noonan. "An algorithm for generating abstract syntax

trees." Computer Languages, (to appear, 1985). Also NASA

Contractor Report 172541 (1985).

Robert E. Noonan and W. Robert Collins. "The Mystro System, Version

7.3: Installation Guide." College of William and Mary Technical

Report 85-O4,1985.

Robert E. Noonan and W. Robert Collins. "The Mystro System, Version

7.3: Parser Generator User's Guide." College of William and Mary

Technical Report 85-OJ, 1984.

Robert E. Noonan and W. Robert Collins. "The Mystro System, Version

7.3: Skeletons Reference Manual." College of William and Mary

Technical Peport 85-O3,1985.

'' Mystro Final Report - 29

Robert Noonan. "The Mystro System, Version 7.3: CGGL User's Guide

2.11." Co/lege of William and Mary Technical Report 65-O2,

1985.

W. Robert Collins, Robert E. Noonan, Samuel T. Gregory, John C.

Knight, and Roy W. Hamm, "Comprehensive tools for assembler
1 construction," Software - Practice and Experience, Volume 13,

Number 5 (May 1983), 447-451.

Robert E. Noonan. Experiences with a code generation tool.

Proceedings of IEEE COMPCON, (Fall 1981), 98-105.

W. Robert Collins, Samuel T. Gregory, and Roy W. Hamm, "Supporting

the execution of HAL/S programs at NASA LaRC," technical report to

NASA Langley Research Center, 1981.

W. Robert Collins, John C. Knight, and Robert E. Noonan, "A translator

writing system for micro-computer high-level languages and

dssemblers," NASA-AIAA Workshop on Aerospace Applications

of Microprocessors, Bethesda, Maryland, (November 198O), 179-

186.

W. Robert Collins. Samuel T. Gregory, and Roy W. Hamm, "An

evaluation of two assembler construction tools," report to NASA

Langley Research Center, 1980.

Michael K. Donegan, Robert E. Noonan, and Stefan Feyock. "A code

generator generator language." SIGPLAN Symposium on

Compiler Construction, (Aug. 1979), 58-64.

' Mystro Final Report - 30

Robert E. Noonan and Patricia Timpanaro. "The application of

software engineering techniques to the design of relatively machine-

independent code generators." NASA/AIAA Workshop on Tools

for Embedded Computing Systems Software. (Nov. 1978), 45-

46.

Robert E. Noonan. "The design of relatively machine-Independent

code generators." NASA Contractor Report 159O16, Contract

NAS1-14972, Task 14, (Feb. 1979).

'" Mystro Final Report - 31

/APPENDIX C

SAMPLE SYNTACTIC ERROR
RECOVERY

The example below shows the power of the level one error

recovery, which effects one token repairs. In particular, the

misspelled beginon line 13 is not even detected until line 14.

Line* Source Line

1
2

*** Error
3

**x

*** Error
5

*** Error
6

*** Error
7

*** Error
8

*** Error
9
10

*** Error
11

***- Error
12
13

*** Error
H
15

*** Error

procedure leuel_one is
a, d : integer; ;

A Unexpected symbol deleted,
b : inetger := 6;

A tlisspelled 'INTEGER- corrected,
c constant integer := 1j

* Hissing ":" inserted before symbol,
g : booolean;

A Hisspelled "BOOLERN" corrected.
: integer;
* Hissing "<ID>" inserted before symbol,

f » integer :• 9;
" Unexpected symbol replaced by ":".

z : contsant integer := 4;
A Hisspeiled 'COHSTRHT' corrected.

proc new is
* Unexpected symbol replaced by 'PROCEDURE".
I : : Integer :° 9;

* Unexpected symbol deleted.

beggin
A flisspelled 'BEGIN" corrected,

f := i + i;
looop

* fllsspelled "LOOP" corrected.

Mystro Final Report - 32

16
17

18

*** Error
19
20
21
22
23

24
25
26

*** Error
27
28

*** Error
29

exit then f » 5;
f = f + 1;

A Unexpected syibol replaced by ":=".
en loop;
~ Ilisspelled "END" corrected.

end ne»;

begin — I eve I .one
a :- 2;
iff b > a then

A Hisspelled "IF" corrected.
a :* b;

esle
a :s a 1;
A Unexpected syibol deleted.

end if;
a • c;

A Unexpected symbol replaced by ":=".
end level_one;

16 errors found.

The second example is of level two (or panic mode) error

recovery.

Line9 Source Line

1
2

- 3
4
5
6
7
8
9
10
11

*** Error
12
13

procedure panic_iode is
a, b, d : integer;

procedure nei id
begin

d := a + 1;
loop

d :• d + 1;
If d = 5 then

a := 1;
end;

A Hideing "if" inserted before symbol.

procedure next is

Mystro Final Report - 33

*** Error
*** Error
*** Error
*** Error
»** Error

11
15
16
17
18
19
20
21

*** Erroi
*** Erroi
*** Erroi
*** £rro,
*** jrrroi

«
»
»
t
>

begin
a : =

end;

begin —
a :° 2;
if b >

a :*
t
t
*
»
*

A Hissing "e
A Hissing "1
A Hissing ";
A Hissing "e
A Hissing ";

— next
0;

panic_«ode

a then
bj

A Hissing
A Hissing
A Hissing
A Hissing
A Hissing

inserted before syibol.
end" inserted before syabol.

inserted before syibol.

'if inserted before syibol,
';" inserted before syibol.
'end" inserted before symbol.
';" inserted before symbol.

14 errors found.

Mystro Final Report - 34

APPENDIX D

TREE TRANSFORMER

Consider the assignment statement

A := O - (-A)

where the first "-" is subtraction and the second complementation.

Assume that the computer is without a subtraction operator (e.g.,

the Intel 8746). Assume also that the computer can increment the

values in store. This statement can be optimized to

increment A

The grammar located after the intermediate code trees below

is able to effect this optimization as well as others. Each reparsing

of an intermediate code tree is given as an arrow between trees.

The shaded parts of the trees are about to be transformed.

/\
/\ ~ A

'/\ *

7 Mystro Final Report - 35

Rules 3, 4, and 6 effect the first three transformations (arrows).

•

/\
ijxviv" Inci-

mmm#&$&

Rules 5 and 2 effect the last two transformations.

Tree Transformer Grammar

? ambiguous
? scan-

This is a sample granar for the tree transformer.
Grammar references in the Pascal code, such as <expr> or 'lit '
are pointers to actual Intermediate Code tree nodes,
A slash V in coluin one indicates that the rule t i l l be
applied exactly «hen the boolean uariable return is true.

<statement> "- <assî n> <end_of__$tatement>
tran3late_tree(<a33ign>);

<assign> "- assign var $um_of var lit
*

/ return := equal-.tree("uar-1", "uar-2") and ("lit"*.wal • 1);
s

begin
•akeJ)ranch (incr, "var-1", nil, <assign>);
reparse :• true

end;
<expr> ."- subtract <expr> <e\pr>

begin

Mystro Final Report - 36

iake_branch (coipl, <expr-2>, nil, teip_root_1);
•ake_branch (su*_of, temp_root_1, I it-one, te»p_rootJ2);
•ake_branch (suM_of, <expr-1>, teip_root_2, <expr>);
reparse := true

end;
<expr> »- compl compl <expr>

begin
<expr>* :« <expr-1>Aj
reparse := true

end;
<expr> o- sum_of <expr> lit

*
/ return :- ClifA.ual » 0);

begin
<expr>* :=
reparse := true

end;
<expr>

begin
exchange ("
reparse :« true

end;
<assign>
<assign>
<expr>
<expr>
<expr>
<expr>
<assign>

- suia_of lit <expr>

, 'suiuof"A.3ubtree[23

::- assign var <expr>
::- incr var
::- lit
::- var
::- sum_off <expr> <expr>
"- compl <expr>
"- assign var sum_of var lit

