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'' SECTION I

INTRODUCTION

Existing snowmelt runoff models are used to make single—valued

estimates for a specified decision period. Such models are based on

the expected value theorem for statistical decisionmaking.. A single

valued estimate fails to provide a measure of the accuracy of an

estimate. While a computed standard error may be used to indicate the

accuracy, existing decisionmaking techniques that are based on the

expected value theorem do not provide a mechanism for altering the

decision based on the computed standard error. That is, existing

decisionmaking techniques are not sensitive to the accuracy of the

estimated value of snowmelt runoff. Models based on the expected

value theorem also fail to provide for inaccuracies in the input data,

especially the empirical coefficients that are specific to a particular

watershed. Because these coefficients cannot be estimated with

certainty for the specified decision period and may vary with time,

error in the estimated values of the coefficients will cause an error

in the output function, i.e., the runoff forecast. Incorrect

decisions may result from inaccuracies in the output function.

The snowtneIt-runoff model is a means of forecasting snowmelt run-

off volumes using a small number of variables. The model first

estimates the volume of snowmelt for each day of the forecast period

and then estimates the amount of melt water that will leave the water-

shed on each day by using a recession curve. This model has been

calibrated on a number of mountainous watersheds.



The depth of snowmelt for any day is estimated in the model by

multiplying the number of degrees above freezing by a degree-day

factor to obtain a depth measurement. This depth is converted into

volume by multiplying the depth estimate by the area of the snowpack.

The volume of precipitation for the day is then added in to get an

estimate of the total amount of water available for runoff. This water

is assumed to leave the watershed at a decaying rate. The model for

predicting the snowmelt runoff on day n+1 is given by:

Cn[an'ViTn'VPnJ <§t

ia which Q is the average daily discharge (m /S) ; C is the runoff

coefficient; a is the degree-day factor (cm-°C~ d~ ) indicating, the

snowmelt depth resulting from 1 degree-day; T is the number of degree-

days (°Od); AT = the adjustment by temperature lapse rate necessary

because of the altitude difference between the temperature station and.

the average hypsometric elevation of the basin or zone; S is the ratio

of the snow-covered area to the total area; P is the precipitation
2

contributing to runoff (cm) ; A is the area of the basin or zone (m ) ;

0 — 1 "\
0.01/86400 is a conversion from CM-m -d to m /S; k is the recession

coefficient indicating the decline of discharge in a period without

snowmelt or rainfall; and n ,is the notation indicating the day for which"

the- value is given. The important parameters of the model that must be

calibrated for any specific basin are the degree-day factor, the recession

constant, and a runoff coefficient that is included to account for

losses due to infiltration and evapotranspiration. Additionally, the

value of AT must be considered as a variable because its value is not

known exactly; it is based on an extrapolation and a mean zonal

hypsometric elevation.
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Project Objective

The goal of this project is to develop a stochastic form of

the snowmelt runoff model that can be used for probabilistic decision-

making. The use of probabilistic streamflow predictions instead of

single-valued deterministic predictions should lead to greater

accuracy in decisions. While the accuracy of the output function

is important in decisionmaking, it is also important to understand

the relative importance of the coefficients. Therefore, a sensitivity

analysis will be made for each of the coefficients.



SECTION II

LITERATURE REVIEW

Many different models have been developed and used for

predicting snowmelt runoff (Leaf, 1977; Baker and Carder,

1977; Zuzel and Cox, 1978). These models vary considerably

in complexity; the simplest models are based solely on sta-

tistical techniques, while the most complex methods attempt

to model the individual processes involved in the melting of

a snowpack. Some models are designed to predict streamflow

for any given day or series of days, (Leaf, 1977; Martinec,

1975; Tangborn, 1977) while other models give only seasonal

predictions (Zuzel and Cox, 1978). Generally, snowmelt models

may be categorized on the basis of complexity and length of

forecast period-

Empirical models are based on statistical correlations

between predictor variables and the criterion variable, volume

of snowmelt runoff. This type of model is most often used for

seasonal predictions. Snow water equivalent measurements, pre-?

vious runoff volumes, and precipitation totals are the most,

common predictor variables (SCS, 1970; USAGE, 1956). Theory

is not very important in formulating empirical models; the ob-

jective is- to explain as much of the variation in the criterion

values as possible using whatever data are available. It is

quite common for these models to include two predictors express-

ed in different units, such as snow water equivalent (in inches)



and previous winter runoff (in volumetric units).

Water balance models are more conceptual than the simple

empirical models. The water balance is an accounting of all

the water entering and leaving the basin. The volume of water

stored in. the snowpack is estimated from precipitation or water

equivalent data; allowances are made for losses due to evapora-

tion^ groundwater storage, and transpiration; the remaining volume

is the seasonal snowmelt runoff prediction (Zuzel and Cox, 1978).

Loss rates may be estimated either empirically or conceptually,

as may the snowpack storage. Most water balance models are some-

what empirical.

Short-term runoff predictions usually require models of great-

er complexity than the models used for seasonal runoff. Not- only

must the, total volume of water stored in the snowpack be estimat-

ed, but also the proportion of that volume that will melt and

leave the watershed as streamflow in a given time period must

be estimated. The amount of water generated by melting snow

is a function of the energy available for this purpose. There-

fore, the most complex snowmelt models are generally based on an

energy balance (Zuzel and Cox, 1978).

Energy balance procedures attempt to model the physical pro-

cesses involved in snowmelt runoff. The amount of available energy

is commonly estimated by the air temperature, although some models

include such factors as inc.oming solar radiation, cloud cover,

albedo, and net long-wave radiation (Anderson, 1976). These

models often require that the watershed be subdivided into small,



homogeneous areas so that the available energy for each location

can be estimated more accurately (Leaf, 1977). Since snowmelt

models are generally used in mountainous areas, slope and aspect

can result in large differences in incident energy from one area

to another. Evaporation, transpiration and groundwater losses

are also estimated conceptually in some energy budget models

(Leaf, 1977).

Model Selection

To test the study objectives, models having significant dif

ferences in important characteristics had to be selected. Cri-

teria for model selection include the frequency of current usage

input data requirements and whether or not these data are typi-

cally available, the degree of model complexity, and the length

of forecast period. Additionally, because snow covered area

(SCA) is more readily available than in previous decades, models

that either included SCA or were capable of being modified to

include it were given more consideration.

Three models were selected for comparison, with several

methods of evaluation for each model. The model types studied

were the regression model, the Tangborn model, and the Yartinec

model.

The Regression Models

The most common form of empirical model is the linear re-

gression. These models are widely used for snowmelt runoff pre-

dictions in the western U.S. (USAGE, 1956; SCS, 1970). They are



easily calibrated and can use many different hydrologic vari-

ables as predictor variables. These models are used for mak-

ing seasonal runoff forecasts, but due to the empirical nature

of the method, they may also be used to give predictions for

shorter time periods.

Linear regression models are based on the assumption that

there is a linear relationship between the predictor variables

and the criterion variable. This assumption implies that as

the value of the predictor variable increases, the value of

the criterion variable changes at a constant rate. The equa-

tion that relates the value of the criterion to the value of

the predictor is of the form:

Y = a + bX (2-1)

in v/hich 1 is the criterion variable, X is the predictor vari-

able, and a and b are the regression coefficients (Miller and

Freund, 1977).

Many hydrologic variables have approximately linear rela-

tionships with the volume of snowmelt runoff. A few of these

variables are snow water equivalent, winter precipitation, and

snow covered area. The linearity of the relationships is due

to the fact that these variables are indicators of the volume

of water stored in the snowpack. Because the relationships

between these predictor variables and the volume of runoff

are only approximately linear, many different lines may be

drawn which appear to fit the data. Some of the lines pass
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through a number of the data points, but due to deviations

from linearity, a straight line that will pass through all

of the data points can not be drawn.

The method of selecting the best regression line for a

set of data points is based on minimizing the sum of squares

of the errors. For each observed value of the predictor, two

values of the 'criterion variable appear; the first is the cor-

responding observed value and the second is the value predict-

ed by the regression equation. The difference between these

two values is termed the error of prediction. The regression

line is defined as the line that results in the minimum value

of the sum of the squares of the errors. The coefficients of

the regression line can be derived using the. equations:

b = ZXY - ClXZYVn (2_2)
IX2 - (ZX)2/2

and

a = (ZY)/n - b(EX)/n (2-3)

in which X and Y are the predictor and criterion variables,

respectively, and n is the number of observations (Hays, 1965).

By using these equations, the line of best fit can be determined.

In natural systems the value of the criterion variable is

often a function of more than one predictor. The relationships

between the criterion variable and the predictors may be assumed

to be linear, resulting in a prediction equation of the form-:
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Y = a + I b.X. (2-*f)

1=1 1 x

in which Y is the criterion variable, X. is the i predictor

variable, and a and b. are the regression coefficients. Models

of this type are called multiple linear regressions. The re-

gression coefficients are unique and may be calculated from

equations similar to Eqs. 2-2 and 2-3- In many cases, the in-

clusion of more than one predictor variable results in a more

accurate model (Davis, 1973).

The Tangborn Model

The Tangborn equation is a water balance model (Tangborn

and Rasmussen, 1976). The structure of the model was establish-

ed conceptually, but calibration is accomplished using regression

methods. The model may be used for any length of forecast period

from one day to the entire snowmelt season. The only data re-

quired are daily precipitation and runoff values, although daily

temperature may be included for short forecast periods.

The basic form of the model is:

R* = a Pw + b - Rw (2-5)

in which R* is the predicted runoff volume, PW is the total

depth of precipitation observed during the preceding winter,

R is the winter runoff, and a and b are regression coefficients.

The structure of the model is based on the assumption that the"

volume of water stored on the watershed is equal to the amount

of winter precipitation minus the winter runoff. The regression
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coefficients represent losses and modifications such as trans-
t»

piration, groundwater storage, and evaporation.

An important feature of the Tangborn model is the test

season modification. In using this method, a short test season

prediction model with the structure of Eq. 2-5 is developed.

At the end of the test season, the error of the test season

prediction is evaluated and used to modify the prediction for

the forecast season. The form of the forecast model becomes:

R** = R* - cet = a(Pw+Pt) + b - (Rv+Rt) - cet (2-6)

** *
in which BQ is the revised runoff prediction; R_ is the original

3 S

prediction; PW and P^ are the winter and test season precipita-

tion, respectively; R,. and R. are the winter and test season run-
W u

off volumes, respectively; a, b, and c are coefficients; and e.

is the error of the test season prediction. The reasoning be-

hind this modification is that the test season error is a result

of the inaccuracy of estimating basin storage by subtracting

winter runoff from winter precipitation. Because the forecast

season prediction is based on the same estimate, the test season

error should be related to the prediction season error.

Figure 1 shows the relationship of the various seasons. In

order to use the test season approach, data from the present and

a number of previous years are compiled. For-each year, precipi-

tation and runoff totals are computed for the winter and test

seasons; runoff totals are also computed for the prediction

season of each year, except for the current year (the value for
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October 1
Start of Winter Season

March 30
Start of 2-day Test Season
April 1
Start of Prediction Season

July 30
End of Prediction Season

FIGURE 1. Relationship of the Winter, Test, and Prediction Seasons
for the Tangbom Model ~-
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the current year is not yet known). Note that the prediction

date, April 1, is at the end of the test season; therefore,

observed values of runoff and precipitation during the test

season are available for the current year. Once all the data

has been obtained, the observed test season runoff volumes are

regressed onto the winter precipitation values, resulting in a

calibrated equation of the form:

Rt = a Pw + b - Rw (2'7)

$
in which R. is the predicted test season runoff. The test season

U

error in each year is then computed by the equation:

et = Rt - Rt (2-8)

Next, a model for estimating the prediction season runoff is form-

ed by regressing the prediction season runoff on the sum of the

winter and test season precipitation depths for each of the pre-

vious years:

Rs = a(Pw+Pt} + b " (Rw
+Rt) (2'9)

The errors are then calculated in a manner similar to that used

for the test season:

es = R* - Rs (2-10)

in which e is the prediction season error. The coefficient of
O

the test season error, c in Eq. (2-6), can then be determined.
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The coefficient is computed using the test season and predic-

tion season errors from previous years, according to the equa-

tion:

E(ef*e )
c = - * I (2-11)

Ket)
2

The original runoff season prediction, R ,, which was calcu-
5

lated for the current year in Eq. (2-9), is adjusted by the pro-

duct of c and the current year test season error; the final pre-

diction is:

C = Rs - cet = a(w + b - (vv - cet (2

in which R is the final prediction.s
When using the Tangborn model for prediction periods of a

few days, accuracy may be increased by including temperature in

the model (Tangborn, 1978). Tangborn suggested the following

composite temperature variable, A. :
w

At = of + (l-a)AT (2-13)

in which T is the daily mean temperature , AT is the daily range of

temperature, and a is a coefficient. The daily mean temperature

is computed from the observed maximum and minimum temperatures

for the day; the range of temperature is the difference between

the maximum and minimum observed values. The reasoning behind

this equation is that the average daily mean temperature is an



estimator of the amount of convective energy available for

melting snow, and that the difference between maximum and mini-

mum temperatures can be used to estimate the amount of radiant

energy available for this purpose. Large differences between

the daily maximum and minimum are indicative of clear skies,

while a small daily range of temperature indicates cloud cover

and, therefore, less radiant energy. The relative importance

of the two components (radiative and convective) is controlled

by the coefficient a. When the temperature tern is included

in the Tangborn model, the equation becomes:

R*** = a(Pw+Pt) + b - (V-Rt) - cet - e* (2-lV)
s

in which e is. the prediction season error estimated from the
5

temperature function, and R is the revised runoff prediction.

The value of the prediction season error is estimated from the

temperature function A using the equation:

e* = dAt + e (2-15)s **

in which d and e are coefficients determined by regression.

Tangborn reports a minimum reduction in standard error of

estimate of nine percent due to inclusion of this tempera-

ture term (Tangborn, 1978).

The Martinec Model

The Martinec model is conceptually derived and may be

used for prediction periods of one day or longer (Martinec ,1975)



The amount of energy available for anowmelt runoff is estimated

by a daily temperature index. Data requirements include daily

temperature, precipitation, and snow covered area. The form of

the model is:

Q* = c(dTSCA+P) A(l-K) + KQn_1 (2-16)

in which Q* is the predicted volume of runoff for day n, c is a

dimensionless runoff coefficient, d is a degree-day factor, T is

the value of the daily temperature index on day n, A is the total

area of the watershed, SCA is the percentage of the area that is

covered by snow on day n, K is a dimensionless recession coeffi-

cient, and Qni is the volume of runoff observed on the previous

day. The value of the daily temperature index is computed using

hourly data if available; otherwise, the daily maximum and minimum

temperatures are used. The daily index is a measure of the average

number of degrees above freezing for the temperature on that day.

The values are expressed in degree-days celsius.

The first term of Eq. (2-16) represents the amount of water

that is generated by precipitation and melting snow on day n and

that is expected to leave the watershed on that day. The value of

the degree-day factor, d, is expressed in inches of water per degree

Celsium; therefore, when the temperature index is multiplied by this

factor, an estimate of the depth of water generated by snowmelt is

obtained. This depth is multiplied by the total area of the water-
i

shed, A, and by the percentage of the total area that is covered by

snow (SCA) to get an estimate of the volume of water produced by

melting snow on day n. The precipitation, P, is assumed to be a

constant depth over the entire watershed; therefore, the product
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of P and A is an estimate of the volume of rainfall on day n.

The sum of the volume of melted snow and the volume of precipi-

tation is referred to as the generated runoff.

Not all of the generated runoff leaves the watershed on

the day of generation. Some is lost to groundwater storage

and evapotranspiration; this proportion is represented by c,

the runoff coefficient. Furthermore, on large watersheds the

outlet of the basin is quite a distance from the source of much

of the generated melt; therefore, much of the water is in transit
(

to the outlet for several days. The proportion of water that

does not reach the outlet on the day that it is generated is

represented by K, the recession coefficient. Thus, only the

proportion (1-K) of the runoff generated on day n actually reach-

es the outlet on day n.

The second term in the equation, K-Q -, , is called the re-

cession term. It represents the amount of water generated on pre-

vious days that is expected to appear as runoff on day n. Be-

cause K is nearly equal to 1 on large watersheds, this recession

term is often considerably larger than the generated runoff term.

The Snowmelt Runoff Model

The snowmelt-runoff model is an advanced form of the Martinec

model. Both models can be used to forecast daily streamflow in

basins where snowmelt is a primary contribution to the total

runoff. The snowmelt-runoff model is designed to be used with

remotely sensed estimates of snow covered area, as well as tempera-

ture and precipitation data. The User's Manual (Martinec, et al.,

1983) provides information on the computer program, the required

input, and the application of the model.
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SECTION III

SENSITIVITY ANALYSIS OF THE SNOWMELT-RUNOFF MODEL

Hydrologic modeling is a procedure in which one or more of the

phases of the hydrologic cycle are represented by a simplified system.

Although the physical principles underlying the specific hydrologic

processes should be considered in formulating a model structure, the

final design invariably is only an approximation of the processes being

modeled. In spite of the approximations involved, models can often

provide insight into those parts of the physical process in which

knowledge of the underlying principles is deficient.

In addition to being familiar with the physical principles being
\

modeled, the designer must also be familiar with modeling tools that

aid in formulating, calibrating, and verifying conceptual representa-

tions of the unknown parts of the physical processes. Sensitivity

analysis is a modeling tool that, if properly used, can provide a model

designer with a better understanding of the correspondence between the

model and the physical processes being modeled. Sensitivity of model

components and parameters is potentially useful in the formation,

calibration, and verification of a hydrologic model. However, in the

past the use of sensitivity has been limited to the determination of an

optimal set of model parameters and identifying the effect of variability

in a parameter on the optimal solution. Parameter optimization tech-

niques categorized as gradient climbing procedures use estimates of

parameter sensitivity to derive an optimal set of model parameters.
,•

In post-optimization analysis, sensitivity has frequently been used as

a means of ranking the variables in order of relative importance.
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MATHEMATICAL FOUNDATIONS OF SENSITIVITY

Definition

Sensitivity is the rate of change in one factor with respect to

change in another factor. Although such a definition is vague in

terms of the factors involved it nevertheless implies a quotient of

two differentials. Stressing the nebulosity of the definition is

important because, in practice, the sensitivity of model parameters

is rarely recognized as a special case of the concept of sensitivity.

The failure to recognize the generality of sensitivity has been

partially responsible for the limited use of sensitivity as a tool for

the design and analysis of hydrologic models.

The Sensitivity Equation

The general definition of sensitivity can be expressed in

mathematical form by considering a Taylor series expansion of the

explicit function:

0 = f(Fr F2 ..... Fn) (III-l)

The change in factor 0 resulting from change in a factor F. is given.

by:
3O_ - 3 O

f(F.+AF.. F

in which OQ is the value of O at some specified level of each F .

If the nonlinear terms are small in comparison with the linear terms,

Eq. III-2 reduces to:

.. F , =, I , y . I ~~ V^ -. r^ *J •*• •

J|j7*i' 0 T 3F± i
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Thus:

Equation III-4 is referred to herein as the linearized sensitivity

equation. It measures thechange in factor O that results from change

in factor F.. The linearized sensitivity equation can be extended to

the case where more than one parameter is changed simultaneously. The

general definition of sensitivity is derived from Eq. III-l and III-4:

S=30Q/3Fi=[f (F^

Computational Methods

The general definition of sensitivity which is expressed in

mathematical form by Eq. III-5 suggests two methods of computation.

The left-hand side of Eq. III-5 suggests that the sensitivity of O

to changes in factor F. can be estimated by differentiating the explicit

relationship of Eq. 1 with respect to factor F.:

S =30 /3F. (III-6)
o i

Analytical differentiation has not been used extensively for analyzing

hydrologic models because the mathematical framework of sensitivity

'has not been sufficiently developed. It will be used even less.

frequently as hydrologic models become more complex.

The method of factor perturbation, which is the second computa-

tional method suggested by Eq. III-5, is the more commonly used method

in hydrologic analysis. The right-hand side of Eq. III-5 indicates

that the sensitivity of O to change in F can be derived by incrementing

F. and computing the resulting change in the solution O. The sensi-

tivity is the ratio of the two differentials and can be expressed in

finite difference form:
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S=A00/AF.. = [f (Fi+AF±, FJ j jV±) -f (?1 , F., ..... F^ ]/AFi (IH-7)

However, use of the method of parameter perturbation is often imprac-

tical for a complete sensitivity analysis of multiparameter systems

because of the extensive computational effort required for complex

models. It is used when analytical analysis of the sensitivity is

not possible.

Parametric and Component^Sensitivity

A simplified system or a component of a more complex system is

described by three functions: the input function, the output function
«

and the system response function. The response function is the

function that transforms the input function into the output function

and is often defined by a distribution function which depends on one

or more parameters. In thepast, sensitivity analyses of models have

been limited to measuring the effect of parametric variations on the

output. Such analyses focus on the output and response functions.
I

Using the form of Eq. III-5 parametric sensitivity can be mathematically

expressed as:

f (P.+AP ,P , , ) -f (P P ..... P )
-12- = - i - i - LUfi - 1 - i - n_ (Ul-8)

where O represents the output function and P. is the parameter under

consideration.

Unfortunately, the general concept of sensitivity has been over-

shadowed by parametric sensitivity. As models have become more complex

the derivation of parametric sensitivity estimates have become

increasingly more difficult and, most often, impossible, to compute.

However, by considering the input and output functions the general



21

definition of sensitivity, Eq. III-5, can be used to derive another

form of sensitivity. Component sensitivity measures the effect of

variation in the input function I on the output function:

s = 12 = AO (IH-9)SC 31 AI . UII-9)

Combining component and parameter sensitivity functions makes

it feasible to estimate the sensitivity of parameters of complex models

For example, in the simplified two component model of Fig. III-l, the

sensitivity of Y to variation in P. and the sensitivity of Z to

variation in ?2 are readily computed using sensitivity as defined by

Eq. III-6:

and s = 3Z/3P (m-io)

However, the sensitivity of the output from component 2 to change in

the parameter of component 1 cannot always be estimated directly from
j

the differential 3Z/3P... In such cases, the component sensitivity

function of component 2 can be used with the parametric sensitivity

function S- to estimate the sensitivity of Z to change in P, .

Specifically, the sensitivity of 3Z/3P.. equals the product of the

•component sensitivity function 3Z/3Y and the parametric sensitivity

function 3Y/3P,:

= (3Z/3Y) - OY/SP. (111-11)

Whereas the differentials 3Z/3Y and 3Y/3P1 are often easily derived,

an explicit sensitivity function 3Z/3P.. can be computed only for very

simple models. When a solution cannot be obtained analytically, then

the numerical method of Eq. III-7 must be used.
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HComponent II component 2

FIGURE III-l. Sensitivity Analysis of Two-Component Model
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Absolute and Relative Sensitivity

Sensitivity can be expressed in two forms: absolute and relative.

The form in which sensitivity values are presented depends on the

intended use. Sensitivity values computed with the definition of

Eq. III-5 are in absolute form. Such a definition is inappropriate

for the comparison of sensitivity values because values computed

using Eq. III-5 are not invariant to the magnitude of either factor

O or F.. Dividing the numerator of Eq. III-5 by OQ and the denominator

by F. provides an estimate of the relative change in O with respect

to a relative change in F. :

30/0 F
Rs = 11 i o

Parametric Sensitivity in the Optimization Process

Parametric sensitivity is a vital part of all calibration

strategies. It is used in analytical optimization when the derivatives

of the objective function with respect to the unknowns are taken.

For example, the principle of least squares computes the derivative

of the sum of the squares of the errors with respect to each of the

regression coefficients. In Lagrangian optimization, it is also

necessary to take derivatives with respect to coefficients in the

constraint ( s) .

In addition to analytical optimization, sensitivity analysis

plays a central role in numerical optimization. A set of parametric

sensitivity coefficients defined by Eq. III-5 represents the gradient

of the output function. The parametric response surface defined by.

the output function of multiparameter hydrologic models invariably
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contains a considerable number of stationary points (points at which

the gradient is zero). Thus, the gradient techniques which are useful

for locating a stationary point in a localized region are mathematically

insufficient for locating a global optimum. Selecting the global

optimum from among the many stationary points requires a more complete

optimization strategy. However, parametric sensitivity will be a

vital component of any strategy selected for numerical optimization.

Systematic optimization techniques based on the gradient of the

output function in the parametric hyperspace are rarely used with

complex simulation models. Use of such techniques are limited by the

inability to efficiently estimate the sensitivity of many parameters.

For models involving as few as five parameters that require evaluation,

the method of parameter perturbation requires a considerable amount

of computer time to evaluate the sensitivity of each parameter.

Component sensitivity may, in the future, demonstrate the efficiency

of the direct method of differentiation (Eq. III-6) for estimating,

the optimal values of unknown parameters.

Stability of the Optimum Solution

A sensitivity plot is a graphical comparison of the percent change

in output and the percent change in a parameter value. The change in

the value of an objective function is often used to represent the

change in output. The sensitivity plot can be used to examine the

stability of a parameter of the optimum solution. Derivation of the

sensitivity plot has traditionally involved an iterative procedure

in which the percentage change in the value of the objective function

or output is computed for different percentage changes in a parameter

value. For multi-parameter models the required computer time Is often
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excessive. The direct method of differentiation (Eq. III-6) is an

alternate means of examining optimum solution stability having the

advantage of requiring significantly less computer time.

The sensitivity function approach is strictly valid only when

the nonlinear terms of Eq. III-2 are insignificant. However, even

for large changes in a parameter value the sensitivity function

approach provides a reliable qualitative indication of the stability

of the optimum solution. Furthermore, the sensitivity function

approach requires considerably less computational effort than ;the

derivation of a sensitivity plot.

Sensitivity of Initial Value Estimate

An estimate of the initial state of the system is often necessary.

For example, simulation models involving storage of water in snow

pack or soil zones require estimates of the initial water content of

each storage component. Also, models for estimating watershed reten

tion rates often require an estimate of the initial rate. If such

models are to be used for design purposes, then it is desirable to

estimate the effect of error in initial value estimates- on the

.design variables. A sensitivity analysis of a proposed initial estimate

can be used to estimate the effect of error in initial estimates on
«j

the computed output.

The method of parameter perturbation is usually used to measure

the effect of error in initial value estimates. However, the
/

differential approach to estimating sensitivity requires considerably

less computational effort than the perturbation technique, especially

for complex models.
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Sensitivity: and Data Error_Analvsis

Data used for model verification or for estimating values of model

parameters invariably contain error. The magnitude of distribution

of error often cannot be evaluated. For example, air speed is often

included in evaporation models as a measure of air instability. But

whether or not air speed measurements quantitatively measure the

effect of air instability on evaporation rates is difficult to assess.

However, the effects of data error from other sources can be

quantitatively evaluated. For example, instrument specifications'

supplied by manufacturers can be used to estimate the potential error

in an observed measurement due to the inaccuracy of the recording

instrument. Reproducibility is a measure of how well different

testers can estimate the value of a property with the same input

information and procedure. The lack of reproducibility is a measure

of random error. Sensitivity and error analyses are a means of

examining the effect of the lack of reproducibility on a hydrologic

design variable.

An error analysis can be made using the linearized sensitivity

equation of Eq. III-4. In this case, the derivative 30Q/8F. is the

sensitivity of O with respect to F., AF. is the error in F., and

AOg is the error in OQ that results from AF.. One convenient method

is to use the standard error of a factor as the error variation AF..

Thus, Eq. III-4 becomes:

AOQ = (300/3F,.)Sei (111-13)

in which S . is the standard error of F.. If Eq. 111-13 is computed

for each factor, then the values of AO_ for each factor can be computed
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and compared. For example, if S . were the standard errors of the

measurement error, then the computed value of AO for each F. would

indicate the relative importance of the measurement error in the

prediction of the output O.

Limitations of Sensitivity Analysis

Sensitivity analysis was shown to be a useful tool for all

phases of modeling (formulation, calibration and verification), as

well as part of an error analysis for decisionmaking. However, it

has some limitations^ First, sensitivity analysis is usually applied

using the linear sensitivity equation (Eq. III-4); however, the

linear form is valid only over a limited range of the variable in.

the denominator. Since most hydrologic models are nonlinear, including

the snowmelt-runoff model, the sensitivity changes as the value of

each parameter changes. In most applications, sensitivity coefficients

are usually computed using the means of the variables as a base point.

However, the sensitivity at the extreme values of the physical

conditions may also be of primary interest.

The univariate nature of sensitivity is a second limitation.

In general, sensitivity functions are derived while hodling the values

of the other variables constant at some base point value. Similarly,

for the error analysis the reproducibility errors represent the

"independent" effects of the input variables. That is, the repro-

ducibility errors assume error only in the single variable of interest.

An underlying assumption is that there is no interaction between the

variables. This is usually not true. Also, we cannot assume that

any user on one design will-make an error on only one variable.
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However, because of the interaction between variables one cannot just

simply add the reproducibility errors. For example, even if a user

made an error of one standard error in each of the variables, the

net affect would not be the sum of the reproducibility errors.

Thus, the univariate nature of sensitivity is a limiting factor for

large errors or deviations in the variables.

The third, and probably the most important, limitation of

sensitivity analysis is that it provides only a single-valued

indication of the effect on the criterion or dependent variable.

Ideally, one would like to have some idea of the distribution of the

design variable. One could approximate this by using the linearized

sensitivity equation with the distribution of the error or variation

of the indpendent or input variable, but this approach is limited in

usefulness because of the first two limitations, i.e., linearity and

univariate. A method that circumvents the limitations of sensitivity

analysis would be an improvement for many analyses of design methods.

This does not imply that senitivity is not of value, only that advanced

forms of sensitivity analysis are needed. The linear, univariate

form of sensitivity analysis will still be of value for analyses

described previously especially for analytical and numerical optimization.

APPLICATION OF SENSITIVITY ANALYSIS TO THE SNOWMELT-RUNOFF MODEL

The general structure of the snowmelt-runoff model is given by:

in which Q is the average daily discharge (m /S) ; C is the runoff
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coefficient expressing the losses as a ratio (runoff/precipitation);

a is the degree-day factor (CM/°Cd) indicating the snowmelt depth

resulting from 1-degree-day; T is the number of degree-days (°C-d);

AT is the adjustment by temperature lapse rate necessary because of

the altitude difference between the temperature station and the

average hypsometric elevation of the basin or zone;.S is the ratio

of the snow covered area to the total area; P is the precipitation
2

contributing to runoff (CM); A is the area of the basin or zone (M );

k is the recession coefficient indicating the decline of discharge

in a period without snowmelt or rainfall (i.e., k = Q ,,/Q ); n is then+i n

sequence of days during the discharge computation period; and
9 -l

0.01/86400 is a conversion from CM-M /d to M /S. Eq. 111-14 assumes

that there is a single watershed unit; for watersheds with nonhomogeneity

of runoff, rainfall, or temperature characteristics, the watershed

should be subdivided into homogeneous subareas. When the watershed is

subdivided, Eq. 111-14 must be modified to reflect the subdivision.

This requires repeating the first term of the right-hand side of

Eq. 111-14 for. each subarea.

The model of Eq. 111-14 contains eight quantities. The drainage

area is constant for a watershed or subwatershed. Time-varying input

variables include T, S, and P; these will vary daily. The remaining

four quantities (a, C, AT, and k) may vary on a daily basis; however,

they are not directly measureable, and so without additional input,

they would probably be considered as constants for a given snowmelt

season. The assumption that these quantities (i.e., c, a, k, and AT)

are constant will introduce an error, which can be assessed using a

sensitivity analysis. Rewriting Eq. 111-14 yields:
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Qn+l =[C a Sn
(

The subscripts for C, a, AT, and k were dropped to indicate that they

are assumed to be constant. The derivatives of Eq. 111-15 with

respect to the four constants are:

3Q
Sn(Tn+AT)

C a Sn

= Qn - ' & u O * tC a Sn(T+AT)+CPn] (111-19)

An error analysis can be performed by multiplying the derivatives of

Eqs. 111-16 to 111-19 by the error of the corresponding variable

(see Eq. III-4) . The error in Q -, which can be denoted as AQ ^'

is a function of the daily values of S, T, and P, and for computing

the error with respect to k it would also be a function of Q .

To illustrate the use of Eqs. 111-16 to 111-19, consider the

following values for an 8.9 sq. km. subwatershed: C=0.95, a=0.45,

k=0.87, S=0.8, T=1.15, AT=0.65, P=0.21, and Q =0.453. Eq. 111-14

yields a predicted runoff rate of 0.503 M3/S. Eqs. 111-16 to 111-19

yield the following derivatives: 3Qn+1/3C=0.297, 3Q + /3a=0.183,

3Qn+1/3AT=0.0458, and 3Qn+1/3k=-0. 3866 . These values cannot be

compared to measure the relative importance of the four quantities

(C, a, AT. and k) .
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In order to use the derivatives as part of an error analysis,

values of the change in C, a, AT, and k must be estimated. Based on

the data for the Dischma watershed given in the Snowmelt-Runof f Model

User's Manual the following errors were estimated: AC=0.025,

Aa=0.05, A (AT) =0.01, and Ak=0.15. The errors in Q +1 that would

result from these errors can be estimated using Eq. III-4:

• AC = 0.297(0.025) = 0.007 (111-20)

3Qn.,
AQ Al = . X • Aa = 0.183(0.05) = 0.009 (111-21)- 3a

3Q
• A(AT) = 0.0458(0.01) = 0.0005 (111-22)

3Q
AQn+1 = a"*-" • Ak = -0.3866(0.15) = -0.058 (111-23)

A comparison of the values of Eqs. 111-20 to 111-23 indicate that

the largest error for this data and watershed would occur because of

imprecision in k, with the error due to AT being insignificant.

Obviously, the effect of error in the variables would be different for

other values of any of the inputs (i.e., C, a, AT, k, T, S, P) .

While Eqs. 111-20 to 111-23 provide a measure of the effect of

errors, the derivatives can be used to compute the relative sensitivity

(Eq. 111-12) . For the data of the error analysis, the relative

sensitivities of C, a, AT, and k are:
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RC = ' = ° - 2 9 7 ( ) = °'561

8Q

=°-059

= -°-669n+1

The values of Eqs. 111-24 to 111-27 are dimensionless and indicate

that K and C are the most important variables, with a being only

moderately important and AT have very low importance.
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SECTION IV

PROBABILISTIC MODELING

Probabilistic modeling is an extension of sensitivity analysis

with the following important distinctions: 1) it is not limited to

the univariate form, 2) it allows for the interaction of the input

variables, and 3) it provides the distribution of the design variable

(i.e., dependent or criterion variable) and not just a. single-valued

measure of the dispersion of the design variable. Of course, there

is a price to pay for the additional information. First, we must

know the distributions of the input.variables, and second, the compu-

tational requirement for a probabilistic analysis is much greater

than that required for a linear, univariate sensitivity analysis.

A probabilistic analysis is based on an iterative analysis of the

design model for a sufficient number of conditions that defines the

distribution of the design variable. While a numerical analysis of

sensitivity requires two iterations of the design model in order to

define the sensitivity by Eq. III-7, the probabilistic approach involves

numerous solutions of the design model. While the sensitivity analysis

of Eq. III-7 is univariate, with each variable being perturbed

independently of the others, probabilistic analysis uses a simultaneous

perturbation of all of the design variables. While the sensitivity

analysis requires only a measure of the dispersion or error variation

of the input variables, a probabilistic analysis requires knowledge

of the entire distribution function of the input variables.
K

Actually, probabilistic analysis is quite simple. Given the

distribution functions of the input variables, values of the input

variables are generated using values of random variables having the
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distribution functions and used to compute a single value of the design

variable. This process is repeated until a sufficient number of values

of the design variables has been generated to define the distribution

function of the design variable.

A simple computational example can be used to illustrate the

methodology. Let's assume a design process consists of two input

variables, X, and X-, which are both normally distributed. The

variable X, has a mean and standard deviation of 5 and 1, respectively.

Given that both have a. normal distribution, values of X., and X_

can be generated using a random normal number generator with the

appropriate statistics. A sample of 25 was generated for each of the

input variables (see Table IV-1). The value of a design variable Y

is related to X. and X2 by

Y = 7.0 + 0.6X1 + 1.6X2 (IV-1)

The 25 values of Y generated with Eq. IV-1 are also given in Table

IV-1. It is known from theory that the sum of m independent random

variables, each normally distributed, is also normally distributed

for a linear combination. Thus, since Eq. IV-1 is a linear equation

and X. and X2 are normally distributed, then Y must also be normally

distributed. It can also be shown from theory that the mean and

variance of Y are sums of the linear combinations of the input

variables X.. and X2. However, the important point here is that we

used randomly generated values of the input variables to generate the

values of the design variable, from which an estimate of the underlying

distribution of Y was determined. In the example used, the true
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TABLE IV-1. Generated Values of a Design Variable (Y) as a
Function of Two Input Variables (X1 and X,,)

i
1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Xl

5.080

1.874

2.574

4.796

2.726

0.830

-0.736

3.122

1.932

3.508

2.640

2.618

3.322

2.754

2.570

5.506

2.708

0.414

2.468

-0.638

4.338

4.620

0.608*

4.422

2.264

X2

4 . 889

4.884

5.948

4 . 309

5.952

3.422

5.077

3.7/10

3.270

5.421

>.70.»

5.705

4 . 950

4.740

4.8/12

5.321

5.285

4.444

5.920

5.245

4 . 239

5.461

3.740

(> . 24 1

2.892

^

17.870

15.939

IS. Obi

10.772

18.159

12.973

! 5. (>•! 2

\ 1.857

1 3 . 39 1

17.778

1 1.1.07

17.099

10.923

10.2>0

10 . 289

18.817

17.081

14.359

17.953

15.009

10.385

18.510

13.358

19.039

12.980
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distribution could have been derived from theory only because the

input variables had a normal distribution and Eq. IV-1 defines Y to

be a linear combination of X, and X?. In practice, the input variables

are frequently non-normal and the relationships between Y and the

input variables are not linear. In that case, it would be impossible

to derive the distribution of the design variable Y from theory.

PROBABILISTIC ANALYSIS OF SNOWMELT-RUNOFF MODEL

The sensitivity analysis indicated that errors in the coefficients

C, a, AT, and k can introduce significant errors into the computed

runoff, withthe value of a, C, and k being the most important for

the example provided. For a value of Q , of 0.503, the individual
n+l

errors in absolute value of 0.058, 0.009, and 0.007 for k, a, and C,

respectively, are 11.5, 1.8, and 1.4 percent. These errors assume

that each of the other coefficients are known with certainty, which

is certainly not the case. When the errors in the coefficients

occur simultaneously, then the accuracy of the computed snowmelt

runoff will be considerably less than the accuracy when only one

coefficient is in error.

Distributions of the Coefficients

A necessary input to a probabilistic analysis is the distribution

functions of the variables, which would be the coefficients for the

snowmelt runoff model. The data base was very insufficient to determine

the distribution functions of the coefficients; therefore, the normal

distribution was assumed. This assumption will probably not be

critical to the conclusions, although one could make a good argument

that for values of the recession coefficient near either zero or one,

the error distribution of the recession coefficient would be highly

skewed.



37

Assuming that each of the four coefficients have a normal distri-

bution, then it is only necessary to identify the location and scale

parameters of the distribution. Using the expected value theorem,

the mean value provided in the User's Manual (Martinec, et al., 1983)

will be used to represent the location parameter. The standard

errors derived for the sensitivity analysis will be used to represent

the scale parameters of the distributions. These values of the

location and scale parameters completely define the assumed normal

populations of the four coefficients.

Distribution ofthe Error in the Snowmelt Runoff

The usual procedure for decisionmaking is to compute an average,

or expected value, of the runoff. The predicted value represents the

best estimate of the snowmelt runoff. While the expected value is

important, it is also important in decisionmaking to know the likely

variation in the predicted value due to error in the input. Such

information can be used to compute either confidence intervals on the

computed value or tolerance limits on the distribution of the output.

Using the data for the-Dischma watershed for 1974 (Martinec,

et al., 1983), the mean one-day snowmelt runoff (m /s) was computed

for each day from April 2 to July 31 and an error function was

computed. The error about the mean predicted value was computed; this -

error distribution indicates the error due solely to error in the

coefficients. Bias in the predicted values will not affect this error

distribution.

The probabilistic modeling approach was used to assess the error

distribution. The snowmelt-runoff model of Eq. 1-1 was used with the

Dischma data for 1974 and the one day runoff was computed for the 121
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day period. A sequence was computed using the mean values of the

coefficients; this sequence would be the predicted values assuming no

error in the coefficients. Then random numbers were generated using

a random number generator, and the values of the coefficients were

computed using the probability distributions of the coefficients. A

total of 250 sequences were generated, and the mean daily error was

computed for each sequence. For the 250 mean daily errors, the mean

of the means was 0.0115 m /sec and the standard deviation of the mean

errors was 0.0468 m /S. The distribution of the means is shown in

Fig. IV-1. For a 1 percent level of significance, the mean of

0.0115 m /S is statistically different from zero; therefore, the model

produces slightly biased estimates for the data used. This bias is

probably due to the high recession coefficient in the early days of the

sequence; during this period, the distribution of the recession co-

efficient had to be truncated in order to maintain rationality. The

truncation has only a minor effect on the distribution of the errors,

as shown in Fig. IV-1. From this figure it is evident that the

distribution is approximately normally distributed.

Confidence Intervals on the Error of the Mean

The above statistic can be used to derive confidence intervals on

the mean daily estimated runoff for the 121 day period from April 2 to

July 31. The two-sided 95 percent confidence interval would be

±'.0918 m /S. The two-sided 99 percent confidence interval is ±0.121 m /S.

These confidence intervals are valid for the mean error for the 121

day period and not the mean error for an individual day during that

period.



• -o

- o

0>

o
in m••*

in
to

o
to in o in o in

<M CN »H i-(

39

OO
o

vO
O

o
i

-J.O

I

• -o

OO
o

o
c
3e:
c
(0
(1)
2

(0
Q

QJ

w
u
oû
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Also, these confidence intervals reflect only the error due to

the inability to accurately predict the values of the four input

coefficients; they do not reflect the error due to the inability of

the model structure to represent the physical processes being modeled.

Such errorswould be substantially greater.

The computed confidence intervals indicate that the error in the

mean daily discharge due to the inaccuracy of the coefficients is not

very significant. Thus, for mean long-term discharge estimates, the

accuracy of the coefficients should not be viewed as a limiting

factor in transferring the coefficients to adjacent watersheds in

which the physical processes are similar.
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SECTION V

CONCLUSIONS

Existing snowmelt runoff models, such as the frequently used

regression models, are used to make single-valued estimates of runoff

for some duration; for example, regression models have provided accurate

estimates of snowmelt runoff volumes for periods of 30 days or more.

While the single-value estimate can be used in decisionmaking, it

does not provide a measure of the risk, i.e., the accuracy of the

estimate. Inaccuracies are introduced by the structure .of the model,
;

the empiricism of the coefficients, the inaccuracy of the- measured

input data, and the physical processes that are ignored in the formula-

tion of the model. The inaccuracy of the empirical coefficients are

of special concern because models are often calibrated on one water-

shed and transferred to another watershed to make forecasts. Inaccuracy

of the coefficients will result in errors in forecasts. Therefore, the

study was conducted to show how such sources of inaccuracy can be

evaluated. The emphasis was placed on the methodology rather than

analysis of data since data for any one watershed are limited.

The methodology for assessing the accuracy of forecasts consisted

of a probabilistic modeling analysis and a sensitivity/error analysis.

The snowmelt runoff model (Martinec, et al., 1983) was used because it

has a physically based structure, the input data requirements are

more diverse, the coefficients have a physical basis, and the model has

been applied successfully for forecasts for durations ranging from one

day to three months or more. While the coefficients of the snowmelt

runoff model are physically based, they must be considered as random

variables since they cannot be determined exactly.
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Sensitivity equations were derived for each of the four coefficients:

the runoff coefficient (C), the degree-day factor (a), the temperature

adjustment (AT), and the recession coefficient (k). The sensitivity

equations are given by Eqs. 111-16 to 111-19. The sensitivity

equations can be used to provide a measure of the relative importance

of the coefficients or as part of an error analysis. The results of

a simple error analysis showed that the approximate standard error of

the coefficients produced the largest error in the recession coefficient,

with the errors for the runoff coefficient and the degree-day factor

to be much less significant. The error in the runoff due to the error

in the value of AT was very insignificant. Of course, these results

are for one set of data. The effect of error in the coefficients is

dependent on the watershed, the duration of the forecasts, the levels

of the input variables (i.e., P, T, and S), and the estimated values

of the coefficients. However, the methodology presented here can be

used to perform a sensitivity analysis for any case.

The sensitivity equations show that the coefficients are inter-

dependent and that error in one coefficient will affect the sensitivity

of another coefficient. This suggests that a probabilistic analysis,

should be made in addition to the sensitivity analysis. A probabilistic

analysis was conducted for the Dischma watershed with the data for 1974.

The results indicated that errors in the coefficients produced a

distribution of errors in the forecasts that was approximately normally

distributed; however, there was a slight positive bias in the mean. The

results suggest that the input coefficients are reasonably accurate and

that the error in the coefficients should not limit the transferability

of the model to nearby watersheds. " ~"
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