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Abstract

l)urin_ I_/1; decoml)osition of a sparse matrix, it is possible to l)t.rf()rm ('(mi-
l)Utati_)n on many diagonal elements simultane()uslv. Pivots that can l)e pro-
cessed in l)ara]le] are related l)v a compatibililv relation and are gr(,ul,(,d in a
('ompatil)le set. The collection of all maximal compatibles yields difft, rent
maximum sized sets of pivots that can be processed in parallel." Generation of
the ma×ima] compatil)les is based on the information obtained from an

incompalil)le table. This table provides information about pairs of incompa-
tible pivots. In this paper, generation of the maximal compatibles of pivot
elements for a class of small sparse matrices is studied first. The algorithm
involves a binary tree search and has a complexity exponential in the order of
the malrix. Different strategies for seh, ction of a set of compatil)h, pivots
based on the _larkowitz criterion are investigated. The competing issues ¢)f
parallelisn_ and fill-in generation are studie(l and results are l)rovided. A
technique for obtaining an ordered compatible set directly from the ordered
incoml)atil)le table is given. This technique generates a set of coml)atibh,
pivots with thel)rol)erty of generating few fills. A new hueristic algorithm is
then proposed that combines the idea of an ordered compatible set with a
limited binary tree search to generate several sets of compatible pivots in

• linear time. Finally, an elimination set to reduce the matrix is selected.
Parameters are suggested to obtain a balance between parallelism and fill-ins.

, Results of applying the proposed algorithms on several large aI)plication
matrices are presented and analyzed.

¢Research was supported in part by NASA Contract No. NASI-17070 and by the Air Force Office of
Scientific Research under Grant No. AFOSR 85-1089 while the authors were in residence at ICASE, NASA
Langly Research Center, Hampton, VA 23665.
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Introduction

Solution of a linear svstem of equations is required in many al)l)li('ati(m
programs. One such area is tile VI,SI circuit simulation l)r(_grams, h;ver.v
computer-aided circuit analysis program includes a routine that solves a sys-
tem of sparse linear equations. If implicit integration is used, at every tirol.
step one must solve a s.vstem of nonlinear e<l.uati+ms(usually by Newlon ilera-
lion). At every iteration a system of linear equations mus! be s<dv+,(I.
Del)en<ling on the integration m+,:h<_(l,the number of times that a sparse sys-
tem of linear equations needs t<) be s<)l\'e<!mav be large. If it is lmssibl+, 1+,
reduce tile solution time for the sparse s\'st¢,m, the total circuit analysis tim,
would l)e significantly reduced. One method f,,r solving such a system is the
factorization of the matrix into lower an+l Ul)l>cr triangular matrices fc)lh)wc(I
by forward and back suhslitutions.

One ]>romising area for advances in solution technique is lhe use of l)ara]-
lel COml)uters and parallel algorithms. Our l)revious work on parallelizing the
MA28 [1] sparse matrix package for the IIE;l) [2] multil)rocessor sugg+,sts that
sufli<.ient parallelism is not ol)tainable in sparse I,/U decompositi<,n withoul
processing multil)le l+iv+)ts in paralh, l [3]. lh_rallel pivoting st rat egi+,s h:l','e
been investigated bv ('alahan [.l] and n,orc rt,ccntlv by Wing and llaung [5].
[61. Jess and Kees [_:]and Peters [g]. Al[h(mgh the number ofol,erathms i,os-
sibh, in parallel may be large in a very sparse system, exploitation of all the
available parallelism may significantly in<.rease the generation of fill-ins (zero
element of the matrix becoming nonzero as a result of elimination). Sin<'e
fill-in increases the total COml>utation work, it is important to keep the
number generated under control. The purpose of this work is to stud,," spars+,
L/I_; decomposition on a multiprocessor by means of an algorithm which
exploits parallel pivots and keeps fill-in low. The class of sparse systems
guiding the study will be those arising from the simulation of VLSI <.ircuil.,
using a program such as SPICE [9].

\Ving and llaung in [5] represent the triangulation process by a directed
graph where the vertices represent a divide or update operation (operations
required for performing the triqngulation}, and the edges determine the pre-
cedence relation of the operations to be executed. By assigning level numbers
to the directed gral>h, thev identify all operations on the same level to be
done in parallel. They usea weighted <'ombinati+m offll-in cost an+1 depth of
computation in a heuristic to determine a nearly optimal pivot sequence.
\\'hile \Ving and ]laung identify all the operations that can be done in paral-
lel. `'ve will identify all pivots that can be pr+>cessed in parallel at each stel).

" An issue that has not been discussed in tile literature is that in a sparse
matrix there are usually different sets of possible pivot candidates for each

, stel), and the sizes of these sets may well vary. It seems imi)ortant to study
these possibilities and the effect of parallel l)ivoting on apl)lieation matrices.
Algorithms identifying parallel pivot candidates are complex, so it, will be of
value t.o come up with such algorfl.hms only if the amount of parallelism in
circuit domain matrices is large enough to justify the computation required
to identify it.



In this l)al)er, x_t. assume a sharetl-meni,,r.v, NIINII) model for our 1,ar:llh,!
c()ml)utalion, ill which the total memory address space is accessible uniformly
to all parallel units (I)rocesses or individual pr(wessors). This COml)Ul:llicmal
model sl,ould provide s.vnchronization mechanisms to allow multiple memory
updates. Ifmvltil)le updates are aimed at the same memory cell, the penally
paid is a shorl dela.v in access time. Based on ll, is computational model, the
fiirsl h:llf of this paper is devoted to stud,,' the amo.nt of parallelisnl lha!
exists in application matrices. This is carried out by producing all l)ossible
sets of pivot (.andidalcs which cnn be processed in parallel at each step for a
number of small ma!rices. Observations are then made on different slra!egit,s
for choosing one of the sets produced at each step. and hence the gt.neralion
of fill-ins nnd possible parallel pivoting steps. The complete and del'liled
analysis of this study leads us into the second half of the paper, where we
describe a fast heuristic algorithm to produce a set of acceptable parallel
l)ivo! ean(ii(lales for reducing the matrix at (inch step. Issues inv,)lved in
balancing paralh'] work and fill-in generation are discussed and verified
through simula!ed results.

Parallel Pivot Candidates

The Iri:lngulnti()n method used here as men!ioned above will I)e sparse
l,/l" (lt,(.()ml)ositi()n. l"or simpli(.ily, we only consider lhe diagonal clemt,nls of
the ma!rix as pivot (.andi(lat e.'s. Note !hat I)i\'o!ing usually, refers !(_ unsvm-.
me!ric l)ermulali()ns of the matrix for swal)l)ing an off-diagonal ma!rix ele-
ment with a diagonal clement. In this l)apcr, we art" only considering sym-
metric permutalions of the matrix. Even though we are not pivoting in the
al)ove sense, the le!ins pivot and pivoting are used throughout lhe pal)er to
refer to lhe diag()nal ehqncnt used to reduce the matrix at a given step anti a
svmme! ric l)crmu! alton respect ivelv.

In a sparse matrix, two pivots ai; and a.. can be processed in parallel if
a.. and a.. are both zero. In other words, _uring elimination, row j is notU

involved _1_1the elimination process taking place for pivot aii, and row i is not
involved in the process for a... This statement can only be true if wel)rovide

.L/ . ,correct synchronizations for simultaneous update during the elimina!i,)n with
l)arallel pivot candidates:

1. During elimination, when processing pivots all,ayi,.., in parallel, it is l)()s-
sib]e thai an element of a nonpivot row needs to be updated bv all or
some of the parallel processes handling pivots i,j,.., for the current step.
In order for each process to obtain a coml)letely updated value, as a
result of a previous update, the update operation must be done asyn-
chronously by" parallel processes. On the other hand, the order in which
parallel processes update an element is of no importance (except for
round off errors).

2. During elimination, when processing Divots a..,a..,.., in parallel, it is pos-* I! ]

sible that a fill-in is generated in position (m,n)J{ It is also possible that
more than one process tries t,o generate a fill-in in the same position
(re,n). The position (re,n) for the fill-in must be created once by one
process only, and other processes will update its value as in 1.



If two pivots all and aj). can be processed in parallel, and if aii and %.k
can also 1)e processed in parallel, then ai;,aii, and akk cannot necessarily be

• processed ill parallel. Tile relation between parallel pivot candidates is
retie.rive and symmetric, but not transitive, and is thus a compatibility rela-
tion. Two pivots related in this way will siml)ly I)e said to I)e comi)z_lillh, in
what folh,ws. A consequence of the nonlransitivity (,f the coml,alil,ilily rela-
lion is that it classifies tile elements of a set into nt,ndisjoint sul)sels, so that
all meml)ers ofa sul)set are compatible. These subsets arecalh, d compatil_il-
it)" classes. Thus, in order to come up with all l)ossil)le sets of pivots that ('an
1)e l)ro('essed in parallel and are of maximum size, we need to find all maximal
COml)atibh,s. A maximal compatible is a eonlpatible that is not included in
any larger compatil)le.

To clarify the discussion, we define a boolean matrix B for each sparse
matrix A, such that:

b..= 1 qf a..:€:O
IJ

bU..= 0 otherwise
'1

where b.. and a.. denote elements of B and A respectively.
U tj

Several apllroaches for constructing the set of maximal compatil)h,s exist,
and the,v art, all based on construction of an incoml)atible table [10]. The
incoml)alible table specifies pairs of incoml)atible elements. Assume pivots
are taken from the diagonal elements of tile sparse matrix and are numbered
1 through n corresl)onding to diagonal elements of rows 1 through n. Now we
could repr(,sent the incoml)atible table as a table consisting of {n-l)(.(_lumns,
where each column i has (n-i) elements. Columns of the table correspond to
pivot elements of the matrix. Column one of the tal)le, (.orresl)(mding to
pivot numl)er one, is set to the bit vector resulting from oring row and
column one of the matrix B and keeping the last (n-i) elements. The same
process is repeated for pivot 2 (column 2 of tile table), for the submatrix
ol)tained from the original matrix with row and column one eliminated. For
every column of the table that is completely constructed, the corresponding
row/column of the matrix is eliminated. The process is repeated for all pivots
in order. ]t is important to note that the incompatible table is constructed for
a given ordering of tile sparse matrix. Thus, there are n! different incompati-

. ble tables for n! possible diagonal orderings of an n by n sparse matrix. In
what follows, we represent the incompatible table as an array of dimension n,
say implbi(n), with elements of the array being sets of at most, n elements

• each. Each set corresponds to a column of tile table. As an illustrative exam-
ple. the incmnpatible table for the matrix A1 of Fig. 1.1.a is given in Fig.
1.1.b.

The maximal compatibles are found by combining the pivot-pairs from
the ineoml)atible table into larger groups with coml)atible elmrlents. Several
s.vsteinat ic approach es for extract ing th e maximal compatibles h ave been su g-
gested, and they all use all exhaustive search routine. The one approach that
seems to be more suitable for programming on a digital computer is one that
assumes initially that all pivot candidates can be grouped into one set. Then
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1 2 3 4 5 6 7
1 X "
2 X X

3 x x x x
4 x
5 x x x
6 x
7 x x x

Matrix AI

Fig. l.l.a

2
3

4 x
5 x x

6 x

x x ]
1

7
1 2 3 4 5 6

Incompatible Table
Fig. 1.1.b

tile information from the incompatible table is used for contradictions and
splitting tile groups where necessary. This procedure involves searching a
binary tree. Initially. it is assumed that all pivots are coml)atible. They are
grmlped ill one set consisting of all pivot elements. This set will I)e at tire
ro¢_t of a binary tree, level zero. Next, the set of pivots incompatible with
pivot number one, ol)tained from the illcompatible table, is used to split the
set at the root into a left and aright set., constituting level one. The left set
consists of all elements of its parent, set at level zero, except those incoml_ati-
hie with pivot one. Tile right set. consists of the same elements as the start-
ing set. (parent set,), except pivot one itself. At. the next step, the incompati-
ble information for pivot number two, is used t.o break each set at level one
into a left, and right set, for level 2. Furthermore, since the matrix is sparse,
some of the sets at, a given level will not split into smaller sets for some pivot-
ing elements, but they may still consist of ineolnpatible elements and will
split for some later pivots. Consequently, tire binary tree corresponding to
this search will not always bea dense tree. This process is repeated until no



more splitting of the sets is possible. The I(,af s[,ts are tl, en checked and
every set included in a larger leaf set is eliminated. Tile. remaining st,lseon-
stit uteallpossiblemaximalcompatibles. Note that the length ofapath from
the root 1o a leaf could be at most n.

q,

The above process is shown for the example matrix of Fig. 1.1 in Fig i.2.
lnilially, pivols number 1 through 7 are grouped together as the starting set.
Column one of the incompatible table indicates that pivot 5 is incompatible
with pivot one. Thus the starting set, is splil into two sets (1,2,3,4,6,7) and
(2,3,,t,5,6,7). At the next level, these two sets are broken into four sets, each
using the incompatibility information for pivot number lwo from the table.
This process is <'ontinued until no more. splits are possible. At the end, the

[1,°-,3,4,5,6,71

[1,2,3,4,6,71 [2,3,4,5,6,71

[1 [1,3,4,6,71 12,5,61 I3,4,5,6,71
a d

/
[1.3.4,7] 11,4,6,71 [3,4,71 [-t,5,6,71

b c

14,5,61 [4,6,71
e

Binary Tree Search to Obtain
the Set of Maximal Conlpatibles

Fig 1.2



extra sels (3,4,7) and (4,6,7) which are included in tile maximal sets (b) and
(c) respectively, are eliminated. The remaining five sets are 1he maxilnal
compatibles.

A high level description of the above procedure is given below:

procedure MAXCOMP(sset,i)
Assuml)tions:
- pivot candidates ,are numbered from 1 to n.
- initially sset consists of all pivots in the matrix and

i is |he first, pivot.
while i<n do
begin
(*split sset into left and right sets*)

lset = sset- imptbl[i]
rset = sset- [i]
if {ls(,t not a coml)atible set) then

maxcomp(lset,i+l)
if(rset not a compatible set) then

maxcomp(rset,i+l)
end

In tile above procedure, many branches do no! need to be continued to tile
completion of ILL(,search, since they are included in other subtrees. More-
over, as will be descril)ed later, we only need Io produce conlpatible sets of
maximunl size. Thus. there art, many branches in this tree that couhl be
trimmed to limi! the amount of search. Even including these features, thi.,€
algorithm has exl)onential complexity, and only serves to obtain inf_,rmatiml
about sparse matri('e,,.

To slu(lv lhe isstles (li._cusse(! earlier, a ]'.\.";('AI, program was writ lea to

perform symbolic L/l: decoml)osition on a sparse matrix. Our objecli\e was
to study the effects of parallel pivoting so the program performs the de('om-
post!ion lo tile last parallel step and does not continue if parallel pi\€_! candi-
da!es are not available. The structure of the program is outlined below:

p rogra m I'I\'OTS1'71"
- l_ead in input ma!rix and constrv, ct matrix structure.
-('onstrucI all maximal compatibles.

-if parallel pivo!ing ix not I)ossil)le go to stop
-Pick a set of c'Oml)atib]e pivots to be processed

in paralh, l.
-Permute the matrix according 4o the parallel pivots for this step.
-reduce the matrix and insert the resullant fill-ins.

-Repeat.
-Stop.



An alysis Performed

In general, in matrices arising from circuits there, are man)' different sets
of compatible pivots of equal maximum size. Depending on how a set is
chosen to reduce the matrix at, each step, we obtain a different behavior in
generation of fill-in elements, and as a result, different possibilities for con-
t inuingparal]e] pivoting in the next steps. The issues of generation of fill-ins
and parallelism in pivoting have been studied. We used different strategies

• to select a set of COml)atible pivots and then obtained statistical information
from some circuil malrices generated from the SPICE circuit simulalion pro-
gram.

The Markowitz criterion [11] is well known for minimizing the generation
of fill-ins in sparse matrices in sequentihl pr()gramming. It is based on the

fact that at sic 1) k, the maximum numl)er of fill-ins generated by ch(_osing at]
as pivol is (ri- l)(c;- 1) . ltere ri- 1 is the. number of nonzero elements oth(,r
than ai/ in lhe i-[h row of the reduced matrix, and c.-1 is the number of3
nonzero elemenls otht, r than a0. in column j of the reduced matrix. Mar-
kowitz selects: as pivot element at step k, the element which minimizes

(ri-1)(c/-1). Thel)roduct(r i-])(c:-l) is the Markowitz number of eh,mentd o

a... In what follows, we use the Markowllz idea as a basis for tho seh,ction of13 •

a COml)atible pivol set.

In our first analysis we coral)are two different strategies for choosing a seti
, of compalil)le l)i\'()ts among all maximal coml)atil)les. In both (,ase_ we (.on-
l sider ()nlv the st,ls (_f nlaxinlunl size. The first strategy (called :klarl_ox\ilz
i sum) ('hooses lh:ll s(,I :among all sets of maxinlum size in which the sum (,f th,.

Mark()witz numbers ,,f all its elements is minimum. The prol)lem here is lh_lt
some of the l)iV_)Is i_l the set chosen for re(lu_.ing the matrix may g(,n_,r:ll(,
fill-ins in lhe same l),_siiions, and thus we overt,slim;ate the Markowitz count
for a l)urely sequenii:ll case. As an altcrnali\'e, a second strategy is employed
(called Ored Markowitz). ]tere, using the boolean matrix]3 corresl)ondingto
lhe sl)arse matrix under consideratiou, we ('()unt number of nonzeros in a vec-
tor that is the result of ORing rows of pivot candidates in the set and mulli-
l)ly Ibis number by lhe number of non-zeros in a vector resulting from ORing
columns of the l)olenl ial pivots.

Coml)arison of the above strategies on our test cases shows thai the fir.,,t
method is almost ,_lways superior. Our results show that, in gen(,ral, i)v
minimizing the _larkowilz sum we always get fewer fill-ins gener:lle(! and
often more rows are reduced in parallel steps. This study has shown that the

. amount ,:)fparallelism in circuit matrices is quite high but that the generation
of fill-in terms is also quite high in most. cases when compared to the sequen-
lial runs on the same matrices. The number of potential pivots to be pro-

• cessed in parallel al each step seems to 1)eso high that we could l)rocess fewer
pivots in parallel in a step without limiting the parallel work considerably.
An experiment to study this l)ossibility is performed by picking the maximum
sized set with nlinimum Markowitz sum as was exl)lained above. This set is
then used to reduce the matrix, with the following analysis performed on the
set, of eompatil)le pivots.



-Discard the pivot with maximum Markowitz count and determine
number of fill-ins that would be generated as a result.
-Repeat the above procedure until no more pivots can be discarded
from tile set, either because tile set size is too small or because
all Markowitz sums are zero.

Although the above analysis of reducing tile size of the set of COml)atil)le
pivots was done for each step, tile actual elimination and fill for a slc 1) was
done using tile maximal compatible with lowest Markowitz sum. This
analysis is repealed at each parallel step and the results show that it is possi-
ble to decrease tile generation of fill-ins at this step significantly by reducing

[ the amount of parallel work slightly. In fact, discarding only onecoml)atible
j pivot results in a decrease of at least abo'ut one third in the number of fill-ins

that would be generated otherwise.

\\'e performed this analysis over all generated sets of compatible pivots
also. In this exl)eriment, we chose maximum sized set, with minimum ,Mar-
kowitz sum and used it for re(Io(.ing the matrix as described I)elow:

- for nil sets of maximum size do
find the i)ivol with maximum Markowitz count and
remove fr(,m the sol.

find Ill(, set ()f maximum size and minimum Nlarkowitz sum
and determine number (>ffll-ins that would be generated
from the prr)cessing <)fthis set.

- repeat the above l)rt)c't'ss.

Similar results were obtaine(i by applying the nbove two procedur(,s to ,mr
lest matrices. Ilence. we will use the first method for the next l)hase. "l'h:lt is.
tile next analysis is l)erformed on tile set of maximunl size and minimum Nlar-
kowitz sum.

Even though tile above experiment shows we can always generate fewer
fill-ins at a step I)v avoiding the maximum 1)ossible parallt, lism, it (lees not
indicate that this will not delay lhegeneration of fill-ins to later steps. In our
next exl)eriment, we choose the maximum sized set with minimum ._Iarkowitz
sum. l)ut this time we (lis(';_rd the pivot with maximum Markowitz cot,nt
from the set and use the rt,sultin_ set for elimination and fill generation. \Ve
will nlso repeat the pre\'ic)us analysis by reducing the set, size and determining
numl)er of resulting fill-ins. TI, is work confirms our previous result that by
discarding some of the paralh,I pivot candidates according to their high hlar-
kt)wilz count we decrease the total generation of fill-ins.

Results of Complete Analyses

A set. of circuits to be simulated by the SPIC,E circuit simulati()n l)rc)-
gram is available as a benchmark to test SPICE. \Ve used these circuits as
input, to SPICE and generated their corresponding matrices. These matrices
are used as test cases for analysis purposes. The frst circuit is a siml)le
differential pair and generates a 16 by 16 m:_trix with 57 nonzeros. Tile
matrices are of small sizes and the size range is between 12 by 12 to 24 by 24.
The complexity of our algorithm to generate all possible maximal sets of com-
patible pivots would not allow us to test larger matrices, but the generated



information produces valuable statistics about parallelism and circuit
matrices. An algorithm with t+,lerablecoml)lexity to produce a set of compa-
tible pivots will irrvolve heuristics; therefore, it will not give total informa-
tion about the matrix.

The results of comparison of Markowitz sum and Ored Markowilz stra-
tegies are summarized in Table 1.1 {tables are provided in appendix A at. lhe
end of this paper}. The first column describes the circuit, the order of the
matrix, and number of nonzeros. Tire second column indicates the l)aralle]
pivoting step. Columns 3 to 5 correspond to the Markowitz sum strategy
described earlier, and columns 6 through 8 correspond to ()red Markowitz.
The first column for each algorithm is the size of the maximum set of pivots
obtained at a step, tire second column is the minimum operation count
obtained for such a set, and the last column specifies the number of fill-ins
that are generated as the result, of processing the indicated set. ('.t_!umn g
indicates the total number of maximal comp:_iibles generated at each step.
The last two columns are information generated l)y the SI'I(..:E l)rogram
about the amoun! of fill-in generated and the l)er('eniage of the matrix whi(.h
is zero.

As can i)e seen from the table, in e`"ery case the second stra!egy r(,sulle<l
in equal or more fill-ins and equal or fewer l):,rall('l slel)s with fewer number
of r(_ws reduced. This indicates that the _l:lrkowitz sum is a I)eit(,r h(,urislic

for selecling the se! of pivots among mnn.v sets. This ('an be observed from
the 16 I)v 16 matrix of the differential pair cir('uil. In the firs! step, with sets
of size six, Markov,'ilz sum generated 6 fill-ins while Ored Markowilz gen-
erated 8. The pivot set chosen by the Markowitz sum generated fewer fill-ins
than the Ored _l:lrko',vitz algorithm, and, as can be seen, the Ored _larkowilz
resulted in twice as many fill-ins as the Marko`"'itz sum arrd fewer pivots `'vere
processed in parallel (1-1 for Ored Markowitz and 15 for M'arkov,'ilz sum}.
The same behavior resulted from the EC,I., COml_atible SCMITT trigger circuit
which produced an 18by 18 matrix. The nulnher of fill-ins at s!ep2_,fpnral-
lel triangulation is 10 for Ored _1arkowitz and onl.v 4 for the _larkoxvitz .,,urn
with none being generated in the next steps. Ored Marko`'vitz generated -!
more fill-ins at step 3 a11d ,,','as not able to find an.v more parallel pivo! c:_ndi-
dates, but the first strategy continued to do one more parallel step. Of
course, there are cases where both stra!egies produced similar or close resul!s.
as can be seen from lhe table. The table also indicates thai, in 1)arallel runs.
generation of fill-ins is much higher than in sequential runs of the SI"I('E pro-

• gram. At the same time it can be seen that the matrices generally do not
become dense rapidly, and parallel pivot candid:ales are available to almos!
the very last steps of the triangulation process.

The result of our next analysis is shown in Table 1.2. At, each step, a set
of maximum size and mininlum Markowitz sum is selected to reduce the
matrix. Fu_lhermore, from this set we repeatedly remove a pivot with max-
imum Markowitz count and compute the number of fill-ins that w_mld be
generated if this set were used toreduce the matrix. As can be seen from the
table, in every case it is possible to reduce number of fill-ins significantly 1)y
reducing the amoun! of parallelism slightly. For example, for the 16 bv 16
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matrix with 57 nonzeros, we can see thai if we reduce the number of t.€)mpali-
bit pivots from 6 to -1 by removing the two pivots with highest M;irkowilz
count from the set, we can l)revent generation of more fill-ins. Also ill tilt'
last 24 1)3"2,-1matrix with 158 nonzeros, we can reduce the number of gen-
erated fill-ins by a factor of 2 (from 40 to 20), if we discard two pivots in step
one in the same fashion. This is a general result that can be observed from
the table for all cases and all parallel steps.

In tile next exl)eriment we confirm that it is l)(,ssible to reduce the total
generation of fill-ins, as opposed to just. at each step , I)2' using fewer than lhe
maximum aural)or of compatible pivots. In every (.as(, we have been al)le to
reduce the Iolal number of fill-ins by sonic fra(.lion (at ]east about ono third).
COml)are(I to the case where nlaximum l)aralh,]ism was eml)loyed . "]'heso
results are summarized in Table 1.3. ll(,re we chose to discard a l)i\'(_t fr(ml
the maximal ('t)ml)alibleset according to its highest Markowitz count. Ifih(,
maximal se! would not generate any fill-ins, because of a zero Markowitz sum,
we did not discard any pivots from the set. The Iota] number of fill-ins g(,n.
eraled for the first matrix (16 !)3' 16) is 2 which is one third of the amoun!
gen(,rate(l wilh our first experiment (6). This number was reduced fr(,m .10 t_,
26 for the case of the 24 l)2" 2-1 matrix with 151 nonzeros. In this (.:lse the
number or parallel st(,l)S was increased fmln 5 to 6, but the total number t,f
rt)ws thal could be rt,(lu(.ed in t]lt,S(,Slel)S rt,maiwt,d (.C)llStalll. In fact. in m,,st
cases, tile numl)er of parallel SlCl)S is ilL(.rt,ns(,(I. I)u! !he total number _,l"
l)ivots lhai could be l)ro('essed in lh(,se steps (]_('s not change mu_'h (no
change is greater than one addition or r(,(lu(.lic)n in the number of rc,du(.(,d
rows ).

Generation of Compatible Sets from the Incompatible Table

1_ is clear that in large sparse circuit matrices the number of l)ossib]e
pivots to be processe(! at each step will 1)e much higher than our smal I exam-
1)lematrices, and lherefore, it will be possible to obtain enough paralh, I work
by jusl considering a sub-maximal set of compatible pivots at each step. The
algorithm described involves a co)replete binary tree search and has exl)onen-
tia] complexity in the order, n. of the sl)arse matrix. In order to come up
with a good heuristic, we need to relax tILe requirement of finding the m,'lxi-
malset of compatible pivots with minimum Markowitzsum. Asa conclusion
from the above analysis, we will have to reduce the size of tile set to decrease
the generation of fill-ins. Keel)tag these problems in mind, an acceptable set
would be one which has a large number of pivot candidates for parallel pro-
cessinl_ and a low enough Markowitz sum. We now need to look for a pro-
cedure which tends to produce a number of compatible sets of reasonably
large size and low Markowitz sum. Having generated such sets, we can then
choose the best candidate among these coml)atible sets using the same cri-
teria as before. In what follows, we will describe different issues which will
lead us to a good heuristic algorithm and a se! of parameters lo be used in
trading off between fill-in generation and the size of the set, of parallel pivo!
candidales.
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So far, the information from the inconil)atible table has been used to
construct the maximal compatil)le sets of pivots in a complete binary tree
search algoritllm. A more careful analysis of tile incompatible tabh_ could
provide a set of compatible pivots without the need for searching the tree.

" As we know, this table gives information al)out tile incompatil)le pairs of
pivots. In other words, by looking at column i of tile table corresponding to
pivot i, we obtain all pivot numi)ers j>i where pivot j is incompatible with
pivot i, for a given ordering of the matrix. Note that, we are assuming pivots
are taken from the diagonal of the matrix and they are numbered 1 through n
corresponding to roars 1 through n of the matrix. Consequently, if column i
of the table is null, then the corresponding pivot number i is eoml)alible with
every pivot whose corresponding column 'lies to the right of column i. llence,
by scanning the incompatible table, we Call find a set of compatible pivots
whose corresponding columns in the table art, null. Clearly, pivots with such
a property are compatil)le and can begrouped ill a COml)alibleset. 17singlh,
representation of the incompatible table described earlier, the al,_x'e pro-
cedure can be formulated as:

scan implbl from right to left
for each colunin i of imptbl do

if( inlplbl; is empty) then
(*add the <.orresponding pivot to the set of compatibles*)
compset = compse! + It]

where compset is the set of compatible pivots whose corresponding c_,lulnnS
in the table are null. Now if there exists a pivot k such that the set of pivots
incoulpatible with it in column k of tile tabh,, is disjoint from tile set of
already constructed €.olnpatible pivots in compse! , then k is coral)at iblt, wit h
every pivot in conlpse! . Therefore, we can expand conlpsel I)3"adding k t_ it.
The above proced tire Call now be complet ely tit,scribed as:

scan imptbl from right to left,
for each column i of implbl do

begin
if ( imptbl i 1'7 compsel it: erupt.v) then
(*add [i] to the set of COml_atibles_)
compset = compset + [i]
else
delete row i of imptbl
end

The compat.ible set, compset , produced by this procedure, will be referred to
as an ordered compatible set from now on, since it is obtained by inapo_ing a

" specific ordering on the diagonal elements of tile matrix to gel, the incompati-
ble table. As an example, the incompatible table of matrixA2 in Fig. 2.1.a is
given in Fig. 2.1.b. The compatible set, corresponding to tlle null columns of
the table consists of pivots 10 and 11. This set consists of 2, 10, and 11 after
the above expansion.

As was explained previously, our strategy for selecting a compatible set,
among all possible compatible sets of equal maximum size was to select the
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1 2 3 4 5 6 7 8 9 10 11
1 x
2 x
3 x x x "
4 x x

5 x x x .
6 x x

7 x x x x
8 x x x x
9 x x x x
10 x x x x x
11 x x x x x

Matrix A2

Fig. 2.1.a

o

3
4
5 x

6 x x

X

x x

9 x x x

10 x x x x x [
I

11 x x x x x x I ]

I

1 2 3 -1 .5 6 7 8 9 10

Incompatible Table
Null columns: (10,11)

Compset: (2,10,11)
Fig. 2.1.b

one with minimum ._larkowitz sum. That is, to select, the set in which tile
sum of Markowitz numbers of the pivots in its set is mil_imum. If we consider
the set of compatible pivots constructed above directly from the incompatible
table, we see that it consists of pivots 2, 10, and 11, which in turn have Mar-
kowitz numbers 0. 4. and 12. In general, we would like to have a compatible
set consisting of pivots with as lowMarkowitz numbers as possible. It is also
clear that pivots with low Markowitz numbers generally have fewer incompa-
tibilities. Moreover. by looking at the incompatible table of Fig. 2.1.b, wesee
the compatible pivots 10, 11 are obtained from the right end portion of the
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table. This is usually tile case. sineeasweconslrue! columns of Illt, inc(mlpa-
tible fable, we arc. left with a smaller submalri× to work with. l"hu_,, afler
Cmnl)leting each column, we have fewer incompalibles left for the e(m_true-
lion of the next column. These observations lead us to use a differenl order-

• ing in which the first column of the incompatible table has the maximum
number of incoml)atibles and as we work our way to the right end of the

• table, the number ofincoml)atibles will decrease io the minimum. Such an
ordering implies the resulting incompatible {able will have more null c_:lumns
clustered at the right end. So the ordered compatible set that ca1: be con-
structed from the ordered fable will be of a larger size and smaller ,Nlarkowilz
sum than the results of lhe above procedure. As a result of these argumenls.
we sorl the pivots in order of decreasing Markowitz numbers. I,rsing this new
ordering, we can conslru(.t a new in('oml)alible table with the firsl (.olumn
corresponding to the pivot xviih highest Markowitz number and the last
column corresponding to the pivot with lowes! Mnrkowitz numl)er. As an
example, the Mnrkowitz numbers and the new ordering of the pivols arc.
shown in Fib. 2.2.a for matrix A2 of Fig. 2.1.a. The corresponding ordered
incompatible table is given in Fig. 2.2.b. It can beseen from Fig. 2.2.b tha!
the collection of pivots corresponding Io null columns of the fable gives a
compatible set of size -1and Markowitz sum .I consisting of pivots 1, 2.3. and
4. This is in comparison with set of size 2 and .klarkowi!z sum 16 gent'raled

: from lhe unordered :,,icompatil)ie table of Fig. 2.1.1). After exl)andin_ lhi.,,
set. we pr,dnce a compatible set of size .5:and ._larkowilz sum 16 con,_isting (,f
pivols I, 2, 3, 4. and 9.

Limited Binary Search Tree

In this section, we will combine the idea of an ordered compatil)le set
with the tree search algorithm described earlier to obtain a limited tree

Markowit z
Pivo! Order

Nu tuber
1 0 9
2 0 11
3 2 8
4 2 6

- 5 2 1o
6 4 7
7 3 3
8 9 4
9 12 5
10 4 1
11 12 2

Fig. 2.2.a
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I1

8

6

10 x x x

7 x x

3 x x

4 x x x

,5 x x

I x . x ]
I2 x

9 11 8 6 10 7 3 4 5 1

Ordered lneompatil)ie "]'able
Null eolumns: (1.2.3,.1)

, . ,_ ..q)(_ompset (1,_,3,.t
Fig. 2.2.1)

seareh al_rithnl which l)r¢,duees ,qn ae('eptab]e se! of <'Oml)alible l)i\'_Is for
reducing !he' malrix. Given a _el of all pivo! elemen!s, we can n_,w direell.v
1)r_(lueeaset ofeompatii)lepivols from lheordered ineompalil)letable. This
ordered eompalil)le set is obtained for the initial s!arling set. at ihe ro_l _f
lhe binary search free. A child set in the tree is a subset of il._ parent sel. In
thi: eonlexl, every set at any" given point in lhe tree has fewer pivols lhan
the reel set. Sueh a set couhl be considered as a slarling set itself. Provided
we could produee lhe eorreel ineompatil)le lable for ihis sel, we eould gen-
erate ils corresponding ordered compatible set direetly from the new table.

The ineompalibh, lal)le for a given starling sel. Si, is the original lal)le
wilh those r_ws an(! ('€_lumlls (._rresl)on(ling lo the pivols abs,..nl from 5;'.!

e]iminaled. If we le! 5' be the iniliai set of all pivot ('and!dales in !he sparse
malrix an(I S. be an arbitrary slartingset, in lhe tree then the l)roeedurelo

ob!nin lhe ordered eoml)alible set for S; , eompset i , from an ul)dale(l and
ordered in(-_,ml)alil)le fable can be rel)resented as:
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1. compsel i = empty
2. le_s = 5"-S.

I

3. for j = n down to 1 do
" 4. begin

5. if(jc S;)then
6. begin

7. tempset = implbL- less
8. lempset tempsel N compset i
9. if ( tempset = empty ) then
lO. compsel i = compsel i + [j]
II. end
12. end

where less is the set of pivots absent from Si. Line .5 allows only those
columns of the incompatible table whose corresponding pivot j is in ._.lol)e!

lc.-,ted for lhe ('ompatibility relation. Set less is used in line 7 to eliminale
rows corresponding to the absent pivots in S.. compset, holds the (.urront set! !

of cc)mpatible pivots. A check for a new pivot being compatil)h, wilh lhose
already in compset i is made in line 9.

It is now possil)h, to l)rodu(.e an ordered compatible set for any set at any
arbitrary point in the tree dire(.tlv fr()m the incompatible table. (;iven a
starting set, our method of producing an or(lered compatible set tends to gen-
t,rate a large set of low .X.larkowitz sum. Thus, we can produce a number of
ordt, re(! ('ompatil)le sets for many starting sets at different points in the tree
and choose the best candidate among them 10 reduce the matrix. Thefollov,'-
ing theorem will eliminate of some of the redundant work.

Th e 0 r enl

.-tll ordered compatible sets derived from the starting sets in the binary
search tree u'ith lerei L-1 or less are included in the ordered compatible sets gen-
erated from the sels at lerel L of the tree. (i.e.. it is only necessary to generate
ordered compatible sets for starting sets at level L to cover those at level I(L.)

Proof

Let 5" be the initial starting set at the root of the binary tree consisting
of all pivots, Pl .... ,P . Let So" $1 be the left and right children of 5` . Let

• compset be the ordered coml)atible set obtained directly from the incompati-
ble table for the set S . Similarly, let compset oand compset I be the ordered
compatible sets corresponding to SOand S 1 respectively.

A pivot Py can split a set S iff:

P.€ S and

{s_t of incompatibles with P. } f') S ;e empty.
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Assume P. splits S int_; SOand S l ; then"

So = S - {set of incompatibles with Pj } and
s, = s- 1 .1.

There are two cases to consider:

i. P. not in compsel

The table corresponding to S 1 consists of the same null columns and
compatible pivots as in compset so:

compsel = compset I.
ii. P. € compse!

"l'tlen we must have:

imptbIp 1'7compsel = empty
1 .

sinceP, is compatlblewith all pivots in compset . In this case, compsel o
obtaineJd from So is equal to compsel . \Ve know P. is in the set So and
that the incoml)atible table for So is the same as thg table for the l)arent
set S with those rows and columns corresl)onding to incompatil)]es of Pi
eliminated. Thus, all the compatible information which resulted in pro-
duction of compset is transferred from the l)arent set S to So and conse-
quently:

compsel = compsel o.

The above argument proves that, at level l, one of the sets S o or ,5"! will
produce the same ordered compatible set, asproduced by its parent set. This
proof holds for an)" two children of a set. In other words, at any point in the
tree, an ordered compatible set corresponding to a parent set is reproduced
by one of its children.

Induction on level verifies that generating the ordered compatible sets
for every set from the root. through level L of the tree does not produce any
more information than producing the ordered ('Oml)atible sets for every set. at
level L only.

As a consequence of the theorem, we generate all the sets at a given level
in the binary tree, and for each set, we produce an ordered compatible set.
from the ordered incompatible table. Among the generated compatible sets
we choose the set. of largest size and lowest Markowitz sum to reduce the
matrix and call the the resulting set the elimination set.

If we note that we split, each set at each level of the tree for a given pivot,
according to its incompatibility information, then generation of the starting
sets at different levels could be done in various ways:
i. We could split the starting sets using the original pivot ordering given by

the input sparse matrix. This would generate completely random
results.
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it. Tile same ordering used to order the incoml)atibI e table could b(. used to
split tile sets. This left to right ordering does not seem to agr(,e with our
low Markowitz sum requirement. At, each split {level in the tree}, we
include one of the pivots, say Pi ' with highest number of incoml)atibh,s

• {highest Markowitz number) m the left subtree. This inclusion also

means we take a large number of pivots incoml)atible with Pi out of the
sets in the left subtree. These l)ivots that are incompatible with Pi have
lov,'er !\larkov,'itz numbers than Pi and could themselves 1.)eCOml)atil)le
with some other elements in the set. As a result, this ordering will pro-
duce a left set corrsiderably smaller in size than the resulting right set.
Moreover, the left set contains pivots of high Markowitz number which
would produce man)" fills if used to'reduce the matrix. Therefore, some
of the large compatible sets with small Markowitz sums cannot be gen-
erated from one of the sets in the left, subtree unless we search very dt,ep
in the tree. In this case, the desired compatible sets would be in one of
the right subtrees.

iii. A third alternative would be to split the sets with pivots in increasing
order of their ;\larkowitz numbers. Of course, in this ease, the incompa-
tibility information of the pivots used to split a starting set is taken from
the right end of the incompatibletab]e. Thus the completeincompatibi].
it)" information for a pivot i is obtained by concatenating the row and
column i of t he table. This l)rocess, seems togivea bett:er balance to the
binary tree for the first few levels used to generate the starting sets
required in our algorithm. Furth(,rmore, it has the proI)erty that does
not ignore pivots of low Nlarkowitz numbers.

The high level description of this algorithm is given below:
Program Parallel Pivot ing
calculate/\larkowitz numbers of pivots in the
remaining unreduced matrix.

- SORT pivots in decreasing order of Markowitz numbers
- produce all startillg sets at level I.q_EVEL taking the

pivots to split the sets from the root to tTI_EVEL in
order of increasing *larkowitz numbers.

- for each set, at U'I_EVEL pr(,ciuce an ordered compatible set, from
the ul)dated ordered incoml)atible table.

- among the ordered compatible sets generated above choose the

maximum sized set with minimuna Markowitz sum (Elimination set,).
Here, ULEVEL is a preset, level number indicating the depth of the tree to be
searched. The algorithm is no longer exl)onential in time. An efficient imple-

• mentation of the required sort and set operations are important factors in
efficient execution of the algorithm. The set ol)erations used in tlreconstruc-
tion of the incompatible table are of order 1 (adding an element to the set. or
a test for membership). The incompatible table can therefore be constructed
in time nz, where nz is the number of nonzero elements of the matrix. Cen-
eration of an ordered compatible from tire incompatible table requires scan-
ning n sets corresponding to the columns of the table, and performing inter-
section and difference operations on the sets. These operations are of order n
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with a conslant factor equal to the inverse of tile numl)er of bits l)er ('om-
pulerword. The set ol)eralions are usually implemented in machinel:lnguage
or micro cod(, and thus have a small time factor. They could be considered to
have a constant time (rather than order of n) coml)ared to tile time taken to
execute a high level language statement. Production of all starting sets for
level ULEVEL takes a constant time. (-;eneration of an ordered compatible
for each starling set at, ULEVEL takes a constant times n as explained above.
For reasonable values of ULEVEL, all ordered coml)atible sets can be derived
in parallel for different starting sets. In the next section we will see that good
results are obtained for small, constant values of ULEVEL compared to n.
The complexity of the algorithm is bounded al)ove by the sorting; algorithm.
Thus, employing an efficient parallel sort would improve the performance of
the new algorithm.

Balance between Parallelism and Fill-in Generation

Even though the above procedure tends to 1)roduce large sets of low Mar-
kowitz sums, we still could optimize the generation of fill-ins by considering a
subset of the elimination set. Thai is, there could still be some room fortrad-
ing off I)etween parallelism and fill generation. To accomplish this task, we
need to come up with parameters to, control the number of pivots to be pro-
('essed in parallel and tile number of fills to be generated. One such l)nrame-
ter could be the size of the set ofcompatil)iepiw_ts. By allowing a percentage
of the set Io be discarded, we can control the the number of COml)atible
pivots to a degree that does not limit our parallel work by too much. For
clarity, this parameter is called the shrinkage parameter and is used as a
lower limit to shrink the elimination set by a percentage of its size. A
different parameter could be an upper limit on the size of the elimination set.
This limit would allow just enou_ih work to keep our parallel processes busy.
Of course shrinking of the elimination set must not be done arbitrarily by
throwing pivots out oftheset. In general, wewould like to shrink our set by
discarding pivotstha! would cause generation of man)" fills. Such pivotstend
to have high Markowilz numbers. We already have pivots ordered according
to their Markowitz numbers. Wecould use this ordering to scan pivots with
highest Markowitz number in the elimination set and test against a threshold
value. If pivots with Markowitz numl)ers greater than a threshold exist and
if our shrinkage parameter allows, they are discarded from the elimination
set. Use of a threshold value will allowusnot toshrink aset, lhal consists of

all good pivot candidates of reasonably low Markowitz numbers. I"o serve
this purpose, the threshold value should be set in comparison with low and
high Markowitz numbers of the pivoting elements in the matrix. Again the
ordered Markowitz numbers of pivots can be used to set such a threshold
value conveniently. One way is to specify a fraction of candidates to be dis-
carded from the elimination set. Consequently, we set the threshold to the
Markowitz number of a pivot, in a specific position in the list of pivot ele-
ments of the unreduced matrix (ordered by decreasing Markowitz numbers).
Any pivot above this point in the ordered list is considered to have a high
Markowitz number and therefore is a candidate for being discarded from the
set, and any pivot below this point is considered acceptable.
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Pivots in tile elimination set are scanned in o,"der of their highest Mar-
kowitz number. If a pivot with ,\larkowitz nlJml_er greater than Ill(, thres-
hold exists and if the set is not already of minimum size, it is discarded from

• the set.. Tile process is repeated until either no more pivots of large Mar-
kowitznumbersareleft, in the set or the set, cannot be further shrunk. In the
next section we present the result of different strategies and various parame-

" t.ers discussed here for a number of test matrices.

Analysis of the Results

The complexity of tile binary tree search algorithm to obtain maximal
COml)atible sets was such that it could not be run to completion for a 38 by
38 matrix. To verify the validity of otir heuristic program, we performed
every analysis described in this section on the small test matrices of Table
1.1. Recall that the new algorithm produces a number of starting sets for a
given level [UIA';VEL) of the binary search tree. For each starting set, an
ordered coml)aiil)le set is produced. Among the generated ordered compati-
ble sets, the set with maximunl size and minimum Markowitz sum is seh:cted
as the eliminatiol, set at that parallel step. Two alternative ordering;s for
generation of siarting sets at ULEVEL were discussed earlier. For simplicity,
we call the algorithm to reduce a sp,arse matrix 17y compatible pivots using
the decreasing order of Markowitz numl)ers for starting set splitting,
DCOMP. Similarly, the algorithm which uses the increasing order of Mar-
kowitz numbers is called ICOMP.

Detailed information produced by I)COMP and ICOMP are presented for
three sparse matrices in Table 2.1. Column one of the table gives a descrip-
tion of tile sparse matrix undcrconsideration. Cohlmn 2, specifies the paral-
lel step. Columns 3, 4, and 5 give the number of compatible pivots in the
elimination set, its ]_larkowitz sum and number of fill-ins generated at each
step for program DCOMP. Similar information is summarized in the next
three columns for program ICOMP. The information presented here is for
ULEVEL=4. The first two matrices have been completely analyzed in the
previous section and are presented here to show the validity of our proposed
algorithms. It is interesting to see that, for the first matrix, DCOMP pro-
duced exactly the same results as the complete tree search program. On the
other hand, ICOMP produced different results. Even though ICOMP pro-
duces a smaller conll)atible set in the first step. it finds larger sets in the next
steps and reduces the same number of rows (i.e., 21) in five parallel steps.
ICOMP generates 22 fills, almost half tile number produced by DCOMP (40)
or even the complete binary tree search algorithm (40). The same behavior is
observed from the second 24 by 24 matrix. The third matrix is obtained from
the circuit of an 8-bit full adder and is a 144 by 144 matrix with 616
nonzeros. Note that both a]gorithmsproduced an elimination set of 72 pivots
in the first, step, and so, half of the matrix can be reduced in parallel in one
step. In this case the advantage of ICOMP over DCOMP is not significant.

To see how variation of depth will affect the resulting compatible sets,
we ran both programs for values of ULI'_VEL between 2 and 5, for a number
of matrices. These results are summarized in Table 2.2. Again the first
column describes the matrix. Thc second colunan specifies ULEVEI,.
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Colunlns 3 to 6 give related infornlation for tl,e I)(:OMP program, ilere the
first and the third columns specify number of l)arallel sleps taken Io reduce
the matrix and number of rows reduced in those steps; respectively. The
second column is tile average parallel work at each step and is obtained l)y
dividing total numl)er of rows reduced in parallel by the number of parallel
steps. The fourth column gives the total number of fill-ins generated by
parallel reduction. The next four columns of the table provide similar infor-
mation for the IC()MP program. The last. two matrices of the fable are pro-
duced from the SPAR l)rogram, which is a structural analysis program [12].
These twomalriceshavea pecu]iarblock stru('lure. Our initial objective was
tostudy sparse m::Iri(.es arising from SI'ICE. "]'hese matrices ordinarily have
a random sl)arsity structure, but at the'same time, the limited connectivity
between nodes of the input, circuit results in a limited number of nonzeros per
row/column. The SPAR matrices will provide some insight into the behavior
of our heuristic algorithms for a wider (.lass of matrices.

It is clear from the table that, in almost, every case, IC:OMP produces
better results both in terms of number of rows reduced in parallel and
number of fill-ins generated. As was expected, D('O,kl]' finds elimination sets
of lower Markowitz sums as we search deeper in the tree. This is o])served
from the first 2-1 I)v 2.1 matrix and from the last SI'..\R generated 505 by 505
matrix. Ill the first matrix, ]COMI ) ])r_)(ll,ced 18 fills, reducing 21 rows in 5
parallel steps, while DCONIP generate(! more than twice the numl)er of fills
and reduced 20 rows ill 5steps. The number of fills decreases forDCOMPas
ULEVEI, is increased, while I¢_',OMP takes the opposite direction. This also
shows that reasonal)lv acceptable compatible sets, both in terms of size and
Markowitz sum. are generated for small values of ULEVEL and it is not
necessary to search very deep in the tree. The above observations hold for
every matrix presented in the table, except the 78 by 78 matrix produced by
the SPAR program. This matrix does not have characteristics typical of
SPICE generated matrices; but, as we will see in our next analysis, acceptable
results are produced for this matrix as well. Note that there are cases fortlle
DCO.MP program in which a higher average l)arallelism is indicated in the
table than for I('O._IP. In those situations, it is often tile case that fewer
rows have 1)een reduced by DCOhlP than by l(:Ohlt ).

The remaining analyses are performed on the ICOMP 1)rogram only,
since it produces better results. In what follows, a value of 4 is used for
ULEVI'_L. The next step is tostudy tile effects of varying the param(,ters pro-
posed earlier to obtain a balance between generation of fill-ins and the
amount of parallel work. Results are summarized in Figures 2.3 to 2.6 for
four of the matrices of Table 2.'2. In these graphs, four different symbols are
used to represent four different values of the threshold parameter. Recall
that the threshold is set to the Markowitz number of a specific pivot in the
ordered list, of pivot candidates. On the gral)hs, the threshold value is given
as a fraction of the pivoting elements in the reniaining unreduced matrix,
ordered in order of decreasing Markowitz numl)ers. For example when the
threshold is 1/3. tile Markowitz number of the pivot residing in the 1/3 point
of the ordered list of pivot candidates in the unreduced matrix is obtained.
Any pivot in the elimination set with Markowitz number greater than this
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value is a candidate to be discarded from tile set.

The graphs present information about the number Of generaled fill-ins
versus the shrinkage parameter. In each case, the analysis is performed for
threshold values of 1/10, 1/3, 1/2, and 2/3. For ever)' value of the threshold,

• shrinkage parameter values of 0, 5, 30, and 40 percent are considered, llere
we have limited our sets to be at, most of size 25. Thus any set which consists

. of more than 25 compatible pivols is reduced to size 25 by discarding pivots
of highest Markowitz numbers. From tile information presented in the
graphs of Fig. 2.3-2.6, it is apparent that we have been able to reduce the
generation of fill-ins in ever)" case. For the 2.1 by 2.1 matrix (Fig. 2.-11, the
number of fills is reduced by 1.1_, over the range of threshold values con-
sidered. This number is higher for tlie rest of our test cases. \Ve have
obtained an overall reduction of 30._, 36_, and 50,% in the number of fill-ins
produced by ICO.MP for the 8-bit full adder matrix and the two SPAR.
matrices, respectively. It is important to note that the number of parallel
steps laken to reduce the malrices and the number of rows reduced in those
steps did nol change considerably with a change in the above parameters. In
each case, tht, change was not more than one in the number of steps or lwo in
the numher of n, duced rows. Thus we have b_,_,nabh, to reduce the, _enera-
tion of fill-ins considerably l)y givinB,up an insi_llificanl amount of the exist-
ing parallel capabiiily. In other words, by eml)loyin _ lhe above paramolers, a
better balance belween number of COml_alible l_i\'ols generated at dilh,reni
steps is achi_'ved.

A characteristic of these a!_plication sparse malrices is that many pivots
have equal Mark_witz numbers. When pivots are ordered, those wilh equal
_larkowilz numbers are clustered together. Therefore, when the value of the
shrinkage l)aralllt'ler is small, the threshold has no effect. This can be seen
for <lifferen! values of the threshold parameter for the shrinkage l>arameler
e<l+:alto 5_'_.ill :_l_.x"of the gral>hs of Fig. 2.3 lhrc>ugh Fig. 2.6. As this reduc-
tion percentage is increased, tilt, threshohl parzlmeler plays a more eIl't,ctive
role. In tilt, S-hi! full adder malrix, shrinking lhe set size by 5_ accounls for
m_sl of l he re<lucli_n in till-il_:., and afler that, the changes are not
significant. ]:t,r lhe lwo matrices generated I)v tilt, SPAR program, results
are more evenly (lislributed over tile changes in the above parameters (Fig-
ures 2.5 and 2.6). Different values of these l)arameters do not start It) affect
the resulls until we allow a large fraction of pivots to be discarded in the 2-1
by 24 matrix of Fig. 2.4.

• Recall tha! \re have restricted the compatil)le sets to be at most of size
25. For the matrices thai generate considerably larger sets, the threshold
parameter does not play an imt)ortant role i)ecause an upper limit is imposed

" on the size of tile elimination set. To observe the effects of tile threshohl
parameter, the upper limit is ignored. Resulls for the same values of the
threshold and shrinkage parameter for the 8-bit full adder and the 505 by .505
SPAR matrix are presented in Fig. 2.7 and Fig. 2.8. The other two matrices
do not generate as large sets and, therefore, are not aff_,cted by the removal of
the upper limit parameter. A threshold value of 1/10 does not cause any
reduction in fill-ins in either case. This suggests that the generated
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COml)atible sets consist of pivoting elements of lower Markowitz numbers
than the highest one tenth. These graphs show more variation with the
threshold parameter, even t.hou_oh a higher number of fill-ins is pr¢_duced.
Without exception, the fewest fill-ins are produced for tile largest, values of
the threshold and the shrinkage parameter.

The number of fill-ins produced by ]('OMP compares reasonably with
sequential runs on the same matrices. For exan_l_le, the sequential run on the

" 8-bit full adder matrix produced 166 fills, and ICOMI' produced 196, which is
an increase of about 18%. In general, as expected, the number of fill-ins pro-
duced by ICOMP is higher than the sequential results, but the difference is
not. great.

Coneluslon

Solution of sparse systems of equations is essential in many application
programs. Often such a system has to l)e solved repeatedly. In this paper we
veritied that in sparse matrices arising from eh, ctronic circuits it, is possible to
do computations on many diagonal elements simultaneously. A <'(m_l)lete
analysis of some test matrices, done by generating all maximal COml)alible
sets of pivot elements, indicated the existence of many compatibh, l)ivols in
these matrices. \Ve have shown our l,esl matrices do iiot become full during
the (lecoml)osition. Furthermore, it was shown thai many parallel (.omputa-
lion steps are possible, and during these steps, the matrix is often reduced
coml)letel.v. The (.ompeting issues of l>arallel pivoting and till-in generation
have i)een studied, and we verified through examples that it is possible to
reduce the l)roduction of fill-ins by removing some of the parallel pi\'oT e:indi-
dates from the elimination set on the basis of high Markowitz numbers. A
heuristic algorilhm was then proposed to l)rodu('e large (.onapatible sels of low
hlarkowitz sums I)\" a combination of an ordered partial tree search strategy
and generation of ordered conlpatible st,ls. l)ifferenl orderings to produce lhe
orderc(l compatil)le sets were suggested, and their advantages and disadvan-
tages were discussed and verified lhrough the simulated results. Anuml)erof
parameters to provide a balance l)etween generation of fill-ins and the
amount of p::ral]e] work were suggested, and their effects were determined in
the simulated results.

The incompatible table required by the algorithm can be constructed in
time nz (number of nonzero elements of the matrix). Production of starting
sets fora given ULEVEL takes a constant time. For ULEVEL small and (.on-
slant compared to n, generation of ordered coml>atibles from starting sets is

" of order n set intersection and difference ol>erations. Assuming efficient
implementation of the set operations is available, the heuristic algorithm has

- a complexity l)ounded above by the sorting algorithm required in the pro-
gram. Thus, employing an efficient, parallelsort 1)rogram would iml)rovethe
total performance of the new algorithm. Nevertheless, our results show that
many compatible pivots are produced for parallel reduction of the sparse
matrices, and the process can be repeated until the matrix is ahnost com-
pletely reduced. In cases where the matrix is not completely reduced, the
remaining submatrix is of such a small size that parallel operations have little
effect. Significant reduction in generation of fill-ins is obtained by varying
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t,he proposed l)arameters. Moreover, as the result of these parameters, a
better balance between the number of coml_atible pivots generated at
different steps was achieved, while the reduction in parallel work proved to
be insignificant,.
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Parallel Pivoting Strategies

Matrix Step !Vlarkowitz Sum Ored Marl:owitz No.of SPICE

" NO.of OP NO.of NO.of OP NO.of Sets Fill-in %

Pivots Count Fill-in Pivots Count Fill-in Sparse

Differential 1 0 23 0 6 48 8 50
Pair

2 4 4 0 4 1,5 4 14
I

16 by 16 3 3 5 0 2 0 0 4
Nz 57

4 2 2 0 2 2 0 I

total 4 15 6 14 12 0 80.27

Cascaded 1 5 12 6 5 24 6 24
RTL

Inverter 2 -1 8 4 4 9 4 4

12 I)y 12 3 2 2 0 2 1 0 l
Nz 34

total 3 11 10 11 10 0 79.88

ECL 1 8 39 16 8 80 16 122
Colll ]):it ible
SCIIMITT 2 4 18 4 4 30 10 16

Trigger
3 2 8 0 2 16 4 6

18 by 18
Nz 66 4 2 5 0 2

• total 4 16 20 14 30 6 80.05

TABLE 1.1
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Parallel Pivoting Strategies

Matrix Step MarkowitzSum OredMarkowitz INo.of SPICE

NO.of OP NO.of NO.of OP NO.of Sets Fill-in %

Pivots Count Fill-in Pivots Count Fill-in Sparse .

MOS 1 4 0 0 .! 0 0 20

Memory
('ell 2 4 0 0 4 0 0 6

13 by 13 3 3 6 2 3 4 2 3
Nz 47

total 3 11 2 11 2 0 76.02

MOS 1 8 169 36 8 156 36 173
Aml)lifier
A('/DC, 2 5 117 4 ,5 6-t 4 12

3 3 0 0 3 0 0 5
24 by 24
Nz 154 4 3 0 0 3 0 0 4

5 2 13 0 2 9 0 3

total 5 21 40 21 40 10 73.76

MOS 1 8 178 40 g 156 40 149

Amplifier
Transient 2 4 91 4 .1 72 4 14

3 3 0 0 3 0 0 5
24 by 24
Nz 158 4 3 0 0 3 0 0 4

5 2 25 2 2 16 4 3

total 5 20 46 20 48 22 71.20

TABI,I': 1.1
Continued
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Fill-in Statistics

Matrix Step Set size OP.Count Fill-in

' 16 by 16 1 6 23 6
Nz 57 5 14 2

. 4 5 0
2 4 4 0

3 3 5 0
4 2 2 0

12 by 12 1 5 12 6
Nz 34 4 8 4

3 4 2
2 0 0

2 4 8 4
3 4 2
2 0 0

3 2 2 0

18 by 18 1 8 39 16
Nz 66 7 30 10

6 21 6
5 12 2
,1 8 0

2 4 18 4
3 9 2
2 0 0

3 2 8 0

4 2 ,5 0

TABLE 1.2
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Fill-ln Statlstles

Matrix Step Set size OP.Count Fill-in

13 by 13 1 4 0 0
Nz 47 2 4 0 0

3 3 6 2
2 2 0

24 by 24 1 8 169 36
Nz 154 7 120 24

6 84 18
5 59 10
4 34 6
3 18 2
2 9 0

2 5 117 4
4 68 0

3 3 0 0

4 3 0 0

5 2 13 0

2-1 by 24 1 8 178 40
Nz 158 7 129 28

6 93 20
5 68 14
4 43 8
3 18 4

9 2

2 ,1 91 4
3 5,5 4
2 3 0

3 3 0 0

4 3 0 0

5 2 2.5 2

TABLI: 1.2
Cont in ued
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PARALLELISM vs. FILL-IN

Matrix Step Max Reduced MAX Ol ) Reduced Fill-in Mrkowitz SI'ICI';

Size Size Count OP.Count Sum

16 by 16 1 6 5 23 1.t 2
• Nz 57 2 5 .1 13 4 0

3 4 3 6 2 0
4 2 2 0

lotal ,1 14 . 2 6 0

12 by 12 1 5 4 12 8 4
Nz 34 2 4 3 _ 4 2

3 3 2 6 2 0
4 2 2 0

total 4 11 6 l0 0

18 by 18 I 8 7 39 30 10
Nz 66 2 6 .5 26 17 6

3 3 2 11 5 0
4 2 2 0

lotal 4 16 16 20 6

I
TA BI,I-; 1.3
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PARALLELISM vs. FILL-IN

Matrix Step Max Reduced MAX OP Reduced Fill-in Markowitz SI)IC] .,

Size Size Count, OP.Count Sum .

13 by 13 l 4 4 0 0 0
Nz ,17 2 4 4 0 0 0

3 3 2 6 2 0
4 2 o 0

tot :tl 4 12 . 0 2 0

2.1 by 2.1 1 8 7 109 120 2,1
N z ! 5.1 2 5 4 93 57 2

3 3 3 0 0 0
4 3 3 0 0 0
5 2 2 0
O 2 2 0

lolal 0 21 26 -10 lO

2-t b.v 2-1 1 8 7 178 129 28
Nz 158 2 5 -1 1-10 91 4

3 3 3 0 0 0
4 3 3 0 0 0
5 3 2 22 13 4
6 2 2 0

lotai 6 21 36 -lO 22

TABLE 1.3
Continued
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DCOMP ICOMP

Malrix Step No.of OP. No.of No.of OP. No.of
Pivots Coun! Fill-in Pivols Coun! Fill-in

MOS 1 8 169 36 4 0 0
:_ml)lifier 2 5 117 4 7 54 18
AC/DC 3 3 0 0 5 5.t 4

4 3 0 0 3 0 0

24 by 24 5 2 13 0 2 10 0
Nz 15-t

Total 5 21 ,10 21 22

MOS 1 8 178 40 4 0 0

Amplifier 2 4 119 10 7 61 17
Transient 3 3 0 0 5 60 8

,t 3 0 0 3 0 0

24 by 2-1 5 2 25 0 2 13 1
Nz 15,_

Tol:tl 5 20 50 21 20
8-Bi! 1 72 449 150 72 449 150

Full Adder 2 25 258 86 25 2.17 70
3 16 99 0 1(l 99 0
4 11 110 12 11 110 20

1.t.t b.v 1.1.1 5 6 75 22 6 75 22
Nz 016 0 5 4t3 8 5 40 8

7 3 29 -t 3 29 4
8 2 10 0 2 10 0
9 2 8 0 2 8 0

"l'ol a l 9 1-I2 282 142 280

Comparison of the Two Proposed Ordcrings
for ULEVI';I_= 4.

TABLE 2.1
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DCOMP ICOMP

Avg. Rows No.of Ai, g. No.of
Matrix ULEVI'I, Steps Par. Fill-in Steps Par F_ows Fill-in

2,1 by 24 2 5 4 20 4.1 5 4.2 21 18
Nz 154 3 5 4 20 ,t4 5 4.2 21 22 "

4 5 4.2 21 40 5 4.2 21 22
5 5 4.2 21 .10 6 3.6 22 26

2.1 i)y 2-t 2 5 ,1 20 50 5 4 20 20
Nz 158 3 5 4 20 50 5 ,1.2 21 20

4 5 4 20 50 5 4.2 21 26
5 5 4 20 50 5 4.2 21 2[)

52 by 52 2 5 9 45 128 6 7.8 47 121
Nz 166 3 5 9 45 128 6 7.8 47 121

4 5 9 45 128 6 7.7 46 137
5 6 7.8 47 123 6 7.7 46 137

144 by 144 2 9 15.8 142 282 9 15.8 1-12 258
Nz 616 3 9 15.8 142 282 8 17.6 141 26.1

4 9 15.8 1,12 282 9 15.8 1.12 280
5 9 15.8 1.I'2 282 9 15.8 1.12 2_0

78 b.v 78 2 10 7.7 77 198 8 9.3 7.1 238
Nz "598 3 8 9.3 7-t 200 10 7.5 75 271

4 9 8.4 76 199 9 8.3 75 287
5 10 7.7 77 202 9 8.3 75 292

505 by 505 2 36 13.6 -188 5802 .10 12.3 -t93 5-132
Nz 5889 3 37 13.2 .190 5811 .11 12.1 .197 55(il

4 34 14.3 485 5802 41 12 489 5583
5 38 13 .195 5785 36 13.4 48.1 5695

Comp:trison of D('OMI' and I('OMP for Different levels

TABLI; 2.2
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