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Introduction

It is well known that the presence of a real atomic level which is nearly resonant

with the pump field can greatly enhance the Raman emission cross-section. In order to

accurately calculate the Raman gain in systems where resonance enhancement plays a

dominant role, expressions for the pump and signal susceptibilities must be derived.

These expressions should be valid for arbitrary field strengths in order to allow for pump

and signal saturation. In addition, the theory should allow for arbitrary longitudinal

and transverse relaxation rates. This latter point is extremely vital for three level

atomic systems such as the alkali earth metals since they do not have population reser-

voirs and can have widely varying spontaneous lifetimes on the three pertinent transi-

tions. Moreover, the dephasing rates are strong functions of electronic states and are

therefore also different for the three coupled pairs of levels. These considerations are

not as important when molecular systems are concerned since the large reservoir of rota-

tional states serve to produce essentially equal longitudinal recovery rates for the popu-

lation of the three levels.

The most general solution to date is that of Temkin and Panock^1'2) who have

solved the semiclassical rotating wave limit of a three level system under the constraint

of a single longitudinal and transverse relaxation rate for the entire system of levels.

We have for the first time solved the three level system with three arbitrary longi-

tudinal and transverse relaxation rates. There is no need for setting either pair of rates

equal and-the expressions are valid for arbitrarily strong fields. The next step will be to

velocity integrate these expressions for the cases of copropagating and counter-



propagating pump and signal fields in order to study the cesium system pumped by the

doubled alexandrite laser emissions.
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Density Matrix Solutions for the Susceptibilities
of a Three-Level System with Arbitrary Relaxation

Rates and Field Strengths

The density matrix formalism is fully equivalent to the Schrodinger wave function however
it is more applicable to the statistical case, in which the wave function is not known exactly. In
this case the elements of the density matrix are taken to be ensemble averages of possible
configurations of the system. As a result every wave function can be expressed as a unique den-
sity matrix, but not all density matrices can be expressed as wave functions, reflecting the fact
that the wave function contains only quantum uncertainties where as the density matrix con-
tains statistical as well as quantum uncertainties.

For a given wave function

the density matrix is written as

P\i = Ci'Cj

where the bar denotes the ensemble average. The time dependence of the elements is given by

where H is the total Hamiltonian of the system used to describe the three and four level atoms
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Both configurations approximate electronic states in an alkali atom. The lower states jl>
and \2> are s-states with principle quantum numbers n and n+1. In the four level atom |3>
and |4> are p-states with j = l/2 and 3/2 respectively and principle quantum number n. In the
three level atom the spli t t ing of the upper p-level has been neglected to simplify the calculations
and results.

The Hamiltonian in the dipole approximation is given by:

H = H0 - /MI

where H0 is the unperturbed atomic Hamiltonian and -/rE is the atom field Hamiltonian in the
dipole approximation. We will assume that the dipole matrix element /t12 is zero because both
are s-states.



The time evolution of the density matrix elements for the three level system are therefore
described by

dpn -i _ ^
dt h 13 31 13 u u n

/ o \
~ '22*.P22 ~ P22.Jdt h

= Y [('IS ~ P3l)#12 + (P32 - P23)#23j
dt
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•E(t) + i(u>32 - 1732)P32

Pl2 = Y U113P32 - M32P13 IPl2

where u^ = (Es - Ej)/h, E(t) = Epcos(o;pt 4- V'p) + E3cos(o,'3t + ^3) and 7^ are phenomenological
relaxation and dephasing rates, and />3i, p23

 a°d ^12 are complex conjugates of pl3, p32 and p12

respectively. The equations describing the four level system are given by:

Pn = is(P3i - Pis)

Pl2 =

P22 = •£- [/»2S(P32 - P23) + ^2-l(P42 ~ P24) J '

si) + /*23(P23 ~ P32) + M24(P42 ~ P24)j 'E(t) - 733/733

P44 = Y [Mlo(Pl4 - P4l) + ^2-l(P24 ~ P42) + /J34(P34 ~ P43)J-E(t) - 744P44

^23^33 + /tH/?42 ~ ^42P34 J 'E(t) - i(w21 - 17l2)Pl2

- Pll) + /*14P43 ~ M23Pl2 ~ /^43Pl4 I 'E(t) - i(w31 - i7l3)Pl

Pl4 = Y l/ i!4(P44 ~ Pll) + /*13P34 ~ M24Pl2 ~ /*34Pl3 I 'E(t) - i(w41 - 17l4)Pl

P23 = Y [^(PSS ~ P22) + A*24P42 ~ Ml3P21 ~ ^24P42 I 'E(t) - i(w32 - i723)P2

P24 = Y |^24(P44 - P22) + /*23p34 ~ Ml4P21 ~ /^34P23 I '
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P34 = ~ #14031 ~ #24032] "E(t) ~ i(w43 ~ 1734)034

It is obvious that these equations with their complex conjugates are much to complicated to
solve. The remainder of this paper will be devoted to the three level system.

Steady State Solutions

To obtain the steady state solutions to the density matrix equation we first take out the
explicit oscillations of the off diagonal elements

-iwt,
= Ae

. -
= Xe

and then neglect all terms which oscillate faster than wp or u>3 in the off diagonal element equa-
tions and all DC .terms in the diagonal element equations. This is the rotating wave approxima-
tion which therefore disallows the possibility of Bloch-Seigert shifts in the resonances. If we
then set all time derivatives equal to zero and define the following:

2h

L3 =
LP = - \/T2 =

+ \/TI

- i/r2

the equations become

LSX = &*A32 - ^'D
LpA = -/?PA13 - ^3D

and

0 = 2Im#,X - - + (A13 - A,03) + r~ - ( A 3 2 - A3°2)
M A

0 = 2Im/?p'A - 4Im/?sX + 1 |-L + _±-(-L + J- (A32 - A3°2) + 1 f J- - -L | (A32 - A3°2)
( A3 -12 . ^ ( *-2 *-3 )

We can now eliminate D from the first three equations and solve for X and A

| /?P | 2R
13



- ! /?3 |2R

where

R =
L8LP

"SA'S ~~ "p^p ' kjLpLgp

In terms of two real quantities, R! and R2, we have that:

A

B = tftf?

This then yeilds

and

where

r 2 -

- IA I .-i , I ^
|L3

A™ -

, ,-2\ , #2 •+ TJ J + pg r2

I ^ I 2 I A I 2

|LP

a, = 2r2-
1^R1 - (5p

2 - r2-

- l

r,-1- A 13" -a9A•2^32

a3 = 27^^! - (6? - rf2)R2

Substituting these into the last two density matrix equations then gives

M 2 , i KO , i~ 1S

21 A I

A°32

+ "
L S |

1 1

^- I A I 2 -rfV^ o I T" \ Ls

2
T,



T "T~3 ( 13
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A I
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+ +

2|
+

Then by making the following substitutions and definitions

->

J_
T3

- IAI
P

2 + r? ' 8? + rf2 3 T2 T

The equations become

i
T3

j_f 1
3

1
T3

lAj3 1 2^32

3 I T3 T2
= -rAS'-MS I" L 4*-»32

with the solutions

T I 1 \ 2 + l
M |— |-^r + "^~

- 1 A 3

1 f 1 f+fH+?lfX3 X2 J ^ I i{2

1

T3

r r r r1 i1 4 ~ J 2* s

3 T

_2_

3 ^2

1(-
3 T9

i r i i IA•nr— I ^Vi
3 I T! T3

The polarization of the system can now be determined from the expectation value of the
dipole operators by:



aRe(/i32/>23)

which, after substituting for />13 and p32 becomes

P = 2Re

+ 2Re

2hL3*
- | A I2R

1 2R'R -i-

Ei-Jn

T?

By comparing this equation with

the complex susceptibilities are found to be given by:

XD = JA13- I A I s R 43 . ^32

LP L3

and

+
Xs =

hL3* Lp L3

In their complex forms

XP = XP X3 = Xs'

Y " —An

Xs' *32

,
~

I A IS

+ A32 •
+

43'
V)

I 272

v ' =As
M32

+

A

where

73 = (6p ~ rf2)Ri - 2rf1*sR2

These susceptibilities are the first results which allow for completely arbitrary relaxation
and dephasing rates as well as arbitrarily strong pump and signal fields.
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