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ABSTRACT

ANALYSES OF QUASI-ISOTROPIC COMPOSITE PLATES UNDER QUASI-STATIC
POINT LOADS SIMULATING LOW-VELOCITY IMPACT PHENOMENA

Ajit Dhundiraj Kelkar
Old Dominion University, 1985
Director: Dr. Ram Prabhakaran

Co-Director: Dr. W. Elber

Composite laminates have high strength to density ratios that make

them attractive for use in aircraft structures. However, the damage

tolerance of these materials is limited because they have very low

ultimate strains, no plastic deformation range, and no usable strength

in the thickness direction. These limitations are very obvious when

laminates are subjected to impact loads. Due to these impact loads,

laminates suffer visible and invisible damage. To improve the material

performance in impact requires a better understanding of the deformation

and damage mechanics under impact type loads.

In thin composite laminates, the first level of visible damage

occurs on the back face and is called "back face spall ing." A plate-

membrane coupling model, and a finite element model to analyze the large

deformation behavior of eight-ply quasi-isotropic circular composite

plates under impact type point loads are developed. The back face

spalling phenomenon in thin composite plates is explained by using the

plate-membrane coupling model and the finite element model in

conjunction with the fracture mechanics principles. The experimental

results verifying these models are presented. The study resulted in the



following conclusions:

1. The large deformation behavior of circular isotropic membranes

subjected to arbitrary axisymmetric loading can be obtained by

solving a single nonlinear governing equation in terms of a

radial stress.

2. Accurate large deflection behavior o'f circular quasi-isotropic

T300/5208 laminates can be obtained by using a simple plate-

membrane coupling model.

3. The functional form of deformed shape of the plate undergoing

large deformations is different from the small deflection plate

solution.

4. The back face spalling action in thin composite laminates is a

spontaneous action and can be predicted by using the fracture

mechanics principles.

5. Mixed mode (I and II) type deformations probably occur during

back face spall ing, however, mode I appears to govern the

delamination growth during the spalling action.
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Chapter 1

INTRODUCTION

1.1 Motivation

Composite materials are being used increasingly in aircraft

structures due to their high specific strength and stiffnesses, and the

resultant weight savings. Traditionally, use of graphite fiber

composites have been confined to secondary structures. However,

requirements for reduced structural weight, improved aircraft

performance, and efficiency are making composite materials increasingly

comnetitive for expanded usage in primary, load carrying structures. In

comparison to conventional metals, an understanding of the complex

behavior of composites is still in its preliminary stage, and

applications are based on knowledge gained through extensive

experimental programs. Past experiences and experiments have confirmed

that graphite fiber composite laminates have very low ultimate strains,

no plastic deformation range, and no usable strength in the thickness

direction. These limitations are very obvious when laminates are

subjected to impact loads. Therefore the study of impact damage

susceptibility of these composite laminates is increasingly important.

Resin matrix composites are basical ly brittle materials, and the

damage caused by impact differs from the damage on ductile metal

structures. The ductile metals tend to develop indentations which are

normally visible. On the other hand brittle materials like composites

1



tend to have both visible and invisible damage. Such damage is usually

in the form of delaminations, matrix cracks and possible broken

fibers. It can cause significant strength losses in composite materials

[1-7].* The potential severity of visible and invisible damage has

instigated numerous investigations into the impact behavior of

composites.

Past studies [8-12] indicate that in thin composite laminates first

level of visible damage occurs on the back face of the laminate and is

called as "back face spalling." A typical back face spalled laminate is

shown in Fig. 1.1. Elber [8] conducted a series of tests on circular

composite plates. He identified the sequence in which damage occurs in

thin 8 ply T300/5203 quasi-isotropic graphite/epoxy circular plates

subjected to center point loads. He showed that, first visible damage

occurs in the lowest ply (8th ply) in the form of a matrix cracking

parallel to the fibers. Further increase in the load levels results

into the two dominant cracks in the eighth ply and delaminatins between

plies 7 and 8 surrounds these two cracks. Additional increase in the

load levels cause these delaminations and cracking to propagate unstably

in the bottom ply in the fiber direction. This unstable growth of

delaminations and propagation of the two dominant cracks result in the

massive back face spall ing action. During the back face spalling

action, curved trajectory of the 8th ply center strip (formed by the two

dominant cracks in the 8th ply) running under the load point in the

fiber direction changes virtually to a straight line between the load

The number in brackets indicate references.
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point and the support (Fig. 1.1). Several investigators [9-12] have

also reported back face spalling damages in composite laminates under

low velocity impact type point loads. While considerable experimental

observations have been made on the back face spalling, a theoretical

understanding of the deformation mechanics and the back face spalling

phenomenon is not fully knov/n. The present "study was undertaken to

develop analytical models, to understand the deformation mechanics, and

to explain the back face spalling phenomenon, in thin composite

laminates. These models will be particularly helpful to quantify the

impact mechanics and to produce composites with improved resistance to

the back face spall ing and impact damage.

1.2 Scope and Objectives

Impact events are characterized into three velocity .domains:

1. High velocity or ballistic impact where the velocity, v > 600

m/sec.

2. Intermediate velocity impact (30 m/sec < v < 600 m/sec), such

as foreign object damage (F.O.D.) impact on turbine fan blades,

ground debris thrown up by wheels, etc.

3. Low velocity impacts (v < 30 m/sec) are represented by handling

damage such as dropping tools, foot steps and similar events.

In this study, the effect of low velocity impact on composites is

addressed. Many low velocity impact situations that an aircraft

component is exposed to include: dropped tools, runway stones, tire

blow out debris, ground collisions, etc. Due to low velocity impact,



composite laminates suffer both visible and invisible damage. To

improve the material performance in impact- requires a better

understanding of the deformation and damage mechanics under low velocity

type impact loading. Therefore, the specific objectives of this study

are:

1. To develop an analytical model to understand the deformation

mechanics in thin composite laminates under low velocity type

impact loading.

2. To develop an analytical model to expain the back face spelling

phenomenon in thin composite laminates under low velocity type

impact loading.

3. To verify these analytical models by conducting experiments on

thin composite laminates.

For both the analytical and the experimental purpose quasi-

isotropic laminates of T300/5208 graphite/epoxy material with stacking

sequence of [45/0/-45/90]s are considered in this study.

1.3 Review of Earlier Work

The subject of impact related phenomena has been studied by many

investigators utilizing many different approaches. Some of this work

has been related to ballistic type impact, and hence, is not applicable

here. The past studies indicate that considerable experimental

investigations have been made to understand the low velocity impact

problem in composite laminates. Literature review also indicates that

theoretical investigations of the low velocity impact in composites are

limited.



1.3.1 Experimental Studies

McQuillen and Gause [13] first studied the response of composite

structural elements to low speed, transverse impact. They conducted

series of experiments on graphite/epoxy composite laminates 76 mm wide,

with a span 152 mm and with thickness of 2.13 mm. The laminates had

(± 45/02/+45)s stacking sequences and were simply supported on two

edges. McQuillen and Gause concluded that inplane stress wave effects

in the low velocity regime are negligible. They observed that the

dynamic failure mechanism is identical to the static failure

mechanism. Rhodes et al. [12] investigated the effect of low velocity

impact damage on the compressive strength of graphite/epoxy panels.

They concluded that the compressive strength of graphite-epoxy

components can be reduced significantly by the effects of low velocity

impact damage. Similar observations were made by Gause and Huang

[14]. They observed significant reduction in the static strength of

graphite/epoxy panels, when panels were subjected to low velocity impact

loads. They examined the damage mechanisms in graphite/epoxy panels

under dynamic and static loading. They concluded that in graphite/epoxy

panels the static and dynamic damage mechanisms are identical. Card and

Rhodes [15] studied the effects of low velocity impact on the compres-

sive strength of graphite/epoxy structures. They conducted extensive

tests on sandwich beams, laminated plates and stiffened panels. They

studied the damage patterns and suggested possible sequence for laminate

damage due to low velocity impact and found that, there was no visible

damage on the impact surface, however, the side opposite to impact

surface suffered a visible damage in the form of back face spalling.

Their observations were similar to the earlier observations made by



Cristescu et al. [16] with the 0-90° ply fiberglass/epoxy composite

plates.

Cause [17] performed low speed, hard object impact on thick

graphite/epoxy plates. He concluded that inplane wave effects are not

important in low velocity impact on thick graphite/epoxy plates. He

found that in thick composite plates the dominant damage mode is shear

failure mode. He performed quasi-static tests on thick laminates and

found that the damage mechanics in impact and quasi-static loading are

identical. Cause et al. [18] studied the effect of low-velocity impact

damage on the composte wing box. They identified that the first visible

damage in composite skins occurs on the back surface (surface opposite

to the impact point) in the form of spall ing. Similar observations were

made by Ramkumar [5], Bhatia [10], Hertzberg et al. [11].

1.3.2 Theoretical Studies

As pointed out earlier only a few theoretical investigations were

made. Some of the earlier work is discussed here. A theoretical model

to study the damage and deformation mechanics due to low velocity impact

problem in composites was developed by Lloren [19]. He developed a

theoretical model for a rectangular composite plate subjected to a

quasi-static load equivalent to the impact load. Dobyns and Porter [20]

and Dobyns [21] and Hayes and Rybicki [22] performed similar analysis

for simply supported composite plates and Greszczuk [23] performed a

quasi-static analysis for circular composite plates. However, all these

analyses were based on the linear plate bending theory.

Recent studies by Bostaph and Elber [24], Elber [8], Lai [25] and

Shivakumar el al. [26], have shown that the laminates undergo large



deformation when the impact occurs at low velocity. Hence, it is

necessary to develop- a more general analysis that includes large

deflection effects. These types of analyses will help to predict

accurately the deformations and failures in composite plates subjected

to low velocity type impact loading.

Bostaph and Elber [24] performed quasi-static impact tests on thin

composite laminates. They used superposition approach to match the

plate bending solution and a membrane solution under the load points.

By using this superposition approach they obtained load-deflection

behavior of circular composite plates undergoing large deformations.

Shivakumar et al. [26] analyzed the impact damage problem using the Ritz

technique and the large deformation theory for the circular thin quasi-

isotropic laminates. The classical solution method used by Shivakumar

et al. [26], Timoshenko [27], Washizu [28], to obtain the large

deformation solutions of thin plates under the point loads is based on

the Ritz technique, and only represents a membrane correction to the

plate stiffness. Further the classical solution assumes that the

functional form of the deformed shape of the plate is identical to the

functional form of the deformed shape of the plate determined by the

small deflection solution. The functional form of the deformed shape of

the plate, however, is not identical for different load levels. Because

at higher load levels the plate undergoes large deformations and the

external load is partly equilibriated by the membrane action, the

deformed shape of the plate can not be identical at all load levels.

Accurate prediction of the deformed shapes are necessary to obtain

accurate stresses in the plate. The plate analysis based on the

classical solution, which assumes the functional form of the deformed



shape to be identical for all load levels, would incorrectly predict the

stresses. One of the objectives, therefore, was to develop simple

analytical models to predict the accurate large deformation shapes of

thin circular laminates under quasi-static point loads. To obtain

accurate large deformation shapes of these thin circular laminates, a

finite difference and a finite element model is proposed in this

thesis. As discussed earlier, several investigators have shown that the

damages in thin composite laminates due to low velocity impact loads are

similiar to the damages due to equivalent quasi-static loads, therefore

in both the models proposed here, low velocity impact loads are replaced

by equivalent quasi-static loads. These models are briefly discussed in

the following section.

1.4 Proposed Methods of Analyses

In the present work an attempt was made to obtain simple analytical

models for the large deflection analysis of thin circular quasi-

isotropic laminates under the quasi-static point loads. The first model

proposed here is a plate-membrane coupling model. This model does not

have the constraining assumption that the deformed shape of the plate

should be identical to the deformed shape of the plate determined by the

small deflection plate solution. The plate-membrane coupling model

proposed here assumes that the effect of flexural anisotropy of the

axially quasi-isotropic laminates is small and tne plate behaves

flexurally isotropic.

1.4.1 Plate-Membrane Coupling Model

A thin plate undergoing large deformations can be decomposed into

two problems. First, a plate with shear and flexural stiffnesses but no
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mid-plane extensional stiffness. Second, a plate with extensional

stiffness, but no shear and flexural stiffnesses (membrane). Solutions

of these two problems when coupled together will yield complete

knowledge of displacements in quasi-isotropic laminates undergoing large

deformations.

Solution of the first problem is the well known small deflection

plate analysis [27]. The second problem which is the analysis of

circular membrane subjected to axisymmetric loading is more complex in

nature, as it involves geometrical nonlinearity. The problem of

circular membrane subjected to surface and edge loads has been studied

by many investigators. Hencky [29], Dickey [30], and Shaw and Perrone

[31] determined the deflections of a uniformly loaded membrane.

Goldberg and Pifko [32] and Weinitschke [33,34] employed power series

approaches to obtain the solutions of annular membranes. In addition to

power series method Weinitschke [33,34] presented an integral equation

approach to the solution of annular membranes subjected to surface and

edge loads. Callegari and Reiss [35] studied the axisymmetric

deformations of circular membranes subjected to uniform normal pressure

by using the shooting method. The literature review indicates that

limited numerical solutions are available for the nonlinear memorane

problems. Furthermore these solutions are limited to the circular

membranes subjected to uniform load.

In the present work a more general formulation for the analysis of

circular isotropic membranes subjected to arbitrary axisymmetric loading

is presented. In this formulation a single nonlinear governing equation

in terms of radial stress is used. The nonlinear governing differential

equation is replaced by a set of nonlinear algebraic equations using
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finite difference technique. These nonlinear algebraic equations are

numerically solved to obtain stresses and displacements.

By using the small deflection plate solution and the large

deformation membrane soltuion in conjunction with the plate-membrane

coupling model, the large deformation solution of the clamped circular

quasi-isotropic plate subjected to quasi-static" center point load is

obtained.

The plate-membrane coupling model uses a finite difference

technique. A second analytical model is proposed in this work, to

obtain the large deformation solutions of circular laminates uses a

finite element method. The finite element formulation presented here is

based on an appropriate linearization of strain displacement relations

and uses an iterative method of solution. The formulation includes the

effects of geometric nonlinearity.

To study the geometric nonlinear problems many investigators [36-

44], used the energy approach, in which the nonlinear strain displace-

ment relation is linearized by equivalent linearization technique.

However, earlier investigators have ignored the effects of inplane

displacements in the formulation. This discrepancy was pointed out by

Prathap and Vardan [45], Sarma and Vardan [46], Prathap and Bashyam

[47], and Prathap [48]. However, so far no attempt has been made to

include the inplane displacements in the finite element formulation of

the circular plate subjected to a center point load and undergoing the

large deformations.

The reason for ignoring the effects of mid-plane displacements by

earlier investigators may have been due to complexity of the nonlinear
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finite element formulation. In the present finite element formulation

the discrepancy -of ignoring inplane displacements is removed and a

complete finite element formulation which includes inplane displacements

is presented. The large deformation solutions of clamped circular

plates subjected to central point loads obtained by using the plate-

membrane coupling model, and the finite element model, are compared.

Experimental verification of the plate-membrane coupling model and the

finite element model is also presented.

The second objective of this research is to develop a theoretical

model to study the back face spall ing phenomenon in thin composite

laminates under low-velocity impact type point loads. Elber [8]

conducted series of tests on thin eight ply T300/5208 quasi-isotropic

graphite/epoxy laminates. He showed that the damage mode, in actual

impact tests at velocities around 5 m/s, was very similar to the damage

made in the static tests. He postulated that the massive back face

spalling which often is the first visible sign of damage in laminates is

related to the low peel-mode fracture toughness in brittle resins and

that it is trackable by static analysis. In the present work, this

phenomenon of the back face spall ing is explained by developing a simple

analytical model based on the quasi-static analysis. The model uses the

large deformation shapes of the circular laminates in conjunction with

the fracture mechanics principles. This model is verified by conducting

the back face spalling experiments on thin composite laminates.

1.5 Layout of Presentation

In Chap. 1, the problem of low velocity impact in graphi te/epoxy

composites is discussed. The phenomenological aspects of the problem,
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such as the large deformation behavior, the back face spall ing etc. are

introduced. The relevant literature on the study of the low velocity

impact problem emphasizing the deformation mechanics and the back face

spalling phenomenon, is reviewed. Against this background the present

methods of analyses to study the deformation mechanics and the back face

spalling phenomenon in thin composite laminates under quasi-static point

loads are proposed.

Chapter 2 presents a small deflection plate analysis for a clamped

circular quasi-isotropic plate. A method for modeling flexurally

anisotropic quasi-isotropic plate as an isotropic plate having the

flexural stiffness components equivalent to the flexural stiffness

components of the quasi-isotropic plate is presented. A finite

difference method for computing displacements is described. The

numerical results for the plate deformations, obtained by using the

finite difference method are compared with the exact solution.

In Chap. 3, a general analysis of circular isotropic membranes with

clamped peripheral edges, subjected to arbitrary axiymmetric loading is

presented. A single governing equation in terms of radial stress is

derived. The solution of this nonlinear governing equation is presented

by using the finite difference method in conjunction with Newton-Raphson

method.

Chapter 4 presents the pi ate-membrane coupling model to study the

large deformation behavior of clamped circular plates. The model uses

the plate solution (Chap. 2) and the membrane solution (Chap. 3), in

conjunction with a coupling principle. The numerical results obtained

by using the plate-membrane coupling model for clamped circular
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laminates undergoing the large deformations are presented. These

numerical results are compared with the classical solution.

In Chap. 5, a finite element model which uses appropriate

linearization of strain-displacement relations is presented. The model

is based on a variational technique and uses the principle of minimum

potential energy. The finite element model is then used to obtain the

large deformation solution of clamped circular laminates subjected to

central point loads. The solutions obtained by the finite element model

and the plate-membrane coupling model are compared.

In Chap. 6, plate mechanics experiments are described. The

experimentally obtained large deformation shapes and the load-deflection

curves of thin quasi-isotropic clampled circular laminates are compared

with those obtained by using the plate-membrane coupling model (Chap. 4)

and the finite element model (Chap. 5).

Chapter 7 presents the back face spa!ling model. The back face

spelling model is developed by using the large deformation shapes of

thin circular laminates in conjunction with fracture mechanics

principles. The analytical back face spalling model is verified by

conducting back face spelling experiments on thin composite laminates.

Several alternative approaches to reduce the back face spalling in

composite plates are discussed.

Finally, in Chap. 8, a summary of the highlights of the present

work and some possible directions for further study of low velocity

impact in composites are presented.



Chapter 2

SMALL DEFLECTION PLATE ANALYSIS

2.1 Introduction

In Chap. 1, a plate-membrane coupling model was introduced to

obtain the large deformation behavior of quasi-isotropic laminates. The

pi ate-membrane coupling model requires a small deflection plate solution

and a large deflection membrane solution. In this chapter the small

deflection plate analysis for a clamped circular quasi-isotropic plate

is presented. To develop a simple one dimensional analytical model,

quasi-isotropic plate is modeled as an isotropic plate with the flexural

stiffness components equivalent to the flexural stiffness components of

the quasi-isotropic plate. A finite difference method for computing

displacements is described. A study to establish the convergence

characteristics of the finite difference method is then presented. The

numerical results for the plate deformations, obtained by using the

finite difference method are compared with the exact solution.

2.2 Plate Configuration

Figure 2.1 shows an axisymmetrically loaded clamped circular plate,

with thickness h and radius a. The plate was a quasi-isotropic

laminate of T300/5208 graphite/epoxy material with stacking sequence

[45/0/-45/90]s. The material properties of the laminate are given in

Table 2.1.

15
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(a) circular plate

I
x-

z,w
(b) loading and deformation

', u

Fig. 2.1 Plate Configuration
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2.3 Assumptions

The small deflection plate theory, generally attributed to

Kirchhoff and Love [49], is used here with the following assumptions:

1. The plate is initially flat, i.e. the plate has no initial

curvature.

2. The thickness of the plate is small compared to its other

dimensions.

3. The deflections are small compared to the plated thickness.

(Maximum deflection-to-plate thickness ratios of 1/15 to 1/10

are considered small)

4. The slopes of the deflected middle surface are small compared

to unity. (This fol lows from the assumption 3 above)

5. The deformations are such that, straight lines initially normal

to the middle surface, remain straight and normal to the middle

surface, (i.e. transverse shear strains are not permitted)

6. The material has the same elastic modulus in tension and in

compression.

7. The component of stress normal to the midsurface, a , is

negligible

8. The strains in the middle surface, produced by inplane forces,

are neglected.

9. The plate is assumed to be flexurally isotropic, even through a

quasi-isotropic plate is anisotropic in flexure.
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2.4 The Governing Differential Equation

In this section the governing differential equation for axisym-

metrical bending of a clamped circular plate subjected to arbitrary

axisymmetric loading and undergoing small deformation is presented.

Figure 2.2 shows an infinitisimal element abed cut out from the

plate by two cylindrical sections ab and cd and by two radial sections

ad and be. Consider the equilibrium of an element abed. The couple

acting on the side cd of the element is

Mp r d9 (2.1)

where Mr is the radial moment per unit length. The corresponding couple

on the side ab is

(Mr + -*£- dr) (r + dr) d6 (2.2)

Couples on the sides ad and be of the element are each MQ dr

where MQ is the tangential moment per unit length. The components of

these couples in plane rz are each MQ dr sin (-^) and for small

d9, sin (-*•) = -*• . Therefore, these couples give a resultant couple

in the plane rz equal to

MQ dr d9 (2.3)

Denoting Q(r) as the shearing force per unit length of the

cylindrical section of radius r, the total shearing force acting on the

side cd of the element is Q (r) r d6, and the corresponding force on

the side ab is [Q (r) + j|/ dr] (r + dr) d9, these forces give a

couple in the rz plane equal to
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0

Q(r)+dQ(r) dr
mr ,

_y H
^ i

Q< ri~* r **i
z

r

•ttmit
xJ>X^>>

)̂
dr

or

V I t>- r^
M -fd/Vlr

-̂ r 1? dr

Fig. 2.2 Equilibrium of the Plate Element
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Q(r) r d9 r + (Q (r) + £) (r + dr) d9 (2.4)

Neglecting the third and higher order terms in Eq. (2.4) the

resultant couple in the rz plane equal to

Q (r) r d6 dr (2.5)

Summing up the moments, the equation of equilibrium of the element

abed:

dM
(M + ^ dr) (r+dr) d9 - M r d9 - M0 dr d9 + Q(r) r d9 dr = 0 (2.6)

r or

neglecting the third and higher order terms, one has,

dMr

Mr +_J_ r - Me + Q(r) r = 0 (2 .7)

Relations between curvatures and moments for pure bending, in

cylindrical co-ordinate system are given by [27],

dr

( 2 . 9 )

where D is a flexural modulus of the isotropic plate and is given by

r.3
D = - tn

 ? (2.10)
12 (lV)

where E is the Young's Modulus and v is the Poisson's ratio of the

isotropic plate.

Substituting Eqs. (2.8) and (2.9) into Eq. (2 .7) , the governing

differential equation for the circular plate subjected to axisymmetric

loading is
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d3w 1 d2w 1 dw _ Q ( r ) ,, in
TT 7 ~3 TITT ~ FT" \ £ . i 11

D

Equation (2.11) is a governing differential equation for the

circular isotropic plate with the flexural modulus D and subjected to

arbitrary axisymmetric loading. Denoting Deq as a flexural modulus of

the quasi-isotropic circular plate the governing differential Eq. (2.11)

for the quasi-isotropic circular plate was written as:

d3w 1 d2w 1 dw Q ( r ) . .
—T F — 7 ~ — 7TF D— U. l<?)
drj r dr^ r2 dr Ueq

where Q(r) is a shear force per unit length at any radius r and can be

obtained as (Fig. 2.3)

2 * r Q( r ) = fQ 2 * 5 P (5) d£ (2.13)

where p(£) is the intensity of loading at any radius £. Deq in Eq.

(2.12), is an equivalent flexural modulus for the quasi-isotropic

laminate. The equivalent modulus Deq, can be obtained by equating

bending energy of the quasi-isotropic laminate and an equivalent

isotropic plate. A detail derivation to determine the equivalent

flexural modulus Deq, is presented in the next section.

2.5 Derivation of the Equivalent Flexural Modulus Deq

Laminate extensional, coupling, and bending st i f fnesses were

calculated by using classical laminate plate theory [50] for a [45/0/-

45/90]s quasi-isotropic laminate with elastic properties given in Table

2.1. The extensional stiffness is independent of the polar angle 6

(see Fig. 2.1) and is constant over the entire plate domain. This

indicates that the laminate behaves perfectly isotropic for membrane and
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inplane loadings.

Since the laminate is symmetric, the coefficients of the coupling

stiffness are found to be zero. The laminate bending stiffness depends

on 8. However, an equivalent bending stiffness which is independent

of 9 can be determined by equating the flexural strain energies of the

clamped circular quasi-isotropic laminate and an equivalent circular

isotropic plate.

For a circular quasi-isotropic laminate the total strain energy in

bending is

d0 (2.14)

where

{M} =

Ye

and {<} =

Ye

M' V « a nd Mana " are moments and and are theQ ui c i M u i n c i i uo a i t u rv , ^ n , u t i u IN /•»ro r " ro

corresponding curvatures. For the quasi-isotropic laminate the moments

and curvatures are related as

(M> = [D] M

where

[D] =

substitution of Eq. (2.15) into Eq. (2.14) yields,

D l l
D21
D61

D12
D22
D62

D16
D26
D66

(2.15)

(2.16)
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U.= 4- /2" /I <K>T C°] <<> ̂  dr d9 (2.17)D e. 0 0

Equation (2.17) can be expanded as

ii = ^ f^71 fa r ^ n ± ? n 4.9 nub ? Jo jo L r ull * Kr KQ U12 £ Kr KQ U16

2 "re Ke D26 + 'e D22

D5g] r dr d9 (2.18)

The coefficients D^j, D12» D16» D26» and D66 ^ the £-<^- ̂ 2 - 1 8 ^ are

all known functions of 6 [50]. Assuming that the curvatures are

functions of r alone, then the integration over 6 in Eq. (2.18) can be

carried out and Eq. (2.18) can be written as

ub =

D26 + Ke D22

<re D66]

where

1 ' r2uI D., d6; i,j = 1, 2, and 6

The bending energy of an isotropic plate with a flexural modulus

Don, a Poisson 's ratio of v and curvatures, K <a, and K Q (sameCM ecj r o r o

as that of the quasi-isotropic laminates) can be written as

Ub (isotropic plate) = \ /J /2u [<2 Deq + 2 Kp <Q veq Oeq
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+ Kl Deq + Ve (—r*) D
eq

] r dr d9 (2'20)

The flexural modulus Deq and the Poisson's ratio v are

independent of 6. Hence integrations on 6 can be carried out and

Eq. (2.20) can be written as,

U (isotropic plate) = /J [K* Deq + 2 <p <Q

4 Deq + Ve H

For the same arbitrary curvatures, K , <_, and K Q on the compositer y rw

laminate and the isotropic plate, the bending strain energies must be

the same because of the assumed energy equivalence. Hence comparing

curvature coefficient of Eqs. (2.19) and (2.21) equivalent bending

stiffness Deq and v Poisson's ratio can be determined as,

Deq • 75

Deq ' - ° de (2 '23)

D ' ° deeq 71 22

If circular quasi-isotropic laminates were flexurally isotropic,

then integrals
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D16 d9 and 7t /oW °26 d6 (2 '26)

would be equal to zero. However, in the circular quasi-isotropic

laminate under consideration, integrals represented by Eq. (2.26) were

nonzero. However, for the material properties presented in Table 2.1,

integrals were found to be about 2.5 percent of -^ ]Q* D^ d0 and

hence neglected in this analysis.

Equations (2.22) through (2.25) represent four equations, with two

unknowns, Deq and v . The first two equations, Eqs. (2.22) and

(2.23), are sufficient to evaluate the two unknowns Deq and v . The

third equation, Eq. (2.24), is essentially the same as Eq. (2.22)

because of symmetries. For the material properties in Table 2.1, the

value of Deq and v were found to be 5.688 N-m, and 0.31,

respectively. These values of Deq and v , when substituted into

the last equation, Eq. (2 .25) , satisfied the equation exactly.

For those ply properties mentioned in Table 2.1, the value of

equivalent Young's modulus Eeq was obtained from an equivalent flexural

modulus Deq as

Leq

and was found to be 53.3 GPa. This value of Eeq is exactly the same as

the inplane Young's modulus of the laminate obtained by using the ply

properties in Table 2.1 and the classical laminate theory.

2.6 Solution Method

The solution of the clamped circular plate problem via the
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classical method [27], is limited to relatively simple plate load

conditions. In simple loading cases shear force Q (r) can be directly

expressed as a function of r and since the governing equation, Eq. 2.12

is Euler equation, it can be solved to obtain a closed form solution for

the transverse displacement w. However, if loading conditions are more

complex, the analysis becomes increasinglytedious. In such cases

numerical methods are used to obtain the solution of the problem. Among

the numerical techniques presently available, the finite difference

method and the finite element method are most commonly used. In the

present analysis the finite difference method is used. The solution of

the plate problem using the finite element method is described later in

Chap. 5. In the finite difference method, the derivatives in the

governing differential equation are replaced by difference quantities at

selected points, called nodes. The details of the finite difference

method are as follows:

The basic finite difference expressions follow logically from the

fundamental rules of calculus [51]. For a continuous function w = f(r)

(Fig. 2.4), the first, second and third derivatives of the displacement

at any node n can be written by using the central difference method

[52] as:

dw , v _ w ( n + l ) - w ( n - l ) ,,

d2w . _ w ( n + l ) - 2 w ( n ) + w ( n - l )

(Ar)2

d3w , . w ( n + 2 ) - 2 w ( n + l ) + 2 w ( n - l ) - w ( n - 2 ) ,. ...— y (n) = - 5 - (2.30)
dr3 2 - (Ar)J
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w=f(r)

ArArArArArAr

Fig. 2.4 Finite
Differences for a Continuous Function w = f(r)
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The governing differential equation is then transformed to an

algebraic equation, by substituting the appropriate finite difference

expressions. The solution of the differential equation thus reduces to

the simultaneous solution of a set of linear, algebraic equations,

written for every nodal point.

2.6.1 Application of the Finite Difference Method for the Solution of
Arbitrarily Loaded Clamped Circular P1a~te~

To solve the governing Eq. (2.12), the solution domain was

discretized into m regions and (m + 1) nodes. Denoting w ( n ) , -T^- (n),
2 3

d w d w(n), and — *• (n) as the first, second, and third derivatives of

the displacement at the n node, the governing Eq. (2.12) was written as,

at any node n:

2 2d w , « , 1 d w , « 1 dw
r n d

rrn p(S) S dl .

° rn Ueq ( '

First, second, and third derivatives of the transverse displacement

w from the governing Eq. (2.31), were replaced by finite difference

quantities given by Eqs. (2.28), (2.29), and (2.30) .

To simplify the evaluation of the integral in the above equation

the following assumption was made. Consider an ith region with

r. , < r < r.. Although the applied load varies within the region

r. , < r < r., the load will be assumed to be uniform in this region

with a value p^. The magnitude of p.,- is assumed to be equal to the

value of the load at the mid-point of this region, i.e., at r = (r +
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i"j_i)/2. As the number of regions in the model become large, the size

of each region decreases and hence the variation of the load within each

region becomes insignificant. With this assumption the governing Eq.

(2.31), reduces to

n 2 2
3 2 I p ( r - r )

d w * d w l dw

dr n dr

2.6.2 Boundary Conditions

For the circular plate with axisymmetric loading the boundary

conditions were

(a) Both the transverse displacement w and the slope dw/dr equal zero

at the clamped edge (r = a).

(b) The slope dw/dr equal zero at the center (r =0).

Using the governing Eq. (2.32) in the form of finite difference

quantities at each node and transforming the above boundary conditions

into finite difference quantities, a set of simultaneous algebraic

equations were obtained. This set contained number of unknowns that are

equal to number of nodes in the solution domain. These algebraic

equations were solved simultaneously, to obtain the transverse

displacement at each node. To illustrate the method, a very simple 4

region idealization was chosen. The details of the method are presented

in the followng section, for this simple idealization.

2.7 Illustrative Example

Consider a clamped circular quasi-isotropic plate with radius a
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and thickness h. The plate is subjected to a uniform loading over the

region 0 < — < 0.5. The objective is to obtain the plate

displacements using the finite difference method.

2.7.1 Problem Formulation

The solution domain 0 < — < 1.0 is discretized into 4 regions and
cl

5 nodes (see Fig. 2.5). At the node 0, the boundary condition is slope

dw
-T— = 0. This conditions can be transformed into the finite difference

form as follows:

By using Taylor's series expansion, the displacements at the nodes

(1) and (2) can be written as

= w ( 0 ) + ( 0 ) + ( 0 ) . . . . . (2.33)

w < 2 ) = w ( 0 ) + - ( 0 ) + . ( 0 ) (2 .34)
dr

2
From the Eqs. (2.33) and (2.34) by eliminating terms — *• ^^ anc* using

boundary condition, the slope -^ equal zero at r = 0 or -r^ (0) = 0,

Eq. (2.34) is written as:

4 w ( l ) - w ( 2 ) - 3 w ( 0 ) = 0 ' (2 .35)

The governing differential equation at any node n for the quasi-

isotropic plate is (Eq. (2 .32 ) )

r -- ? ~7 W - P r Drn dr^ r dr i=l * rn Ueq
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r Fictitious Node

—© ^r

z , w

Fig. 2.5 Four Region Idealization for the Plate Uniformly
Loaded Over the Region 0 <_ r/a < 0.5
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For the node no. 1 the first and second derivatives can be

expressed in the finite difference form, by using central difference

Eqs. (2.28) and (2.29) as:

dw m _ w(2) - w(Q) ,,, .....
1) 2 - Ar (2>36)

d2w _ w ( 2 ) - 2 w ( l ) + w(0) (2.37)
dr (Ar)2

d wThe third derivative i.e. — T (1) can be obtained as fol lows:

By using Taylor's series expansion the displacements at the nodes

(2) and (3) are written as

2 2 3 3i * > \ /i \ j. Ar dw /, i . Ar d w ,,» , Ar d w M» lo ,0.
W ( 2 ) = W ( l ) + -r-r- -r- (1) + — 7j -- 5- (D + -Tj-j -- T (D (2.38)i. ar

w ( 3 ) ,

Eliminating ^ (1) from the Eqs. (2.38) and (2.39) the following

equation is obtained

2 3
2 w ( 2 ) - w ( 3 ) = w ( l ) - (Ar ) 2 1 (1) - (Ar) 3 1^1

dr'

But from the Eq. (2 .37)

d2w ,,, _ w ( 2 ) - 2 w ( l ) + w ( 0 )

P
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d w
Substituting Eq. (2.37) into Eq. (2.40), equation for -^ (1) is

dr
obtained as follows:

- 3 w(2) + w (3 ) + 3 w(l) - w(0) _ d°w (1) (2.41)

Using Eqs. (2.36), (2.37), and (2.41) in Eq. (2.32), at node no. 1, the

governing Eq. (2.32) is

r 1
0 1 _£

2 rj (Ar) (Ar) -^](Ar)J

r_

(Ar)' (4r)

2 rf (Ar)
(2.42)

Using the central differences (Eqs. (2.28)-(2.30) ), at the node no.

2, the governing Eq. (2.32) is,

w „
2 r (Ar) (Ar

3 2 r2, (Ar) r2 (Ar)2 (Ar)3 4 2 (Ar)3 2 r2 °eq

(2.43)

and at the node no. 3, using Eqs. (2.28)-(2.30) , the governing Eq.

(2.32) is,

w, [- U] + w, [ l
1 2 (Ar)J * ° '- ^

+ ^-T + -^] + W3 t " 2 vl2 fr,)' Ar r, (Ar)^ (Ar)J J r, (Ar)^
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— , -^ 5 __
2 r (Ar) r (Arp (Ar)J b 2(Ar)

p (r| - r2)
= ^ ^- (2.44)

2 r3 Deq

w5 in the Eq. (2.44) is a displacement at fictitious node 5 (Fig.

2.5). The boundary conditions at r = a are, (^) = 0 and w = 0 and

can be expressed in the finite difference form as

dw ,.» _ w(5) - w(3) _ n ,,

or

w(5) = w(3) (2.46)

By using the Eq. (2.46), Eq. (2.44) is written as

w, -
r
3 (A r>

P (r -

2 r (Ar) r3

Lastly at the node no. 4 the displacement w = 0. Therefore

w{4) = 0 (2.48)

Thus Eqs. (2.35), (2.42), (2.43), (2.47), and (2.48) contains five
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unknowns, w(0) , w{ l ) , w (2 ) , w ( 3 ) , and w (4 ) and can be solved

simultaneously to obtain the unknown displacements. A simple example

problem is presented here to illustrate the above method.

Consider a clamped circluar plate of radius 25.4 mm and thickness

1.05 mm. Let flexural modulus Deq, of the plate is 5.688 N.m. The

displacements in the plate under uniform loading of intensity 100,000

N/m2 over the region 0 < r < 12.7 mm can be obtained as follows:

Since the plate radius is 25.4 mm Ar is (25.4/4) = 6.35 mm. Also

rl» r2» r3» anc* r4 are ^ -35 mm> 12.70 mm, 19.05 mm, and 25.4 mm

respectively. Substitution of these values in Eqs. (2.35), (2.42),

(2.43), (2.47), and (2.48), gives five simultaneous equations, which can

be expressed in the matrix form as

- 3 4 1 0 0
1 2 - 5 2 0

-4 13 -8 -5 4
0 -9 25 -3 -13
0 0 0 0 1

w ( 0 )
w ( l )
w ( 2 )
w ( 3 )
w ( 4 )

A

p ( A r ) 4

= —
eq

0
1
8

12
0

or in concise form

where

[A] {w} = [F]

p = 100,000 N/m'

Ar = 6.35 mm, and D = 5.688 N-m

From equation (2.50) {w} is

(2 .49)

(2.50)
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(w) = [A]"1 [F] (2.51)

Solving equation (2.51) for {w}, the nodal displacement are found to

be: w(0) = 0.076226 mm, w(l) = 0.06677 mm, w(2) = 0.038410 mm, w(3) =

0.005434 mm, and w(4) = 0.0 mm.

2.8 Convergence Study

To study the convergence of this method, the circular plate was

idealized into m number of regions with (m + 1) nodes. A systematic

convergence study was then made by doubling the number of regions. The

number of regions m, used in this convergence study were 4, 8, 16, 32,

60, and 64. Figures 2.6 and 2.7 present the relative errors in the

maximum deflections normalized with respect to the exact central

displacement, for the two different cases: case (i) uniformly loaded

plate and case (ii) a plate loaded uniformly over the regions

0 < ^- < 0.5. The analysis indicated that about 60 regions were
a

necessary for a plate loaded uniformly over the region 0 < -^ < 0.5 and
a

for a uniformly loaded plate to yield a solution which is within 0.1

percent of the exact solution.

2.9 Results and Discussion

In this section the central displacements obtained by using the

finite difference method are compared with the exact solution. Next

deflected shapes of the plate obtained by using the finite difference

method, are compared with the exact solution.

The comparison of the central displacements obtained by using the

finite difference method and the exact solution is shown in Table 2.2.

The percentage errors in the central displacements obtained by using the
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finite difference method relative to the exact solution were found to be

0.055 percent and 0.072 percent for the uniformly loaded plate and for a
v*

plate loaded uniformly over the region 0 < — < 0.5 respectively.
a

Figures 2.8 and 2.9 show the percentage relative errors in the deflected

shapes obtained by using the finite difference method and the exact

solution, for the uniformly loaded plate and the plate loaded uniformly
Y*

over the region 0 < — < 0.5. In both the cases maximum percentage

error is within 0.1 percent of the exact solution and occur at the

center of the plate.

2.10 Concluding Remarks

In this chapter a numerical solution method to obtain the small

deflection plate solution for a clamped circular quasi-isotropic plate

was, developed. The quasi-isotropic plate was modeled as an isotropic

plate having the flexural stiffness components equivalent to those of a

quasi-isotropic plate. By using a finite difference method, the plate

governing differential equation was replaced by a set of algebraic

equations. These algebraic equations were solved simultaneously to

obtain the transverse displacements for arbitrarily axisymmetrically

loaded clamped circular quasi-isotropic laminates. The numerical

solution was found to be within 0.1 percent of the exact solution for a

uniformly loaded plate and for a plate loaded uniformly over the region

0 < — < 0.5 by using 60 region idealization.
cl

In order to study the large deformation behavior of the quasi-

isotropic plate, membrane effects should be incorporated in the small

deformation soltuion. The following chapter presents the large

deflection membrane analysis.
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Table 2.1 - Elastic Properties of the Plate

Modulus GPa

Material E-Q E^o Gj2 Poisson ratio

Gr/Ep lamina 131.0 13.0 6.4 0.34

Number of plies = 8

Laminate thickness = 1.05 mm

Stacking sequence: [45/0/-/45/90]s

(Subscripts 11 and 22 correspond to the longitudinal and transverse
direction of fiber)
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Table 2.2 - Comparison of Maximum Center Displacements for
Uniformly Loaded Plate and for a Plate Uniformly
Loaded Over the Region 0 < — < 0.5

Central transverse displacement w,
at r = 0.

Type of Present* Exact
loading solution solution

(ref. 27)

4 4
Uniform loading 0.015633-ĵ - 0.015625 j^-

eq eq

4 4
Uniform load over the Q.009994 j^- 0.009987 j^-
region 0 < - < 0.5 eQ eQ

ct

Obtained by using 60 regions idealization



Chapter 3

LARGE DEFLECTION MEMBRANE ANALYSIS

3.1 Introduction

In Chap. 1, a plate-membrane coupling model was proposed to obtain

the large deformation behavior of quasi-isotropic laminates under point

loads simulating low-velocity impact. This model requires a small

deflection plate solution and a large deflection membrane solution. In

the previous chapter a numerical method to obtain a small deformation

solution for a clamped circular quasi-isotropic plate, subjected to

arbitrary axisymmetric loading was developed. In this chapter a

numerical method is developed to obtain a large deflection membrane

solution. Again a quasi-isotropic circular laminate is considered in

the membrane analysis. This quasi-isotropic laminate has only

extensional stiffness but no shear and flexural stiffnesses. As pointed

out in the previous chapter, quasi-isotropic T300/5208 circular

laminates with the stacking sequence of [45/0/-45/90]s are axially

isotropic, i.e., extensional stiffness of these laminates is independent

of the polar angle (Fig. 3.1). Hence, these circular laminates, with

only extensional stiffness, can be modeled as circular isotropic

membranes., In this chapter, a general analysis of circular isotropic

membranes with clamped peripheral edges, subjected to arbitrary

axisymmetric loading is presented. A single governing equation in terms

of radial stress is developed. The solution of this nonlinear governing

45
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(a) Circular Membrane

w(r)

(b) Loading and deformations

Fig. 3.1 Membrane Configuration
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equation is presented by using the finite difference method in

*conjunction with Newton-Raphson method. Three loading cases namely (a)

uniformly loaded membrane, (b) a membrane with uniform load over an

inner portion, and (c) a membrane with ring load are analyzed and the

results are compared with the classical solution.

3.2 Membrane Configuration and Strain-Displacement Relations

Figure 3.1(a) shows an axi symmetrically loaded clamped membrane

with thickness h and radius a. Since the deflection surface is

axi symmetrical, the displacement can be resolved into two components:

(1) a component u in the radial direction, and (2) a component w

perpendicular to the plane of the membrane. From large deflection

theory [27], strain-displacement relations for an isotropic membrane are

obtained as follows:

Consider an element AB of length dr as shown in Fig. 3.2. The

radial strain e from Fig. 3.2 can be expressed as

s . *
but

( 3 -2 )

Substituting Eq. (3.2) into Eq. (3.1)

h? (w}2 ( 3-3 )

The tangential strain ee from the Fig. 3.3 is
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0

z,w

Fig. 3.2 Radial Strain Due to Large Deflections
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_ (r + u) d6 - r d6 _ u
6

By using Eqs. (3.3) and (3.4), the radial and tangential stresses

c
n _ eq rdu 1 rdw-|2 u-i ,_ CA
°r - 77-V W * 7 W + Veq r J (3 '5)eq r

eq

where Eeq and v are the equivalent Young's modulus and Poisson's

ratio of the isotropic membrane and were calculated by using the

technique presented in Chap. 2.

Note that the assumption of large deflection but with small strains

is made in this formulation.

3.2.1 Equilibrium Equations

The equation of equilibrium in the radial direction is obtained as

follows:

Consider stresses on an infinitesimal element abed of unit

thickness as shown in Fig. 3.3. Summing the forces in the radial

direction along the radial line (6 + —^) one has

do dQ

(a + -^- dr) (r + dr) dS - a^ r dS - aQ dr sin —^

do
- (ae + d9) dr sin = 0 (3 .7)

Since d6 is small, sin (— »-) may be replaced by (— ̂ -) . By

neglecting higher order terms the equation of equilibrium in radial
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0

Fig. 3.3 State of Stress on the Membrane Element
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direction is

da
ar * ae + r IT = 0 (3.8)

The equation of equilibrium in the direction perpendicular to the

plane of the membrane, with general axisymmetric loading p(r) is

obtained as follows:

Consider a stretched circular membrane element with general

axisymmetric loading p(r) as shown in the Fig. 3.4. Consider the free

body equilibrium of the deflected membrane, i.e. the vertical component

of the reaction must equal the total load. Therefore from Fig. 3.4

2 * r h ap sin a - /£ p(£) 2 w E, dC = 0 (3.9)

dwFor small a, sin a = tan a = -r-

Therefore the equation of equilibrium in the direction per-

pendicular to the plane of the membrtane with general axisymmetric

loading p(r) is

2 * r h °r W ~ £ p U) 2 * 5 dC = ° (3'10)

The stress and strain displacement relations (Eqs. (3 .3) - (3 .6) ) and

equilibrium Eq. ( (3 .8) and (3.10)) when combined form four nonlinear

partial differential equations with four unknowns a aQ, u, and w.

To obtain a numerical solution of these governing equations the

conventional approach is to reduce these four nonlinear equations to two

equations containing only u and w displacements. This conventional

approach is applicable when u and w displacements are of the same order

of magnitude, for example, a case of uniformly loaded membrane as shown
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a h

dr

Fig. 3.4 Stretched Circular Membrane
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by Shaw and Perrone [31], and Kao and Perrone [53]. However, the

numerical solution of arbitrary ax i symmetrically loaded membranes cannot

be obtained by using the conventional approach because of the large

differences in magnitudes of u and w displacements. Due to these large

differences the two governing equations involving u and w displacements

are difficult to satisfy. Hence an alternate formulation of the

membrane problem is presented below.

3.2.2 Derivation of a Governing Equation

Using the stress and strain displacement relations (Eqs. (3.3)-

(3 .6) ) , the radial displacement u was expressed as

u = T ^ ( a Q - veq V (3

eq ^

The term -^- was obtained by differentiating the radial displace-

ment u, with respect to r.

The strain in the radial direction e was expressed in terms of

the radial and tangential stresses and by using the strain-displacement

relations (Eqs. (3.3) and (3 .4) ) ,

eq

By using -Ji from Eq. (3.12) in equation (3.13) the following

relationship was obtained:'

r

eq

From the equation of equilibrium in radial direction (Eq. (3.8)),
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do
(-,—) was written as

Substituting Eq. (3.15) in Eq. (3.14) and rearranging the terms the

following relationship was obtained:

7
dae

Further, -T-— was obtained by differentiating the equation of

equilibrium (Eq. (3.8)) in radial direction with respect to r, as

do do d2o

Substituting this value of (-̂ p-) in governing Eq. (3.16), the

following relationship was obtained:

2

_ r -, 1 /-dw-,2 _ n
+ T - 7- ) + -~ (-r-j - (J

-~ -r-

eq dr •* Qr

By using equation of equilibrium (Eq. (3.10)) in the direction

perpendicular to the plane of membrane, (-1̂ ) was written as

£ PU) 2 n 5 d5 2

-] (3.19)2 IT r h a

Substituting this value of (J^-) in the governing equation, Eq.

(3.18) gives
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2

=0 «

Equation (3.20) is a nonlinear differential equation in terms of

the radial stress that governs the large deflection response of the

membrane with arbitrary axisymmetric loading. Several investigators

obtained the governing equation in terms of the radial stress a ,

similar to Eq. (3.20). Dickey [30] and Weinitschke [33] presented the

differential equation for uniformly distributed load. Callegari and

Reiss [35] obtained the differential equation for a membrane with an

arbitrary axisymmetric loading.

3.3 Solution Method

To solve the governing equation (3.20) for the radial stress,

Dickey [30] used integral equation method, Weinitschke [33] used

integral equation and power series approaches and Callegari and Reiss

[35] used the shooting method. In contrast, here a numerical method of

solution is proposed. The nonlinear differential equation was replaced

by a set of nonlinear algebraic equations using difference quotiets.

Then using the Newton-Raphson method [52], these nonlinear algebraic

equations were solved numerically to obtain the stresses and

displacements. The details of the solution method are as follows:

The solution domain was discretized into m regions and (m + 1)

nodes. Denoting a (n) as the radial stress at the nth node, the

governing equation, Eq. (3.20) was rewritten as, at any node n:

o
d a d a
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To simplify the evaluation of the integral in the above equation,

the same assumption as discussed in previous chapter will be made.

Consider an ith region with r. p < r < r.. Although the applied load

varies within the region r. , < r < r., the load will be assumed to be

uniform in this region with a value of p^ . The magnitude of p^ is

assumed equal to the value of the load at the midpoint of this region,

i.e., at r = (r-j + r^_^) /2. As the number of regions in the model

become large, the size of each region reduces and hence the variation of

the load within each region also becomes insignificant. With this

assumption the governing equation, Eq. (3.21), reduces to

2
r d a d a

eq dr

* | [ r n h o r t n ) J/i «',2-'i1>]2 = 0 (3 .22)

First and second derivatives of the radial stress from the

governing Eq. (3.22) were replaced by using the central finite

differences as:

a (n+1) - a (n-1)
(n) = r r

dr x ' 2W7

and

a (n+1) - 2 a,, (n) + <j (n-1)r
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3.3.1 Boundary Conditions

For the circular isotropic membrane with axisymmetric loading the

boundary conditions were:

1. Both the radial displacement u and the transverse displacement

w equal zero at the fixed edge (r = a).

2. The radial displacement u and the slope ^- equal zero at the

center (r = 0).

Since the governing equation, Eq. (3.20) was derived in terms of

the radial stress, the transformation of boundary conditions was done by

using stress and strain-displacement relations (Eqs. (3 .3 ) - (3 .6 ) ) and

equilibrium euquations, Eqs. (3.8) and (3.10). When u = 0 and r = a are

substituted into equation (3.11) for radial displacement, the boundary

condition no. 1 above can be transformed to

°9 = veq V at r = a (3.23)

Using this boundary condition in the equilibrium equation in the radial

direction (Eq. (3.8)) , Eq. (3.23), was further transformed to

da
ar (1"veq) + r W~= °' at r = a (3 '24)

The boundary condition (2) above is a statement of symmetry about r = 0,

the center of the membrane. This symmetry condition can be expressed in

terms of the radial stresses,

da
^pL = 0, at r = 0 (3.25)

Using the governing equation, Eq. (3.22),
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da- d2°- ~ i ,n PI (r? - r?-i! 2
+ 4- f S — c r—r-} = 0

and boundary conditions (Eqs. (3.24) and (3.25)) in the form of finite

difference quotients at each node, m + 1, nonlinear algebraic equations

were obtained. These algebraic equations contained m + 1 unknowns,

viz., op(0) ... ar(m) . By using the Newton-Raphson technique as

described in Appendix A, these (m+1) equations were solved to obtain the

radial stress at each node.
dorOnce the radial stresses were known, at each node, the -j — at

each node was calculated by using the finite difference method. Using
da

these values of cr and -g— in Eq. (3.8), the tangential stress aQ

at each node was obtained. By using Eq. (3.11), the radial displacement

dwu at each node, was obtained. The slope -r- at any node was obtained

using Eq. (3.19). Then using the boundary conditions,

w = 0 at r = a,

0 at r = 0,

dwand the finite difference representation of the slope, -r— , at each

node, (m + 1) simultaneous equations with w(0) . . . .w(m) unknowns,

were obtained. These (m + 1) equations were then solved to obtain

transverse displacement w at each node. The details for a simple four

region idealization to obtain radial stresses at each node are presented

next:

3.3.2 Illustrative Example

Consider a clamped circular membrane with radius a and thickness h.
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The membrane is subjected to a uniform loading over the region

0 < — < 0.5. The objective is to obtain the membrane displacements
a

using the finite difference method.

The solution domain 0 < — < 1.0 is diseretized into 4 regions and
da

5 nodes (Fig. 3.5). At the node 0, the boundary condition is -,— = 0

(Eq. (3.25)). This boundary condition can be written in the finite

difference form using Eq. (2.35) as

4 or(l) - 3 ar(0) - cr(2) = 0 (3.26)

The governing differential equation at any node n for the membrane

is (Eq. (3.22))

2

\ = 0

For the nodes 1, 2 and 3 the first and second derivatives can be

expressed in the finite difference form, and by using central difference

equations, Eqs. (2.28) and (2.29), Eq. (3.22) is

At the node 1:

- 0.5 ar(0) o{l) - 2 tr(l) + 2.5

_ P2 a2 Ee

128 h<

At the node 2:

(3.27)

7 a r(3)

(3.28)
32 h^
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Fig. 3.5 Four Region Idealization for the Membrane
Uniformly Loaded Over the Region 0 <_ r/a _<_ 0.5
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At the node 3:

1.5 crr(2) - 6 + 4.5 op{4) <£(3) (3.29)

'eq

216 h'

At the node 4, the boundary condition (Eq. 3.24)) needs to be

satisfied. This condition is

or(4) (l-veq) n (4) = 0 (3.30)

p

The -j— (4) in the Eq. (3.30) can be obtained as follows:

Using the Taylor's series expansion or(3) and ar(2) can be

written as:

ar(3) =ar(4) - (4)
2 d2a

da 2 d

dr

2.
(4,

(3.31)

(3.32)

By eliminating —*- (4) terms from the Eqs. (3.31) and (3.32) and
do dr do

solving for -̂ 5- (4), the -^- (4) is obtained as follows:

4 ap(3) + ap(2) + 3

2 • (Ar) "dr~ (4) (3.33)

Substituting Eq. (3.33) into Eq. (3.30) the equation at the node 4 is
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2 op(2) - 8 a r(3) + o r(4) (6 + (1 - v )) = 0 (3.34)

Equation (3.26), (3.27), (3.28), (3.29), and (3.34) are the five

nonlinear algebraic equations and they contain five unknowns a (0),

o (1), a (2), a (3), and a (4). These nonlinear algebraic equations

are solved by using Newton-Raphson1s method (see Appendix A) to obtain

the unknown radial stress at each node. As discussed earlier, once the

radial stresses were known at each node, the equation of equilibrium in

the radial direction (Eq. (3.8)) , was used to obtain the tangential

stress, OQ, at each node. The radial displacement, u, and the slope,
f\ W
4- , at any node were obtained by using Eqs. (3.11) and (3.18),

respectively, and the a and OQ values at that node. Then using the

boundary conditions,

w = 0 at r = a,

|S . 0 at r . 0

and the finite difference representation of the slope, -^ , at all the

nodes, the transverse displacements, w, were determined.

3.4 Convergence Study

In this section, first a convergence study for the above outlined

method is presented. Then, the present method is illustrated for

circular membranes with different loadings, shown in Fig. 3.6.

1. Uniformly loaded circular membrane.

2. A membrane with uniformly distributed load over the inner

portion.
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Fig. 3.6 Types of Loading on the Membrane
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3. A membrane with a ring load.

The stresses and displacements were expressed in dimensionless

forms, using Hencky's normalized formulation as,

u = u . . . . . w = ^
_ /• pa - \2/3 r pa

r ,22 c 173 6 22 c 1/3

To study the convergence of the present method, the circular

membrane was idealized into m number of regions with (m + 1} nodes,

(where nodes are numbered from the center to the outside). The number

of regions, m, used in this convergence study were 8, 16, 32, 60, and

64. Figures 3 .7(a) and 3 .7(b) present the relative errors in the

normalized maximum deflections and stresses, for a uniformly loaded

membrane and for a membrane loaded uniformly over the region

0 < — < 0.5. The solution shows rapid convergence and about 60a

regions were found to be necessary for a membrane loaded uniformly over

the region 0 < — < 0.5, to yield a solution which is within 0.001

percent of the converged solution. In contrast much fewer than 60

regions were necessary for the uniformly loaded membrane. However, a 60

region idealization is used in the analysis and all the results are

presented for this idealization.

The Newton-Raphson method used here needs initial a values for
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the iterative process. The sensitivity of the present method to these

initial values was studied. Table 3.1 presents the number of iterations

needed to achieve convergence for a range of initial a values for the

three configurations studied. The initial a values were as low as

three orders of magnitude smaller than the maximum converged value of

a and as high as three orders of magnitude higher. For the uniformly

loaded membrane with each of these initial values the present method

converged to the same solution. The other two configurations showed

similar convergence, thus showing insensitivity to the initial a

values. When the initial a values were farther away from the

converged values the number of iterations needed were around 40 compared

to about 8 when the initial a values were closer to the converged

a values.

3.4.1 Uniformly Loaded Circular Membrane

The first problem analyzed was that of a uniformly loaded circular

membrane, for which classical solution [29] exists. The uniform loading

was represented by setting the magnitude of loading terms p^ through pgQ

equal to unit values. Using these values in Eq. (3.22), the governing

equation for the membrane was solved by using the procedure outlined

earlier. The values of u and w displacements and stresses a and

OQ are presented in Figs. 3.8 and 3.9, respectively. A comparison of
o

the present solution with Hencky's c lassical solution [29] and Kao and

Perrone [53] nonlinear relaxation method solution is shown in Table

3.2. The central displacement as well as central and edge radial

stresses obtained by the present method are in excellent agreement with

the earlier reported results as shown in Table 3.2.
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3.4.2 A Membrane With Uniformly Distributed Load Over the Inner Portion

The second example is that of~a membrane with uniformly distributed

load over an inner portion. A particular case of loading over the

region 0 < £• < 0.1 was analyzed. In the corresponding solution, this

loading was represented by setting the magnitude of loading terms p^

through pg equal to unit values and terms pj through pgQ equal to

zero. Again using the governing Eq. (3.22) with the loading terms

discussed before, the solution was obtained for stresses and displace-

ments at each node. The corresponding values of u and w displace-

ments and a and crQ stresses are shown in Figs. 3.10 and 3.11

respectively.

3.4.3 A Membrane With a Ring Load

The last problem considered here is one where the membrane carried

a uniformly distributed ring load. As a specific case the ring load was

assumed to be spread over the region 0.5 < -^ < 0.6. Since loading was
a

considered over the region 0.5 < — < 0.6 in the corresponding
a

solution, this loading was represented by setting the magnitude of

loading terms p^ through P3g equal to zero, p^i through p^g equal to

unit values; and p^7 through pgQ equal to zero. Using these values in

Eq. (3.22), the governing equation for the membrane with the ring load

was solved by using the procedure outlined earlier.

The corresponding values of u and w displacements are presented

in Fig. 3.12 and stresses a and OQ are presented in Fig. 3.13.

Figure 3.12 shows that the transverse displacement w is constant up to

the ring load and then starts decreasing and becomes zero at the clamped

edge. In contrast, the radial displacement u is zero at the center,
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increases gradually until it reaches the peak value in the loading

region and then starts decreasing and becomes zero at the fixed edge.

On the other hand, the normalized stresses a and OQ are of the

identical magnitude in the unloaded region Q < L < 0.5 and then
a

decrease for larger values of r.

3.5 Discussion

As pointed out earlier, when inplane and transverse displacements

differ by large amounts a simultaneous method of solution presents

difficulties. As the present method does not use u and w as

parameters, rather uses a single parameter a these difficulties are

avoided. Therefore, it is interesting to compare the differences in

magnitudes of u and w values for various problems analyzed. For a

membrane with uniformly distributed load u and w are of the same

magnitude (Fig. 3.8), whereas in the case of membrane loaded over an

inner portion and for the ring loaded membrane, the displacements differ

by two (Fig. 3.10) and one (Fig. 3.12) order of magnitude, respectively.

Because u and w do not differ by large amounts in the case of

uniformly loaded membrane, one would expect the simultaneous solution to

be efficient and feasible. Indeed, it is so as demonstrated by Kao and

Perrone [53]. Because u and w differ by large amounts for the

arbitrarily loaded membranes, one would expect difficulties with

simultaneous solution method. This may be the reason for the limited

numerical solutions for these two loading cases. The present method on

the other hand avoided these problems by using a governing equation in a

single parameter, the radial stress. The present method shows good

convergence characteristics for all the problems studied and converges
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to the correct solution even when the initial values are unrealistically

large or small. Therefore, the nonlinear governing equation in terms of

the radial stress and the Newton-Raphson technique appear to be the

ideal choice for large deflection problems of arbitrarily loaded

membranes.

3.6 Concluding Remarks

In this chapter the quasi-isotropic circular laminate with only

extensional stiffness but no shear and flexural stiffnesses were modeled

as circular isotropic membranes. A single nonlinear differential

equation which governs the response of these circular clamped isotropic

membranes under arbitrary axisymmetric loading was developed. This

nonlinear equation was solved by using the finite difference method in

conjunction with Newton-Raphson method. The numerical studies on the

large deflection membrane analysis show that the present method of

analysis yields accurate solutions for inplane and transverse

deflections and stresses for the arbitrarily axisymmetrically loaded

circular membranes.

In the next chapter a plate-membrane coupling model, which uses the

small deflection plate solution obtained in Chap. 2 and the large

deflection membrane solution obtained in this chapter, is presented to

predict the large deformation behavior of thin circular quasi-isotropic

laminates under point loads.
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Table 3.1 - Sensitivity of the Present Method of the Initial
Values of a

Initial
a values"

0.0001

0.001

0.01

0.1

1.0

10.0

100.0

Converged
\ (r = 0)

Converged
ap (r = a)

Number of iterations required

Uniform loading over

0 < - <
cl

25

20

14

8

9

20

31

0.4310

0.3329

1 0 < I < 0.1a

22

16

10

8

19

27

41

0.1104

0.0235

for convergence

the region

0.5 < I < 0.6
a

23

17

11

5

15

26

37

0.1237

0.0971

aMembrane idealized with 60 regions
^Constant radial stress o was assumed at all 61 nodes.
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Table 3.2 - Comparison of Normalized Displacements and Stresses
for Uniformly Loaded Membrane

Central transverse
deflection
w at r = 0

Central radial
stress

a at r = 0

Edge Radial
stress

a at r = a

Hencky
(ref. 29)

Kao and
Perrone
(ref. 53)

Present
Results

0.6536

0.6541

0.6534

0.4310

0.4289

0.4310

0.3280

0.3306

0.3329

Values taken from reference 53.



Chapter 4

PLATE-MEMBRANE COUPLING MODEL

4.1 Introduction

In Chapters 2 and 3, numerical solution methods to analyze the

small deformation behavior of circular quasi-isotropic plates and the

large deflection behavior of circular isotropic membranes are

described. In this chapter, a plate-membrane coupling model to study

the large deformation behavior of clamped circular plates is

developed. The model developed herein uses the plate and membrane

solutions in conjunction with a coupling principle. A numerical

solution method to analyze the clamped circular quasi-isotropic

laminates under point load, using plate-membrane coupling model is

presented.

4.2 Analysis

In the plate-membrane coupling model two different plate problems

are analyzed. First, a thin plate with shear and flexural stiffnesses

but no mid-plane extensional stiffness under point load is considered.

The deflected shape of the plate is then obtained by using the classical

small deformation theory. Second, a plate with mid-plane extensional

stiffness, but no shear and flexural st i f fnesses, i.e., a membrane is

considered. The deformed plate shape obtained in the plate problem is

used in the membrane problem. For this deformed shape membrane loads

are calculated by using a nonlinear membrane theory. Large deformation

79
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solutions of thin plates are then obtained by coupling these solution of

plate and membrane problems. The details of the plate-membrane coupling

model are given below:

4.2.1 Plate Configuration

Consider a clamped circular plate of thickness h and radius a,

subjected to a central point load P as shown in Fig. 4.1. The plate is

a quasi-isotropic laminate of T300/5208 graphite/epoxy material with

stacking sequence [45/0/-45/90]$ and material properties given in Table

2.1.

To analyze this quasi-isotropic clamped circular plate for large

deformation behavior, first a circular plate with a prescribed central

deflection WQ is considered. The objective of the analysis is to

determine the large deformation shape of the plate w(r ) and the

central concentrated load P.

This problem as mentioned earlier, can be decomposed into two

component problems: problem-1 is a plate with shear and flexural

stiffnesses but no mid-plane extensional stiffness, problem-2 is a plate

with mid-plane extensional stiffness but no shear and flexural

stiffnesses, i.e., a membrane.

4.2.2 Problem-1: Plate Problem

In problem-1 the plate was assumed to be flexurally isotropic even

though a quasi-isotropic plate is anisotropic in flexure. (This

assumption was experimentally verified and will be discussed in detail

in Chap. 6.)

From Chap. 2, the governing differential equation for axisym-
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(a) circular plate

P

(b) loading and deformation

Fig. 4.1 Plate Configuration
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metrical bending of a clamped circular plate subjected to arbitrary

axisymmetric loading and undergoing small deformation is (Eq. (2.12)-)

d3w 1 d2w 1 dw _ Q(r) ,, ..' '

where Q(r) is a shear force at any radius r and is given by (Eq. (2.13))

2 TC r Q(r) = f 2 -a I pU) d£ (4.2)

where p(£) is the intensity of loading at any radius £.

In equation (4.1), Deq is an equivalent flexural modulus for the

quasi-isotropic laminate. As discussed in Chap. 2, the equivalent

modulus DeQ was obtained by equating bending energies of the quasi-

isotropic laminates and an equivalent isotropic plate. Equation (4.1)

can be solved to obtain the deformed shape of the plate for a given

intensity of load p(r) .

4.2.3 Problem-2: Membrane Problem

In problem-2, a plate with mid-plane extensional st i f fness but no

shear and flexural stiffness, i.e., a membrane is analyzed. Since the

quasi-isotropic laminates are axially isotropic, the governing

differential equations for these laminates are essentially the same as

that for a circular isotropic membrane. From Chap. 3, the governing

equations for the large deflections of circular isotropic membranes

subjected to arbitrary axisymmetric loading are (Eqs. (3.18) and (3.19))

= 0 (4.3)

and
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P(O £ d£ 2

where cr is the radial stress. If the displacement w is known, the

rotation (-T—) is known and hence the radial stress can be determined

by integrating Eq. (4.3). With this radial stress a distribution,

the loading p(r) on the membrane can be determined by using equation

(4.4).

4.2.4 Coupling of the Two Problems

The large deformation solution for quasi-isotropic clamped circular

laminate with the prescribed central point deflection WQ can be obtained

by using the governing equations, Eqs. ((4.1)-(4.4)) and by the

appropriate coupling of plate and membrane problems as shown in a flow

chart of the Fig. 4.2. This procedure is outlined in Fig. 4.3, and is

as fol lows:

The central point load P and the deformed shape w(r ) for a

clamped circular plate were obtained by using the prescribed central

deflection WQ and the governing equation, Eq. (4.1) (steps 1 and 2 in

Figs. 4.2 and 4.3). This deformed shape w( r ) was used in the membrane

problem, to determine the membrane loads p(r) (step 3 in Figs. 4.2 and

4.3). The loads which are equal in magnitude to p(r) but opposite in

direction, and the point load P were applied to the plate problem (step

4 in Figs. 4.2 and 4.3). For this new loading the new deformed shape

w1 (r) of the clamped circular plate was obtained by solving the plate

problem (step 5 in Figs. 4.2 and 4.3). Since the membrane loads p(r)

were applied in the opposite direction, this caused reduction of the

central deflection of the plate by an amount A w (step 6 in Fig. 4.2).
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STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

STEP 6:

STEP 7:

USING LINEAR PLATE THEORY OBTAIN
A POINT LOAD P AT r = 0 SUCH THAT
THE DEFLECTION AT THE CENTER (r =
0) IS w0 SET P' = P

±
USING LINEAR PLATE THEORY OBTAIN
A DEFLECTED SHAPE. w(r) FOR THE
CENTER DEFLECTION OF wrt

STEP 8:

USING NONLINEAR MEMBRANE THEORY
AND w(r), OBTAINED IN STEP 2,
OBTAIN MEMBRANE LOADS, p(r)

IN ADDITION TO QUASI POINT LOAD
P', APPLY LOADS P(r), WHICH ARE
EQUAL IN MAGNITUDE TO p(r), BUT
ARE OPPOSITE IN DIRECTION

USING LINEAR PLATE THEORY OBTAIN
A NEW DEFLECTED SHAPE w'(r) FOR
THE LOAD SYSTEM OF STEP 4. LET
w'(r=o)=w0'

COMPUTE THE DIFFERENCE IN DEFLEC-
TIONS OBTAINED IN STEP 2 AND STEP
5 AT EACH RADIUS. PERCENT DIFFER-
ENCE =ABS C(w(r)-w'(r))/w0l x 100

THE DEFLECTED
SHAPE OF THE
PLATE AND MEM-
BRANE ARE
MATCHED.

0 0 - 0
USING LINEAR PLATE
THEORY COMPUTE
CENTRAL INCREMENTAL
LOAD fiP TO DEFLECT
THE PLATE BY iwn.

STEP 9:
APPLY LOADS P'=P-ffiP AT r=0 AND
THE LOADS WHICH ARE EQUAL IN
MAGNITUDE, TO p(r) OBTAINED IN
STEP 3 BUT OPPOSITE IN DIRECTION.

Fig. 4.3 Flow Chart for the Plate-Membrane Coupling Model
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An incremental load AP is necessary to nullify the reduction of

the central deflection, A w . The magnitude of the incremental load

AP, is calculated by using Eq. (4.1) (step 8 of Fig. 4.3). This

incremental load AP, together with the original point load P and the

membrane loads which are equal in magnitude to p(r) but opposite in the

direction were applied to the plate problem (step 9 of Figs. 4.2 and

4.3). This load system yields a central deflection equal to WQ, the

original value. However, the new deflected shape w(r ) , determined from

Eq. (4.1) is in general different from the original deflection shape.

This iterative procedure is repeated until the deflected shapes obtained

in any two consecutive iterations are almost identical, i.e. step 7 in

Fig. 4.3 is satisfied.

A complete solution can now be obtained by coupling the plate-

membrane solutions. The coupled plate and the membrane are analogous to

two coupled parallel springs, one with linear (plate) stiffness and

other with a nonlinear (membrane) stiffness. If these springs undergo

the same deflection WQ then the unknown load P applied to this spring

system is the sum of the loads carried in the two springs. Similarly in

the present coupling model the deflected shapes of the plate and the

membrane are identical and therefore the loads are additive.

When the deflected shapes obtained in any two consecutive

iterations are nearly identical the plate carries a central point load

and a distributive interactive load ( -p( r ) ) and the matched membrane

carries the opposite of distributive interactive loads p(r). When the

plate and membrane are coupled, interactive loads on the plate and

membrane nullify each other and the total load is simply a single

central point load on the plate. The complete plate-membrane solution
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thus yields the large deflection shape of the plate and the magnitude of

the central-concentrated load, for a prescribed central deflection WQ.

Instead of prescribing a central deflection WQ, one could formulate

the problem for a prescribed central point load P. The analysis

procedure for this case is straight forward with minor differences and

is as follows:

The problem as before, is also decomposed into two component

problems. By using the center point load P in the plate problem,

deflected shape w(r) and the central deflection WQ is obtained by using

Eq. (4.1). Then steps 2 through 6 (Figs. 4.2 and 4.3) are repeated as

done earlier. Since in step 4, the membrane load p(r) is applied in the

opposite direction, this causes a reduction in central deflection by

Aw (step 6 of Fig. 4.3). At this stage instead of incrementing the

center point load P, the new membrane loads p(r) are calculated by

using the deformed shape w ' ( r ) obtained in step 5 (step 3 of Fig. 4.3) .

This procedure is repeated until the deflected shapes obtained in any

two consecutive iterations are almost identical.

A complete solution can now be obtained by coupling the plate-

membrane solutions. When the final plate and membrane solutions are

coupled as before, the interactive loads on the plate and membrane

nullify each other and the original prescribed central point load is

left on the plate. The corresponding matched central deflection WQ, and

the deflection shape w ( r ) , are the large deformation solutions of the

clamped circular plate subjected to a prescribed central point load.

The above procedure, although presented for a central concentrated

load, can be applied in a similar manner to obtain the large deformation
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solutions for arbitrarily axisymmetrically loaded clamped circular

plates. If, on the other hand, the large deformation shape of the plate

is known, it can be used in the linear plate theory to calculate the

plate loads, and in the nonlinear membrane theory to calculate the

membrane loads. The sum of these two loads gives the complete large

deformation solution.

4.3 Solution Method

The plate governing equation, Eq. (4.1) for the deflecton w, was

solved by using finite difference method as described in Chap. 2. The

ordinary differential Eq. (4.1), was replaced by a set of linear

algebraic equations using finite difference quantities. These linear

algebraic equations were solved numerically, to obtain rotations and

displacements. The nonlinear governing equations, Eqs. (4.2) and (4.3)

were replaced by a set of nonlinear algebraic equations using finite

difference quantities. These nonlinear equations were solved by using a

Newton-Raphson method in conjunction with the finite difference method,

as described in Chap.3.

Using these plate and membrane solutions in conjunction with the

plate-membrane coupling model discussed before, the large deformation

shapes for the clamped circular quasi-isotropic laminates were obtained.

From the plate-membrane coupling model it was observed that as

plate central deflection to plate thickness ratio increases, the number

of iterations required to obtain the large deformation solution

increases. Table 4.1 presents the number of iterations required to

obtain the large deformation solution of the clamped circular quasi-
wo

isotropic laminates under point loads for (—r-) ratios ranging from 0.5

to 2.0.
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4.4 Results and Discussion

In this section analytical deflected shapes obtained with the

plate-membrane coupling model, for the central deflection to plate
wothickness ratios (-) ranging from 0.5 to 2.0 are presented. These

analytical deflected shapes obtained by using the plate- membrane

coupling model are compared with the deflected shapes obtained by using

the classical solution [27]. Load-displacement curve obtained by using

the pi ate -membrane coupling model is compared with the classical

solution [27]. Figures 4.4 and 4.5 show the analytical deflected shapes
woobtained by using the plate-membrane coupling model; for (— T-) ratios

of 0.5 to 1.0, and 1.5 and 2.0. Figures 4.4 and 4.5 indicate that the

functional form of the deformed shapes of the plate is different for
wovar ious (— r-) ratios.

To compare the plate-membrane coupling analysis, the classical

solution [27] based on the energy method was considered. Appendix B

presents the large deformation classical solution based on the energy

method for a clamped circular plate subjected to the center point load

P. The classical solution assumes that the functional form of the

deformed shape of the plate is identical to the functional form of the

deformed shape of the plate determined by the small deflection

solution. Thus as per the classical solution [27], the large deformed

shape of a clamped circular plate under center point load is given as:

w ( r ) =WQ [1 - (1̂ ) + 2 (Ij) *n (I)] (4 .5)

The transverse displacements w obtained by using the plate-

membrane coupling model and the classical solution (Eq. (4.5)) for
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0

Fig. 4.4 Deflected Shapes for the Quasi-lsotropic
Circular Plate Under Point Loads for
w /h =0.5 and 1.0
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Fig. 4.5 Deflected Shapes for the Quasi-Isotropic
Circular Plate Under Point Loads for
w /h = 1.5 and 2.0o
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various (—,-) ratios ranging from 0.5 to 2.0 are presented in Table

4.2. The results obtained by using the plate-membrane coupling model
w

show that the functional form of the deflected shapes for various (—r-)

ratios is different. In contrast, as mentioned earlier the classical

solution [27] based on energy method, assumes that the functional form
woof the deflected shape of the plate is identical for all (—r-) ratios.

The deflected shapes obtained by using the pi ate-membrane coupling model

are compared with those obtained by using the classical solution [27].

Figure 4.6 presents the percentage errors, in the deflected shape

of the classical solution relative to the present solution, at various
woradii for (—r-) ratio of 2.0. It is observed that the maximum error is

about 4 percent and occurs at (—) = 0.233. Although relative errors
O

in the displacements are small, these errors get magnified if the

curvatures obtained by the plate-membrane coupling model and the

classical solution are compared. Figure 4.7 compares the curvatures

obtained with the plate-membrane coupling model and the classical
w

solution, for (—pj-) ratio of 2.0. Figure 4.7 shows that the plate-

membrane coupling model predicts higher values of curvatures than those

obtained by using the classical solution up to (—) ratio of 0.4 and
a

beyond (—) = 0.9. However, in the range 0.4 < -^ < 0.9, thea a

classical solution predicts higher values of curvatures. Since stresses

are proportional to the curvatures even small differences in the

curvature result in significant errors in stress predictions in the

plate undergoing large deformation.

In the plate-membrane coupling model, another important point that

was noticed was the movement of the radius of inflection (radius at

which curvature is zero), as a function of the central deflection to the
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w
plate thickness ratios (-£•) . The classical solution [27], assumes

that the functional form of the deformed shape is identical for all
w

( °) ratios, hence the radius of inflection shows no movement with the

change in ratios and is located at (j) = 0.3678. (The detail

derivation for the radius of inflection is presented in Appendix C.)

The plate-membrane coupling model on the other hand does not make any

assumption on the deformed shape of the plate and hence on the radius of

inflection. The deformed shape and the radius of inflection are

obtained as part of the solutions. Figure 4.8 shows the movement of the

radius of inflection with the change in the central deflection to the
wo

plate thickness ratios (—c] . The symbols in Fig. 4.8 show the
w

position of the point of inflection for different values of (— T-) . For

increasing central deflection the point of inflection moves toward the

center of the plate (r = 0 ) . The inward movement of the point of
w w

inflection with increasing (—] ratio occurs, since, as (—} ratio

increases, the plate behaves more like a membrane than a flexural plate.
w

That is as (—2-) ratio increases, the external load is equilibriated

more and more in membrane action than in flexural action.

Figure 4.9 presents a comparison between the load-displacement

curves obtained by using the plate-membrane coupling model and the

classical solution [27]. This figure indicates that the classical

solution based on the energy method predicts the load-displacement
wo

behavior accurately up to (— T-) ratio of 1.0. However for higher
wo

values of (— tr) ratios the classical solution yields lower

displacements than the plate-membrane coupling solution.
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.5

.4

.3

.2

1 -

0 I I

Classical solution

Plate-Membrane
Coupling Model

0 .5 1.0 1.5 2.0 2.5
WQ/h

Fig. 4.8 Movement of Radius of Inflection as a Function of
Center Deflection
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2.0

1.75

1.50

1.25

I 1.0
o

1 0.75

0.50

0.25

0

Plate-Membrane,
Model Solution

Classical Solution

J Load Pa2

0 10 15 20 25 30 h4
n

Fig. 4.9 Load-Deflection Curve Comparison
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4.5 Concluding Remarks

In this chapter circular quasi-isotropic composite plates were

analyzed to study the large deformation behavior under point loads. A

pi ate-membrane coupling model was formulated and solved numerically to

obtain the large deformation shapes for thin circular composite

laminates under the point loads. These large~~deformation shapes were

compared with the large deformation shapes obtained by using the

classical solution [27] which assumes that the functional form of the

deformed shape of the plate is identical to the functional form of the

deformed shape of the plate determined by the small deflection plate

solution. The comparison shows that the functional form of the deformed

shape of the plate undergoing large deformations is different from the

small deflecton plate solution in that the deformed shape is a function

of the center point displacements and thus is different for different

load levels. The classical solution and the plate membrane coupling

solution are in good agreement up to the central deflection-to-plate

thickness ratio of 1.0. For higher values of the center deflection-to-

plate thickness ratios the classical solution yields lower displacements

than the plate-membrane coupling solution. This plate membrane coupling

model is experimentally verified in Chap. 6.
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Table 4.1 - Number of Iterations to Obtain Large Deflection
Solution of a Clamped Circular Plate Under Central
Concentrated Load Using the Plate-Membrane Coupling
Model.

Plate center deflection
w

to thickness ratio (— T-)

0.5

1.0

1.5

2.0

Number of

iterations

9

11

14

21
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Table 4.2(a) - Comparison of the Transverse Displacements w
Obtained by Using the Plate-Membrane Model and the

Classical Solution for (- Ratios of 0.5 and 1.0.

r/a

( °) = 0.5 0.0
n 0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

w
(-£) = 1.0 0.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Classical
Solution

0.50000
0.47197
0.41562
0.34664
0.27339
0.20171
0.13610
0.08023
0.03719
0.00966
0.00000

1.00000
0.94394
0.83124
0.69328
0.54678
0.40342
0.27220
0.16046
0.07438
0.01932
0.00000

PI ate -Membrane
Coupling Model

0.50000
0.46764
0.40842
0.33791
0.26484
0.20311
0.13506
0.07762
0.03828
0.01001
0.00000

1.00000
0.93050
0.80831
0.66745
0.52491
0.39392
0.27028
0.16570
0.07719
0.02074
0.00000
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Table 4.2(b) - Comparison of the Transverse Displacements w
Obtained by Using the Plate-Membrane Model and the
Classical Solution for (-£.) Ratios of 1.5 and 2.0.

r/a

(-£) = 1.5 0.0
n 0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

w
( °) = 2.0 0.0n o.i

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Classical
Solution "•

1.50000
1.41592
1.24686
1.03992
0.82018
0.60513
0.40830
0.24068
0.11156
0.02897
0.00000

2.00000
1.88789
1.66248
1.38656
1.09357
0.80685
0.54441
0.32091
0.14875
0.03863
0.00000

PI ate -Membrane
Coupling Model

1.50000
1.38595
1.19548
0.98512
0.78421
0.58841
0.40245
0.25309
0.12140
0.03286
0.00000

2.00000
1.83399
1.57111
1.29297
1.02026
0.77129
0.53813
0.34512
0.16870
O.C4561
0.00000



Chapter 5

FINITE ELEMENT MODEL

5.1 Introduction

In the previous chapter, a plate-membrane coupling model was

presented to obtain the large deformation behavior of circular quasi-

isotropic laminates under point loads. To verify the plate-membrane

coupling model, a finite element formulation, which uses appropriate

linearization of strain-displacement relations [36] is developed and

presented in this chapter. The formulation is based on a variational

technique and uses the principle of minimum potential energy [28], As

pointed out in Chap. 1, several investigators [36-44] used a lineariza-

tion technique, to study the geometrically nonlinear circular plate

problems. However, earlier investigators ignored the membrane effects

due to mid plane stretching. In this chapter, the membrane effects due

to the mid-plane stretching are incorporated in the finite element

model. This model is used to analyze the large deformation behavior of

the circular quasi-isotropic laminates under point loads. The results

from this model are compared with the results from the plate-membrane

coupling model.

5.2 Finite Element Method

The basis of the finite element is the representation of a body or

structure by an assemblage of subdivisions (finite elements). Simple

functions are then chosen to approximate the distribution or variation

102
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of the actual displacements over each element. These functions are

usually referred.to as shape functions. A variational principle, such

as the principle of minimum potential energy, is then employed to obtain

the set of equilibrium equations for each element. The equilibrium

equations for the entire body are then obtained by combining the

equations of the individual elements. The equations are modified for

the given force or displacement boundary conditions and then solved to

obtain the unknown displacements.

Mathematically, the finite element representation of continuum

strongly resembles the Ritz method [28], in which the displacements of

the plate are approximated by the sum of the functions, each multiplied

by an unknown constant. These unknowns are determined from the minimum

potential energy theorem. While using the Ritz method, the assumed

series expression describes the total displacement field of the entire

plate, in the finite element method individual displacement patterns for

each element are assumed. The entire displacement field of the plate

can be approximated piecewise. The total potential of the plate,

obtained from the sum of the total potentials of the individual

elements, has a stationary value when the node points are in

equilibrium. This conditions leads to minimization of the total

potential of the structural system, which, in turn, yields the

displacement field corresponding to its equilibrium condition.

The application of the finite element method to obtain the large

deformation solution for the quasi-isotropic circular plates under point

loads is presented in following sections.
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5.3 Plate Configuration

As before the plate configuration used was that of a quasi-

isotropic circular plate with a concentrated load at the center. The

plate is assumed flexurally isotropic and the equivalent flexural

modulus Deq of the plate is computed as described in Chap. 2. With this

assumption of the flexural isotropy the problem of a circular quasi -

isotropic plate subjected to a central point load reduces to an

axisymmetric problem. This problem is then analyzed by the finite

element method as shown in the following sections.

5.3.1 Strain-Displacement Relations

For the axisymmetrically loaded circular plate the deflection

surface is axisymmetrical. Due to the symmetry the shearing stresses

T e are zero. Also from the basic assumptions of the plate theory

(Chap. 2), shearing stresses T and normal stresses a are zero.

For the circular plate undergoing large deformations, the radial

and tangential bending strains at any distance z from the middle surface

are,

bending
_ 1

r

dS/
2*

d r*
dw
W

= z
er
ee

(5.1)

and the membrane strain-displacement matrix is (Eqs. (3.3) and (3 .4 ) )

er
ee membrane

du , 1 (dw<i2
W 7 [W>

a
F

e

Ee
(5 .2)

m

Therefore the total radial and tangential strain-displacement



matrix is

or in concise form

= z {eb> +

m
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(5.3)

(5.4)

The stresses and strains are related by a material properties

matrix, [H], forming the following constitutive equation

{a} = [H] (d (5 .5 )

where

[H] =
eq

eq (5 .6 )

where Eeq and v are the equivalent Young's modulus and Poisson's

ratio for the quasi-isotropic plate and were calculated by using the

technique presented in Chap. 2.

5.4 The Axisymmetric Finite Element

An axisymmetric finite element in the form of a ring of constant

cross section is shown in Fig. 5.1. The node points of such an element

are in fact nodal circles, and the volume of such an element is

dependent on both its cross-sectional area and the radii of these nodal

circles.
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Fig. 5.1 Axisymmetric Element
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A convenient approach for derivation of the finite element

governing expressions is based on the principle of minimum potential

energy. Consider a circular plate discretized into n number of

axisymmetric elements. Each element is of a constant thickness h, with

r.j and r0 as inner and outer radii (Fig. 5.1). Let Ue be the strain

energy of the axisymmetric element and A represents the surface area

of the element. The total potential energy TI of an element is the

total strain energy of the element minus the total work done and can be

expressed as

* = I) - // (S}T {f} dA (5.7)
e e A

where {S> is a vector of nodal displacement and {f} is the

corresponding load vector containing inplane loads I, the transverse

loads p and the applied moments M at all nodes on the element. Ue in

the Eq. (5.7) is the strain energy of the axi symmetric element and is

given by

U = I / {o}T {E} d (vol) (5.8)
e i vol

vol in Eq. (5.8) is the volume of the axi symmetric element.

Substituting Eq. (5.5) into Eq. (5.8) strain energy for the element was

written as

U i / {e)T [H] {E} d (vol) (5.9)
e * vol
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where [H] is the constitutive matrix given by Eq. (5.6). For a plate

under combined bending and stretching the strain-displacement relation

is given by Eq. (5.4). Substituting Eq. (5.4) into equation (5.9),

strain energy Ue is:

r.
U< • • Ce, ir° (5.10)

' Deq 'r! VT CQ] (Eb>dr

C-Q and Deq in Eq. (5.10) are called the membrane and the bending

stiffness coefficients respectively and are given by

eq and Deq
(5.11)

12

and

[Q] = eq

eq 1
(5 .12)

Substituting Eq. (5.10) into Eq. (5 .7) , the total potential energy

of the element is:

{em}

dr

° (S}T {f} r (5.13)
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By using the principle of minimum potential energy, the element

stiffness matrix was obtained as follows:

5.5. Stiffness Matrix of an Axisymmetric Element

A cubic displacement in w and a linear displacement in u were

assumed in the plate element as

w = aQ + a^ + a2r2 + a3r3 (5.14)

u = bQ + b^ (5.15)

These displacement functions ensure the continuity of displacements

between adjacent elements. Thus these displacement functions satisfy

the compatibility requirements, which state that at element interfaces

the field variables u, w and any of its partial derivatives up to one

order less than the highest order derivative appearing in the energy

expressions it must be continuous.

In the plate problems, the bending strains are defined by second

derivatives of the transverse displacements. Therefore a cubic function

in w will give a constant strain in an element. Similarly the membrane

strains are defined by first derivatives of the radial displacements and

thus a linear function in u will give a constant strain in an element.

Therefore a cubic displacement funciton in w and a linear displacement

function in u meets the constant strain condition in the element and

thus satisfies the convergence criteria in the finite element.

Equations (5.14) and (5.15) contains six unknowns aQ, a^, &2* a3» bQ,

and b^ and the axisymmetric plate element has two nodes, therefore each



no

node was assumed to have three degrees of freedom, the radial displace-
XJW

ment u, the transverse displacement w, and the rotation -^ . These 3

degrees of freedom satisfy the compatability requirements discussed

earlier, which requires that the u, w, and J^ should be continuous at

element interfaces.

For any axisymmetric element with radius r.,- and rQ, nodal displace-

ments can be expressed in terms of generalized displacements as:

/• ~\

u.
1wi

Hw
1 — ̂ — \ . =
dr i )
uo
wo

(dwi

V- -J

1

^ 1

0 0 0 0 1 r .
* i i? i

1 r i r 2 . r 3 . 0 0
o

0 1 2 r . 3 r f 0 0i i
0 0 0 0 1 r o

1 r r r 0 0
0 O 0

0 1 2 r 3 r 2 0 0
0 0

f -x

a
0

al
a

/ t.

^
a3
bo

bi1

(5.16)

where subscripts i and o represent inner and outer nodes. Equation

(5.16) was expressed in the concise form as fol lows:

(6}e = [A] {a} (5.17)

where {6} = the nodal displacement vector. From the foregoing, the

solution for the unknown constant is

{a} = [A]"1 {6} (5.18)

Now consider the total potential energy equation (Eq. (5.13)). Applying

the principle of the minimum potential energy, the variation in the



in

total potential energy should be equal to zero. Therefore the variation

in the potential energy from Eq. (5.13) is

A7te = Deq 'r° {A CQ] {eb} r dr

eq

2* Jr° (As}T (f) r dr] = 0 (5.19)

The bending strains (EU) in Eq. (5.19) are (Eq. (5.1))

dr
1 dw
r dr

Using the shape functions (Eq. (5.14)), (-X) and (—7] can be
(J i i <—dr

written as

= a. + 2 a0r + 3 a,1 2 3 (5.20)

and

d2w
dr'

= 2 (5.21)

Using Eqs. (5.20) and (5.21), {e.} can be expressed in matrix form as
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0 0 - 2 - 6 r

0 "A -2 -3r

or concisely as,

0 0 "

0 0 \

a
0

al
a2
a3
b

0

bl

(5.22)

{eb> = [R] (a) (5.23)

= CR] [A]'1 {6} (5.24)

Using Eq. (5.24), {Ae. } can be written as

{Aeb> = [R] [A]"1 {A6}e (5.25)

5.5.1 Nonlinear Terms: - Linearization Procedure

Consider the membrane strains {e } in the equation (5.19). They

are:

dr 1 dw->2~

u
2

Since the vector {e } contains a nonlinear term -i- (4^-1 am 2 vory

linearization technique [36] needs to be used. The linearization

procedure used is as follows:

Consider a nonlinear term

1 dw

in the membrane strains {E } .

Let 7HF = B (5 .26)
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where B is called as a linearization constant. Using this definition

the membrane strains can be written as,

dr „ dw

Using Eq. (5.15), -£ and ~ can be written as

(5.27)

du (5.28)

and

bo
F r

(5 .29)

Us ing Eqs. (5 .20) , (5.28) and (5 .29) , Um> can be expressed in matr ix

form as

v-
0 B 2 Br 3 Br2 0 1

0 0 0 o - p 1 \

a
0

al
a2
a3
b
b.1

or concisely as,

(5.30)

{£|T)} = [T] {a} (5.31)

= [T] [A]
"1

(5.32)
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The next step is to evaluate the variation of the membrane strains,

{Ae } . This is achieved as follows:m

The membrane strains {E } can be represented as the sum of the twom r

vectors, one containing only the linear terms, whereas the other

containing the nonlinear terms. Therefore,

{E } = {E. } + {E .
m L NL (5.33)

where

du
W
jj
r

(5.34)

(5.35)

The variation of {e }, then ism

(5 .36)

or

.A {7 [w]

A (0)
(5.37)

or

+ i - 2 . dw A r d w )
or vor'

0
(5.38)
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The linearization constant B is then used in Eq. (5.38) and {Ae } is^ m

rewritten as,

du fdVM

WJ

A (0)
(5.39)

Using the shape funcitons for u and w the variation of membrane strains

can be expressed in the matrix form as,

m = A 0 0 0 0 0 l-i /
0 0 0 0 1/r 1J \

ao
a.1
a2
a3

h°bi1

) '

v~ S

0 2 B 4 Br 6 Br2 0 Oi /
0 0 0 0 0 0 J \

ao
anix

a
a3

hO
,blj

(5.40)

or in concise form as,

{Aem} = A [ [Yj] [A]"1 {6}g + [Yg] [A]"1 {6>e ] (5.41)

Y2] [A]'
1 {6)e (5.42)

Lastly consider a generalized displacement vector {S}
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{S} =
u
w
dw

(5.43)

Using Eqs. (5.14), (5.15) and (5.20), a generalized displacement vector

can be expressed in the matrix form as

{S} =

0

1
0
.

0

r

1

0

r2

2r

0
r3

3r2

1

0

0

r

0

0
J

a_0
al

] a3
hPo
1

(5.44)

or in concise form

{S} = [N] {a} (5.45)

By using Eq. (5.18) for {a}, in Eq. (5 .45) , Eq. (5 .45 ) was written as

(S) = [N] [A]'1 {6} (5 .46)

and

{AS} = [N] [A]"1 {A6} (5.47)

In summary the matrices obtained so far are,

= [R] CA]"1 {6)e {Aeb) = [R] [A]"1 {A6}g

{em) = [T] [A]'1 {6)e + Y2] [A]"1 {A6)e
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(S) = [N] [A]"1 {6}g {AS} = [N] [A]"
1 {A6>e

The variation in the potential energy of the element (A it ) of

Eq.(5.19) is then,

Deq 'r° {A6}e~ ^^f [R]T C^ ̂  W1 {6}
e
 r dr

Ceq Jr° {A6}I ^A^"1]T EYI + Y
2

]T CQ] [T] [A]": {6}e r dr

- 2n Jr° {A6}^ [[A]"1]1 [N]T {f} r dr = 0 (5 .48)

Since Eq. (5.48) should be valid for arbitrary values of

(5.48) reduces to

{6}e = {F>e (5 .49)

where [kj_]e and [kfj|_]e
 are called the bending and the membrane st i f fness

matrix for the element and {F} is the corresponding load vector and

are given by

p

[k.l = 2* D / ° [[A]"1]1 [R]T [Q] [R] [A]"1 r dr (5.50)
*- " "M r ••

CkNL ]e = 2" Ceq ^r t^3" [Y1 + Y2] CQ] [T] [A]" r dr
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{F)e = 2li 'r t C A ^ " ] CN] (f) r dr (5.52)

Assembling the element stiffnesses and nodal loads, global stiffness

matrix and total load vector can be obtained and Eq. (5.49) can be

written as:

[K] {6} = (F> (5.53)

where [K] is a global stiffness matrix and is given by

[K] = Z {[kL]e + CkN L ]e> (5.54)

and

{F} = E {F>e (5 .55)

5.5.2 Boundary Conditions

For the clamped circular quasi-isotropic plate with axisymmetric

loading, boundary conditions are

f dw \1. The radial displacement u and the rotation (—J equal zero at

the center (r = 0).

2. The radial displacement u, the transverse displacement w, and

f dw "\the rotation (-) equal zero at the clamped edge (r = a).
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5.6 Solution Procedure

To solve the governing Eq." (5.53) for the nodal displacements

{6}, the solution domain was discretized into n axisymmetric elements

and (n+1) nodes. Each node had three degrees of freedom, the radial

(dw >
cTF' "

In Eq. (5.53), [K] is a global stiffness matrix and is given by the Eq.

(5.54) as:

CK] = Z {[kL]e + [kNL]e>

In order to evaluate the global stiffness matrix [K], it is

required to obtain the bending stiffness matrix [k^g and the membrane

stiffness [kfji_]e ^or eac^ element- However, the membrane st i f fness

matrix [k^g (Eq. (5.51)) contains the linearizing function "B" and as

the function "B" was not known a priori, an iterative scheme was adopted

in the present solution. The details of the iterative scheme are given

below and presented in the flow chart of Fig. 5.2.

The linear bending stiffness [k|_]e and the load vector {F} were

computed by using Eqs. (5.50) and (5.52) (step 3, Fig. 5.2). Since the

linearizing function B, was not known a priori, it was assumed zero and

hence the membrane stiffness [k^^e was a nu^ matrix (step 4, Fig.

5.2). Using Eqs. (5.54) and (5 .55 ) , the global stiffness matrix [K] and

the load vector {F} were computed (step 6, Fig. 5 .2) . Equation

(5.53) was then solved to obtain the linear displacement solution {6}

(step 7, Fig. 5.2). By using the linear displacements and the rotations

at each node, the linearizing function "B" and the membrane stiffness
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tkNlJe were computed (step 10, Fig. 5.2). The total stiffness matrix of

the element [k]e is then the sum of the linear bending stiffness [kj_]e

and current membrane stiffness [I^Dg. ^ne 9^ODa^ stiffness matrix [K]

was then formed and the new displacements were computed. Using the new

displacements a new [kNL]e matrix is computed. This iterative procedure

was continued until there was no significant difference in displacements

between the successive iterations.

5.7 Convergence Study

To study the convergence of the present method, the circular plate

was discretized into n axisymmetric elements and (n+1) nodes. A

systematic convergence study was made by increasing the number of

elements in the idealizations. The number of elements used in this

convergence study were 2, 4, 8, 16, 32, 40, and 48. For the centrally

loaded clamped circular plate with center deflection to plate thickness

ratio of 2.0, a 48 element idealization was found to obtain a converged

nonlinear solution. Figure 5.3 presents the relative errors in the

maximum deflections normalized with respect to the converged maximum

center deflections. The solution shows a rapid convergence and about 32

regions were found to be necessary to yield a solution which is with

0.01 percent of the converged solution.

By using the 48 element idealization, the clamped quasi-isotropic

circular plate was analyzed to obtain the large deformation solutions

for various center deflection-to-plate thickness ratios. As the center

deflection-to-plate thickness ratio increases, the number of iterations

required to obtain the large deformation solution increased. Table 5.1

presents the number of iterations required to obtain the large deforma-
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tion solution of the clamped circular quasi-isotropic laminates under

point loads for central defleciton-to-plate. thickness ratios ranging

from 0.5 to 2.0.

5.8 Results and Discussion

In this section, the deflected shapes obtained with the finite

element model for the central defection to plate thickness ratios

ranging from 0.5 to 2.0 are compared with the deflected shapes obtained

by using the plate-membrane coupling model. Next the load-displacement

curve obtained by using the finite element model is compared with the

load-displacement curve obtained earlier by using the plate-membrane

coupling model.

The transverse displacements w obtained by using the finite element

model and the plate-membrane coupling model (Chap. 4) for various

central deflection to plate thickness ratios ranging from 0.5 to 2.0 are

presented in Table 5.2. The results obtained by the finite element

model are in excellent agreement with those obtained earlier by using

the plate-membrane coupling model.

Figure 5.4 presents a comparison between the load-displacement

curves obtained by using the finite element model and the plate-membrane

coupling model. Figure 5.4 indicates that the results obtained by using

the finite element model compare well with those obtained by using the

plate-membrane coupling model. Figure 5.4 also shows the effect of

nonlinearity on the plate deflection. For any given load the nonlinear

displacement is much smaller than the linear displacement.

As pointed out in the introduction, in the current finite element

formulation, the membrane effects due to the mid-plane stretching are
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considered. So it is interesting to compare the radial displacements

obtained by using the finite element model, with those obtained by using

the classical solution (Appendix B). Figures 5.5 and 5.6 show a com-

parison of the radial displacements for the central deflection to plate

thickness ratios of 0.5 to 2.0. The functional form of the radial

displacement curve obtained by using the classical solution is identical

for the central deflection to plate thickness ratios of 0.5 and 2.0. On

the other hand, the functional form of the radial displacement curve

obtained by using the finite element model and the plate-membrane

coupling model is different for the central deflection to plate

thickness ratios of 0.5 and 2.0.

Figures 5.5 and 5.6 also show that the magnitudes of the radial

displacements are three orders less as compared to the magnitudes of the

transverse displacements. Although the radial displacements are much

smaller in comparison with the transverse displacements, their contri-

bution to the membrane radial strains, and the tangential strains is

significant. These membrane strains are particularly important for

strain energy calculations in the back face spall ing model. Thus for

accurate predictions of stresses and strains in the plate, the radial

displacements should be incorporated into the finite element formula-

tion.

Figure 5.6 indicates that, for the central deflection to plate

thickness ratio of 2.0, radial displacements obtained by using the

classical solution are in good agreement with those obtained by using

the finite element solution and the plate-membrane coupling model

solution. On the other hand, Fig. 5.5 shows that, for the center

deflection to plate thickness ratio of 0.5, radial displacements
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obtained by using the classical solution differ considerably from the

corresponding finite element solution and the plate-membrane coupling

model solution. Therefore the functional form of the radial displace-

ments assumed in the classical solution would predict correct radial

displacements only for higher values of the center-deflection to plate

thickness ratios, while for lower values of the center deflection to

plate thickness ratios, the functional form of the radial displacements

assumed in the classical solution would predict incorrect values of the

radial displacements.

5.9 Concluding Remarks

In this chapter, circular quasi-isotropic composite plates were

analyzed to study the large deformation behavior under point loads. A

finite element model was formulated to study the large deformation

behavior of these plates. A finite element model, in contrast to those

in the literature, considers both radial and transverse displacements in

its formulation. This model uses a linearization technique with an

iterative procedure to obtain the large deformation shapes for thin

composite laminates under the point loads.

The deformation shapes obtained by using the finite element model

agreed very well with the deformation shapes obtained by using the

plate-membrane coupling model. The load-deflection curve was obtained

using the finite element model and compared with the load-deflection

curve obtained by using the plate-membrane coupling model. Excellent

agreement was observed between the two results. The classical solution

[27], based on the energy method, assumes that the functional form of

the radial displacements curve is identical for the various values of
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the central displacements to plate thickness ratios, wherea>s the finite

element model indicates that the functional form of the radial displace-

ments curve is different for the various values of the central displace-

ments to plate thickness ratios. The radial displacements are found to

be about three orders of magnitude less, as compared to the transverse

displacements. The radial displacements obtained by using the finite

element solution compares well with the classical solution for the

central deflection to plate thickness ratio of 2.0, but they are

significantly different from the classical solution for the center

deflection to plate thickness ratio of 0.5.
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Table 5.1 - Number of Iterations Required to Obtain Large
Deformation Solution of a Clamped Circular Plate
Under Central Point Load

Plate center deflection Number ofw
to thickness ratio (—T-) iterations

0.5 4

1.0 9

1.5 17

2.0. 29
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Table 5.2(a) - Comparison of the Transverse Displacements w
Obtained by Using the Finite Element Model and

the Plate-Membrane Coupling Model for (—2-) Ratios
of 0.5 and 1.0.

r/a

&} = 0.5 0.0
n 0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

w
( °) = i.o 0.0

n 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Finite Element
Model

0.50000
0.46810
0.40963
0.34011
0.26712
0.20418
O.T3558
0.07916
0.03763
0.00983
0.00000

1.00000
0.93167
0.81098
0.67184
0.53024
0.39756
0.27246
0.16224
0.07546
0.02024
0.00000

Plate-Membrane
Coupling Model

0.50000
0.46764
0.40842
0.33791
0.26484
0.20311
0.13506
0.07762
0.03828
0.01001
0.00000

1.00000
0.93050
0.80831
0.66745
0.52491
0.39392
0.27028
0.16570
0.07719
0.02074
0.00000
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Table 5.2(b) - Comparison of the Transverse Displacements w
Obtained by Using the Finite Element Mojjel and

the Plate-Membrane Coupling Model for (—r-) Ratios
of 1.5 and 2.0.

r/a

( °) = 1.5 0.0
" 0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

w
( °) = 2.0 0.0

h 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Finite Element
Model

1.50000
1.38780
1.19976
0.99214
0.79318
0.59440
0.40648
0.24651
0.11811
0.03186
0.00000

2.00000
1.83683
1.57758
1.30415
1.03569
0.78009
0.54370
0.33418
0.16317
0.04395
0.00000

Plate-Membrane
Coupling Model

1.50000
1.38595
1.19548
0.98512
0.78421
0.58841
0.40245
0.25309
0.12140
0.03286
0.00000

2.00000
1.83399
1.57111
1.29297
1.02026
0.77129
0.53813
0.34512
0.16870
0.04561
0.00000



Chapter 6

PLATE MECHANICS EXPERIMENTS

6.1 Introduction

In Chaps. 4 and 5, the plate-membrane coupling model and the finite

element model were developed to study the large deformation behavior of

circular quasi-isotropic plates. Both of these models assume that the

quasi-isotropic T300/5208 graphite/epoxy laminates with stacking

sequence [45/0/-45/90]s, are flexurally isotropic. In this chapter this

assumption of flexural isotropy is experimentally verified.

The large deformation shapes and the load-displacement curves for

the circular quasi-isotropic plates under central point loads were

obtained by conducting series of tests on the circular quasi-isotropic

laminates. First, the experimentally obtained deflected shapes are

compared with the analytical deflected shapes obtained by using the

plate-membrane coupling model and the finite element model. Then, the

experimental load-displacement curve is compared with those of the

plate-membrane coupling model and the finite element model.

6.2 Test Set-up

To study the large deformation behavior of circular plates under

central point loads, a torque bolt arrangement and a servo-hydraulic

testing machine were used. The torque bolt arrangement was used to

obtain the large deformation shapes of the circular plates under central

133
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point loads and the servo-hydraulic testing machine was used to obtain

the load-displacement behavior of the circular plates under central

point loads. For both tests, quasi-isotropic graphite/epoxy laminates,

with the stacking sequence of [45/0/-45/90]s and the material properties

given in Table 2.1 were used. Circular laminates with 76.2 mm (3

inches) or 101.6 mm (4 inches) diameters were bolted between two steel

annular plates as shown in Fig. 6.1. These steel plates provided

clamped boundary conditions for the specimens. A torque bolt

arrangement was used to push a 25.4 mm diameter steel ball against the

laminate, to provide the desired static loading (Fig. 6.2). Although

the ball diameter was 25.4 mm, the contact radius between the ball and

the plate was very small (of the order of 1 mm) and thus pushing the

steel ball simulated the desired static point load conditions.

A traversing horizontal direct current differential transducer

(DCDT) and a vertical DCDT were used to measure the deflected shapes of

the clamped circular quasi-isotropic laminates as shown in Fig. 6.1.

To obtain a load-deflection curve, the static loading tests were

conducted in a servo-hydraulic testing machine. The test specimens were

clamped to a platform, shown in Fig. 6.3, which was mounted on the

hydraulic ram, and load was applied to the center of the specimen by

means of a punch, tipped with a 25.4 mm diameter steel ball. A DCDT

displacement gauge was attached to the indenter to measure plate deflec-

tion as the load was applied. The electric signals from the load cell

and the displacement gauge were given as an input to the x-y plotter to

allow direct load-displacement plotting.



135

ORIGINAL FAC2 S3
OF POOR QUALITY



ORIGINAL PASS IB
OF POOR QUALITY

136

£
-H
0
0)a

Q)
XI
-U

C
o

c
-H

CN

.££

A^S'i

•fer<^"v^"?-?;: iv^-j



137

n
DCDT Displacement Gage

O Indenter
. \\-\- XXXTVA. X\\ X X \\X

Test Specimen ^Annular Plates
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Fig. 6.3 Static Loading on the Quasi-Isotrop.c Circular
Laminate
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6.3 Test Data

Circular quasi-isotropic plates of two sizes With diameters 76.2 mm

and 101.6 mm were tested. By using the torque bolt arrangement, the

76.2 mm diameter plate was loaded till the desired center deflection was

obtained. This center displacement was measured by using the vertical

DCDT. Once the desired center displacement was obtained, the first set

of observations were made along the fiber direction (0 = 0°) of the

eighth ply (farthermost ply from the point of load application). The

second and third set of observations were made on a line perpendicular

to the fiber direction of the eighth ply, (e = 90°) and on a line 45°

(9 = 45°) to the fiber direction of the eighth ply, respectively.

These three sets of observations were recorded for central deflection-
w

to-plate-thickness ratio (—^} of 0.5, 1.0, 1.5, and 2.0. Similar

observations were made for 101.4 mm diameter plate,
t

The load-displacement data were obtained by using the servo-

hydraulic machine. The 76.2 mm diameter and the 101.4 mm diameter

plates were loaded and the corresponding central deflections were

recorded till the central deflection was about two times the plate

thickness.

6.4 Results and Discussion

In this section, first the validity of flexural isotropy in

circular quasi-isotropic laminate is discussed. Then the measured

deflected shapes are compared with the pi ate-membrane coupling model and

the finite element model.

To verify the flexural isotropy in the circular quasi-isotropic

laminates, experimental measurements made along three diametral lines at
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8 = 0 ° , 8 = 45° and 6 = 90°, for various values of the central

deflection-to-plate thickness ratios ranging from 0.5 to 2.0 were
w

compared. Figure 6.4 presents the typical deflected shapes for (—r-)

ratios of 0.5 and 1.5 along 0 = 0° and 90° radial lines. The

deflected shapes for ratios of 1.0 and 2.0 showed similar trends and

hence are not shown. The experimental observations showed that the

deflected shapes along 6 = 45° were bounded by the shapes along

6 = 0 ° and 0 = 90°. The maximum differences between the 6 0° and

90° observations occured near (— ) = 0.4 and were about six percent of
a

the maximum center deflections. Thus the experimental observations

indicate that clamped circular quasi -isotropic laminates, subjected to

axisymmetric loading, exhibit near flexural isotropy and show nearly

axisymmetric bending behavior.

Figures 6.5 and 6.6 present the measured deflected shapes at

9 = 0° and the- analytical deflected shapes obtained with the plate-
w

membrane coupling model for (—-} ratios ranging from 0.5 to 2.0.

Since the deflected shapes obtained by using the finite element model

are almost identical to those obtained by using the plate-membrane

coupling model (Table 4.1), only the plate-membrane coupling model

results are compared with the experimental data. In Figs. 6.5 and 6.6

the experimental results are shown as circular symbols and solid lines

represent the results of the pi ate -membrane coupling model. Figures 6.5

and 6.6 show excellent agreement between analytical and experimental

results.

Figure 6.7 presents the measured load-deflection curve and the

analytical load-deflection curve obtained by using the plate-membrane

coupling model and the finite element model. The analytical results
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Fig. 6.5 Deflected Shapes for the Laminate Under Quasi-
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were found to be within six percent of the experimental results. These

differences between the analytical and experimental results are probably

due to experimental errors which might have been introduced while

practically simulating the clamped boundary conditions.

6.5 Concluding Remarks

Eight ply T300/5208 quasi-isotropic circular plates were tested to

verify the assumption of flexural isotropy and to study the large

deformation behavior under central point loads. The experimental

observations indicate that clamped circular quasi-isotropic laminates,

subjected to a central point loading, behave as if they are almost

flexurally isotropic and they show nearly axisymmetric bending behavior.

The experimentally obtained large deformation shapes and the load-

displacement curves were compared with those obtained with the plate-

membrane coupling model and the finite element solution. The experi-

mental results are in good agreement with the analytical results

obtained by using the plate-membrane coupling model and the finite

element model.

In the next chapter, the large deformation shapes of the quasi-

isotropic circular plate obtained by using the plate-membrane coupling

model and the finite element model are used in conjunction with the

fracture mechanics approach to describe the back face spa!ling

phenomenon in thin quasi-isotropic circular laminates.



Chapter 7

BACK FACE SPALLING MODEL

7.1 Introduction

In Chaps. 4 and 5, the piate-membrane coupling model and the finite

element model were developed to study the large deformation behavior of

clamped circular quasi-isotropic laminates under static point loads.

These models were verified by conducting tests on the clamped circular

laminates. In this chapter a simple analytical model is developed to

describe the back face spalling phenomenon in thin quasi-isotropic

laminates. The model is based on the fracture mechanics principles and

uses the large deformation shapes of the plates obtained earlier by

using the plate-membrane coupling model. This analytical model is

verified by conducitng the experiments on thin quasi-isotropic T300/5208

circular plates.

7.2 Back Face Spa 11 ing Mechanism

As discussed in Chap. 1, for quasi-isotropic laminates under the

central point loads, first visible damage occurs in the farthest ply

from the load (i.e. 8th ply). The damage is in the form of a matrix

cracking parallel to the fibers. Further increase in load level results

in two dominant cracks in the 8th ply and surrounding these two cracks

delaminations form between 7th and 8th plies. Additional increase in

load causes these delaminations and cracking to propagate ustably in the

fiber direction of the bottom ply. This unstable growth of delamina-

145
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tions and the propagation of the two dominant cracks is known as the

back face spalling phenomenon. During the back face spall ing action,

curved trajectory of the 8th ply center strip (formed by the two

dominant cracks in the 8th ply) running under the load point in the

fiber direction changes virtually to a straight line between the load

point and the support (Fig. 7.1). A large fraction of strain energy

from this 8th ply center strip is shed during this spalling action.

This mechanism of the back face spall ing is modeled by using the

concepts of fracture mechanics in the following sections.

7.3 Fracture Mechanics Concepts

Any general deformation of a cracked body can be described by

combination of three independent modes of deformation (Fig. 7.2) . The

three independent modes are: opening mode, sliding mode and tearing

mode. Normal stresses give rise to the opening mode denoted as mode

I. Inplane shear results in mode II or sliding mode. The tearing mode

or mode III is caused by out-of-plane shear.

7.3.1 The Griffith Criterion

One of the basic criterion for fracture was established in 1921 by

Griffith [54]. The Griffith energy criterion for fracture can be stated

as "crack growth can occur if the energy required to form additional

crack surfaces can be delivered by the system."

For example, consider a cracked plate of thickness B under a load

P, as shown in Fig. 7.3. For a crack of size a the linear load-

displacement relationship can be represented by line OA in Fig. 7.4.

Similarly for a crack of size a+da the load-displacement relation can
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Mode I Mode 11 Mode

Opening Mode Sliding Mode Tearing Mode

Fig. 7.2 Three Modes of Fracture
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be represented by the line OE (the line OE has a lower slope than the

line OA because of reduced stiffness of the plate). If the ends of the

plate are fixed and if crack extension takes place from a to a+da at a

load PJ, the displacement remains constant and the load drops from point

A to point B (Fig. 7.4). During this process elastic energy, repre-

sented by the area of triangle OAB, is released, which is -i A P.Y.

If crack extension takes place at constant load the displacement

increases from point A to point E, i.e. by an amount AY (Fig. 7.4).

Therefore the work done W, by the load is

W = ?1 • AV (7.1)

The increase in the elastic energy of the plate is

area (OEF) - area (OAC) = P^v+Av) - P^Y = P^AY (7.2)

This increase in energy has to be provided by the load. The energy

provided by the load is area (AEFC)

area (AEFC) = ?l • AV (7.3)

Equations (7.2) and (7.3) indicate that there remains an amount of

energy equal to area (OAE) . Area (OAE) can be expressed as

area (OAE) = L P -AY =4 A P *V + i AP«AV (7 .4)
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In Eq. (7.4) i AP-AV is the second order term and hence can be

neglected. Thus it follows that a rea" (OAB) » (OAE). This means that

energy available for crack growth is the same in fixed grip and constant

load case.

As seen earlier in the case of fixed grips the elastic energy is

released as the crack grows from a to a+da. This elastic energy

released per unit crack extension is called "elastic energy release

rate" and is denoted by G. Since elastic energy is proportional to the

strain energy, G is usually expressed in terms of the strain energy and

is called "strain energy release rate."

7.3.2 Critical Strain Energy Release Rate G

Griffith [54] postulated that the crack growth occurs only when the

strain energy release rate G exceeds certain critical values. This

critical value is called a "critical strain energy release rate" and is

denoted by GC. This quantity GC is a material property like the yield

stress, Young's modulus and is different from material to material.

7.4 Back Face Spalling Model

As discussed earlier in the section 7.2, in quasi-isotropic

laminates under the point loads, first visible damage occurs in the

lowest ply in the form of two dominant cracks and surrounding these two

cracks delaminations form between the 7th and 8th plies. With further

increase in load at a certain plate center deflection WQ, massive back

face spall ing occurs. During this spa!ling action the 8th ply center

strip (formed by the two dominant cracks in the 8th ply) which is

previously deformed in the same shape as that of a circular plate
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changes virtually to a straight line between the load point and the

support. This failure mechanism suggests that the complete back face

spelling event can be explained by modeling the center strip in the 8th

ply.

The center strip model developed here to describe the back face

spall ing phenomenon is based on the following assumptions:

1. Before the back face spa!ling occurs, the center strip in the

8th ply has the same deformed shape as that of a quasi-isotropic

plate under the point load. Thus the radial displacements (u),

the transverse displacements (w) , and the rotations (-37)» in

the center strip can be obtained by performing the large deflec-

tion analysis of the quasi-isotropic circular plate under point

loads.

2. The initial delamination between the 7th ply and the center

strip in the 8th ply is assumed to exist at the radius of

inflection (the radius at which curvature in the strip is zero).

3. The change in stiffness of the plate due to the back face

spall ing action is assumed negligible and hence is not

considered in the center strip model.

4. The effects of internal damage in the circular plate on the

deformed shape of the plate are assumed to be negligible.

5. The center displacement of the plate is held constant and it

does not change during the back face spelling action.

With these assumptions the center strip model was formulated and
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solved to compute the strain energy release rates during the back face

spalli-ng action.

Consider a center strip in the 8th ply. The deformed shape of the

strip is the same as that of the circular plate. The strip has a width

b and the thickness t (t = one ply thickness). This center strip was

discretized into m number of elements with (m+1) nodes. The radial

displacement (u), the transverse displacement (w), the rotation (-T— ) ,

and the curvature at each node were calculated by using the plate-

membrane coupling anlysis as described in Chap. 4. An initial

delamination was assumed to exist between the center strip (of the 8th

ply) and the 7th ply at the radius of inflection as shown in Fig. 7.5.

This initial delamination was assumed to have a length equal to BD as

shown in Fig. 7.5 where nodes B and D are the nodes adjucent to the node

at the radius of inflection. Due to the presence of this initial

delamination, the original deformed shape of the center strip ABCDEF as

shown in Fig. 7.5 changed to the new deformed shape ABC'DEF. The

center strip initially deformed between the nodes BD as BCD became

straight as BC'D. Due to this change the original displacements,

rotation and curvature at the node C have changed. The new displace-

ments, rotation and curvature at the node C1 were calculated as follows:

The radial displacement at the node C1 equal to

V = (Ar) * (Ar) + UB (7'5)

The transverse displacement at the node C1 equal to
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(7.6)

The rotation at the node C' equal to

2 • (Ar) (7.7)

The curvature at the node C1 using finite difference approximation at C1

is

drc C1

WD " 2 wc' + WB
2 • (Ar) (7.8)

Subst i tu t ing equation (7 .6) for WQI into Eq. (7.8)

= 0
dr C'

( 7 . 9 )

Thus with an initial delamination the center strip had the same

nodal displacements, rotations, and the curvatures as that of a plate,

except at the node C' where the displacements and rotation are given by

Eqs. (7.5)- (7.8) . The curvature at the node C', however, is zero. By

using these values of displacements, rotations and curvatures strain

energy of the center strip was calculated as follows:

The strain energy U of a body in terms of stress (o) and strain

(e) is given by:

= i / a e d ( v o l )
vol

(7.10)
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Only the transverse displacements (w) and the radial (axial) displace-

ments (u) were assumed to be present in the strip. With - these

assumptions, the strip was modeled as a beam and hence only one stress

o exists in the center strip. The strain energy of the strip

idealized as a beam is,

U = J£~ / er d (vol) (7.11)
vol

where vol is the volume of the center strip and E = E,, is the

elastic modulus of the strip in the fiber direction.

In Eq. (7.11) e is the radial (axial) strain and is the sum of

the membrane strains and the bending strains:

2
_ du 1 dw>,2 d w

er ~

where z in the Eq. (7.12) was measured with respect to the plate

coordinate system.

A substitution of Eq. (7.12) in Eq. (7.11), gives the total strain

energy of the strip U as

/ + ? - z « 'veil (7.13)

Since z was measured with respect to the plate coodinate system,

the limits of integration for the 8th ply center strip in z direction

are (3h/8) to (h/2), therefore
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„ ,du 1 r dw^2 „ dS^2 . .u=- + -Z dr dz
u 3h/8 u c UI dr

In order to evaluate the integral in Eq. (7.14), the center strip

was discretized into m number of elements. The nodal displacements,

the roation, and the curvatures were computed by using the plate-

membrane coupling model. These displacements, rotation and curvature

were modified at the node C1 (Fig. 7.5) by using Eqs. (7.5)-(7.9).

Using these modified nodal displacements, Eq. (7.14) was numerically

integrated to obtain a strain energy U of the center strip of the 8th

ply. This procedure was repeated for various values of m, where number

of elements m, were chosen as multiples of 10. About 60 elements and 90

elements were found necessary for a 25.4 mm and 38.1 mm length center

strip respectively, to yield a converged solution for the strain energy

U. Once the strain energy U was computed a delamination of one element

size was allowed to grow in the outward direction as shown in Fig. 7.5.

Due to this growth of delamination the deformed shape of the strip

ABC'DEF changed into a new deformed shape ABC/ 'D 'EF as shown in Fig.

7.5. Thus due to growth of delamination the deformed shape of the strip

between the nodes B and E is a continuous straight line. The new

displacements, rotation and the curvatures at nodes C ' 1 , D' were calcu-

lated as follows:

The radial displacements of the nodes C1' and D1 are

(u.- - U )
UC" =

(u.. - UR)
V = / - (Ar) ' 2(Ar) +UB
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The transverse displacements at the nodes C1' and D1 are

(wr - WR)
WC" = 3 • (Ar) ' (Ar) + W

(wr - WR)

V = 3 • (ArJ" ' 2 (Ar) +WB

The rotations at the nodes C" and O1 are

dw - dww) - fw l -
dFjC" ~ ld7JD' ~ 3 • (Ar)

Since the deformed shape of the strip between the nodes B and E was

straight, the curvatures at the nodes C11 and D1 were zero. Therefore

= 0 (7 .20)
"dr^ C" dr^ D1

Thus for the new deformed shape A B C ' ' D ' E F except at the nodes C''

and D1 the nodal displacements, rotations, and curvatures of the center

strip are the same as those obtained by using the plate-membrane

coupling model. For the nodes C ' 1 , D', the displacements, rotations,

and curvatures are given by Eqs. (7.15)-(7.20). Using these values of

nodal displacements, rotations, and curvatures into equation (7.14), the

new strain energy Ul of the center strip with the deformation shape

ABC 1 'O 'EF was calculated.

This strain energy Ul corresponding to the deformed shape ABC^D'EF

was found less than the strain energy U corresponding to the deformed



160

shape ABC'DEF. Thus during the delamination growth from BD to BE (Fig.

7.5), the amount of strain energy released All - is given by

A U = U - Ul (7.21)

Expressing the strain energy released All in terms of strain

energy release rate G, one has

G = aTf BM (7'22)

where

A A = b x AdQ (7.23)

b = width of the strip

Ad = length of the delamination growth

This G corresponds to a delamination length of d + Ad .

By using the above procedure, the strain energy release rates were

calculated by incrementing the delamination outward by one element

length each time, until the delamination reached the clamped edge (node

F, Fig. 7.5). This strain energy release rate analysis was repeated for
w

several (-T-) ratios and for two plate sizes with radii 25.4 mm and

38.1 mm.

7.5 Strain Energy Release Rate Results

In this section the strain energy release rates obtained by using

the center strip model are presented for two plate sizes with radii 25.4

mm and 38.1 mm. For each plate size strain energy release rates were
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determined for each delami nation length. Figures 7.6 and 7.7 present G

as a function of delamination length for various values of plate center

deflection WQ. For all delamination lengths, Fig. 7.6 shows that larger

values of center deflection WQ gave larger values of the strain energy

release rates. Figure 7.6 also indicates that beyond delamination

length of 15 mm, the strain energy release rates reach a constant value

and do no depend on the delamination length.

Figure 7.7 presents the strain energy release rate variation with

delamination length for a plate radius of 38.1 mm, for various values of

center deflection. This figure shows similar trends as Fig. 7.6.

7.6 Discussion of the Back Face Spall ing Phenomenon

As pointed out earlier, the back face spalling pehnomenon occurs

spontaneously (i.e. a center strip from the 8th ply peels off unstably).

This unstable peeling action suggests that, during delamination growth

between the 7th ply and the center strip from the 8th ply, the strain

energy release rate G must exceed the critical strain energy release

rate for delamination growth. Assuming that the spall ing occurs due to

the peeling action alone, i.e. only mode I is present, then by using the

cirical strain energy release rate value of the T300/5208 graphite/epoxy

material in the opening mode (Gj ) c , the back face spalling damage can be

predicted by using the center strip model.

Consider a 25.4 mm radius plate. The critical strain energy

release rate value (G j ) c , for the T300/5208 graphite/epoxy material is

0.1 KJ/m^ [55], Figure 7.6 shows that for the plate center deflections

of 1.60 mm or less, the calculated G values to grow initial delamination

length BC'D to new delamination length BC ' '0 'E (Fig. 7.5), are less than
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o

0.1 KJ/nrr or (Gj)c value. This indicates that for the plate center

deflections of 1.60 mm or less, the initial delamination between the

center strip and the 7th ply will not grow. However, for the plate

center deflections of 1.70 mm or more, Fig. 7.6 shows that the

calculated G values to grow the initial delamination length BC'D to new

delamination length B C ' ' D ' E (Fig. 7.5), exceed (Gj ) c value. Therefore,

for plate center deflections equal to or greater than 1.7 mm the initial

delamination between the center strip and the 7th ply will grow unstably

and the center strip will peel off, thus resulting into the back face

spalling action. Figure 7.6 also indicates that if the initial

delamination lengths are large, the back face spalling action will occur

at lower values of central deflection WD. For example consider an

intitial delamination length of 5 mm. From Fig. 7.6 the calculated G

value required for growth in the initial delamination length of 5 mm
O

exceeds 0.1 KJ/m or (G j ) c value when WQ is 1.60 mm. That means even at

the center deflection of 1.60 mm, the initial delamination of 5 mm

length will grow unstably resulting in the back face spalling action.

Next consider the larger plate of 38.1 mm radius. Figure 7.7 shows

that for the plate center deflection of 2.6 mm or more, the calculated G

values to grow an inital delamination length BC'D to new delamination

length B C ' ' D ' E (Fig. 7.5), esceeds (G j ) c value. Therefore, for plate

center deflections equal to or greater than 2.6 mm the initial delamina-

tion between the center strip and the 7th ply will grow unstably and the

center strip will peel off, thus resulting into the back face spall ing

action. Figure 7.7 also indicates that if the delamination lengths are

large, the back face spalling action will occur at lower values of

center deflections WQ.
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7.7 Back Face Spall ing Experiments

To verify the back face spall ing model, experiments were performed

on clamped circular quasi-isotropic plates. Quasi-isotropic

graphite/epoxy laminates, with the stacking sequence of [45/0/-45/90]s

and the material properties given in Table 2.1 were used for the tests.

Circular laminates with 25.4 mm and 38.1 mm radii were bolted between

two annular steel plates. By using the torque-bolt arrangement (similar

to the one described earlier in Chap. 6), a 25.4 mm diameter steel ball

was pushed against the laminate. Although the ball diameter was 25.4

mm, which was half the size of the plate diameter, the contact radius

between the ball and the plate was very small (of the order of 1 mm) and

thus pushing of the steel ball simulated the desired static point load

conditions. A vertical DCDT was used to measure the center deflection

WQ. The static load on the plate was gradually increased by using the

torque bolt, till the back face spalling occurred. At this instant the

center defleciton wo of the plate was measured. From the experiments it

was observed that for 25.4 mm radius plate, the back face spall ing

occurred within the center deflections, ranging from 1.80 mm to 1.90 mm.

For 38.1 mm radius plate the back face spalling occurred at higher

center deflections, with the values ranging form 3.00 mm to 3.1 mm.

The back face spalling experiments show that for the two plate

sizes studied, a plate with 25.4 mm radius failed at a mean center

deflection of 1.85 mm. The critical strain energy release rate (Gc) ,

corresponding to the center deflection WQ = 1.85 mm from Fig. 7.6 is

about 0.14 KJ/m . In the case of 38.1 mm radius plate back face

spall ing occured at a mean center deflection of 3.05 mm. The critical

stran energy release rate GC, corresponding to the center deflection w
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= 3.05 mm form Fig.7.7 is 0.147 KJ/m2. Thus the experimentally obtained

critical strian energy release rates Gc, are about 0.14-0.15 KJ/m2.

Comparing these values with the opening mode critical strain energy

release rate (Gj ) c [55], GC is somewhat higher than (Gj) c . This may be

due to the presence of shear sliding mode (mode II) in addition to the

opening mode (mode I) during the back face spall ing action.

Earlier investigators [56,57] have shown that for brittle systems

like T300/5208 graphite/epoxy material under the mixed mode situations

(opening mode and shear sliding mode), the failure is predominantly

governed by the critical strain energy release rate in the opening mode.

The present experimental values of GC are very close to (Gj ) c . Hence,

even though in the back face spelling phenomenon a mixed mode (mode I +

mode II) situation may exist, the critical strain energy release rate in

the opening mode (Gj ) c , probably governs the back face spallng mechanism

in thin composite laminates.

7.8 Prevention of Back Face Spalling in Thin Composite Laminates

The analytical and experimental results form the back face spall ing

model suggest that, the composite laminates with higher (G j ) c values

than T300/5208, will have better resistance to the back face spall ing.

For example consider composites AS1/3501-6 made by Hercules. Russel and

Street [58] obtained the (Gj) c value of AS1/3501-6 as 0.15 KJ/m2. This

value is fifty percent higher than that for T300/5208 composites.

Therefore AS1/3501-6 composites may have better resistance to the back

face spallng when compared to T300/5208 composites. Recently consider-

able attention is focused on the development of tough resins. The tough

systems of composites usually have higher (Gj)c values than brittle
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system of composites [56]. Mall and Johnson [59] determined the (G j ) c

values for FM-300 tough matrix composite by Hexel. They found that

(Gj)c values are 7 to 10 times higher than the brittle systems (i.e.

T300/5208 and AS1/3501-6). Hunston [60] and O'Brien et al. [61]

obtained (Gj)c values for F-185 matrix composite by American Cynamide.

They reported the value of (Gj ) c for T6000/F185 composite as 2 KJ/m2,

which is about 20 times higher than the T300/5208 values. Thus tough

systems of composites may have superior resistance to back face spalling

when compared to brittle systems of composite.

Some investigators [62] have found that "stitching" of the laminate

decreases delamination. The stitching of the laminate may be

particularly useful to prevent the back face spalling, as stitching has

a restraining effect on peeling action. Another possible way to prevent

the back face spall ing, is to use woven ply on the back of the laminate,

because the weave will not allow center strip from the bottom ply to

peel off without involving cross-ply strips.

Finally, in the present analysis the plates were assumed to be

stress free. If the plates are pre-stressed, the plates would react

differently to the center point load. For the center point load, the

center deflection WQ of the tensile pre-stressed plate would be less

compared to the center deflecton WQ of the plate with zero pre-

stresses. This is because the tensile pre-stressed plate is more stiff

compared to the plate with zero pre-stresses [27]. This suggests that

the back face spalling would occur at higher loads in thin composite

plates pre-stressed with tensile stresses compared to the initially

stress free plates.
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7.9 Conclusions

In this chapter a simple analytical model was developed to

understand the back face spall ing phenomenon in thin quasi-isotropic

laminates. The model uses the large deformation plate shapes obtained

by using the plate-membrane coupling model in conjunction with the

fracture mechanics principles. The strain energy release rates during

back face spalling action were obtained by using the analytical model

for two plate sizes with plate radii of 25.4 mm and 38.1 mm. Experi-

ments were performed on the 8 ply T300/5208 quasi-isotorpic circular

plates to obtain critical strain energy release rates during back face

spall ing action. Good agreement was observed between experimental and

analytical results. Experimental and analytical results indicated that

the back face spall ing phenomenon in 8 ply T300/5208 quasi-isotropic

laminates is governed by the critical strain energy release rate (G j ) c

in the opening mode. Therefore the back face spalling in composites can

be reduced by using the material with higher (G j ) c values than (G j ) c

value of the brittle systems composite like T300/5208. Another possible

way to prevent the back face spalling, is to stitch the laminate or to

use a woven ply on the back of the laminate.
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Chapter 8

SUMMARY AND CONCLUSIONS

The present investigation is concerned with the failure analysis of

composite plates under low-velocity impact loads. This analysis is

particularly important to understnad the damage mechanics and to develop

composites with improved impact resistance. The sate-of-art of the low-

velocity impact problem was reviewed and important aspects of the

problem such as deformation mechanics, back face spall ing phenomenon

were investigated. Three models, plate-membrane coupling model, finite

element model, and back face spall ing model were developed. These

investigations should help in understanding the low velocity impact

problem and lead to better design and analysis of composite structures.

The low velocity .impact problem in T300/5208 graphite/epoxy

circular quasi-isotropic plates was formulated by replacing impact type

point loads with equivalent quasi-static loads. The quasi-isotropic

plates were modeled as isotropic plates having the flexural stiffness

components equivalent to the flexural stiffness components of the quasi-

isotropic plates. A pi ate-membrane coupling model and a finite element

model were developed to obtain the large deformation behavior of

circular composite plates under point loads. These models were verified

by conductng plate mechancis experiments. From the study of these

analytical models and experiments the following conclusions can be made:



170

1. A circular quasi-isotorpic plate with stacking sequence of

[45/0/-45/90]s -can be modeled as an isotropic plate having

flexural stiffness components equivalent to those of a quasi-

isotropic plate.

2. The large deformation behavior of circular isotropic membranes

subjected to arbitrary axisymmetric loading can be obtained by

solving a single nonlinear governing equation in terms of radial

stress using the finite difference method in conjunction with

Newton-Raphson method.

3. Accurate large deformation behavior of thin circular quasi-

isotropic plates can be obtained by using a simple plate-

membrane coupling model.

4. The functional form of the deformed shape of the plate

undergoing large deformations is different from the small

deflection plate solution. The deformed shape is a function of

the center point displacements and thus is different for

different load levels. Furthermore, for a plate undergoing

large deformations, there is an inward movement of the radii of

points of inflection.

In addition to the deformation mechanics, a study was undertaken to

develop a damage mechanics. From the experiments on thin laminates it

was observed that first visible damage in circular quasi-isotrpic

laminates under quasi-static point loads occur on the back surface of

the laminate in the form of spalling. To understand this back face

spalling phenomenon, a simple model using the large deformation behavior
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of thin composite plates in conjunction with fracture mechanics

principles was developed. This back face spa!ling model was verified by

conducting experiments on thin circular quasi-isotropic plates. The

study resulted in the following conclusions:

1. The back face spall ing action in thin composite laminates is a

spontaneous action and can be modeled by using the fracture

mechanics principles.

2. Mixed mode (I + II) type deformations probably occurs during the

back face spa!ling action. However, analysis and experiments

suggest that the mode I (opening mode) may be the dominant

mechanism and governs the delamination growth during the

spalling action.

3. Back face spall ing model shows that the back face spall ing

occurs only when the strain energy release rate G, exceeds the

critical value of strain energy release rate in the opening mode

(Gj)c. This implies that back face spalling can be reduced or

prevented by:

(a) use of tough composites having higher values of (Gj)c

compared to brittle resin systems like T300/5208.

(b) Stitching of the laminate, as stitching has a

restraining effect on peeling action.

(c) To use woven ply on the back of the laminate, because

the weave will not allow center strip from the bottom

ply to peel off without involving cross-ply strips.
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The present investigation has also shown that future research is

warranted in the following areas:

1. To include effects of the internal damages in composite plates

and develop more general deformation mechanics.

2. To extend the back face spalling model for rectangular composite

plates by developing 2-D analysis.

3. To devleop a technique for identifying individual strain energy

release rates in different modes I, II, and III during back face

spalling action.

4. To determine the effects of stitching on the back face spalling

action in thin composite laminates.

5. To extend present analysis to thick composite plates by

incorporating the effects due to shear.

6. To perform a dynamic analysis and compare it with the quasi-

static analysis.
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APPENDIX A

NEWTON-RAPHSON METHOD FOR NONLINEAR SYSTEM

The purpose of this appendix is to present the Newton-Raphson

method for solution of nonlinear simultaneous algebraic equations.

First a method is explained with reference to a function involving one

variable. Next, the method for a general n variable system is

presented. Last, the method is illustrated with the set of nonlinear

equations involving 5 variables derived in Chap. 3 for the membrane

problem.

A.I Newton-Raphson Method for One Dependent Variable

Consider a function F(x) of one dependent variable x. The

objective is to find the root of the equations F(x) = 0. Figure A-l

presents the function F(x) graphically. The Newton-Raphson method is an

iterative method which continuously updates an initial approximation

until the actual root is found. Consider an approximation x = XQ as the

root. The value of F(x) is F(xQ) at point P as shown in Fig. A-l. At P

draw a tangent to the curve. The tangent intersects the X axis at T.

Therefore the next approximation for the root is x^ = XQ + Ax where

Ax is MT in Fig. A-l. Next draw a tangent at point Q. This tangent

intersects the X axis at T^. Therefore the next approximation for the

root is Xo = Xi + Ax, . Imagine a third tangent is drawn at R, this

tangent will cut the X axis at some point ^2 between Tj and S.

Therefore points T, Tj, T2» ... will approach the point S as a limit,
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Fig. A-1 Graphical Representation of The Newton-Raphson Method
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that is, the intercepts OT, OTj, OT2, ... will approach the intercept OS

as a limit. But OS represents the real root of the equation F(x) = 0.

Hence the quantities OT, OTj, OT^, ... are successive approximations to

the desired root. The fundamental formula for finding the root of the

equation F(x) = 0 can be derived by using Fig. A-l as follows:

Consider Fig. A-l. Let MT = AxQ , and TTj = Axj , etc. The

slope of the graph at P is F'{xn). From the Fig. A-l, PM = F(xn) and
F (x )

slope at the point P = tan < X TP = F ' (X O ) = - ^ .... Therefore

- F (x )

The improved value of the root is then

x, = x + Ax (A-2)l o o

Similarly succeeding approximations are

~ = x, + Ax,

Where

x., = x2 + Ax2 (A-3)

xn = xn-l

Ax. „ -p- (A-4)

where F ' f x ^ ) is the derivative of the F{x) at x^. In the one-variable
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case F ' ( x ) = CJ(xj ) ] i x i» where [J] is called as Jacobian.

The value of x is updated till the |A x.| < e, where e is the

specified tolerance. The corresponding root of the equation F{x) = 0 is

x.j . The above procedure can be generalized for n variables as follows:

A. 2 Newton-Raphson Method for n Variables

Consider a system of simultaneous nonlinear algebraic equations

with n variables, (xj, X2» Xg,... xn) as

, x2, x3 ........ xn) =

f2 *x l» X2' X3 xn^ = R2 (A"5)

fn (xl« V X3 xn} = Rn

Equations in (A-5) can be represented as

(F ( x ) } = { ( f j - R^, (f2 - R2) (fn - R n ) } T (A-6)

The approximate solution of the nonlinear system (Eq. (A -5 ) ) can be

obtained starting with an intial approximation XQ as fol lows:

With the initial approximation XQ , [J ( X Q ) ] is first evaluated

as:
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CJ(X n ) ] =

af: (x)
dxi

Bf2 (x)

axj

•

afn (X)

L dxi ""

5f1 (X) afj (x)

2 n

5f2 (x) df2 (x)

ax2 axn

•

6fn (x)

5xn J

(A-7)

{X} = {XQ}

Next {F(X )} is evaluated by using Eq. (A-6). With these values

of (F(X )} and [J(XQ) ] the next approximation is obtained as,

txl> • (Vnxl
,-1

With this new value of {X1>,

then is calculated as:

and are calculated and

• fXl'nxl (A-9)

This iterative procedure is continued till the maximum difference

in (X) values between the successive iterations is within specified

tolerence of e i.e.

Max | { X . } - tX^j} < e (A-10)

V/hen Eq. (A-10) is satisfied the iterations are stopped and the

solution of Eq. (A-5) is { X . } .
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A.3 Example Problem

In the illustrative example (section 3.3.2), a circular membrane

with radius a and thickness h, and with a uniform loading over the

region 0 < ~ < 0.5 was analyzed. By using the four region idealiza-
O

tion and a finite difference technique, five nonlinear equations were

obtained. These five nonlinear equations (Eqs. (3.26), (3.27), (3.28),

(3.29) and (3.24)) were expressed in terms of normalized stresses as:

- 3 a r(0) + 4 a r ( l ) - a . (2 ) = 0 (A-ll)

0.5 3 ( 0 ) 3 2(1) - 2 a 3(1) + 2.5 a (2) a 2(1) = - (A-12)r r r r r

- 8 0r
3(2) + 7

4-5 a p (4 ) o r
2(3) + 1.5 a p (2) a r

2(3) - 6 ap
3(3) = - - (A-14)

a r(4) (6.69) - 8 a . (3) + 2 3p(2) = 0 (A-15)

where

pVEpn 1/3
( 2-^)

^

Using Newton-Raphson method [J (o )] was obtained as:



185

-3

-0.5 a r
2(l)

- op(0) a r(l)

- 6

+ 5

-1

2.5 a r
2(l)

(2) a r( l)

2 a r( l) o r(2)

- 24 a r
2(2)

14 (3) a p (2)

1.5 ap
2(3) 9 a p (4) ap(3) 4.5

3 a p(2) a r(3)

- 18 (3)

- 8 6.69

(A-16)

An initial approximation for the normalized stress a (0), a (1),

a (2), a (3) , and a (4) was assumed as unity. With this assumption,

the function {F(o )} and [J(a )] were evlauated. They are

[F(5

0
1/128
1/32
1/216
0.69

CJ(O] =r

- 3
-0.5

0
0
0

4
-2
1
0
0

-1
2.5
-8
1.5

2

0
0
7

-6
-8

0
0
0
4.5
6.69

(A-17)

The next approximation for (a } was obtained by using Eq. (A-8) as:
' —i / ~>

X

a r(0)

a r ( l )

5 r(2)

o r(3)

a r(4)

/ = ^

f \
1

1

1

1

1
w S

-

)

-3 4

-0.5 -2

0 1

0 0

0 0

-1

2.5

-8

1.5

2

0

0

7

-6

-8

0

0

0

4.5

6.69

(

0

1/128

1/32

1/216

0.69
(A-18!
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Solution of Eq. (A-18) is

5r(o)

/ 5r(2)

0.02039

0.01941

0.01648 \

0.01160

0.0089

(A-19)

The above procedure was repeated and the next approximation

to (c } was obtained as:

(A-20)

27.5628

27.7630

28.3637

27.3757

24.2568
«••

This iterative procedure was continued till the maximum difference

in (a } values between the successive iterations was less than 1E-6 orr

max | A a j < 1E-6 . The solution converged after 18 iterations,

and the corresponding normalized stress values were: a (0) = 0.3156,

a (1) = 0.3065, (2) = 0.2726, a (3) = 0.2233, and a (4) = 0.1851.
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APPENDIX B

LARGE DEFLECTION SOLUTION OF CLAMPED CIRCULAR PLATE LOADED AT

THE CENTER USING THE ENERGY METHOD

Consider clamped circular plate of thickness h and radius a,

subjected to a center point load P. The classical large deflection

solution based on the energy method assumes that the deformation shape

of a clamped circualr plate under center point load has the same

equation as in the case of small deflections, therefore

2 2
W(r) = WQ [1 - (ly) + 2 (ly) *n (I)] (B-l)

d cl

where WQ is the central displacement of the plate.

The corresponding strain energy of bending can be written as [27]

•- o o dr r dr

8 * D _ w}
(B-3)

where Deq is a flexural modulus and is given by

(B-4)
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where E and v are the equivalent Young's modulus and Poisson's

ratio for the quasi-isotrpic plate and were obtained by using the

technique described in Chap. 2.

For the radial displacement u, classical solution assumes the

expression

u = r (a - r) (Cj + C2r) (B-5)

Equation (B-5) satisfies the boundary conditions that u must vanish

at the center and at the edge of the plate.

The strain energy due to stretching of the middle plane of the

plate is given by [27]

Um = f {er + £9 + 2 veq er Ee> r dr

where e and £„ are radial and tangential strains and are given by

Eqs (3.3) and (3.4) from Chap. 3 as:

_ d u f ^ , R 7 .
er ~ + J (B"7)

From expressions (B-l) and (B-5) for the displacements, the strain

components e and eQ were calculated by using Eq. (B-7) and (B-8).

Substituting these strain components in Eq. (B-6) strain energy due to
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stretching Um was obtained as

2
7 1 E e a h a r 2 2 2 4U = - eq , [0.250 Cf a^ + 0.1167 C, a*

' ' 2

n
+ 0.300 C, C0 a

j + 0.06332 C. — (B-9)
X £ . 19

4
? w

0.09851 C0 w + 0.18240
^ O -

a

The constants Cj and G£ were determined from the condition that the

total energy of the plate for a position of equilibrium is minimum.

Hence

dU dU
= 0 and = 0 (B-10)

Substituting Eq. (B-9) for Um, fol lowing two linear equations for

and & were obtained

w 2

0.50 C. a2 -i- 0.300 C0 a3 - 0.06332-5- (B- l l )
\. d. 3

0.2334 C, a4 + 0.300 C. a3 = - 0.09851 w 2 (B-12)
2 1 o

Equations (B-ll) and (B-12) were solved simultaneously and C-^ and

were obtained as:

= 0.5531 -. C2 = -1.133 -~ (B-13)
a a



190

Substituting values of Cj and C2 from Eq. (B-13) into Eq. (B-9), Um

was obtained as

n EAn h w 4

U = eq „ [0.14409 -£J (B-14)

'

Total potential energy n was written as the sum of the bending energy

and stretching energy minus the work done, therefore

? 4
8 * D w w it E h

« = %q ° H- 0.114409-% eq , - P w (B-15)
P a2 a2 (1 - veq

2) °

Minimizing it with respect to WQ, following relationship between load

P and wQ was obtained

3
w w TC E h

16 TC D 4; + 0.57636 -2 ^—7-= p (B-16)

^^ ^ (1 - veq ^

E e h 3

Substituting D = 3 t ancj rearranging the terms, Eq. (B-16)
eq 12 (1 - v ^)

can be written as: ec^

0.433 ( ) = 0.2157

Equation (B-17) is the classical large deflection solution for

clamped circular plate under central point load P.
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APPENDIX C

DERIVATION FOR THE RADIUS OF INFLECTION

The classical large deformation theory [27], assumes the deforma

tion shape of a clamped circular plate under central point load as:

2 2
w ( r ) = W [1 - (l) + 2 (J An (I)] (C-l)Q

3. cl

Furthermore the classical theory assumes that the functional form of the

deformation shape remains unchanged for various values of central

deflection, WQ. Thus the radius of inflection (the radius at which
w

curvature is zero) is independent of (— r-) . The radius of inflection

can be obtained as follows:

By differentiating Eq. (C-l) twice, curvature can be written as

.2 4 w
!« = .° [1 +*„ £) ] (C-2)
dr a^ a

2
f d w \

The radius of inflection is the radius at which [—7J = 0
dr

Hence,

1^2 [1 + An Q] = 0 (C-3)
^ a

yields the radius of point of inflection as

(£) = e'1 = 0.3678 (C-4)
d
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