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Abstract

During L/U decomposition of a sparse matrix. it is possible to perform com-
putation on many diagonal elements simultancously. Pivots that ¢an be pro-
cessed in parallel are related by a compatibility relation and are grouped in a
compatible set. The collection of all maximal compatibles yields different
maximum sized sets of pivots that can be processed in parallel. Generation of
the maximal compatibles is based on the information obtained from an
incompatible table. This table provides information about pairs of incompa-
tible pivots. In this paper, generation of the maximal compatibles of pivot
clements for a class of small sparse matrices is studied first. The algorithm
involves a binary tree search and has a complexity exponential in the order of
the matrix. Different strategies for selection of a set of compatible pivots
based on the Markowitz criterion are investigated. The competing issues of
parallelism and fill-in generation are studied and results are provided. A
technique for obtaining an ordered compatible set directly from the ordered
incompatible table is given. This technique generates a set of compatible
pivots with the property of generating few fills. A new hueristic algorithm is
then proposed that combines the idea of an ordered compatible set with a
limited binary tree search to generate several sets of compatible pivots in
lincar time. Finally, an elimination set to reduce the matrix is sclected.
Parameters are suggested to obtain a balance between parallelism and fill-ins.
Results of applying the proposed algorithms on several large application
matrices are presented and analyzed.
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Introduction

Solution of a linecar system of equations is required in many application
programs. One such area is the VLSI circuit simulation programs. Every
computer-aided circuit analysis program includes a routine that solves a sys-
tem of sparse linear equations. If implicit integration is used, at every time
step one must solve a system of nonlinear equations (usually by Newton itera-
tion). At every iteration a system of linear equations must be solved.
Depending on the integration method, the number of times that a sparse sys-
tem of linear equations needs to be solved may be large. If it is possible to
reduce the solution time for the sparse system. the total circuit analysis time
would be significantly reduced. One method for solving such a system is the
factorization of the matrix into lower and upper triangular matrices followed
by forward and back substitutions.

One promising area for advances in solution technique is the use of paral-
lel computers and parallel algorithms. Our previous work on parallelizing the
MA28 [1] sparse matrix package for the HEP [2] multiprocessor suggests that
sufficient parallelism is not obtainable in sparse L/U decomposition without
processing multiple pivots in parallel [3]. Parallel pivoting strategies have
been investigated by Calahan [4] and more recently by Wing and Haung [5).
[6]. Jess and Kees [7] and Peters [8]. Although the number of operations pos-
sible in parallel may be large in a very sparse system, exploitation of all the
available parallelism may significantly increase the generation of fill-ins (zero
clement of the matrix becoming nonzero as a result of elimination). Since
fill-in increases the total computation work, it is important to keep the
number generated under control. The purpose of this work is to study sparse
L/U decomposition on a multiprocessor by means of an algorithm which
exploits parallel pivots and keeps fill-in low. The class of sparse systems
guiding the study will be those arising from the simulation of VLSI circuit.
using a program such as SPICE [9].

Wing and Haung in [5] represent the triangulation process by a directed
graph where the vertices represent a divide or update operation (operations
required for performing the triangulation). and the edges determine the pre-
cedence relation of the operations to be executed. By assigning level numbers
to the directed graph. they identify all operations on the same level to be
done in parallel. They use a weighted combination of fill-in cost and depth of
computation in a heuristic to determine a nearly optimal pivot sequence.
While Wing and Haung identify all the operations that can be done in paral-
lel. we will identify all pivots that can be processed in parallel at each step.
An issue that has not been discussed in the literature is that in a sparse
matrix there are usually different sets of possible pivot candidates for each
step, and the sizes of these sets may well vary. It seems important to study
these possibilities and the effect of parallel pivoting on application matrices.
Algorithms identifying parallel pivot candidates are complex, so it will be of
value to come up with such algorithms only if the amount of parallelism in
circuit domain matrices is large enough to justify the computation required
to identify it.



In this paper, we assume a shared-memory, MIMD model for our parallel
computation. in which the total memory address space is accessible uniformly
to all parallel units (processes or individual processors). This computational
model should provide synchronization mechanisms to allow multiple memory
updates . If multiple updates are aimed at the same memory cell, the penalty
paid is a short delay in access time. Based on this computational model, the
first half of this paper is devoted to study the amount of parallelism that
exists in application matrices. This is carried out by producing all possible
sets of pivot candidates which can be processed in parallel at each step for a
number of small matrices. Observations are then made on different strategies
for choosing one of the sets produced at each step. and hence the generation
of fill-ins and possible parallel pivoting steps. The complete and detailed
analysis of this study leads us into the second half of the paper, where we
describe a fast heuristic algorithm to produce a set of acceptable parallel
pivot candidates for reducing the matrix at cach step. Issues involved in
balancing parallel work and fill-in generation are discussed and verified
through simulated results.

Parallel Pivot Candidates

The triangulation method used here as mentioned above will be sparse
L/U decomposition. For simplicity, we only consider the diagonal elements of
the matrix as pivot candidates. Note that pivoting usually refers to nnsym-
metric permutations of the matrix for swapping an off-diagonal matrix ele-
ment with a diagonal element. In this paper, we are only considering sym-
metric permutations of the matrix. Even though we are not pivoting in the
above sense, the terins pivot and pivoting are used throughout the paper to
refer to the diagonal element used to reduce the matrix at a given step and a
svmmetric permutation respectively.

In a sparse matrix, two pivots a; and a.. can be processed in parallel if
a;. and a. are both zero. In other words, during elimination, row j is not
involved in the elimination process taking place for pivot a..and row i is not
involved in the process for a... This statement can only be true if we provide
correct synchronizations for simultaneous update during the elimination with
parallel pivot candidates:

1. During elimination, when processing pivots LIRS in parallel, it is pos-
sible that an clement of a nonpivot row needs to be updated by all or
some of the parallel processes handling pivots i,j,... for the current step.
In order for each process to obtain a completely updated value, as a
result of a previous update, the update operation must be done asyn-
chronously by parallel processes. On the other hand, the order in which
parallel processes update an clement is of no importance (except for
round off errors).

During elimination, when processing pivots Qi @i in parallel, it is pos-
sible that a fill-in is generated in position (m,n)J. It is also possible that
more than one process tries to generate a fill-in in the same position
(m,n). The position (m,n) for the fill-in must be created once by one
process only, and other processes will update its value as in 1.
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If two pivots a. and a_. can be processed in parallel, and if a. and a,,
can also be processed in parallel; then LN and a,, cannot necessarily be
processed in parallel.  The relation between parallel pivot candidates is
reflexive and symmelric, but not fransitive, and is thus a compalibilily rela-
tion. Two pivots related in this way will simply be said to be compatible in
what follows. A consequence of the nontransitivity of the compatibility rela-
tion is that it classifies the elements of a set into nondisjoint subsets, so that
all members of a subset are compatible. These subsets are called compatibil-
ity classes. Thus, in order to come up with all possible sets of pivots that can
be processed in parallel and are of maximum size, we need to find all maximal
compatibles. A maximal compatible is a compatible that is not included in
any larger compatible. '

To clarify the discussion, we define a boolean matrix B for each sparse
matrix A, such that:

1

i 1 iff a; #0
0 otherwise

ij

1l

where b'.j and a;; denote elements of B and A respectively.

Several approaches for constructing the set of maximal compatibles exist,
and they are all based on construction of an incompatible table [10]. The
incompatible table specifies pairs of incompatible elements. Assume pivots
are taken from the diagonal elements of the sparse matrix and are numbered
1 through n corresponding to diagonal elements of rows 1 through n. Now we
could represent the incompatible table as a table consisting of (n-1) columns,
where each column i has (n-i) elements. Columns of the table correspond to
pivot clements of the matrix. Column one of the table, corresponding to
pivot number one, is set to the bit vector resulting from oring row and
column one of the matrix B and keeping the last (n-1) elements. The same
process is repeated for pivot 2 (column 2 of the table), for the submatrix
obtained from the original matrix with row and column one climinated. For
every column of the table that is completely constructed, the corresponding
row/column of the matrix is eliminated. The process is repeated for all pivots
in order. It is important to note that the incompatible table is constructed for
a given ordering of the sparse matrix. Thus, there are n! different incompati-
ble tables for n! possible diagonal orderings of an n by n sparse matrix. In
what follows, we represent the incompatible table as an array of dimension n,
say fmplbl(n), with elements of the array being sets of at most n elements
each. Each set corresponds to a column of the table. As an illustrative exam-
ple. the incompatible table for the matrix Al of Fig. 1.1.a is given in Fig.
1.1.b.

The maximal compatibles are found by combining the pivot-pairs from
the incompatible table into larger groups with compatible elements. Several
svstematic approaches for extracting the maximal compatibles have been sug-
gested, and they all use an exhaustive search routine. The one approach that
seems to be more suitable for programming on a digital computer is one that
assumes initially that all pivot candidates can be grouped into one set. Then



2 3 4 5 6 7
1 | x
2 X X
3 X X X X
4 X
5| x X X
6 X
7 X .X X
Matrix Al
Fig. 1.1.a
2
3 X
4 X
9 | x X
6
7 X X 1

Incompatible Table
Fig. 1.1.b

the information from the incompatible table is used for contradictions and
splitting the groups where necessary. This procedure involves searching a
binary tree. Initially. it is assumed that all pivots are compatible. They are
grouped in one set consisting of all pivot elements. This set will be at the
root of a binary tree, level zero. Next, the set of pivots incompatible with
pivot number one, obtained from the incompatible table, is used to split the
set at the root into a left and a right set, constituting level one. The left set
consists of all elements of its parent set at level zero, except those incompati-
ble with pivot one. The right set consists of the same elements as the start-
ing set (parent set), except pivot one itself. At the next step, the incompati-
ble information for pivot number two, is used to break each set at level one
into a left and right set for level 2. Furthermore, since the matrix is sparse,
some of the sets at a given level will not split into smaller sets for some pivot-
ing clements, but they may still consist of incompatible elements and will
split for some later pivots. Consequently, the binary tree corresponding to
this search will not always be a dense tree. This process is repeated until no




more splitting of the sets is possible. The leaf sets are then checked and
every set included in a larger leaf set is eliminated. The remaining sets con-
stitute all possible maximal compatibles. Note that the length of a path from
the root to a leafl could be at most n.

The above process is shown for the example matrix of Fig. 1.1 in Fig 1.2.
Initially, pivots number 1 through 7 are grouped together as the starting set.
Column one of the incompatible table indicates that pivot 5 is incompatible
with pivot one. Thus the starting set is split into two sets (1,2,3,4,6,7) and
(2,3,4,5,6,7). At the next level, these two sets are broken into four sets, cach
using the incompatibility information for pivot number two from the table.
This process is continued until no more splits are possible. At the end, the

[1,2,3,4,5,6,7]
[1,2.374,6,7) [2,3,4,5,6,7]
[1.206] [1,3,4,6,7] [‘2,5,6] [3,4,5,6,7]
a d
[1.3.4,7] [1,4,6,7] [3,4,7] [4,5.6.7]
b e

[4,5,6] [4,6,7]
€

Binary Tree Search to Obtain
the Set of Maximal Compatibles

Fig 1.2



extra sets (3,4,7) and (4,6,7) which are included in the maximal sets (b) and
(c) respectively, are eliminated. The remaining five sets are the maximal
compatibles. :

A high level description of the above procedure is given below:

procedure MAXCOMDP(sset,i)
Assumptions:
- pivot candidates are numbered from 1 to n.
- initially sset consists of all pivots in the matrix and
i1s the first pivot.
while i<n do
begin .
(*split sset into left and right sets*)
Iset = sset - imptbl[i]
rset = sset - [i]
if (Iset not a compatible set) then
maxcomp(lset,i41)
if(rset not a compatible set) then
maxcomp(rset,i+1)
end

In the above procedure, many branches do not need to be continued to the
completion of the scarch, since they are included in other subtrees. More-
over, as will be described later, we only need to produce compatible sets of
maximum size. Thus, there are many branches in this tree that could be
trimmed to limit the amount of search. Even including these features. this
algorithm has exponential complexity, and only serves to obtain information
about sparse matrices,

To study the issues discussed earlier, a PASCAL program was written to
perform symbolic L/U decomposition on a sparse matrix. OQur objective was
to study the effects of parallel pivoting so the program performs the decom-
position to the last parallel step and does not continue if parallel pivot candi-
dates are not available. The structure of the program is outlined below:

program PIVOTSET

- Read in input matrix and constrict matrix structure.
-Construet all maximal compatibles.
-if parallel pivoting is not possible go to stop
-Pick a set of compatible pivots to be processed
in parallel.

-Permute the matrix according to the parallel pivots for this step.

-reduce the matrix and insert the resultant fill-ins.
-Repeat.
-Stop.



Analysis Performed

In general, in matrices arising from circuits therc are many different sets
of compatible pivots of equal maximum size. Depending on how a set is
chosen to reduce the matrix at each step, we obtain a different behavior in
generation of fill-in elements, and as a result, different possibilities for con-
tinuing parallel pivoting in the next steps. The issues of generation of fill-ins
and parallelism in pivoting have been studied. We used different strategies
to select a set of compatible pivots and then obtained statistical information
from some circuit matrices generated from the SPICE circuit simulation pro-
gram.

The Markowitz criterion [11] is well known for minimizing the genecration
of fill-ins in sparse matrices in sequential programming. It is based on the
fact that at step k, the maximum number of fill-ins generated by choosing a,.
as pivot 1s (r;=1){c.—1) . Here r.— 1 is the number of nonzero clements other
than a_ in the i—Ih row of the reduced matrix, and ¢.—1 is the number of
nonzero elements other than a; in column j of the reduced matrix. Mar-
kowitz selects as pivot element at step k, the element which minimizes
(r,— l)(rj-l). The product (r,—1 )(Cj_ 1) is the Markowitz number of clement
a;. . In what follows, we use the Markowitz idea as a basis for the selection of
a compatible pivot set.

In our first analysis we compare two different strategies for choosing a set
of compatible pivots among all maximal compatibles. In both cases we con-
sider only the sets of maximum size. The first strategy (called Markowitz
sum) chooses that set among all sets of maximum size in which the sum of the
Markowitz numbers of all its elements is minimum. The problem here is that
some of the pivots in the set chosen for redncing the matrix may generate
fill-ins in the same positions. and thus we overestimate the Markowitz count
for a purely sequential case. As an alternative, a second strategy is employed
{called Ored Markowitz). Here, using the boolean matrix B corresponding to
the sparse matrix under consideration, we count number of nonzeros in a vec-
tor that is the result of ORing rows of pivot candidates in the set and multi-
ply this number by the number of non-zeros in a vector resulting from ORing
columns of the potential pivots.

C'omparison of the above strategies on our test cases shows that the first
method is almost always superior. Our results show that, in general. by
minimizing the Markowitz sum we always get fewer fill-ins generated and
often more rows are reduced in parallel steps. This study has shown that the
amount of parallelism in circuit matrices is quite high but that the generation
of fill-in terms is also quite high in most cases when compared to the sequen-
tial runs on the same matrices. The number of potential pivots to be pro-
cessed in parallel at cach step seems to be so high that we could process fewer
pivots in parallel in a step without limiting the parallel work considerably.
An experiment to study this possibility is performed by picking the maximum
sized set with minimum Markowitz sum as was explained above. This set is
then used to reduce the matrix, with the following analysis performed on the
set of compatible pivots.




-Discard the pivot with maximum Markowitz count and determine
number of fill-ins that would be generated as a result.

-Repeat the above procedure until no more pivots can be discarded
from the set, either because the set size is too small or because

all Markowitz sums are zero.

Although the above analysis of reducing the size of the set of compatible
pivots was done for each step, the actual elimination and fill for a step was
done using the maximal compatible with lowest Markowitz sum. This
analysis is repeated at each parallel step and the results show that it is possi-
ble to decrease the generation of fill-ins at this step significantly by reducing
the amount of parallel work slightly. In fact, discarding only one compatible
pivot results in a decrease of at least about one third in the number of fill-ins
that would be generated otherwise.

We performed this analysis over all generated sets of compatible pivots
also. In this experiment, we chose maximum sized set with minimum Mar-
kowitz sum and used it for reducing the matrix as described below:

- for all sets of maximum size do
find the pivot with maximum Markowitz count and
remove from the set.

- find the set of maximum size and minimum Markowitz sum
and determine number of fill-ins that would be generated
from the processing of this set.

- repeat the above process.

Similar results were obtained by applying the above two procedures to our
test matrices. Hence. we will use the first method for the next phase. That is.
the next analysis is performed on the set of maximum size and minimum Mar-
Kowitz sum.

Even though the above experiment shows we can always generate fewer
fill-ins at a step by avoiding the maximum possible parallelism, it does not
indicate that this will not delay the generation of fill-ins to later steps. In our
next experiment, we choose the maximum sized set with minimum Markowitz
sum. but this time we discard the pivot with maximum Markowitz count
from the set and use the resulting set for elimination and fill generation. We
will also repeat the previous analysis by reducing the set size and determining
number of resulting fill-ins. This work confirms our previous result that by
discarding some of the parallel pivot candidates according to their high Mar-
kowitz count we decrease the total generation of fill-ins.

Results of Complete Analyses

A set of circuits to be simulated by the SPICE circuit simulation pro-
gram is available as a benchmark to test SPICE. We used these circuits as
input to SPICE and generated their corresponding matrices. These matrices
are used as test cases for analysis purposes. The first circuit is a simple
differential pair and generates a 16 by 16 matrix with 57 nonzeros. The
matrices are of small sizes and the size range is between 12 by 12 to 24 by 24.
The complexity of our algorithm to generate all possible maximal sets of com-
patible pivots would not allow us to test larger matrices, but the generated



information produces valuable statistics about parallelism and circuit
matrices. An algorithm with tclerable complexity to produce a set of compa-
tible pivots will involve heuristics; therefore, 1t will not give total informa-
tion about the matrix.

The results of comparison of Markowitz sum and Ored Markowitz stra-
tegies are summarized in Table 1.1 (tables are provided in appendix A at the
end of this paper). The first column describes the circuit, the order of the
matrix, and number of nonzeros. The second column indicates the parallel
pivoting step. Columns 3 to 5 correspond to the Markowitz sum strategy
described earlier, and columns 6 through & correspond to Ored Markowitz.
The first column for each algorithm is the size of the maximum set of pivots
obtained at a step, the second column is the minimum operation count
obtained for such a set, and the last column specifies the number of fill-ins
that are generated as the result of processing the indicated set. Column 9
indicates the total number of maximal compatibles generated at each step.
The last two columns are information gencrated by the SPICE program
about the amount of fill-in generated and the percentage of the matrix which
is zero.

As can be seen from the table, in every case the second strategy resulted
in equal or more fill-ins and equal or fewer parallel steps with fewer number
of rows reduced. This indicates that the Markowitz sum is a better heuristic
for selecting the set of pivots among many sets. This can be observed from
the 16 by 16 matrix of the differential pair circuit. In the first step, with sets
of size six, Markowitz sum generated 6 fill-ins while Ored Markowitz gen-
erated & The pivot set chosen by the Markowitz sum generated fewer fill-ins
than the Ored Markowitz algorithm, and, as can be seen, the Ored Markowitz
resulted in twice as many fill-ins as the Markowitz sum and fewer pivots were
processed in parallel (14 for Ored Markowitz and 15 for Markowitz sum).
The same behavior resulted from the ECL compatible SCMITT trigger circuit
which produced an 18 by 18 matrix. The number of fill-ins at step 2 of paral-
lel triangulation is 10 for Ored Markowitz and only o for the Markowitz sum
with none being generated in the next steps. Ored Markowitz generated
more fill-ins at step 3 and was not able to find any more parallel pivot candi-
dates, but the first strategy continued to do one more parallel step. Of
course, there are cases where both strategies produced similar or close results,
as can be seen from the table. The table also indicates that, in parallel runs.
ceneration of fill-ins is much higher than in sequential runs of the SPICE pro-
gram. At the same time it can be seen that the matrices generally do not
become dense rapidly. and parallel pivot candidates are available to almost
the very last steps of the triangulation process.

The result of our next analysis is shown in Table 1.2, At each step, a set
of maximum size and minimum Markowitz sum is selected to reduce the
matrix. Fuirlhermore, from this set we repeatedly remove a pivot with max-
imum Markowitz count and compute the number of fill-ins that would be
generated if this set were used to reduce the matrix. As can be seen from the
table, in every case it is possible to reduce number of fill-ins significantly by
reducing the amount of parallelism slightly. For example, for the 16 by 16
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matrix with 57 nonzeros, we can see that if we reduce the number of compati-
ble pivots from 6 to 4 by removing the two pivots with highest Markowitz
count from the set, we can prevent generation of more fill-ins. Also in the
last 24 by 24 matrix with 158 nonzeros, we can reduce the number of gen-
erated fill-ins by a factor of 2 (from 40 to 20), if we discard two pivots in step
one in the same fashion. This is a general result that can be observed from
the table for all cases and all parallel steps. :

In the next experiment we confirm that it is possible to reduce the total
generation of fill-ins, as opposed to just at each step , by using fewer than the
maximum number of compatible pivots. In every case we have been able to
reduce the total number of fill-ins by some fraction (at least about one third).
compared to the case where maximum parallelism was employed . These
results are summarized in Table 1.3. Here we chose to discard a pivot from
the maximal compatible set according to its highest Markowitz count. If the
maximal set would not generate any fill-ins, because of a zero Markowitz sum,
we did not discard any pivots from the set. The total number of fill-ins gen-
erated for the first matrix (16 by 16) is 2 which is one third of the amount
generated with our first experiment (6). This number was reduced from 0 to
26 for the case of the 24 by 24 matrix with 151 nonzeros. In this case the
number of parallel steps was increased from 5 to 6, but the total number of
rows that could be reduced in these steps remained constant. In fact. in most
cases, the number of parallel steps is incereased. but the total number of
pivots that could be processed in these steps does not change much (no
change is greater than one addition or reduction in the number of reduced
rows).

Generation of Compatible Sets from the Incompatible Table

It is clear that in large sparse circuit matrices the number of possible
pivots to be processed at each step will be much higher than cur smal' exam-
ple matrices, and therefore, it will be possible to obtain enough parallel work
by just considering a sub-maximal set of compatible pivots at each step. The
algorithm described involves a complete binary tree scarch and has exponen-
tial complexity in the order, n. of the sparse matrix. In order to come up
with a good heuristic, we need to relax the requirement of finding the maxi-
mal set of compatible pivots with minimum Markowitz sum. As a conclusion
from the above analysis, we will have to reduce the size of the set to decrease
the generation of fill-ins. Keeping these problems in mind, an acceptable set
would be one which has a large number of pivot candidates for parallel pro-
cessing and a low enough Markowitz sum. We now need to look for a pro-
cedure which tends to produce a number of compatible sets of reasonably
large size and low Markowitz sum. Having generated such sets, we can then
choose the best candidate among these compatible sets using the same cri-
teria as before. In what follows, we will describe different issues which will
lead us to a good heuristic algorithm and a set of parameters to be used in
trading off between fill-in generation and the size of the set of parallel pivot
candidates.
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So far, the information from the incompatible table has been used to
construct the maximal compatible sets of pivots in a complete binary tree
search algorithm. A more careful analysis of the incompatible table could
provide a set of compatible pivots without the need for searching the tree.
As we know, this table gives information about the incompatible pairs of
pivots. In other words, by looking at column i of the table corresponding to
pivot i, we obtain all pivot numbers j>i where pivot j is incompatible with
pivot i, for a given ordering of the matrix. Note that we are assuming pivots
arc taken from the diagonal of the matrix and they are numbered 1 through n
corresponding to rows 1 through n of the matrix. Consequently, if column i
of the table is null, then the corresponding pivot number i is compatible with
every pivot whose corresponding column Jlies to the right of column i. Hence,
by scanning the incompatible table, we can find a set of compatible pivots
whose corresponding columns in the table are null. Clearly, pivots with such
a property are compatible and can be grouped in a compatible set. Using the
representation of the incompatible table described earlier, the above pro-
cedure can be formulated as:

scan tmplbl from right to left
for each column i of rmptbl do
if ( mptbl. is empty) then
(*add the corresponding pivot to the set of compatibles*)
compsel = compset + [i]

where compset is the set of compatible pivots whose corresponding columns
in the table are null. Now if there exists a pivot k such that the set of pivots
incompatible with it in column k of the table, is disjoint from the set of
already constructed compatible pivots in compsel | then k is compatible with
every pivot in compset . Therefore, we can expand compset by adding k to it
The above procedure can now be completely described as:

scan tmptbl from right to left
for each column i of imptbl do
begin
if ( tmptbl. M) compsel iz empty) then
(*add [i] to the set of compatibles*)
compset = compset + [i]
else
delete row 1 of tmptbl
end

The compatible set, compset , produced by this procedure, will be referred to
as an ordered compatible set from now on, since it is obtained by imposing a
specific ordering on the diagonal elements of the matrix to get the incompati-
ble table. As an example, the incompatible table of matrix A2 in Fig. 2.1.a is
given in Fig. 2.1.b. The compatible set corresponding to the null columns of
the table consists of pivots 10 and 11. This set consists of 2, 10, and 11 after
the above expansion.

As was explained previously, our strategy for selecting a compatible set
among all possible compatible sets of equal maximum size was to select the
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1 2 3 4 5 6 7 8 9 10 11
1 X
2 X
3 X X X
4 X X
S | x X X
6 X X
7 X X X X
& X X X X
9 X X X X
10 X X X X X
11 | x X X X X
Matrix A2
Fig. 2.1.a

2

3

4

3 X

6 X

7

b X X

9 X | X | X

10 XN X [ X X

11 | x X X | X [ x I

1 2 3 4 5 6 7T &8 9 10

Incompatible Table
Null columns: (10,11)
Compset: (2,10,11)
Fig. 2.1.b

one with minimum Markowitz sum. That is, to select the set in which the
sum of Markowitz numbers of the pivots in its set is minimum. If we consider
the set of compatible pivots constructed above directly from the incompatible
table, we sce that it consists of pivots 2, 10, and 11, which in turn have Mar-
kowitz numbers 0. 4. and 12. In general, we would like to have a compatible
setl consisting of pivots with as low Markowitz numbers as possible. It is also
clear that pivots with low Markowitz numbers generally have fewer incompa-
tibilities. Morcover, by looking at the incompatible table of Fig. 2.1.b, we sece
the compatible pivots 10, 11 are obtained from the right end portion of the
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table. This is usually the case, since as we construct columns of the incompa-
tible table, we are left with a smaller submatrix to work with. Thus, after
completing cach column, we have fewer incompatibles left for the construe-
tion of the next column. These observations lead us to use a different order-
ing in which the first column of the incompatible table has the maximum
number of incompatibles and as we work our way to the right end of the
table. the number of incompatibles will decrease to the minimum. Such an
ordering implies the resulting incompatible table will have more null cclumns
clustered at the right end. So the ordered compatible set that can be con-
structed from the ordered table will be of a larger size and smaller Markowitz
sum than the results of the above procedure. As a result of these arguments,
we sort the pivots in order of decreasing Markowitz numbers. Using this new
ordering, we can construct a new incompatible table with the first column
corresponding to the pivot with highest Markowitz number and the last
column corresponding to the pivot with lowest Markowitz number. As an
example, the Markowitz numbers and the new ordering of the pivots are
shown in Fib. 2.2.a for matrix A2 of Fig. 2.1.a. The corresponding ordered
incompatible table is given in Fig. 2.2.b. It can be seen from Fig. 2.2.1) that
the collection of pivots corresponding to null columns of the table gives a
compatible set of size 4 and Markowitz sum - consisting of pivots 1, 2. 3. and
4. This is in comparison with sct of size 2 and Markowitz sum 16 generated
from the unordered ‘ncompatible table of Fig. 2.1.h. After expanding this
set. we produce a compatible set of size 5 and Markowitz sum 16 consisting of
pivots 1.2, 3, 4. and 9.

Limited Binary Search Tree

In this section, we will combine the idea of an ordered compatible set
with the tree search algorithm described ecarlier to obtain a limited tree

Pivot M:‘arl\omtz Order
Number
1 0 9
2 0 11
3 2 8
4 2 6
5 2 10
6 4 7
7 3 3
8 9 4
9 12 5
10 4 1
11 12 2

Fig. 2.2.a
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search algorithm which produces an acceptable set of compatible pivots for
reducing the matrix. Given a set of all pivot elements. we can now directly
produce a set of compatible pivots from the ordered incompatible table. This
ordered compatible set is obtained for the initial starting set at the root of
the binary search tree. A child set in the tree is a subset of its parent set. In
this context. every set at any given point in the tree has fewer pivots than
the root set. Such a set could be considered as a starting set itself. Provided
we could produce the correct incompatible table for this set, we could gen-
erate its corresponding ordered compatible set direetly from the new table.

The incompatible table for a given starting set, S, is the original table
with those rows and columns corresponding to the pivots absent from S;
eliminated. "If we let S be the initial set of all pivot candidates in the sparse
matrix and S; be an arbitrary starting set in the tree , then the procedure to
obtain the ordered compatible set for S, , compset. . from an updated and
ordered incompatible table can be represented as:
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1. compsel. = empty

2. less = S-S5,

3. forj = n down to1l do

4. begin

5. if (je S;)then

6. begin

7. tempsel = tmptbl. — less

8. lempsel = lempsel N compsel.
9. if ( lempset=emply ) then
10. compsel, = compsel, + [j]
11. end

12. end

where less is the set of pivots absent from S;. Line 5 allows only thouse
columns of the incompatible table whose corresponding pivot jisin S. to be
tested for the compatibility relation. Set less is used in line 7 to ¢liminate
rows corresponding to the absent pivots in §.. compsel. holds the current set
of compatible pivots. A check for a new pivot being compatible with those
already in compset, is made in line 9.

It is now possible to produce an ordered compatible set for any set at any
arbitrary point in the tree dircctly from the incompatible table. Given a
starting set, our method of producing an ordered compatible set tends to gen-
erate a large set of low Markowitz sum. Thus, we can produce a number of
ordered compatible sets for many starting sets at different points in the tree
and choose the best candidate among them to reduce the matrix. The follow-
ing theorem will climinate of some of the redundant work.

Theorem

All ordcred compatible sets derived from the starting sels in the binary
search tree with level L-1 or less are included in the ordered compatible sels gen-
eraled from the sets al level L of the tree. (i.c.. it is only necessary to gencrale
ordered compalible sels for starting sets at level L to cover those at level I<L.)

Proof
Let S be the initial starting set at the root of the binary tree consisting
of all pivots, P,....P_ . Let So- S; be the left and right children of § . Let

compset be the ordered compatible set obtained directly from the incompati-
ble table for the set § . Similarly, let compsety and compset| be the ordered

compatible sets corresponding to Sy and S, respectively.
A pivot P,‘ can split a set S iff:

PJ.e S and
{set of incompatibles with P_,' }N S # empty.
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Assume P). splits S int: Sy and S, ; then:

Sy = S - {sct of incompatibles with P,‘ } and
S,=8-] P,‘ ].

There are two cases to consider:

i. PJ. not in compsel
The table corresponding to S, consists of the same null columns and
compatible pivots as in compsel so:

compsel = compset,. J

ii. P.e compset
Then we must have:

impltbl, M compsel = empty

since P, is com]])atible with ali pivots in compsel . In this case, compsel
obtained from S, is equal to compset . We know P is in the set S, and
that the incompatible table for S,O 1s the same as the table for the parent
set S with those rows and columns corresponding to incompatibles of P,
eliminated. Thus, all the compatible information which resulted in pro-
duction of compsel Is transferred from the parent set S to S and conse-
quently:

compsel = compsel .

The above argument proves that, at level 1, one of the sets S, or S, will
produce the same ordered compatible set as produced by its parent set. This
proof holds for any two children of a set. In other words, at any point in the
tree, an ordered compatible set corresponding to a parent set is reproduced
by one of its children.

"Induction on level verifies that generating the ordered compatible sets
for every set from the root through level L of the tree does not produce any
more information than producing the ordered compatible sets for every set at
level L only.

As a consequence of the theorem, we generate all the sets at a given level
in the binary tree, and for each set, we produce an ordered compatible set
from the ordered incompatible table. Among the generated compatible sets
we choose the set of largest size and lowest Markowitz sum to reduce the
matrix and call the the resulting set the elimination set.

If we note that we split each set at each level of the tree for a given pivot
according to its incompatibility information, then generation of the starting
sets at different levels could be done in various ways:

i.  We could split the starting sets using the original pivot ordering given by
the input sparse matrix. This would generate completely random
results.
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.  The same ordering used to order the incompatible table could be used to
split the sets. This left to right ordering does not seem to agree with our
low Markowitz sum requirement. At each split (level in the tree), we
include one of the pivots, say p., with highest number of incompatibles
(highest Markowitz number) in the left subtree. This inclusion also
means we take a large number of pivots incompatible with p. out of the
sets in the left subtree. These pivots that are incompatible with p. have
lower Markowitz numbers than p; and could themselves be compatible
with some other clements in the sot. As a result, this ordering will pro-
duce a left set considerably smaller in size than the resulting right set.
Morcover, the left set contains pivots of high Markowitz number which
would produce many fills if used to reduce the matrix. Therefore, some
of the large compatible sets with small Markowitz sums cannot he gen-
erated from one of the sets in the left subtree unless we search very deep
in the tree. In this case, the desired compatible sets would be in one of
the right subtrees.

iii. A third alternative would be to split the sets with pivots in increasing
order of their Markowitz numbers. Of course, in this case, the incompa-
tibility information of the pivots used to split a starting set is taken from
the right end of the incompatible table. Thus the complete incompatibil-
ity information for a pivot i is obtained by concatenating the row and
column i of the table. This process. seems to give a better balance to the
binary tree for the first few levels used to generate the starting sets
required in our algorithm. Furthermore, it has the property that does
not ignore pivots of low Markowitz numbers.

The high level description of this algorithm is given below:

Program Parallel Pivoting

- calculate Markowitz numbers of pivots in the
remaining unreduced matrix.

- SORT pivots in decreasing order of Markowitz numbers

- produce all starting sets at level UCLEVEL taking the
pivots to split the sets from the root to ULEVEL in
order of increasing Markowitz numbers.,

- for each set at ULEVEL produce an ordered compatible set from
the updated ordered incompatible table.

- among the ordered compatible sets generated above choose the
maximum sized set with minimum Markowitz sum (Elimination set).

Here, ULEVEL is a preset level number indicating the depth of the tree to be
searched. The algorithm is no longer exponential in time. An efficient imple-
mentation of the required sort and set operations are important factors in
eflicient execution of the algorithm. The set operations used in the construe-
tion of the incompatible table are of order 1 (adding an element to the sot, or
a test for membership). The incompatible table can therefore be constructed
in time nz, where nz is the number of nonzero elements of the matrix. Gen-
eration of an ordered compatible from the incompatible table requires scan-
ning n sets corresponding to the columns of the table, and performing inter-
section and difference operations on the sets. These operations are of order n
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with a constant factor equal to the inverse of the number of bits per com-
puter word. The set operations are usually implemented in machine language
or micro code and thus have a small time factor. They could be considered to
have a constant time (rather than order of n) compared to the time taken to
execute a high level language statement. Production of all starting sets for
level ULEVEL takes a constant time. Generation of an ordered compatible
for each starting set at ULEVEL takes a constant times n as explained above.
For reasonable values of ULEVEL, all ordered compatible sets can be derived
in parallel for different starting sets. In the next section we will see that good
results are obtained for small, constant values of ULEVEL compared to n.
The complexity of the algorithm is bounded above by the sorting algorithm.
Thus, employing an eflicient parallel sort would improve the performance of
the new algorithm.

Balance between Parallelism and Fill-in Generation

Even though the above procedure tends to produce large sets of low Mar-
kowitz sums, we still could optimize the generation of fill-ins by considering a
subset of the elimination set. That is, there could still be some room for trad-
ing off between parallelism and fill gencration. To accomplish this task, we
need to come up with parameters to-control the number of pivots to be pro-
cessed in parallel and the number of fills to be generated. One such parame-
ter could be the size of the set of compatible pivots. By allowing a percentage
of the set to be discarded, we can control the the number of compatible
pivots to a degree that does not limit our parallel work by too much. For
clarity, this parameter is called the shrinkage parameter and is used as a
lower limit to shrink the elimination set by a percentage of its size. A
different parameter could be an upper Iimit on the size of the elimination set.
This limit would allow just enough work to keep our parallel processes busy.
Of course shrinking of the elimination set inust not be done arbitrarily by
throwing pivots out of the set. In general, we would like to shrink our set by
discarding pivots that would cause generation of many fills. Such pivots tend
to have high Markowitz numbers. We already have pivots ordered according
to their Markowitz numbers. We could use this ordering to scan pivots with
highest Markowitz number in the elimination set and test against a threshold
value. If pivots with Markowitz numbers greater than a threshold exist and
if our shrinkage parameter allows, they are discarded from the elimination
set. Use of a threshold value will allow us not to shrink a set that consists of
all good pivot candidates of reasonably low Markowitz numbers. To serve
this purpose, the threshold value should be set in comparison with low and
high Markowitz numbers of the pivoting elements in the matrix. Again the
ordered Markowitz numbers of pivots can be used to set such a threshold
value conveniently. One way is to specify a fraction of candidates to be dis-
carded from the elimination set. Consequently, we set the threshold to the
Markowitz number of a pivot in a specific position in the list of pivot ele-
ments of the unreduced matrix (ordered by decreasing Markowitz numbers).
Any pivot above this point in the ordered list is considered to have a high
Markowitz number and therefore is a candidate for being discarded from the
set, and any pivot below this point is considered acceptable.
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Pivots in the climination set are scanned in order of their highest Mar-
kowitz number. If a pivot with Markowitz number greater than the thres-
hold exists and if the set is not already of minimun size, it is discarded from
the set. The process is repeated until either no more pivots of large Mar-
kowitz numbers are left in the set or the set cannot be further shrunk. In the
next section we present the result of different strategies and various parame-
ters discussed here for a number of test matrices.

Analysis of the Results

The complexity of the binary tree search algorithm to obtain maximal
compatible sets was such that it could not be run to completion for a 38 by
3& matrix. To verify the validity of our heuristic program, we performed
every analysis described in this section on the small test matrices of Table
I.1. Recall that the new algorithm produces a number of starting sets for a
given level (ULEVEL) of the binary search tree. For each starting set, an
ordered compatible set is produced. Among the generated ordered compati-
ble sets, the set with maximum size and minimum Markowitz sum is seleeted
as the elimination set at that parallel step. Two alternative orderings for
generation of starting sets at ULEVEL were discussed carlier. For simplicity,
we call the algorithm to reduce a sparse matrix by compatible pivots using
the decreasing order of Markowitz numbers for starting set splitting,
DCOMP. Similarly, the algorithm which uses the increasing order of Mar-
kowitz numbers is called ICOMP.

Detailed information produced by DCOMP and ICOMP are presented for
three sparse matrices in Table 2.1. Column one of the table gives a descrip-
tion of the sparse matrix under consideration. Column 2, specifies the paral-
lel step. Columns 3, 4, and 5 give the number of compatible pivots in the
climination set, its Markowitz sum and number of fill-ins genérated at each
step for program DCOMP. Similar information is summarized in the next
three columns for program ICOMP. The information presented here is for
ULEVEL=4. The first two matrices have been completely analyzed in the
previous section and are presented here to show the validity of our proposed
algorithms. It is interesting to see that, for the first matrix, DCOMP pro-
duced exactly the same results as the complete tree search program. On the
other hand, ICOMP produced different results. Even though ICOMP pro-
duces a smaller compatible set in the first step. it finds larger sets in the next
steps and reduces the same number of rows (i.e., 21) in five parallc} steps.
ICOMP generates 22 fills, almost half the number produced by DCOMP (40)
or even the complete binary tree search algorithm (40). The same behavior is
observed from the second 24 by 24 matrix. The third matrix is obtained from
the circuit of an 8-bit full adder and is a 144 by 144 matrix with 616
nonzeros. Note that both algorithms produced an elimination set of 72 pivots
in the first step, and so, half of the matrix can be reduced in parallel in one
step. In this case the advantage of ICOMP over DCOMP is not significant.

To see how variation of depth will affect the resulting compatible sets,
we ran both programs for values of ULEVEL between 2 and 5, for a number
of matrices. These results are summarized in Table 2.2. Again the first
column describes the matrix. The second column specifies ULEVEL.
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Columns 3 to 6 give related information for the DCOMP program. Here the
first and the third columns specify number of parallel steps taken to reduce
the matrix and number of rows reduced in those steps,; respectively. The
second column is the average parallel work at each step and is obtained by
dividing total number of rows reduced in parallel by the number of parallel
steps. The fourth column gives the total number of fill-ins generated by
parallel reduction. The next four columns of the table provide similar infor-
mation for the ICOMP program. The last two matrices of the table are pro-
duced from the SPAR program, which is a structural analysis program [12].
These two matrices have a peculiar block structure. Our initial objective was
to study sparse matrices arising from SPICE. These matrices ordinarily have
a random sparsity structure, but at the'same time, the limited connectivity
between nodes of the input circuit results in a limited number of nonzeros per
row/column. The SPAR matrices will provide some insight into the behavior
of our heuristic algorithms for a wider c¢lass of matrices.

It is clear from the table that, in almost every case, ICOMP produces
better results both in terms of number of rows reduced in parallel and
number of fill-ins generated. As was expected, DCOMP finds elimination sets
of lower Markowitz sums as we scarch deeper in the tree. This is observed
from the first 24 by 24 matrix and from the last SPAR generated 505 by 505
matrix. In the first matrix, ICOMP produced 128 fills, reducing 21 rows in 5
parallel steps, while DCOMP generated more than twice the number of fills
and reduced 20 rows in 5 steps. The number of fills decreases for DCOMP as
ULEVEL is increased, while ICOMP takes the opposite direction. This also
shows that reasonably acceptable compatible sets, both in terms of size and
Markowitz sum. are generated for small values of ULEVEL and it is not
necessary to search very deep in the tree. The above observations hold for
every matrix presented in the table, except the 78 by 78 matrix produced by
the SPAR program. This matrix does not have characteristics typical of
SPICE gencrated matrices; but, as we will see in our next analysis, acceptable
results are produced for this matrix as well. Note that there are cases for the
DCOMP program in which a higher average parallelism is indicated in the
table than for ICOMP. In those situations, it is often the case that fewe;
rows have been reduced by DCOMP than by ICOMP.

The remaining analyses are performed on the ICOMP program only,
since it produces better results. In what follows, a value of 4 is used for
ULEVEL. The next step is to study the effects of varying the parameters pro-
posed carlier to obtain a balance between generation of fill-ins and the
amount of parallel work. Results are summarized in Figures 2.3 to 2.6 for
four of the matrices of Table 2.2. In these graphs, four different symbols are
used to represent four different values of the threshold parameter. Recall
that the threshold is set to the Markowitz number of a specific pivot in the
ordered list of pivot candidates. On the graphs, the threshold value is given
as a fraction of the pivoting elements in the remaining unreduced matrix,
ordered in order of decreasing Markowitz numbers. For example when the
threshold is 1/3. the Markowitz number of the pivot residing in the 1/3 point
of the ordered list of pivot candidates in the unreduced matrix is obtained.
Any pivot in the elimination set with Markowitz number greater than this
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value is a candidate to be discarded from the set.

The graphs present information about the number of generated fill-ins
versus the shrinkage parameter. In each case, the analysis is performed for
threshold values of 1/10, 1/3, 1/2, and 2/3. For every value of the threshold,
shrinkage parameter values of 0, 5, 30, and 40 percent are considered. Ilere
we have limited our sets to be at most of size 25. Thus any set which consists
of more than 25 compatible pivots is reduced to size 25 by discarding pivots
of highest Markowitz numbers. From the information presented in the
graphs of Fig. 2.3-2.6, it is apparent that we have been able to reduce the
generation of fill-ins in every case. For the 24 by 24 matrix (Fig. 2.4), the
number of fills is reduced by 149¢ over the range of threshold values con-
sidered. This number is higher for thie rest of our test cases. We have
obtained an overall reduction of 30%%, 36%, and 50%¢ in the number of fill-ins
produced by ICOMP for the &bit full adder matrix and the two SPAR
matrices, respectively. It is important to note that the number of parallel
steps taken to reduce the matrices and the number of rows reduced in those
steps did not change considerably with a change in the above parameters. In
each case, the change was not more than one in the number of steps or two in
the number of reduced rows. Thus we have been able to reduce the genera-
tion of fill-ins considerably by giving up an insignificant amount of the exist-
ing parallel capabiiity. In other words, by employing the above parameters, a
betier balance between number of compatible pivots generated at different
steps is achieved.

A characteristic of these application sparse matrices is that many pivots
have equal Markowitz numbers. When pivots are ordered, those with equal
Markowitz numbers are clustered together. Therefore, when the value of the
shrinkage parameter is small. the threshold has no effect. This can be scen
for different values of the threshold parameter for the shrinkage parameter
equal to 59¢ in any of the graphs of Fig. 2.3 through Fig. 2.6. As this reduc-
tion percentage is increased, the threshold parameter plays a more eflective
role. In the &Dbit full adder matrix, shrinking the set size by 5% accounts for
most of the reduction in fill-in:. and after that, the changes are not
significant. For the two matrices generated by the SPAR program, results
are more evenly distributed over the changes in the above parameters (Iig-
ures 2.5 and 2.6). Different values of these parameters do not start to aflect
the results until we allow a large fraction of pivots to be discarded in the 24
by 24 matrix of Fig. 2.4.

Recall that we have restricted the compatible sets to be at most of size
95. For the matrices that gencrate considerably larger sets, the threshold
parameter does not play an important role because an upper limit is imposed
on the size of the elimination set. To observe the effects of the threshold
parameter, the upper limit is ignored. Results for the same values of the
threshold and shrinkage parameter for the &bit full adder and the 505 by 505
SPAR matrix are presented in Fig. 2.7 and Fig. 2.8. The other two matrices
do not generate as large sets and, therefore, are not affected by the removal of
the upper limit parameter. A threshold value of 1/10 does not cause any
reduction in fill-ins in either case. This suggests that the generated
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compatible sets consist of pivoting elements of lower Markowitz numbers
than the highest one tenth. These graphs show more variation with the
threshold parameter, even though a higher number of fill-ins is produced.
Without exception, the fewest fill-ins are produced for the largest values of
the threshold and the shrinkage parameter.

The number of fill-ins produced by ICOMP compares reasonably with
sequential runs on the same matrices. For example, the sequential run on the
&-bit full adder matrix produced 166 fills, and ICOMP produced 196, which is
an increase of about 18&%¢. In gencral, as expected, the number of fill-ins pro-
duced by 1COMP is higher than the scquential results, but the difference is
not great.

Conclusion

Solution of sparse systems of equations is essential in many application
programs. Often such a system has to be solved repeatedly. In this paper we
verified that in sparse matrices arising from electronic cireuits it is possible to
do computations on many diagonal elements simultaneously. A complete
analysis of some test matrices, done by generating all maximal compatible
sets of pivot elements, indicated the existence of many compatible pivots in
these matrices. We have shown our test matrices do ot become full during
the decomposition. Furthermore, it was shown that many parallel computa-
tion steps are possible, and during these steps, the matrix is often reduced
completely. The competing issues of parallel pivoting and fill-in generation
have been studied, and we verified through examples that it is possible to
reduce the production of fill-ins by removing some of the parallel pivot candi-
dates from the eclimination set on the basis of high Markowitz numbers. A
heuristic algorithm was then proposed to produce large compatible scis of low
Markowitz sums by a combination of an ordered partial tree search strategy
and generation of ordered compatible sets. Different orderings to produce the
ordered compatible sets were suggested, and their advantages and disadvan-
tages were discussed and verified through the simulated results. A number of
parameters to provide a balance between generation of fill-ins and the
amount of parallel work were suggested, and their effects were determined in
the simulated results.

The incompatible table required by the algorithm can be constructed in
time nz (number of nonzero elements of the matrix). Production of starting
sets for a given ULEVEL takes a constant time. For ULEVEL small and con-
stant compared to n, generation of ordered compatibles from starting sets is
of order n set intersection and differcnce operations. Assuming cfficient
implementation of the set operations is available, the heuristic algorithm has
a complexity bounded above by the sorting algorithm required in the pro-
gram. Thus, employing an efficient parallel sort program would improve the
total performance of the new algorithm. Nevertheless, our results show that
many compatible pivots are produced for parallel reduction of the sparse
matrices, and the process can be repcated until the matrix is almost com-
pletely reduced. In cases where the matrix is not completely reduced. the
remaining submatrix is of such a small size that parallel operations have little
eflect. Significant reduction in generation of fill-ins i1s obtained by varying
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the proposed parameters. Moreover, as the result of these paramecters, a
better balance between the number of compatible pivots generated at
different steps was achieved, while the reduction in parallel work proved to
be insignificant.
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Parallel Pivoting Strategies

Matrix [Step| Markowitz Sum Ored Marlowitz |No.of SPICE
NO.of| OP [NO.of [NO.of| OP |NO.of| Sets |Fill-in| %5
Pivots |Count |Fill-in | Pivots|Count |Fill-in Sparse
Differential | 1 6 23 ] 6 48 8 59
Pair
2 4 4 0 4 15 4 14
16 by 16 3 3 5 0 2 0 0 4
Nz 57
4 2 2 0 2 2 0 1
total 4 15 6 14 12 0 80.27
Cascaded 1 5 12 6 S 24 6 24
RTL
Inverter 2 B/ 8 4 4 9 4 4
12by12 | 3 2 | 2 0 2 1 0 1
Nz 34
total 3 11 10 11 10 0 79.88
ECL 1 & 39 16 8 80 16 122
Compatible
SCHMITT | 2 1 18 4 1 30 10 16
Trigger
3 2 8 0 2 10 4 6
18 by 18
Nz 66 4 2 S 0 2
total 4 16 20 14 30 6 20.05

TABLE 1.1
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Parallel Pivoting Strategies

Matrix [Step| Markowitz Sum Ored Markowitz |No.of SPICE
NO.of { OP [NO.of [NO.of| OP |NO.of | Sets |Fill-in| %
Pivots | Count [Fill-in |Pivots |Count |Fill-in Sparse
MOS 1 4 0 0 1 0 0 20
Memory
Cell 2 4 0 0 1 0 0 6
13by13 | 3 3 6 2 3 4 2 3
Nz 47
total 3 11 2 11 2 0 706.02
MOS ] 8 169 36 & 150 36 173
Amplifier
AC/DC | 2 5 | 117 4 5 64 4 12
3 3 0 0 3 0 0 5
24 by 24
Nz 154 4 3 0 0 3 0 0 4
3 2 13 0 2 9 0 3
total 5 21 10 21 40 10 | 73.76
MOS 1 8 178 40 & 156 40 149
Amplifier
Transient | 2 4 91 4 4 72 4 14
3 3 0 0 3 0 0 5
24 by 24
Nz 158 4 3 0 0 3 0 0 4
) 2 25 2 2 16 4 3
total ) 20 46 20 48 22 71.20
TABLE 1.1

Continued
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Fill-in Statistics

Matrix | Step | Set size | OP.Count | Fill-in
16by 16 | 1 6 23 6
Nz 57 5 14 2
4 5 0
2 4 4 0
3 3 5 0
: 4 2 2 0
12by12 | 1 5 12 8
Nz 34 4 ) 8 4
3 4 2
2 0 0
2 4 8 4
3 4 2
2 0 0
3 2 2 0
18by 18 [ 1 8 39 18
Nz 66 7 30 10
6 21 6
b 12 2
4 8 0
2 4 1& 4
3 9 2
2 0 0
3 2 & 0
4 2 5 0

TABLE 1.2
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Fill-in Statistics

Matrix | Step | Set size | OP.Count | Fill-in
13 by 13 1 4 0 0
Nz 47 2 4 0 0
3 3 6 2
2 2 0
24 by 24 1 8 169 36
Nz 154 7 120 24
6 &4 18
5 59 10
4 34 6
3 18 2
2 9 0
2 ) 117 4
4 68 0
3 3 0 0
4 3 0 0
) 2 13 0
24 by 24 | 1 8 178 40
Nz 158 7 129 28
6 93 20
5 GR 14
4 43 8
3 18 4
2 9 2
2 4 91 |
3 55 4
2 3 0
3 3 0 0
4 3 0 0
5 2 25 2

TABLE 1.2

Continued
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PARALLELISM vs. FILL-IN

Fill-in

Matrix | Step | Max | Reduced | MAX OP Yeduced Mrkowitz | SPICI
Size Size Count OP.Count Sum
16by 16 [ 1 6 5 23 14 2
Nz 57 2 5 1 13 4 0
3 4 3 6 2 0
4 2 2 0
total 4 14 2 6 0
12 by 12 1 5 4 12 8 4
Nz 34 2 4 3 & 4 2
3 3 2 6 2 0
4 2 2 0
total 4 11 6 10 0
18bv 18 | 1 8 7 39 30 10
Nz 66 2 6 5 206 17 6
3 3 2 11 ) 0
4 2 2 0
total 4 16 16 20 6

TABLE 1.3




34

PARALLELISM vs. FILL-IN

Matrix Step | Max | Reduced | MAX OP Reduced Fill-in | Markowitz | SPICI
Size Size Count. OP.Count Sum
13 by 13 )| 4 4 0 0 0
Nz 47 2 4 4 0 0 0
3 3 2 6 2 0
4 2 2 0
total 4 12 . 0 2 0
24 by 24 | 1 8 7 169 120 24
Nz 154 2 5 4 a3 57 2
3 3 3 0 0 0
1 3 3 0 0 0
d 2 2 0
6 2 2 0
total 6 21 26 10 10
24 by 24 1 & 7 178 129 28
Nz 158 2 b} 4 110 a1 4
3 3 3 0 0 0
3 3 3 0 0 0
a 3 2 22 13 4
6 2 2 0
total 6 21 36 16 22
TABLE 1.3

Continued
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DCOMP ICOMP
Matrix Step No.of oP. No.of No.of OP. No.of
Pivots Count Fili-in Pivots Count Fill-in

MOS 1 8 169 30 4 0 0

Amplifier 2 ) 117 4 7 54 18

AC/DC 3 3 0 0 5 54 4

4 3 0 0 3 0 0

24 by 24 5 2 13 0 2 10 0
Nz 154

Total 5 21 40 21 22

MOS 1 8 178 40 9 0 0

Amplifier 2 4 119 10 7 61 17

Transient 3 3 0 0 5 60 &

4 3 0 0 3 0 0

24 by 24 5 2 25 0 2 13 1
Nz 158

Total 5 20 50 21 26

&-Bit 1 72 449 150 72 449 150

Full Adder 2 25 258 86 25 247 76

3 16 99 0 16 99 0

4 11 110 12 11 110 20

144 by 144 D 6 75 22 6 7o 22

Nz 616 6 by 46 & 5 406 &

7 3 29 4 3 29 ]

& 2 10 0 2 10 0

i¢] 2 K 0 2 & 0

Total 9 142 282 142 280

Comparison of the Two Proposed Orderings

for ULEVEL=4.

TABLE 2.1
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DCOMP ICOMP

Matrix ULEVEL Avg. | Nowof | . Avg. .| No.of
Steps | p o | Rows | iy | Steps | 'p . | Rows | oo

24 by 24 2 5 | 4 20 | 44 | 5 | 42| 21 18
Nz 154 3 5 | 4 20 14| 5 | 42| o2 22
4 5 | 42| 2 0| 5 | 42| 2 22

5 5 | 49| 21 0] 6 | 36| 22 20

24 }))‘ 24 2 5 4 20 H0 5 4 20 20
Nz 158 3 5 | 4 20 0 | 5 | 42| o 26
4 5 | 4 20 so | 5 | 42| o 26

5 5 4 20 h0 5 4.2 21 20

52 by 52 5 5 | 9 45 | 128 | 6 | 78| 47 | 121
Nz 166 3 5 9 45 128 6 7.8 47 121
4 ) 9 45 128 (4] 7.7 40 137

5 6 | 78] 47 | 123 | 6 | 77| 46 | 137

144 by 144 2 9 [15.8 ] 142 | 282 9 |158 | 142 | 258
Nz 616 3 o 158 | 142 | 282 | & [176 | 111 | 264
4 o [158 | 142 | 282 | o |158 | 142 | 280

5 o 158 142 | 280 | o [i1s&| 142 | 280

78 by % 2 10 | 77 ] 77 | 198 | & | 93| 71 | 238
Nz 308 3 8 9.3 74 200 10 7.5 75 271
1 o | gal 76| 199 | o | 83| 75 | 2

5 10 | 7rd o] 200 ] o | s3] 75| 202

505 by 505 2 36 13.6 188 5802 40 12.3 493 5432
Nz H8&R9 3 37 13.2 490 5811 11 12.1 497 5564
4 34 14.3 485 5802 11 12 489 D83

5 38 13 195 HT8R5 306 13.4 481 56905

Comparison of DCOMP and ICOMP for Different levels

TABLIL 2.2
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