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ABSTRACT

PIFEX is a pipelined-image processor being built in the JPL Robotics

Lab. It will operate on digitized raster-scanned images (at 60 frames per

second for images up to about 300 by 400 and at lesser rates for larger

images), performing a variety of operations simultaneously under program

control. It thus is a powerful, flexible tool for image processing and

low-level computer vision. It also has applications in other two-dimensional

problems such as route planning for obstacle avoidance and the numerical

solution of two-dimensional partial differential equations (although its low

numerical precision limits its use in the latter field). The concept and

design of PIFEX are described herein, and some examples of its use are given.
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1. THE PROBLEM

Computer vision requires an enormous amount of computing. This seems

to be especially true for the low-level portions of the task, in which the

data are still in the form of an image. Often thousands of fundamental

operations must be performed for each pixel (picture element), and typically

there are around a hundred thousand pixels per image. Real-time processing at

a rate of 30 or 60 images per second therefore may require a processing speed

of around 1010 operations per second. Conventional computer architectures (of

the Von Neumann type) are not currently capable of approaching these speeds.

The fastest Von Neumann computers are two or more orders of magnitude too slow

for typical problems in real-time computer vision.

The solution to this large speed deficit is generally thought to be

some form of parallel processing, so that a large number of computational

elements operating simultaneously can achieve the necessary rates. (For

reviews of parallel processors see [1] and [2].) There are several ways in

which the necessary parallelism can be achieved.

One way is to use a multiple-instruction-stream multiple-data-stream

(MIMD) system, which consists of many Von Neumann machines operating on

different parts of the same problem and communicating their results to each

other. Such a multiprocessor system may be appropriate for the high-level

portion of powerful future vision programs. However, for the low-level

portions of the vision task, such a system is not cost-effective. This is

because low-level vision tasks contain computations that are performed almost

identically over the entire image, and it is wasteful to use the full power of

general-purpose processors to do these repetitive tasks.

Another type of parallel computer is the single-instruction-stream

multiple-data-stream (SIMD) system. In such a system arithmetic units for

each portion of the picture (perhaps each pixel) perform the same operations

simultaneously under the control of a master processor. If there is an

arithmetic unit for each pixel, such a system is fairly convenient to use and

is very fast. However, the cost is high. For example, the Massively Parallel

Processor [3] (which was built for NASA by Goodyear Aerospace and is possibly
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the most powerful computer of this type so far) contains 16,384 arithmetic

units, which occupy 2048 chips, and costs several million dollars. It is

arranged as a 128-by-128 array, and for example can add the elements of one

12-bit array to those of another 12-bit array in 3.7 microseconds, which

corresponds to 4.4X109 operations per second.

Another approach is a pipelined-image processor, which processes the

pixels sequentially as they are scanned (usually, but not necessarily, at the

normal video rate). The parallelism can then be built into the device so that

it performs more than one arithmetic operation for each pixel. (Some of these

operations can be done simultaneously on corresponding pixels in parallel data

paths, and some can be done in a pipelined fashion in which one operation is

being done on one pixel while the next operation is being done on the previous

pixel, which already has had the first operation performed on it.) Also, no

time is spent decoding instructions while this processing is going on, because

the same operations are performed over and over, at least for one frame time,

and no access time for the data is needed. This type of system can be far

less expensive than an SIMD system, because it requires a number of processing

elements depending on the number of steps in the algorithm instead of

depending on the size of the image, and the former is usually a few orders of

magnitude less than the latter. It usually is not as fast as an SIMD system,

but it can process an entire image in one frame time (normally 1/30 second or

1/60 second), and thus it is suitable for most real-time applications. (If

the number of steps in the algorithm exceeds the number of processing

elements, separate passes can be made to complete the algorithm. This requires

extra frame times and perhaps additional time for reprogramming the device.)

Pipelined-image processors have been built in the past. (Some of them

are mentioned in Section 2.) However, they are very restricted in the kind of

computations that they can do. They do not include the full range of desired

computations, and what they do include often is not fully programmable.

Furthermore, their computational power falls short of what is needed for many

tasks. What is desired is a programmable system that will perform elaborate

computations whose exact nature is not fixed in the hardware and that can

handle multiple images.
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The main problems in designing such a system are choosing a set of

fundamental operations that are sufficiently general and that can be

implemented in the desired quantity at a reasonable cost, and finding a

practical way of interconnecting these operators that allows sufficiently

general programmability. These problems are discussed further in Section 3.

PIFEX will be a programmable pipelined-image processor meeting the

above criteria. A moderate-sized PIFEX costing less than a hundred thousand

dollars will be able to perform about 1010 12-bit operations per second.

However, no algorithm can utilize this computational power with 100%

efficiency, because of a lack of a perfect match between the nature of the

algorithm and the architecture of PIFEX. In fact, very simple algorithms

would have a very low efficiency if running alone on PIFEX, because a

computation requires one complete frame time no matter how small it is.

However, several small algorithms can run simultaneously. (Some sample

algorithms are given in Section 9.)
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2. HISTORY

Two concepts which are important in PIFEX are cellular computers and

pipelined-image processors.

A cellular computer is based on the concept of a cellular automaton. A

cellular automaton consists of an array of cells, a finite set of permissible

states for a cell, and a transition function, which is a set of rules for

determining the new state of each cell as a function of the old states of

itself and its neighbors. The cellular automaton then operates in discrete

time steps, changing the states of the cells at each step. A cellular computer

is similar to a cellular automaton, except that the transition function can be

different on different steps, according to a program. Other differences may

exist in particular cellular computers. (The array is usually

two-dimensional.) For more information see [4] and [5],

An early cellular computer was the Golay Processor [6] at the

Perkin-Elmer Corporation. It used a hexagonal array, with neighbors

consisting of the six nearest neighbors to each cell. Basically, the states

of the cells were binary, and thus the transition function was Boolean.

However, it contained more than one array, and these could interact with each

other. This could produce the effect of having more than two states per

cell. It also used the concept of subfields, which will be described in

Section 8. Such early devices (and many since) were implemented as SIMD

machines. Gennery and Jordan [7] at RCA described a device similar to the

Golay processor but based on a rectangular array, with eight neighbors for

each cell. They devised a convenient language for programming it, but the

device itself was only simulated on a conventional computer and was not

implemented in hardware.

A common image processing operation is convolution. A convolver forms

a linear combination of the pixel values over a neighborhood according to

given weights (constant over the image) and uses the result for the new center

pixel value. Since in practice the pixels have only a finite number of bits

and thus a finite number of states, this can be considered to be a cellular

computation. Such computations are often performed in conventional computers,
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they can be programmed from more elementary instructions in a cellular

computer, or a cellular computer may contain hardware convolvers as single

stages (as in some of the examples below).

The idea of a pipelined-image processor (described in Section 1)

apparently occurred independently to many people. One of the present authors

(Gennery) thought of such a device in the mid 1970's when he was at Stanford

University. This device would have a set of programmable functions that it

could apply to the neighbors (in a fairly large neighborhood) of each pixel on

each pass through the device in order to compute the pixel values resulting

from the pass. However, no details were worked out. Meanwhile, the

Cytocomputer [8] was being developed at the Environmental Research Institute

of Michigan. Each stage of the Cytocomputer performs one iteration of a

cellular computation on a rectangular array, with eight neighbors per cell.

Eight-bit pixels are used. The new value of each cell is determined by a

nonlinear process under program control. Successive stages perform successive

iterations in one pass. Also, IMFEX [9] was being developed at JPL. IMFEX

implements a simple edge detector similar to the Sobel operator. It consists

of two 3-by-3 convolvers in parallel to determine the two components of the

gradient, circuitry to determine the sum of the absolute values of the two

components and (with a 3-by-3 operator) to locate the ridge (one-dimensional

maxima) of its values, and a programmable 3-by-3 Boolean operator using the

resulting thresholded values. Only the Boolean operator is programmable, by

means of a look-up table. More recently several other devices of this type

have been developed, for example the PIPE chip [10] at Texas Instruments. It

is a 3-by-3 convolver in one integrated circuit. The convolver weights are

stored in EPROM instead of RAM, and thus are not conveniently programmable,

and the circuit operates at about one megahertz.

Since the above pipelined-image processors all operate on some

neighborhood, they all require buffers as part of their circuitry, in order to

store the data that is needed to cover the neighborhood at any instant as the

pixels flow by. Since they all operate on two-dimensional arrays, they

require line buffers. With 3-by-3 neighborhoods, two line buffers are needed

per stage, plus storage for a few extra pixels on the current line, and a

delay of one line plus a few pixels is introduced per stage. (In this regard.
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IMFEX is considered to have three stages.)

In 1980, Gennery came to JPL and subsequently became familiar with

IMFEX. In 1982, discussions with others at JPL concerning the capabilities of

VLSI (very large scale integration) circuits led him to the concept of

combining convolvers, various hardware arithmetic functions, and nonlinear

neighborhood operators in a flexible switching arrangement, as described in

Section 3. In May of 1983 the other author (Wilcox) thought of the concepts

of the modular card and the use of interpolated table lookup for the

arithmetic functions, also described in Section 3, in order to reduce the

switching requirements. Meanwhile, starting in August of 1982 as a project in

a VLSI design course, Wilcox designed a preliminary version of a VLSI 3-by-3

convolver chip with fully programmable weights. In September of 1983, NASA

decided to fund the development of a device based on the modular concept and

the table-lookup functions. In October of 1983 Gennery decided on preliminary

specifications for a general nonlinear neighborhood operator, which

essentially is a generalization of the concepts in his 1973 RCA paper and is

similar to the Cytocomputer stage. The original concept for the topological

connections of the modules was as a plane or a cylinder with a horizontal

axis, where the main data flow is considered to be from left to right.

However, in February of 1984, Gennery thought of making it a torus or a

cylinder with a vertical axis, so that widely differing algorithms could be

efficiently mapped onto the device. Discussions between Gennery and Wilcox

continuing through March of 1984 refined all of these concepts to produce the

versions described briefly at the end of Section 3 and in detail in Sections

4, 5, 6, 7, and 8.

The acronym PIFEX was suggested in September of 1982 by Bob Cunningham

and stands for "Programmable Image Feature Extractor," but this is perhaps an

unfortunate choice, since feature extraction is only one of PIFEX's

capabilities. The name was chosen partly for historical reasons, to show

continuity with IMFEX.

Wilcox finished an improved design of his VLSI convolver and the

design of the modular card in May of 1984. A wire-wrapped prototype card is

expected to be finished in December of 1984, and a demonstration of the
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prototype card is expected in January of 1985. The layout of a

printed-circuit version of the card is expected in April of 1985, and the

production of a PIFEX with about 80 modules is planned for around September of

1985.
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3. GENERAL PIFEX CONCEPT

PIFEX will receive one or more images as they are scanned from

external image buffers or through A/D converters from TV cameras, perform

pipelined operations on them as specified by a control program, and feed the

results back into image buffers. In principle, the operations include

convolving with various specified functions; arithmetic functions such as

addition, subtraction, multiplication, division, square root, maxima, and

minima; unary table lookups to map pixel values to new values; and nonlinear

neighborhood operations to do such things as thinning, growing, and finding

local maxima, minima, ridges, valleys, and zero-crossings. The delays caused

by the processing are taken into account by the circuitry that reloads the

buffers. If sufficient processing cannot be done in one- pass, the results

stored in a buffer from a previous pass can be used again, but it is expected

that most desired computations can be done in one pass (one frame time plus

delays).

Although it would be desirable for some applications to have the

ability to convolve the images with fairly large functions, it is impractical

at present to fit such a convolver on one chip. Therefore, PIFEX will have

only 3-by-3 convolvers (all identical, but with individually programmable

weights). However, using several of these in various series and parallel

combinations can produce the effect of using larger convolvers. This is

practical because of the fact that the desired functions usually are one of

two types: small functions (3-by-3) used for such purposes as

differentiation, and large functions used for smoothing. The best smoothing

function normally is some approximation to the Gaussian function, and the

Gaussian function has the advantages that it can be factored into

one-dimensional functions and that it can be approximated by convolving

several small functions in series. Either fact (especially the latter) allows

a good approximation to the two-dimensional Gaussian function of moderate size

to be produced by using 3-by-3 convolvers. Any one-dimensional function can

be produced easily from these small convolvers. (Although any two-dimensional

function can be produced in principle, it is impractical for large functions

that do not have special properties such as the Gaussian function.) Although

the precision of digitized images usually is only 8 bits, more precision can
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be created by smoothing. For this reason and because of the increase in

dynamic range produced by some computations, 12 bits are used in the input and

output of the convolvers in PIFEX. (The PIFEX convolver will be described in

detail in Section 6.)

One approach to the arithmetic functions is to have separate hardware

adders, multipliers, etc. Another approach is to use a table lookup which can

be programmed for any particular function desired. Each of these approaches

has its advantages. The advantages of the separate hardware functions are

that they require less circuitry and that they can be reprogrammed quickly by

changing the switches that connect them. Several of the functions could fit

on one VLSI chip, whereas one table lookup requires many chips (far too many

if high precision is needed). The advantages of the table lookup are its

uniformity, its greater ease of design (it uses standard memory chips, which

are becoming quite cheap), and the fact that any possible function can be

programmed into it, whereas with the other approach any function not included

in the design (such as trigonometric functions, for example) would have to be

approximated by using a considerable number of simpler functions. (Another

advantage is that the unary table lookup is not needed, since its purpose is

subsumed by the binary table lookup.) The precision needed in the final

results of these functions for typical images is about 8 bits. Because of the

greater dynamic range produced by such operations as multiplying, intermediate

results need greater precision, preferably 16 bits (since only fixed-point

computations are practical). However, the table-lookup approach allows a

compression of the dynamic range with such operations (perhaps by using the

square root or logarithm), so that 12 bits are adequate. A direct binary

12-bit table lookup is impractical, but doing a binary 8-bit lookup with

linear interpolation for the low-order 4 bits is reasonable, as described in

Section 7.

The nonlinear neighborhood operations are performed by a neighborhood

comparison operator which compares the nine pixels in the neighborhood to a

fixed threshold or (for the surrounding eight pixels) to the center pixel to

produce nine bits of information. Two more bits indicate the subfields. A

function of these eleven bits is then used to determine whether the 12-bit

output of the operator is the center pixel, the bitwise logical OR of the

-9-



surrounding eight pixels, or a function of these eleven bits of information.

This process is described in detail in Section 8. By suitably programming the

operator, a variety of operations (some of which were mentioned above) can be

performed.

The various operators need to be connected through some switching

arrangement, so that individual connections can be made to suit individual

programmed algorithms. A general arrangement is shown in Figure 1. Delay

circuits (which include line buffers) are included so that the delays in

different channels to be combined can be equalized (for example, a channel

that has gone through a convolver, which has its own line buffers, and one

which has not).

It would be desirable if the switches in Figure 1 formed a crossbar

switch, so that the operations could be combined in any order and in any

combination under program control. However, this would be very difficult for

the size of system contemplated. The number of channels in and out of the

crossbar switch would be on the order of 200, and they would have perhaps 12

bits each. Therefore, the number of gates would be 200*X12 = 480,000. Using

standard gate chips with four gates each would require 120,000 chips. VLSI

technology will soon be able to squeeze 480,000 gates onto a single chip, but

since it would need 2X200X12 = 4800 pins, it would be completely

impractical. (The use of a Batcher sorting network [11] instead of a crossbar

switch probably is not worthwhile with this relatively small number of

channels.) Eventually, it may be possible to put all of PIFEX on one chip (if

the separate hardware functions are used), but in the meantime some severe

limitations to the switching arrangement are needed (which will cause some

sacrifice in the efficiency of utilization of the operators).

One possibility is to group all of the convolvers first, then all of

the arithmetic functions, then all of the unary table lookups, if used, and

then all of the neighborhood comparison operators. The signals would travel

through each of these groups in order, and could recirculate around to pass

through the groups again (in the same frame time) to use different members of

each group on each pass, so that the three types of operators could be mixed

in any order. (Since the order of the groups was chosen to be that in which
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Figure 1. Generalized PIFEX switching concept (many items of each type would
be connected to the switching network)
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they are usually needed, the recirculation would be minimized.) Within each

group, there would be a limited switching circuit. If the separate hardware

arithmetic functions are used, the switching problem for this group would be

the most severe, because of the fact that there would be several different

kinds of circuits.

One way of arranging the separate hardware arithmetic functions in the

above method would be to have several identical VLSI chips, each with a few of

each operator and a few input and output lines. Each chip might contain the

following: six multipliers, five adder-subtracters, one divider, one square

root extractor, and possibly one rectangular-to-polar converter (perhaps

instead of the square root extractor), and five delay lines for equalization

of delays. Some shift operators might also be needed, but these could be

combined with the multipliers, so that the specified portion of the

double-length product could be used in each case, under program control. The

limiting factor seems to be the number of pins on the chip. The chip will not

be very useful unless there are at least five input channels and one output

channel. But then the number of bits must be limited to 10 for input and

output of the chip if the number of pins is 64. Another approach is to

multiplex the input and output, by feeding the bits at twice the normal rate.

Then there could be 6 input channels and 3 output channels, if 12 bits are

used. Alternately, a larger package with more pins could be used. The chip

could contain a crossbar switch that can connect the inputs, outputs, and

operators in all possible combinations. For the numbers used above this means

about a 25-by-35 switch, perhaps 16 bits wide. (However, it may be desirable

to use less than a full crossbar switch, in which case the loss in efficiency

caused by the lack of generality in switching may more than be made up for by

the greater number of functions that this would leave room for on the chip.)

These chips (perhaps about ten of them) would be richly interconnected in a

pattern allowing for flexibility in programming.

Although some approach such as the above may be pursued further in the

future, for the near term it was decided to use the table-lookup method for

the arithmetic functions, which will be referred to hereafter as binary

functions, since they each have two inputs. (Unary functions such as the

square root can of course be implemented by simply ignoring one input.) The
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switching method chosen for the near term uses a standard module containing

two convolvers, one binary function, one neighborhood comparison operator, and

switches for module input and ouput selection. (The module thus is similar to

IMFEX, but more general.) The exact arrangement of the module is described in

Section 4. (At first, each module will consist of one circuit card, but more

compact circuits may be devised later.) The modules are connected in a

regular pattern described in detail in Section 5, in which each of the two

ouputs from each module branches to the inputs of several different modules.

Even though the chosen approach results in a physically larger device

(and perhaps greater cost if produced in quantity) than the previous approach

mentioned above, it has the advantages of quicker and less expensive

development (because of the need for fewer types of complicated custom VLSI

chips), ease of computing arbitrary functions (because of the generality of

the table-lookup functions), and easy growth to a more powerful system

(because of the modular concept with the regular interconnection pattern).
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4. PIFEX MODULE

The economic advantages of having many identical units connected in a

regular way outweighs (in the near term, at least) the inefficient use of

extra hardware in each unit. Thus it is desirable to have general,

programmable elements of each basic type (convolvers, binary functions, and

neighborhood comparison operators) in each module. Since the binary function

needs two data paths, the smallest possible such module would have two inputs

feeding a binary function, which in turn feeds a convolver and then a

neighborhood operator. However, examination of simple algorithms (e.g., edge

detection) suggests that two convolvers (one for each input) ahead of the

binary function is much more useful than having a convolver after the

function. This is especially true since the convolvers are relatively

inexpensive compared to the amount of memory needed for the large look-up

table used in the current approach to the binary functions, so that adding a

convolver does not greatly increase the cost of the modular unit. The two

inputs to the module will be denoted A and B.

The interconnection of the modular units requires some flexibility in

the routing from one stage of the pipeline to the next. If one visualizes

columns of modular units, all synchronized, as being a stage of the pipeline,

then a flexible interconnection scheme to the next column requires that the

output of a module in some row be routable to some other row in the next

column. A connection to all possible rows need not be provided, only enough

to allow a rich interconnection architecture for a wide variety of possible

algorithms. (The adopted approach is described in Section 5.) Assuming that

the modules are plugged into a passive backplane which provides only

connecting wires (as is the common practice in both general-purpose and

special purpose electronic equipment and computers), then some input selection

mechanism must be added to the modular card. Since we deduced above that each

module should have two input channels (to the two convolvers), an input

selector should choose which of several inputs should be fed to each of the

two convolvers. Selectors built from standard logic circuits are available

for 2, 4, 8, or 16 alternatives. Since a 12-bit data path has been chosen,

the number of wires to be selected is 12 times 2 inputs times the number of

alternative inputs to the selector. For 8 alternatives, this is 192 wires,
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which is a reasonable maximum for signal input to a single circuit board.

Furthermore, examination of possible algorithms indicates that a choice among

8 inputs provides sufficient flexibility to make efficient use of each module

in the array.

The outputs of the two convolvers are hardwired to the two inputs of

the binary function, its ouput is hardwired to the input of the neighborhood

comparision operator, and its output forms one output of the module, called

the A output. (The convolvers and the neighborhood comparison operator

include the line buffers needed to enable them to operate on 3-by-3 windows.)

To allow a significant increase in programming flexibility at a minor cost in

terms of increased hardware, an additional output path is provided, called the

B ouput, which passes any one of the intermediate values produced in the

module (inputs to the convolvers as selected by the input switches, the

convolver outputs, the binary function output, or the neighborhood comparison

operator output). The pipeline delay (including extra line buffers) is

equalized on this output to match the A output. (This is an important feature

of the modular concept; there is automatic delay equalization as the signals

propagate through the stages of the pipeline, unlike the situation where all

the various functions are connected via a switching network.)

The above description of a module is summarized in Figure 2. Detailed

descriptions of the convolvers, the binary function, and the neighborhood

comparison operator may be found in Sections 6, 7, and 8, respectively.

All data paths between modules and between operators and functions

within a module consist of 12 bits each. In order to have one more bit of

precision when negative numbers are not needed, each operator in each module

can treat these quantities either as unsigned integers or as positive or

negative two's-complement integers, as specified by the programming

information. (Since the binary functions are completely programmable, the

representation in these is up to the programmer.)

In cases where not all of the operations in a particular module are

needed, it is of course possible to program any of them to be identity

operations. For a convolver, this means using unity for the center weight and
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zero for the others, for the binary function it means having the contents of

the table lookup be the same as one of its inputs (with unity slope for

interpolation), and for the neighborhood comparison operator it means passing

the center value in all cases.

The initial version of PIFEX will process data at rates of up to

8,000,000 pixels per second (in each of the parallel paths through the module

interconnection network). It will handle images with up to slightly more than

2000 pixels per line. (The latter limit is determined by the size of the line

buffers. There is no limit on the number of lines in the picture.)

PIFEX will be programmed from the host computer (a Digital Equipment

Corporation VAX) through a DR-11W direct memory access (DMA) interface. This

will permit each binary function (which uses a quarter-megabyte lookup table)

to be programmed in under 200 milliseconds. The binary functions in all PIFEX

modules which are to be loaded with the same function can be programmed

simultaneously in two 64K 16-bit DMA transfers. This is a great benefit,

since a PIFEX array with several hundred modules would likely have only a

dozen or so different binary functions, so that the programming time is a few

seconds rather than many tens of seconds. The lookup table for each different

neighborhood comparison operator is similarly programmed in a 2K DMA

transfer. The convolver weights, input selection, and other miscellaneous

data are programmed in an 80-word DMA burst for each module needing

reprogramming.
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5. INTERCONNECTION ARCHITECTURE

The modules described in Section 4 are connected in a two-dimensional

pattern chosen so that the switch selections inside the modules produce

flexibility in programming.

The outputs from the modules in each column in the pattern are

connected to the inputs of modules in the next column, so that the main data

flow is considered to be from left to right. In this way, synchronism is

achieved, since all of the modules in a given column (except for the

wrap-around of rows discussed below) are processing corresponding pixels at

the same time. Different rows of modules correspond to parallel data paths,

but these different paths can communicate with each other because of the

branching of the connections from one column to the next.

In the branching patterns considered, the A outputs from modules in

one column connect only to A inputs in the next column, and B outputs connect

only to B inputs. (Although this restriction is not necessary, it seems to be

convenient.) Originally, a fanout of four was tried, with the number of rows

upwards from output to input being -1, 0, 2, 7 for A and -5, 0, 1, 3 for B.

An alternate pattern considered was -1, 0, 2, 6 for A and -2, 0, 1, 2 for B.

The former of these, at least, works fairly well for simple algorithms, but a

fanout of only four is quite restrictive for more complicated algorithms.

Therefore, it was decided to use a fanout of eight. That is, each A or B

output branches to eight different inputs, and thus the A and B inputs on a

module each receive eight signals, one of which is selected in the module, as

described in Section 4. The fanout pattern chosen, at least initially, is -3,

-1, 0, 1, 2, 3, 4, 8 for A and -2, -1, 0, 1, 2, 3, 5, 9 for B. This pattern

is shown in Figure 3. (Notice that these fanout patterns are biased upwards.

This helps to take advantage of the toroidal topology described below.)

Each column is considered to wrap around to form a loop, and the

fanout pattern shown in Figure 3 is cycled invariantly around the loops. This

feature is convenient for algorithms that just barely fit, since crossing the

boundary that otherwise would exist at the top and bottom may help in making

the necessary connections. More importantly, each row also wraps around to
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Figure 3. Interconnection of modules (the connections from any particular
module in one column to the modules in the next column are shown)
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form a loop. The fanout pattern continues cyclically around these loops also,

except that after one particular column there are switches that can break each

connection between the output of a module and the fanout to the next column,

so that outputs can be extracted here and inputs can be inserted. This row

wrap-around feature is important for efficient coding of algorithms that vary

greatly in the width and length of data paths that they require, since an

algorithm that requires a long path can spiral around several times, using

only as many parallel data paths at any point as it needs. The upward bias of

the fanout helps in spiraling the paths upwards in order to avoid collisions.

A simple example of this is shown in Figure 6 in Section 9. (Since the pixels

have been delayed by different amounts on different times around, ordinarily

data from these different paths should not be combined with each other.)

Because of the column wrap-around in addition to the row wrap-around, the

upward spiraling can easily be made to cause the output to occur at the same

rows as the input, thus avoiding the waste of modules that otherwise could

occur.

The two wrap-around features combined cause the the interconnections

of the modules in PIFEX to have the topology of a torus. There is a cut

around the torus at one place to allow inputs (from image buffers or TV

cameras) and outputs (to image buffers) to be switched in, under control of

the host computer. Figure 4 shows two representations of the torus, which are

topologically equivalent (since turning the torus inside-out changes one into

the other).

It is planned that the initial version of PIFEX will have 5 columns

and about 16 rows. (Thus it would be possible to code algorithms that vary

from requiring a data path 16 modules wide and 5 modules long to requiring a

data path one module wide and 80 modules long, without having to use separate

passes through PIFEX on separate frame times.)
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DIRECTION OF MAIN DATA FLOW (ALONG ROWS)

CUT FOR INPUT AND OUTPUT (ALONG A COLUMN)

Figure U. Two representations of interconnection topology
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6. CONVOLVER

The convolver produces the sum-of-products of nine fixed weights times

the corresponding pixel values in a 3-by-3 window. Examination of the typical

weights used in low-level vision algorithms indicates that small positive or

negative integers are most commonly used, with the ratio of the smallest to

the largest weight being usually less than 20. This means that a six-bit

(including sign) weight will be adequate, since this can represent integer

values from -31 to 31. To prevent the 12-bit data path from overflowing, it

is also necessary to scale the output of the convolver in some variable way

(since all large positive weights will produce a much larger result than a mix

of small positive and negative weights). Scaling is most easily accomplished

in hardware by shifting the data one or more bits, i.e., dividing by some

power of two. This is an essential feature of the convolver implemented for

PIFEX.

Multiplying a 12-bit quantity by the five (unsigned) bits of each

weight produces a result having 17 significant bits. Adding nine of these

17-bit quantities together can produce a result having as many as 21

significant bits. Since only 12 of these bits can be output (to maintain a

constant data path throughout the pipeline), it seems excessive to compute the

result accurately to all 21 bits. However, somewhat more than 12 bits must be

retained in intermediate stages of the convolver, since it is common to take

derivatives of heavily smoothed data, which involves subtracting quantities

which are nearly equal. To preserve 12 significant bits of result when

subtracting quantities differing only by 10% or so requires a 16-bit internal

data path. To ensure validity of the least significant bit of the output an

additional bit of low significance is also needed internally to the

convolver. Thus the convolver is designed with a 17-bit internal data path.

The scaling of the result mentioned above is accomplished in two

stages: the input pixel values to the convolver may be shifted down in

significance, allowing more room for carry overflow when large positive

weights are used, and the 12-bit output from the 17-bit data path may be

shifted up to allow for cancellation when subtracting nearly equal

quantities. As discussed above, adding nine 12-by-5 multiplies can produce a
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21-bit result. However, needing all nine weights near the maximum value of 31

is very unlikely, since they could all be divided by two and the result scaled

to produce nearly identical results. Thus it is reasonable to assume that the

sum of the nine weights can always be kept to somewhat under the maximum 279

(9 times 31). If the sum of the weights is kept under 256 (9% less than 279),

overflow into the 21st bit can be avoided. This means that shifting the input

pixel values down in significance by up to three bits permits the 17-bit data

path to accomodate the most significant bits of the 20-bit result. Thus the

convolver design calls for a programmable shift of from zero to three bits in

the input data. The shift of the output 12-bit data path with respect to the

internal 17-bit data path is similarly programmable from zero to three, so

that when subtracting nearly equal quantities more significant bits are

preserved.

The convolver is being implemented in custom VLSI circuitry. (The two

complete scan lines that must be stored in order to cover the 3-by-3 window

are stored in line buffers external to the convolver chip.) The

implementation of the convolver (except for the line buffers) in one chip is

highly desirable because each convolver requires nine multiplies and adds,

which would be excessively cumbersome if done in standard components. Custom

VLSI implementation allows the 12-by-5-bit multiplies to be implemented

without wasteful use of hardware (standard parts exist for multiplying by four

or eight-bit quantities, but not five), and it permits the internal 17-bit

data path to be realized directly (standard parts come in multiples of four or

six bits).

Custom VLSI is easiest to design when the circuit to be implemented is

a regular, repeated structure. Accumulation of successive multiplications can

be accomplished most straightforwardly (although not in the fastest manner,

nor in the least amount of hardware) by repeated shifting and adding. This

means that a 17-by-5 array of one-bit full adder circuits can do the 12-by-5

multiply involved in each of the nine positions in a 3-by-3 pixel window.

Thus nine 17-by-5 arrays, for a total of 765 full adders, are needed for the

convolver chip. Seventeen-bit latches are used between the nine arrays to

store the intermediate accumulated results, as the nine multiplies needed for

each pixel are performed on successive clock cycles.
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Signed arithmetic is accomplished by the simple expedient of

complementing the pixel value prior to multiplication by a negative weight.

Since the (one's) complement of the pixel value plus one would produce the

negative of that value in two's complement representation, the product of a

negative weight and the pixel value is equal to the product of the absolute

value of the weight (i.e., strip off sign bit) and the complement of the pixel

value plus one. This can be accomplished in the hardware by adding the

absolute values of all negative weights together at the beginning (since they

are fixed at the time of programming PIFEX), and then adding the pixel values

times the positive weights and the complements of the pixel values times the

absolute values of the negative weights. Symbolically:

9

Zpiwi = Z Piwi + Z <~Pi)lwi'
*1>0 W£<

+ 2 (Pi+DlwJ
w±>0 wi<0

= ^ D w + ^ D Iw I + ^ Iw I
Z PiWi Z Pi'Wi' L IWi'

wi>0 wi<0 wA<0

where p. are the pixel values, w^ are the convolver weights, and |L are the

one's complements of the pixel values.

In this way a uniform hardware architecture can handle both positive

and negative weights. Because this scheme requires that we be able to add an

arbitrary number to the sum of the nine multiplies, the convolver can be

programmed to add any number to the data stream, which may be useful in PIFEX

programming.

Signed pixel values are easily accomodated by replicating the most

significant (sign) bit of the 12-bit input value onto all 17 bits of the

internal data path. If unsigned pixel values are used, the most significant

bit is not replicated. This is determined by a programming bit in the

convolver chip.
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The current convolver design fits in a 64-pin package (the three

12-bit line buffer inputs, one 12-bit output, plus power, ground, clock and

programming pins). As mentioned in Section 4, it is designed to operate at

pixel rates up to 8 MHz.
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7. BINARY FUNCTION

In Section 3, the need for a programmable binary function (function of

two inputs) based on a memory look-up table with linear interpolation was

established. The architecture and construction of this device will now be

addressed.

The need for a 12-bit data path has been discussed. Given this, the

design of the linear interpolation hardware is tightly constrained by

commercially available components. There is only one type of memory chip

which offers the 120-nanosecond cycle times needed for real-time pipeline

processing and the density which makes a single circuit card for the PIFEX

module feasible — the 64K CMOS static memory chip. These are organized as 8K

by 8; thus blocks of memory using these chips must have an output which is a

multiple of 8 bits. Since a 12-bit value plus two slopes must be looked-up in

this memory, one has a reasonable choice between a 24-bit-wide table (12 plus

two 6-bit slopes), a 32-bit-wide table (12 plus two 10-bit slopes), or a 40

bit-wide table (12 plus two 14-bit slopes). A reasonable compromise between

the size of the table and the precision of the result when linear

interpolation is inadequate is to interpolate on the least significant 4 bits

of each argument. (Also, since 4-bit-wide multiplier chips are available,

this choice allows a straightforward implementation with off-the-shelf

components, although a custom chip is planned for this.) Thus the look-up is

done on the most significant 8 bits of each argument, requiring a total of 16

bits to address the table. A 16-bit value can take on 64K possibilities, so

the table must be organized as 64K by 24, 32, or 40. The choice between these

three possibilities is determined by the maximum slope which one wants to

allow for the stored function. To maintain 1-bit accuracy over the 4-bit

interpolation range (16 values), the slope in the lookup table must be able to

take on values as low as Vie (a change of one bit over the interpolation

range). This means 4 bits to the right of the binary point. Thus the

remaining bits in the slope are to the left of the binary point and represent

slopes greater than unity. One of these remaining bits must be reserved for

the sign of the slope. A 6-bit slope will then have one significant bit to

the left of the binary point, for a maximum slope of 2 (actually l"/i«, all

ones). A 10-bit slope can represent slopes as high as 32, and a 14-bit slope
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can represent values as high as 512. Since mapping 12-bit values onto 12-bit

values implies average slopes of about 1 for monotonic functions and 2 for

symmetrical functions, a maximum of 4 seems very limiting. On the other hand,

a slope of 512 would allow the entire 4096-value range of the 12-bit output to

be overflowed well within a single interpolation interval, which seems rather

excessive. Thus a 32-bit-wide table is chosen.

These considerations lead to a unique table-look-up design. The 8

most significant bits of each function argument are used to address a 64K by

32 lookup table. Twelve of the output bits represent the function value at

each of the 64K values. The remaining 20 bits represent two slopes, each

10-bit signed (two's complement for negative) values, with 4 bits to the right

of the binary point. Each of these slopes is multiplied by the four least

significant bits of the appropriate function argument, and the two products

are added. The four least signifcant bits of the result are discarded, and

the remaining portion (10 significant bits plus the duplicated sign bit for

two's-complement arithmetic) is added to the 12-bit function value looked up

in the table to produce the final interpolated output.
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8. NEIGHBORHOOD COMPARISON OPERATOR

The neighborhood comparison operator allows PIFEX to do operations

which would be very difficult, if not impossible, within the framework of the

two convolvers and the binary function described heretofore. As mentioned in

Section 3, these operations include finding peaks, ridges, valleys, etc., as

well as region growing, shrinking, and other useful functions.

The operator functions by storing two consecutive scan lines in line

buffers and doing the raster-to-window conversion with nine latches, thus

making available the nine pixel values of the 3-by-3 window for the

comparitors. Using one bit of program control, the eight neighbors are

compared to either a programmable constant threshold or to the value of the

center pixel, and the center pixel is always compared to the threshold.

Another two bits of program determine the sense of the comparison, i.e.,

greater-than, equal, or less-than. The outputs of the comparitors form a

nine-bit value. Two additional bits are appended to this, indicating the

evenness or oddness of the raster scan line and indicating the evenness or

oddness of the pixel number on that line. The resulting 11-bit number is used

to address a 2K-by-14 memory containing arbitrary, preprogrammed information.

Two bits of the memory output determine which of the following three 12-bit

values becomes the output of the operator: the other 12 bits of the memory

table, the center pixel of the window, or the bitwise logical OR of the eight

neighbors of the center pixel.

Comparison of two's complement signed data is accomplished by

inverting the most significant bit (sign bit) when two's complement

representation is used. This makes the positive numbers (sign bit = 0)

compare as greater than negative ones (sign bit =1). One programming bit is

used to indicate whether this inversion is to be performed (that is, whether

the input is to be interpreted as positive-negative or unsigned integers).

The inclusion (in the table lookup) of the odd-even information about

the pixel position is for the purpose of implementing subfields. These two

bits allow the definition of four subfields, with different operations being

done on each. This feature allows a convenient way of ensuring that a line

-28-



(in binary data) is not eliminated when it is desired to thin it to a width of

one pixel, as described in [71.

Although only three comparison modes (>, =, <) are implemented, the

greater-than-or-equal and less-than-or-equal functions can be achieved by

inverting the sense of the lookup table, i.e., 2. is replaced by <, .1 is

replaced by >, and the table addresses are complemented before storing the

desired lookup table.
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9. EXAMPLES OF USE

In all of the examples shown in this section, details of the

programming such as the scale factors of quantities are omitted for

simplicity. For example, the weights in the convolvers are shown as integers

and the shifts are omitted. In practice, appropriate shifts must be included

to prevent fixed-point overflow and to prevent excessive loss of significance

in the 12-bit data. (The figures in this section all identify the components

in each module according to the layout previously shown in Figure 2.)

Many low-level vision and image-processing algorithms can be performed

by PIFEX. These include such things as filtering, detection of edges by

various methods, detection of corners and vertices, bridging gaps in lines,

shrinking lines, detection of the intersections of lines, comparison of

different images to detect changes or motion, simple texture measurement,

stereo area correlation, estimation of surface orientation from intensity

variations, and estimation of surface color. Some of these, such as

complicated vertex detectors or stereo correlation, would require many

modules. However, for simplicity only a few algorithms that can be done in a

small number of modules will be given here.

First will be the Sobel edge detector [12] plus thinning, which

requires only one module, as shown in Figure 5. The two convolvers compute

the two components of the gradient (different weights are possible here; the

ones shown are for the true Sobel operator), the binary function then computes

the magnitude of the gradient, and the neighborhood comparison operator finds

the ridges (one-dimensional maxima), so that the resulting nonzero values are

only one pixel wide. If the direction of the edge also is wanted, another

module in parallel with this one could be used, with the same convolver

weights but with the double-argument arctangent as the binary function.

The next example is the computation of the zero crossings of the

Laplacian (the trace of the determinant of the matrix of second derivatives,

often used in edge detection and stereo correlation [13]) and the Hessian (the

determinant of the matrix of second derivatives, sometimes called the Gaussian

curvature, often used in corner and vertex detection [14]). These operators
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A UPPER INPUT TO FUNCTION (OUTPUT OF A CONVOLVER)

B LOWER INPUT TO FUNCTION (OUTPUT OF B CONVOLVER)

R RIDGE OPERATOR: IF ANY OF THE FOLLOWING PATTERNS OR THEIR ROTATIONS EXISTS:

WHERE< MEANS "LESS THAN THE CENTER" AND BLANK MEANS "DON'T CARE",
OUTPUT IS THE CENTER PIXEL; OTHERWISE, OUTPUT IS ZERO
(FORA THRESHOLDED RIDGE OPERATOR, THE PATTERNS WOULD ALSO INCLUDE
"NOT LESS THAN THE THRESHOLD" FOR THE CENTER, AND INSTEAD OF THE
CENTER THE OUTPUT COULD BE A SPECIFIED CONSTANT.)

Figure 5. Sobel operator vith thinning
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are ordinarily applied to smoothed data. Figure 6 shows six iterations of

convolving with the averaging function, which results in a fairly good

approximation to smoothing with a Gaussian function with a standard deviation

of 2 pixels. The Laplacian (L) and the Hessian (H) of the result are then

computed, and two neighborhood comparison operators and one arithmetic

function are used to find the zero crossings of the Laplacian. (The first

neighborhood comparison operator produces approximate zero-crossings; the

other two steps force them to be only one pixel wide, by choosing the pixels

closest to zero. Better 3-by-3 approximations to the derivative operators are

available than the simple ones shown here. Also, if heavier smoothing were

done, some of the smoothing should be done after differentation because of the

limited precision.)

Now we have an example in the numerical solution of partial

differential equations, namely two-dimensional heat flow. The basic equation

here is the following:

where T is the temperature, t is time, k is the thermal conductivity, c is the

heat capacity per unit volume, and V is the vector derivative operator.

Figure 7 shows a simple way to code this into PIFEX. (The shifts caused by

the use of unsymmetrical weights in the convolvers cancel out.) The values k

and c, which are constant with respect to time but not with respect to

position, are preloaded into image buffers by the host computer. (Actually,

it is better to use some nonlinear representation of c, such as 1/c, in order

to make better use of the available dynamic range with the fixed-point data.

For example, a perfect conducter could be indicated by setting 1/c to zero.)

The initial values for T are preloaded into another buffer, but they will be

changed by PIFEX. Each pass through the stages shown would correspond to one

iteration, with time interval At. Several of these could be done on one pass

through PIFEX to save time (according to the number of modules that are

available) , and separate passes (without reprogramming) on consecutive frame

times can produce more iterations, with the T values resulting from each pass

being available in the external buffer. The k and c values are shown being

carried along through additional modules so that they will be available in the
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modules used in subsequent iterations on this pass; if only one iteration were

done in each pass through PIFEX, this would not be necessary. (Many problems

involving the numerical solution of partial differential equations would not

be suitable for PIFEX because of the low precision and dynamic range caused by

its use of 12-bit integers and because of the fact that it operates on

two-dimensional data.)

PIFEX can be used for robotic route planning. A modification of an

algorithm developed by Witkowski [15], which is tailored for parallel

processing, can be implemented on PIFEX. It involves growing in consecutive

circles from the beginning and endpoint of the desired route. Each

consecutive circle is numbered one greater than the previous ring, and so

represents the distance from the center. Obstacles halt the expansion of the

rings, which then become distorted as they propagate at constant speed around

the obstacles. When the rings from the beginning reach the endpoint (and

simultaneously rings from the endpoint reach the beginning, since the

distances must be equal), the processing is stopped, and the two sets of ring

numbers are added. The sum at the beginning and endpoints are equal to the

shortest distance between these points (around the obstacles), and furthermore

the best path is identified as the connected points all having this same sum

(since moving along the path reduces the distance to one endpoint and

increases it by the same amount to the other endpoint).

Several techniques for performing such an algorithm in PIFEX are

possible. The one which follows has the advantage that no reprogramming is

needed (at least during the main growing phase) no matter how long the path

is, and thus it is faster for long paths, even though it requires more modules

per stage of growing than some of the other methods. One image buffer is

loaded with the obstacles, coded with some special number, and zeros

elsewhere. One image buffer is loaded with all zeros except a one for the

beginning point of the route. A third image buffer is loaded with all zeros

except a one at the end of the route. The growing process is implemented in

typical PIFEX stages as depicted in Figure 8. Alternate stages of

neighborhood comparison operators are used to do four-neighbor or

eight-neighbor growing, thus approximating a circle with an octagon. (Better

approximations are possible with some of the other methods.) The neighborhood
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operator is used to take the logical OR of the neighbors of a given pixel

(after comparing all nine pixels in the 3-by-3 window for "greater-than-zero,"

and in alternate stages coding to ignore corner non-zero neighbors). Since

the eight-neighbor test will always be used on even iterations (in terms of

the count to be produced by the iteration, which is one greater than the

distance), the nonzero values that the OR function sees on these iterations

will be two consecutive integers, the larger of which is odd. Thus the OR

will produce the larger value, as desired. (On odd iterations, only one

nonzero value can be seen by the OR function, since the previous iteration

grew according to eight neighbors.) The unmodified value of the pixel is

passed to the next stage of the pipeline via the B output, where the binary

function passes that value if it is not zero, or if both inputs are zero. If

the B input is zero, but the A input (logical OR) is not, then we have the

condition that a concentric ring should be grown into the center pixel (i.e.,

the center is zero but at least one of the neighbors is not). In this case

the binary function adds one to the logical OR value. The next binary

function (in the next stage) is used to overlay the rings onto the obstacle

map, with the function programmed to set that portion of the ring to zero

which lies on an obstacle. In this way, the rings are forced to go around

obstacles. A parallel set of modules is used for the rings propagating in the

other direction.

As many stages of the above processing are used as needed to insure

that the rings reach the other endpoints. If this requires more modules than

are available (which usually would be the case), the images can be

recirculated as many times (on successive frame times) as needed through PIFEX

(without reprogramming), with the intermediate results being stored in image

buffers from one frame time to the next. When the host computer detects (by

examining the endpoints in the buffers) that the endpoints have been reached,

it stops this processing and reprograms a portion of PIFEX so that a single

PIFEX module (not shown in the figure) adds the two sets of rings and finds

the shortest route as the points where this function is equal (within one) to

its endpoint value. Some more modules can be used to thin this path to a

width of one pixel, and the host computer can read the best route from this

map in an external image buffer.
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Finally, we present, not a specific example, but a comparison of the

performance of PIFEX and the performance of the Massively Parallel Processor

(MPP) [3] on problems containing a typical mix of operations, chosen so as to

be reasonably suitable for both machines. (It is possible to create examples

for which one machine or the other is at a great disadvantage. For example,

problems needing more precision than 12 bits could not be done on PIFEX, and

problems needing no convolutions or neighborhood comparison operators would

not utilize PIFEX very effectively. On the other hand, problems needing, many

general convolutions, elaborate neighborhood comparison operators, or

transcendental functions would slow down the MPP considerably.) The

particular types of computations used are shown in Figure 9. The dimensions

of the image (256 by 384) were chosen to be small multiples of 128, so that

the image can be handled efficiently by the MPP, and to have magnitudes such

that the common rate of 60 frames per second for PIFEX allows significant

vertical and horizontal blanking intervals. (This is more than the normal

amount of blanking. By making the blanking intervals very small, PIFEX could

use 80 frames per second on images of this size.) The assumption that 10

modules are needed to perform one unit of computation as defined in the figure

means that only 30% of the convolvers (6 out of the 20 in 10 modules), 30% of

the binary functions (3 out of the 10 in 10 modules), and 10% of the

neighborhood comparison operators (1 out of the 10 in 10 modules) are being

used (for anything other than identity operations). Experience with

complicated algorithms indicate that these figures are typical, although wide

variations are possible.

Figure 9 shows the amount of time needed to process an image as

described above, as a function of the amount of computation needed. (The

times for PIFEX do not include the delay in PIFEX, since this does not affect

the rate at which data can be processed.) For the MPP, the time is

proportional to the amount of computation, since it is an SIMD machine.

(These times are computed assuming that the precision used in the MPP is the

same as in PIFEX, as shown in the figure. The time required by the MPP

increases as the precision increases.) For PIFEX, the time is constant at one

frame time as long as the computation can be done in one pass. However, when

the number of modules needed exceeds the number of modules in PIFEX, one or

more frame times are needed for extra passes, plus whatever time is needed for
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reprogramming PIFEX between passes. The lower limit occurs when no

reprogramming is needed (as in the route planning example, Figure 8). The

upper limit occurs when everything in PIFEX needs to be reprogrammed with

different information. This upper limit is seldom reached, because usually

the same common binary functions (such as addition and multiplication) are

programmed into many different modules, and the binary functions require the

most time for loading the programming information, because of their large

table lookup. However, the times required often are far above the lower

limit. It can be seen from the figure that for the particular types of

computation shown, the performances of PIFEX and the MPP are roughly

comparable, as long as the task is not very small and extensive reprogramming

of PIFEX is not needed. (The MPP costs between one and two orders of

magnitude more than a PIFEX of the sizes considered.)
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