SVI207 1178

NASA Technical Memorandum 87207
NASA-TM-87207 19860008319

e -

Nonlinear Bending-Torsional Vibration and
Stability of Rotating, Pretwisted, Preconed
Blades Including Coriolis Effects

K.B. Subrahmanyam, K.R.V. Kaza,
G.V. Brown, and C. Lawrence
Lewis Research Center

Cleveland, Ohio

Jamary 1956 M

R S S T eSS
HIRAAY, 1054
A DUNMPTON, ViRt



E-2811

NONLINEAR BENDING-TORSIONAL VIBRATION AND STABILITY OF ROTATING,
PRETWISTED, PRECONED BLADES INCLUDING CORIOLIS EFFECTS

K.B. Subrahmanyam,* K.R.V. Kaza, G.V. Brown and C. Lawrence
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

The coupled bending-bending-torsional equations of dynamic motion of
rotating, linearly pretwisted blades are derived including large precone, sec-
ond degree geometric nonlinearities and Coriolis effects. The equations are
solved by the Galerkin method and a linear perturbation technique. Accuracy
of the present method is verified by comparisons of predicted frequencies and
steady state deflections with those from MSC/NASTRAN and from experiments.
Parametric results are generated to establish where inclusion of only the sec-
ond degree geometric noniinearities is adequate. The nonlinear terms causing
torsional divergence in thin blades are identified. The effects of Coriolis
terms and several other structurally nonlinear terms are studied, and their
relative importance 1s examined.

INTRODUCTION

It i1s now widely recognized that the inclusion of geometric nonlinearities
in the equations of motion of rotating elastic blades is necessary for a fair
prediction of their dynamic characteristics. For the analysis of helicopter
rotor blades, an appropriate set of nonlinear equations based upon Euler-
Bernoulli theory was found to yield satisfactory results since the blades were
essentially slender (refs. 1 to 5). However, there remain certain questions
concerning the degree to which the geometric nonlinearities should be retained,
and concerning the initial assumptions in prescribing an ordering scheme
(refs. 6 to 7). Another area, somewhat similar dynamically, but further com-
plicated due to the geometry, is the advanced turboprop blade dynamics
(refs. 8 to 9). 1In contrast to helicopter rotor blades, the turboprop blades
are more plate or shell-like, possess variable sweep along the span, and have
smaller thickness ratios. Furthermore, the ratio of the rotational speed to
the first nonrotating normal mode frequency of the turboprop blade is usually
less than one, while the corresponding ratio for the helicopter blade can be
somewhat more than one. Because of the unusual geometric features of the
advanced turboprop blades, finite element methods are normally used. However,
when finite element modeling 1s used, 1t is difficult to obtain a physical
understanding of the complicating effects.

In order to determine the individual and combined effects of pretwist,
sweep and rotation on the blades, parameteric studies are conducted by using a
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simpler beam model in which the effects of sweep are incorporated by preconing
the blade with respect to the plane of rotation. Precone, a component of
sweep, is of the order of 50° for an advanced turboprop blade at the tip.
Assuming constant precone, linear pretwist and steady rotational speed, the
coupled nonlinear equations for bending-bending-torsional motion are derived
by using the theory presented in references 3 and 4. 1In deriving the equa-
tions, it is assumed that the elongations and shears are negligible compared
to unity and the squares of the derivative of the extensional deformation of
the elastic axis is negligible compared to the square of the bending slopes.
Shear deflection and rotary inertia effects are not considered. Geometric non-
1inearities are retained up to second degree. Parametric results from the
present beam theory for the special case of torsionally rigid blades (refs. 10
and 11) indicated excellent agreement with finite element model results
generated by MSC/NASTRAN.

In the present paper, the important effect of torsional flexibility is
addressed. A brief derivation of the coupled nonlinear equations of bending-
bending-torsional motion are first presented. Next, implementation of the
Galerkin method with nonrotating normal modes for the solution of the nonlinear
steady state equations and the linearized perturbation equations 1is presented.
Parametric results generated from the present beam theory are compared with
stimilar results produced by MSC/NASTRAN. The Timitations of restricting the
geometric nonlinearities to second degree, and the effects of Coriolis forces
for blades with various thickness ratios are shown. Results obtained from
experimental tests are also presented for typical precone angles, rotational
speed and setting angies. Finally, the accuracy of the present equations, the
Timits where the second degree geometric nonlinearities are adequate, and the
parameters affecting the onset of instability are discussed.

EQUATIONS OF MOTION AND METHOD OF SOLUTION

Figure 1 shows a linearly pretwisted, preconed, and rotating blade of
uniform rectangular cross section. The coupled bending-bending-torsional
equations of motion for such a blade are derived by using the theory presented
in reference 3, and by including large precone and linear pretwist over the
blade length. When shear and rotary inertia effects are ignored, and second
degree geometric nonlinearities and Coriolis effects are retained, such equa-
tions reduce to the following form (a 1ist of notation is given in appendix B):
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In deriving the equations given above, an ordering scheme given in ref-
erence 3 is followed. Geometric nonlinear terms up through second degree only
are retained. In general, terms up to 0(e¢4) 1n the elastic forces and 0(e?2)
in the inertial forces are needed in the bending equations. For the sake of
verification, certain linear terms of the order 0(e3) in the inertial forces
are included in equations (1) and (2). However, these additional terms have
been found to have an insignificant affect on the solutions and can be dis-
carded safely. Considering the torsion equation, terms of the order 0(e9)
in the elastic forces and terms of the order O(eé) in the inertial forces .
forces together with the structural and inertial warping terms, [viz. (ECy¢")
and (mk§Q< cos2Bpc ¢')'], are retained. A large number of higher order terms
other than those shown in the second degree torsion equation are believed to
be unimportant (see ref. 3), and are thus discarded. The well known tennis
racquet effect term appears in the torsion equation as me2¢ cosZ Bpc(kh2 -
k%1) cos 20, while the tension-torsion coupling term appears in
[EAKRu'(6pt + ¢')1'. The extensional degree of freedom in the present equa-
tions has been discarded, since i1t has been established in reference 11 that
the effect of the extensional coupling on vibration and stability character-
istics for practical blade configurations is insignificant. One can eliminate
the extensional slope, u', by using equations (4) to (6). The effects of the
tension-torsion and tennis racquet terms and the structural and inertial
warping terms were discussed in detail in references 12 and 13 for uncoupled
torstonal vibration of pretwisted, rotating blades. In view of the discussion
presented in these references, the inertial warping term is discarded and the
structural warping effect terms is retained.

Defining the following parameters,

w=wLl,Vv=v/l,n=x/L, T =0t R=R/, etc., (8)

assuming solutions are separable in time and space, and making note of the
following relations
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one can write equations (1) to (3) in the following nondimensional forms:
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Before discussing the method of solution, it is worthwhile to point out
the various important 1inear and nonlinear terms in the present equations. 1In
equations (10) and (11), certain linear and nonlinear terms are underlined
once. These terms constitute the 1inear and nonlinear Coriolis force terms and
nonlinear terms arising from the foreshortening, (uf), and tension terms,
(Tw')' and (Tv')'. 1Individual and collective effects of these important terms
were assessed in references 10 and 11. It was shown in these references that
the l1inear and nonlinear Coriolis effect terms significantly affect the onset
of instability for large preconed thick blades and thus they must be retained
in analyzing blades having moderate to large thickness ratios. It was also
shown that the nonlinear terms in the coupled bending-bending equations which
vanish for zero precone are extremely important. These terms can produce sig-
nificant frequency changes (of the order of 20 percent increase in the funda-
mental mode frequency for a 45° preconed thin or thick blade rotating at a
speed equal to the fundamental frequency of the same blade). Next, the
Coriolis effect terms due to torsional coupling in the bending equations and
the flexural coupling in the torsion equation are addressed. Referring to
equations (10) and (11), one can f1nd the Coriolis effect terms
[2 cos Bpcd(mk@p sin? @ + mkfy cos? @)/mL2]' and [2 cos Bpcd(mkhz - mkfy)

sin o cos o/mlL ]' The correspond1ng terms in the tors1on equat1on are 2f1v‘
sin © cos & cos Bpe + 2 cos Bpcw'(fp sin o + fg cos? e) It may be noted that
the linear Cor1ol?s forces, 2 sin Bpcv and -2 sin BycWw, in the two bend-

ing equations indicate skew symmetry of the gyroscop c matr1x One may thus
consider that inclusion of torsional degree of freedom does not alter this
nature of the gyroscopic matrix provided that an appropriate sign change is
made in the torsion equation throughout. Keeping in view the ordering scheme
followed, the bending equations should contain terms of order 0(e¢2) in the
inertial terms. Consequently, the Coriolis effect terms in the bending equa-
tions which are associated with the torsion variable ¢ should be discarded.
To preserve the skew symmetric nature of the gryoscopic matrix in linear
Cortolis force terms, one must discard the corresponding Coriolis force terms
in the torsion equation also. In the following, we maintain this consistency
and disregard the aforementioned Coriolis effect terms associated with ¢

in the bending equations (10) and (11) and all the Coriolis force terms in the
torsion equation.

Finally, the twice underlined terms in the bending equations are the non-
1inear terms arising from torsional coupling with the bending motions (pitch-
flap and pitch-lag couplings). The corresponding terms in the torsion equation
are shown by underscoring them thrice. These terms were first discussed by Mil
et al. (ref. 14) and subsequently by others. From the present equations, it
can be seen that these terms are premultiplied by the rotational parameter
€ and square of thickness ratio factor, (b2/d2 - 1). For thin blades, the



flatwise steady state deflection, W, will become significant with increasing
speeds and makes these terms quite significant in the perturbation eguat1ons.
Furthermore, these effects are aggravated due to the coefficient (b /d2 - 1)
as the thickness ratio (d/b) becomes smaller. Thus, one may anticipate a
significant influence of these terms on the vibration and stability behavior
of thin blades subjected to large rotational speeds. The terms shown by the
dashed underlining are associated with the torsional rigidity, GJ, and the
terms shown by the double dashed underlining arise due to tension effects. It
will be shown that these terms are not as significant as the aforementioned

nonlinear terms.

The coupled bending-bending-torsion equations are solved by the Galerkin
method by expanding the dimensionless deflections in terms of a series of gen-
eralized coordinates and mode shape functions as follows:

" =;(WOJ + ij(f))‘pj(n) (]4)
v =zi:(voj + AVJ(T))\I’J(TI) (15)
where
wj(n) = cosh (Bjn) - cos (Bjn) - aJ[sin (Bjn) - sin (Bjn)] (7
93(") = 2 sin (an) (18)
1
Yj = “(j - —2_) (19)

Equations (17) and (18) represent the nonrotating normal modes for a
cantilevered beam fixed at n = 0 and free at n = 1. The values of Bj
are taken from reference 15. It may be noted here that sinusoidal mode
shape assumed for the torsional degree of freedom is not compatible with the
boundary conditions when warping is included. However, the effect of warping
is not significant for large aspect ratio blades (L/b > 6 (ref. 13)). Thus,
the mode shape assumed here should produce satisfactory results for blades with
moderate aspect ratios. The quantities Wo3r Vo3 and $gj are the equilib-
rium quantities while Awg, vy and 8¢y are the perturbation quantitites
in the generalized coordinates.

Proceeding as in reference 11, one can apply the Galerkin process for the
solution of the nonlinear steady state equations and the linearized perturba-
tion equations (expressed in terms of the equilibrium generalized coordinates)
which define the blade motion about the equiliibrium operating condition.

The steady state equilibrium equations, and the linear perturbation

equations are written in the following forms for a solution with n normal
modes assumed for each independent variable:

10



[L + NL] x )} = (B) (20)

[M] X} + [C] {X} + [K] {x} = O (21)
where
- W, W b
{xo} - wo]’ 02’ * ° 7 won’ vo]’ V02’ e von’ ¢o1’ ¢02’ e ¢on
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{x} = {aA Aw A Av Av Av A A A }T
- w]’ 2’ hd . A ] wnl 'l' 2’ - . b nt ¢‘II ¢2’ . . *s ¢n
(23)

with L, LN being the linear and nonlinear parts of the equilibrium equations,

and M, E;Vand K being the mass, Coriolis and stiffness matrices respec-
tively. Elements of those matrices are presented in appendix A.

RESULTS AND DISCUSSION

The nonlinear, steady state, equilibrium equations (20), and the eigen-
value problem that results from the transformation of equation (21) were .
solved by using computer programs developed in FORTRAN language. Integrations
are performed on the computer using a 15 point Gaussian quadrature formula.
The general computer program developed for the solution of equation (21) gives
the natural frequencies per unit rotational speed, (p/Q). In the presence
of Coriolis forces, the frequencies will occur in pairs of purely imaginary
quantities for a conservative system. 1In the absence of Coriolis effects, the
frequency equation (21) reduces to a standard eigenvalue problem the eigen-
values of which are real quantities, (pz/ﬁz). Specialized cases were solved
by modifying the general computer program. Parametric studies were conducted
for thickness ratios (d/b) ranging from 0.05 (representing approximately an
advanced turboprop blade) to 0.25 (representing approximately a conventional
propeller blade) for various precone angles, pretwists, setting angles and
rotational speeds. The disc radius 1s assumed to be zero in most of the
calculations except for cases corresponding to a test configuration developed
at the NASA Lewis (ref. 16). Results were also generated from the finite
element code, MSC/NASTRAN, using 250 or 500 CQUADA elements for the purpose of
comparisons with present theoretical results. It should be noted here that
the MSC/NASTRAN calculations ignore the Coriolis effects although there is no
restriction on the degree of geometric nonlinear terms. A11l these results are
presented and discussed in what follows.

Convergence

The convergence of the solutions produced by the Galerkin method with
various numbers of nonrotating normal modes in the coordinate functions is
11lustrated in table I. The blade considered for this convergence study has a
precone of 15°, pretwist of 30° at its tip, and a thickness ratio of 0.05.

The blade chord at the root 1s set perpendicular to the axis of rotation
(e« = 0°) and the blade rotational speed 1s one-half of the fundamental mode

11



frequency of the same nonrotating blade with zero pretwist and zero precone
(Q/wy = 0.50). The frequency ratios (p/A) shown in table I are representative
of the convergence trend that one might expect for a general case of pretwisted
rotating blade when geometric nonlinearities up to second degree and Coriolis
effects are included in the analysis. For the purpose of comparison of the
present beam theory results, and to provide a measure of accuracy of the pre-
sent beam theory formulation, the results produced by MSC/NASTRAN by using 500
CQUAD4 elements are also included in this table. The convergence pattern of
the components of steady state, dimensionless, tip deflections are shown in
table II for this blade as obtained from the Galerkin method calculations
together with those produced by MSC/NASTRAN.

From the convergence pattern of the frequency ratios presented in table I,
it can be seen that a five mode solution produces the lowest six coupled
bending-bending-torsion frequencies that are in reasonable agreement with the
corresponding values produced by MSC/NASTRAN. Furthermore, the steady state
deflections produced by the present beam theory caiculations with a five mode
solution agree quite closely with those from MSC/NASTRAN. Among the several
factors unknown so far, the sinusoidal mode functions used for torsional
deformation instead of hyperbolic functions may perhaps be responsible for the
oscillatory convergence trend observed for the frequencies and steady state
deflections shown in tables I and II as the number of nonrotating normal modes
in the assumed solutions are increased. It emerges clearly, however, that the
convergence of higher mode frequencies to accurate values can be accomplished
by increasing the number of modes in the solution, and that accuracies of
practical interest can be achieved from the present theoretical formulation.
Finally, the close agreement of the present theoretical results, including
Coriolis effects, with the MSC/NASTRAN results, that ignore the Coriolis
effects, substantiate the conclusion reached by the present authors in
reference 11 that Coriolis effects can safely be ignored for thin blades.

Comparison with Experimental Results

In order to verify the present theoretical development of the equations
of motion, a typical set of results were obtained for rotating, preconed,
untwisted blade cases corresponding to those obtained from the NASA Lewis spin
test rig (ref. 16). The test rig is capable of accommodating bladed rotors up
to 51 cm (20 in.) in diameter, which can be spun to 16 000 rpm. A rotor cap-
able of holding two blades with adjustable sweep (precone) and setting angles,
was designed for this spin rig. Tests were conducted for nonrotating, steel,
flat plates having an aspect ratio, L/b, of 3 and thickness ratio, d/b, of
0.05. Frequencies of the lowest five modes as given by the static spin rig
tests were 94.2, 572, 586, (1643.5+11.5) and 1795 Hz respectively. Results
obtained from the holography tests were respectively 93.0, 572, 586, 1628, and
1793 for the lowest five mode frequencies. Of these frequencies, the first two
correspond to the fundamental bending and torsion modes of the flat plate
respectively.

In order to match these frequencies from theoretical considerations, the
elastic modulii were determined from standard relations. A value of 0.283
1b/1n3 was chosen for the mass density. The effective root distance from
the center of rotation of the spin rig varies slightly with the precone. Ffor
precones of zero, 22.5° and 45°, the effective root distances were 4.0, 3.952,
and 3.816 in., respectively. Using these geometric and physical properties,

12



numerical results were generated for various setting angles, precones, and
rotational speeds. Corresponding results obtained from the test rig are com-
pared to the present theoretical results in table III.

An examination of these results, presented in table III, indicates that
there is a reasonable agreement between the theoretical and experimental
results for all the cases considered. Furthermore, the trends shown by the
theoretical and experimental results are consistent. From the comparison of
the theoretical and experimental results shown in table III (of the order of
+6 percent difference in most of the cases considered), and from the close
agreement between the theoretical results and NASTRAN generated results pre-
sented in tables I and II, it is concluded that the present theoretical form-
ulation is accurate, and that it is capable of producing accurate results for
the parameters considered here.

Vibration and Stability of Preconed, Rotating Blades

. In order to determine the individual and combined influence of pretwist,
precone, Coriolis forces, second degree geometric nonlinearities and rotation
on the coupled frequencies or stabiiity boundaries, parametrics studies were
conducted for various thickness ratio blade cases. A typical set of such
results are shown in table IV. Also included in this table are the results
produced by MSC/NASTRAN. Figure 2 shows a further comparison of frequency
ratios obtained from the present beam theory and from MSC/NASTRAN for typical
precones and thickness ratio cases. A comparison of these results indicates
that there is a good agreement between the present theoretical results and
MSC/NASTRAN results for blade cases having moderate thickness ratios (d/b >
0.10), moderate precones (Bpc. = 15°) and for a wide range of rotational
speeds (Q/wy up to 2.0). ?h1s trend of close agreement between the beam
theory results including second degree geometric nonlinearities and those from
MSC/NASTRAN continues for blades with increasing thickness ratios for a wider
range of precone angles and rotational speeds (see fig. 2(b)). In the absence
of precone, the present beam theory results agree very closely with MSC/NASTRAN
results for all thickness ratios, (see fig. 2(a)), over a wide range of rota-
tional speeds. However, when the thickness ratio 1s decreased, the agreement
between the beam theory results and MSC NASTRAN results is found to be close
for low rotational speeds (up to about Q/wy = 0.5 to 0.8) only (see fig. 2(c)
and table 1IV).

From the parametric results generated, it was found that the present beam
theory predicts torsional instability for thin blades (d/b = 0.05 or 0.06) at
lower rotational speeds than does MSC/NASTRAN. This trend can be verified from
the results presented in table IV for the case of a thin blade (d/b = 0.05)
having 30° pretwist and 15° precone. For this particular blade configuration,
the beam theory results are in close agreement with those of MSC/NASTRAN for a
rotational speed parameter value of Q/wy = 0.5. However, when the rota-
tional speed is increased, the torsional frequency predicted by the beam theory
was found to be unstable, although the corresponding one from the MSC/NASTRAN
calculation was stable. Similar trends were observed for this blade case even
in the absence of pretwist (see fig. 2(c)). Furthermore, a comparison of the
results presented in tabie IV for the present blade case with Q/wy = 1.0
indicates that the flexural frequencies predicted by the beam theory and
NASTRAN calculations are still in very close agreement. Similar trends of
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instability could also be found for blades of the same thickness ratio, rota-
tional speed and pretwist but larger values of precones.

From the comparison of the results presented in table 1V, the following
observations are made:

(1) For blades of moderate thickness ratios (d/b of the order of 0.10
and greater), for moderate precones (B,. of the order of up to 15°), and
for rotational speeds of up to Q/wy = g.O, inclusion of geometric non-
1inearities up through second degree only appears to be adequate for a fair
prediction of the blade frequencies. Thus, the present second degree equa-
tions appear to be adequate for application to helicopter blade vibration

analysis.

(2) The effect of Coriolis forces on the frequencies of rotating preconed
blades 1s insignificant for low thickness ratio blade cases, but could become
significant for high thickness ratio blade cases (refer to the results pre-
sented in table IV). Conclusions concerning the l1inear and nonlinear Coriolis
forces on the frequencies of rotating blades that were presented in refer-
ence 11 are valid here also.

(3) Thin blades possessing large precones and subjected to considerabie
rotational speeds exhibit torsional divergence at a much earlier rotational
speed when the present beam theory 3s used than is the case when MSC/NASTRAN

1s used.

In order to acquire further insight into the torsional instability of thin
blades, results produced by the present beam theory and MSC/NASTRAN are pre-
sented in table V for an untwisted, 15° preconed, thin blade (d/b = 0.05) for
various rotational speeds. To facilitate a clearer understanding, the fre-
quencies are listed in a columnwise fashion, each column corresponding to one
of the bending modes (F1, F2, F3, F4) in the flatwise direction, the torsion
mode (T1) or the edgewise bending mode (S1) respectively. Also included are
the dimensionless steady state tip deflections (W,v,¢) in the last three
columns of this table. An examination of the results presented in tabie V
indicates that for all rotational speeds considered, the flatwise steady state
deflection, W, is the most significant one while the edgewise and torsional
deformations are insignificant, as expected for the untwisted blade. Further-
more, the steady state deflections produced by the present beam theory are in
excellent agreement with those from MSC/NASTRAN. Since the flatwise deflection
s the only significant one that can contribute to the nonlinear terms in the
perturbation solution, corresponding terms in the torsional equations causing
instability could easily be identified. For the system to be unstable, the
off-diagonal terms in the stiffness matrix should become large and negative.
An examination of the stiffness matrix, (K], for the perturbation solution,
presented in appendix A indicates that the nonlinear terms T844y, T944k
and T1044x are associated with the steady state equilibrium coordinates
Wok, and that these terms arise from the terms discussed by Mil et al.

(ref. 14)., To verify this, results for same blade configuration presented in
table V are reproduced in table VI, but with the Mil1's terms discarded. From
table VI, 1t can be seen that the instabilities predicted by the present beam
theory, shown in table Vv, vanish once the Mi1's terms are discarded. However,
the coupling trend between the fundamental torsional mode (T1) and the funda-
mental edgewise mode (S1), which now becomes evident by a mutual comparison of
the results presented in tables V and VI [which decreases the Tower uncoupied
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frequency and increases the higher uncoupled frequency with increasing rota-
tional speeds] is also absent. Further, the present beam theory frequencies
are more closely in agreement with those from MSC/NASTRAN when the Mi1's terms
are present than when they are absent, in so far as stable configurations are
compared. Thus, it can be concluded that the Mil's terms are necessary for a
reasonable prediction of the coupled bending-torsional frequencies, however,
they also can cause torsional divergence for thin blades at larger precones and
rotational speeds. It appears, then, that the level of approximation used for
the Mil1's terms may not be adequate, and inclusion of the complete set of Mil's
terms, (presently truncated in accordance with the ordering scheme or degree

of geometric nonlinearity retained in the equations), may improve the present
theoretical prediction of instability. These aspects are yet to be
investigated.

Finally, the effect of various nonlinear terms on the coupled bending-
bending-torsion frequencies of a particular blade with a 15° or 45° precone are
presented in table VII. For assessing the individual effect of each key non-
linear terms, solution of the present nonlinear equations is accomplished by
retaining all nonlinear terms other than the one key element being addressed.
Thus, in table VII, -results under the column with T5434¢ = T6y5¢ = 0 represent
nonlinear frequencies obtained by discarding the nonlinear terms arising from
the tension effects in the torsion equation, results under the column with
Tl4jk = T443K = T84y = 0 correspond to elimination of those nonlinear terms
associated with GJ 1in the two bending equations together with GJI(v'w")' in
the torsion equation, and those under the column T3yjy = T94j¢ = 0 (T243¢ =
T101jk =0 for o = 0) correspond to elimination of the Mil's terms. Further,
when A1jk is set to zero, the foreshortening effects are ignored, while
Dyjk = E1Jk = 0 neglects the nonlinear terms arising from (Tw')' and (Tv')"'.
From the results presented in table VII, and by comparing them with those
presented in table IV one can observe that:

(1) The affect of the terms (¢'v'GI)" and (4"w"GJ)' 1in the two bending
equations (1) and (2) and the corresponding term (GJv'w")' in the torsion equa-
tion (3) is negligiblie on the coupled bending-bending-torsional frequencies.
These terms can therefore be neglected.

(2) The affect of nonlinear terms arising from the tension coupling in
the torsion equation is also negligible on the coupled frequencies.

(3) The Mil's terms are extremely important in bringing in the bending-
torsional coupling, and can also cause torsional divergence for thin blades.
Further study with a careful consideration of these terms in their complete
form %s necessary.

(4) Compared to the Mi1's terms just discussed, all other nonlinear terms
that result due to the torsional coupling in the bending-torsion equations
appear to be unimportant.

(5) Effects of the nonlinear terms arising due to foreshortening, tension
coupling with flexural motions, [(Tv')' and (Tw')'], and Coriolis effects were
discussed in reference 11 in detail. These terms are extremely important and
must be retained in the equations. Conclusions concerning these terms as
drawn in reference 11 are valid even in the presence of torsional coupling
addressed in the present work.
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CONCLUDING REMARKS

The coupled bending-bending-torsion equations of dynamic motion of
rotating linearly pretwisted and large preconed blades of symmetric cross
section including second degree geometric nonlinearities and Coriolis effects
are derived. These equations are solved by using the Galerkin method and a
1inear perturbation procedure. Natural frequencies and steady state deflec-
tions produced by the solution of the present set of nonlinear equations are
compared to those produced by MSC/NASTRAN calculations and also to those from
experiment. Close agreement of the present theoretical results with those from
other methods establishes the accuracy of the equations developed and the
method of solution adopted. Parameter 1imits within which the second degree
geometric nonlinearities are adequate for a fair prediction of natural fre-
quencies and steady state deflections are established. The following specific
conclusions have emerged from the present investigation.

(1) For blades of moderate thickness ratios (d/b > 0.10) and moderate
precones (ch < 15°), inclusion of geometric nonlinearities up through sec-
ond degree appears to be adequate for a fair prediction of the coupled fre-
quencies and steady state deflections.

(2) The present nonlinear equations indicate torsional divergence at lower
rotational speeds when the thickness ratio is decreased and the blade precone
is increased than do the finite element caiculations. The nonlinear terms
contributing to the coupling between bending and torsional motions, often
referred to as kinematic pitch coupling terms and first discussed by Mil et al.
(ref. 14) were found to be responsible for this torsional divergence. These
terms are extremely important in producing the accurate coupling between the
bending and torsional frequencies. Inclusion of a compliete set of these terms
(presently appearing in the equations in a truncated form) may lead to a
satisfactory stability calculations.

(3) The affect of linear and nonlinear Coriolis forces on the coupled
frequencies of thin blades is found to be negiigible. The Coriolis force terms
can therefore be safely ignored in analyzing advanced turboprop type blade
configurations. However, the Coriolis effects must be retained in analyzing
thick blades, as discussed in reference 11.

(4) The affect of nonlinear terms arising from the tension coupling in the
torsion equation, and the terms (GJ¢o'v')", (GJ¢"w")' and (GJv'w")' appearing
respectively in the flatwise, edgewise and torsion equations, is found to be
negligible on the coupled frequencies and steady state deflections for
preconed rotating blades.
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APPENDIX A:
THE GALERKIN INTEGRALS AND MODAL EQUATIONS

The various integrals arising from the Galerkin process are defined
below, and these are used in representing the modal equations in matrix forms
subsequently:

! ] 0 )1
“13=6‘-"’1“’jd“=6‘-9193d“=1 i -

n !
A1Jk = b" 4’1 I‘)' ‘PJ(;()‘Uk(i) d)_( dT'I

1 "

(=]
—

C1j

]

¥ wIS dn
§

v ] L
D1Jk = J ‘l’-‘\VJ ﬁf ‘l’k(x) dx dﬂ

E1jk = (_!‘ ‘l’-\‘l’j‘l’k dn

1 2
iv 2 b 2
F1j = § q;1q;j <cos 0 + d2 sin >dn

13 = f ¢1¢j sin 20 dn

] "
H1j = é. ¢1¢j cos 26 dn

cos 26 dn

I1J = é' ¢1¢J sin 26 dn
g o

13

11



] [}
K1J = é' w1¢3 sin 26
]
L-‘ = é' .\|’1YI dﬂ‘
1 2
iv 2 b~
MU =I "’Wj (s1n 0+ >
0 d
] n
1
= e, d
01J ) ¥y 3 n
] "
Ry =b[ 0,0y dn
1
Sy = f oyn dn
.0
]
uy = é' ¥y sin 26
1
vy = J ¥y cos 20
] ] 11t o
T]1Jk = g w1<?jwk + Zejwk
] 1v ] vt
T21Jk = g. ¥y ejw sin 20 + 26J¢k sin 206 +
] (1]
+ 476J\pk
JJ 1V ] [ |
T31Jk = J ¥y ejw cos 20 + 263¢k coSs 20 +
] "
- 4Yejwk

18

dn

cos

2 6) dn

+ej v.pk

) dn

non 101

ejwk sin 20 + 4yej¢k cos 26

] dn

sin 26

cos 20 - 4Yzejwk sin 2o

]
ejwk cos 20 - 4Yej¢k

u
sin 20 - 4Y2°j¢k cos 26] dn



] " u ] [ |
T41jk = oj ¥, (%“’k + ej"’k )dn
]

T5 919j 5 ‘l’k(X) dX dTl

13k 4

] ]

1
T35k - f 1j°k dn

0
] ] (I I | n u
T81jk = 6“ 61 (qu’k + q,jwk)dn
] [}
T91jk = 6[ e1¢j¢k cos 26 dn

1 n an
TI0, 5, = 6[ 0¥y sin @ cos o dn

:
S1 _E!' 8,0, cos 20 dn

531j = g 91“’3 <f2 s1n2 0 + f3 cos2 e) dn

19



1 ]
5713 = 6[ 91"‘3 cos 26 dn

] .
SB1 =J' 61 sin 6 cos 6 dn

0

20



2 1., > 1., > I -2y TL
sin BPCGU - 3 sin Bpe COS Bp. "okAijk l - 7 sin Bpc COS Bpe % vokAijk+ 10 k "ok Tijk
+ f 2:w 12..
2 b2 1 2 11 k "ok “ijk
- cos spc(Bij-C1J)+sm Bpc COS Bp X 4 EE- 2—11.3.*-27\]”-21 Kij .t Zv "
z | 11 k "ok 7ijk
{wokDIJk YokE 1k } |
2
+ g F j + 27 -1
d
: |
2[b
2y <d_2 - 1> Hij] l '
5 : |
cos Bp. sin Bp 4 (VokDikj - VokEikj) - 8§44 - €0s "Bp. (Bij - cij) + ‘
f10>k:"ok”i ik
3
+ ;bz_ L+ on, —ZYK gM.,-zy<b2-1>[s.._ l )
27! 17 g2 K * 1% Mok ik
2
I - R Ve ik

The linear and nonlinear parts of the steady state equilibrium equations are

presented below in the matrix form, ['l:' + [l_L](XO) = {B}

2
2,b
2 - 1)H
v(—z-d )1.1]%

- v sin 8y cos ePcoji

2yf8 sin Bpg COS BPcssij

2f1 sin gp. cos ePcszij

* sin gp. €05 Bpe Plooy (TS5 = T6445)

+

i X,
o % MokT104 3k

+

fl sin 8. cos BPcS7ij

p)
7% "oKk™84 3k

f

f

z
K
>

9k

9

WokT91 5k

Vo104 3k

21

2
f1 cos BPcSIij

+ f454ij

+

COS

%

fq cos? spc) R

2yf

BPCSS

f5 - f -

z
5k %ok

755

wOj

VOj

%0j

X COs BPC

AN
bl
O
o
«»
w

bl

(s

- sin Bpc COS Bp. L
vl
LLE P
- (A—Lz>51n BPC
I\

2

~
i

)

~




The mass, gyroscopic and stifness matrices resulting from the pertur-
bation equations are designated [M], [C] and [K] respectively, and are
presented in the following:
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APPENDIX B - NOMENCLATURE
cross-sectional area of blade

modal integrals (see appendix A)

breadth (chord) and thickness of blade
thickness ratio

vectors

modal damping matrix (gyroscopic matrix)
Young's modulus

coefficients (see eq. (13)

shear modulus
dummy indices

polar second moment of area about centroid

area moments of inertia about major and minor principal
centroidal axes

torsional stiffness constant

blade cross section polar radius of gyration
blade cross section mass radius of gyration
principal mass radil of gyration

length of beam

Linear and nonlinear components of the matrix
representing steady state equilibrium equations

mass of blade per unit length
modal mass matrix

number of nonrotating modes for each of the flatwise
bending, edgewise bending, and torsional deflections

natural radian frequency
radius of disc

blade tension
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t time

u, v, W displacements of the elastic axis in X, Y, Z directions,
respectively

V, W, ¢ dimensionless bending and torsional deflections

Voj’ woj' ¢oj steady-state equilibrium quantities

X running coordinate along X-axis

y, 2 centroidal principal axes of beam cross section

o setting angle (collective pitch)

aj, Bj’ Yj constants for assumed mode shapes

Bpc precone angle

Y total pretwist of the blade over its length

Avj’ ij, ij perturbation quantities

813 Kronecker delta

n nondimensional length coordinate, x/L

3] geometric pitch angle, o .+ yn

ej(n) nonrotating torsional mode shape

Opt pretwist at a distance n from root, yn

N frequency parameter,w/ET;:7;KIz

£ nondimensional rotational parameter, EI,./pAL%Q2

) mass density of blade material

T dimensionless time, @t

Yj(n) nonrotating flatwise and edgewise bending mode shapes

w] exact fundamental mode frequency of straight, nonrotating

beam, 3.51602 A\

Q rotor blade angular velocity, rad/sec
()' primes denote differentiation with respect to x or n
(") dot over a parameter represents differentiation with

respect to t or =
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TABLE I. - CONVERGENCE PATTERN OF FREQUENCY RATIOS (D/xl) OF A PRETWISTED, PRECONED, ROTATING BLADE
INCLUDING SECOND DEGREE GEOMETRIC NONLINEARITIES AND CORIOLIS EFFECTS

[2/wg = 0.5, 8pc

15°, y =30°, « = 0°, R = 0, d/b = 0.05, L/d = 200.]

Mode Results from perturbation solution: Galerkin method MSC NASTRAN
number (500 CQUAD4
n=1 n=2 n=3 n=4 n=>5 n==~6 n=7 n=2=8 n=29 elements)
1 6.7647 3.9948 3.9770 3.9715 3.9710 3.9840 3.9755 3.9699 3.9586 3.9923
2 64.5292 | 38.4098 | 20.4184 | 20.1127 | 20.0309 | 20.0334 | 19.9880 | 19.9823 ] 19.9707 20.0707
3 73.7530 | 55.3224 | 52.5086 | 52.3541 ) 52.4005 | 53.3161 [ 51.8719 | 51.6155 | 51.4160 57.7067
4 | e 87.9097 | 83.8938 | 61.4177 | 60.3757 | 58.1215 | 59.7126 | 60.1018 | 60.1548 64.5911
I B 206.4990 [ 137.3498 | 85.8415 | 85.3058 | 84.9539 | 86.2480 | 86.5334 | 86.7023 86.1357
6 | —————— 438.1967 | 205.3006 | 205.2917 | 123.9113 | 123.4958 | 121.5896 | 120.8147 | 120.6553 121.1038
7 345,6017 | 274.0265 | 205.4352 {198.2435 |198.2884 [199.2196 | 199.0793 199.4268
8 457.0644 | 343.8727 | 343.0762 | 343.5164 | 205.8776 | 204.6820 | 204.3840 219.5793
TABLE II. - CONVERGENCE PATTERN OF STEADY-STATE TIP DEFLECTIONS

[@/wy = 0.5, ch = 15°, vy = 30°, a =

0, d/b = 0.05.]

Method Number of assumed Steady-state tip deflection
modes or CQUAD4 (center line deflection)
elements
W v )
Galerkin n=1 -0.018471 } 0.0018304 | -0.0044147
n=2 -0.054886 | 0.0065991 | -0.0016439
n=3 ~-0.054606 | 0.0058486 | -0.0012554
n=4 -0.054841 | 0.0058761 | -0.0011558
n=>5 -0.054832 | 0.0058467 { -0.0011435
MSC NASTRAN 500 elements -0.054309 | 0.0058372 | -0.0010209




TABLE III. - COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

[d/b = 0.05, L/d = 60, y = 0°, L = 152.4 mm, E = 32.3x1060 psi,
G = 13.8x106 psi, p = 0.283 1b/in3.]

ch, a, Q, |Method Frequency, Hz
degree |degree| rpm

Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5

45 90 1800 | (a) 94.6 | 573.4 | 594.6 | 1656.2 |1883.1
(b) 95.5 571.0 599.0 1657.0 (1798.0

4200 | (a) 95.7 | 565.3 | 620.3 | 1669.7 | 1824.4

(b) 100.0 | 545.0 | 640.0 ] 1650.0 |1823.0

5400 | (a) 95.8 | 557.3 | 641.1 1675.2 | 1838.6

(b) 100.0 | 522.0 | 675.0 | 1642.0 |1854.0

0 30 3600 | (a) 126.4 | 582.2 | 623.9 |1683.4 }1825.8
(b) 129.0 570.0 630.0 1688.0 | 1807.0

4800 | (a) 146.5 | 588.7 | 647.0 |1700.4 |1837.4

(b) 146.0 |} 582.0 | 665.0 ]1716.0 [1817.0

6000 | (a) 168.6 | 597.0 | 673.4 [1714.1 |1853.3
(b) 166.0 {587.0 [ 706.0 | —--—eeel —momeem

22.5 90 2400 | (a) 101.4 | 574.3 [ 603.5 |1665.4 |1815.8
(b) 101.9 [ 571.4 | 602.9 {1664.0 [1799.0

4800 | (a) 120.1 573.3 | 644.2 {1700.6 |[1836.1

(b) 121.2 | 562.0 | 654.0 | 1684.0 |1826.0

6000 (a) 131.8 572.3 673.3 1721.9 | 1855.1

(b) 134.5 553.0 688.0 1695.0 | 1854.0

45 0 870 | (a) 94.8 | 570.2 }591.0 |1653.1 {1780.5
(b) 95.9 | 574.0 | 588.0 | 1655.0 [1799.0

1506 | (a) 96.3 | 541.0 | 593.0 | 1655.0 {1675.0

(b) 98.6 | 569.0 | 589.0 | 1662.0 |1803.0

22.5 60 1200 | (a) 96.5 | 572.5 | 593.4 |1655.3 11796.3
(b) 97.0 | 574.0 | ————== | === 1798.0

3600 (a) 111.5 489.9 625.2 1569.0 | 1684.5

(b) 124.4 | 561.0 | 626.0 | ———mmo| e

0 0 0| (a) 94.2 | 573.7 | 590.0 ]1652.0 {1810.0
(b) 94.2 | 572.0 | 586.0 |1655.0)1795.0

dpresent theoretical results.
bExperimental result.




TABLE IV. - COMPARISON OF FREQUENCY RATIOS OF PRETWISTED, PRECONED, ROTATING BLADES OF
VARIOUS THICKNESS RATIOS

[@ = 0°, R =0, L/b = 10, geometric nonlinearities included.]
d/b Y, Bpcs | Q/wy | Method Method Frequency ratio, p/n\g
degree | degree

Mode 1 Mode 2| Mode 3 | Mode 4 | Mode 5 Mode 6

0.10 0 15 0.8 (a) 4.6097 23.1186 | 30.4598 | 62.7814 | 68.0725 | 122.0243
(c) 4.6430 23.1970 | 31.9459 | 62.8686 ) 72.0478 | 122.3435

1.0 (a) 5.1488 23.7212 | 27.7385 | 63.3946 | 68.1157 | 122.6629

(c) 5.1750 23.7841 | 30.7285 | 63.3849 | 73.5597 | 122.8331

2.0 (a) 8.3781 21.3722 | 28.3088 | 68.3325| 70.3606 | 127.9158

(¢) 8.3327 28.3285 [ 28.7811 | 68.0478 | 75.6988 | 127.4200

0.25 0 45 0.8 (a) 3.9975 12.5710 | 22.7272 | 61.8443 | 62.4559 | 91.0506
(b) 4.1057 12.2505 | 22.7240 | 61.8860 | 62.4029 | 91.0091

(c) 4.2598 12.8590 | 22.6460 61.3370 | 67.2376 89.0158

0.25 0 45 1.0 (a) 4.4286 11.0558 | 23.2294 | 59.4052 | 62.9189 | 92.1810
(b) 4.6184 10.6218 | 23.2097 | 59.4123 | 62.8856 | 92.1343

(¢) 4.8122 12.3085 | 23.0257 | 61.0894 | 67.1483 | 91.2117

0.06 0 15 0.5 (a) 3.9654 22.4572 | 48.9361 | 62.1175 | 72.6927 | 121.3362
(c) 3.9866 22.5073 | 52.2357 62.1740 | 75.2841 | 121.4498

0.06 0 45 0.5 (a) 3.6499 22.2620 | Unstable| 61.9376 § 75.9085 | 121.1543
(c) 3.7055 22.2822 | 40.7961 | 61.7824 | 85.4823 | 121.0251

0.05 30 15 0.5 (a) 3.9710 20.0309 | 52.4005 | 60.3757 | 85.3085 | 123.9113
(c) 3.9923 20.0707 | 57.7067 | 64.5911 | 86.1357 | 121.1038

0.05 30 15 1.0 (a) 5.1659 - | 21.7959 | Unstable| 61.0581 | 86.4133 | 125.2654
(c) 5.1656 20.9982 | 49.2750 | 61.8346 | 92.8652 | 121.8441

0.20 30 15 1.0 (b) 5.14N1 15.4978 | 26.0439 | 60.8242 | 67.1784 | 113.9297
(c) 5.1619 15.5424 | 26.0745 | 60.7458 [ 70.4579 | 109.2493

0.20 30 45 0.8 (b) 4.0862 12.9163 | 23.3475 | 58.2695 | 64.4610 | 114.5998
(c) 4.2651 14.2839 | 24.4469 | 58.7436 | 73.0801 | 110.8504

0.20 30 45 1.0 (b) 0.1533 7.2997 | 19.0724 | 54.6244 | 63.4657 [ -————---
(c) Unstable| 9.1287 |18.2334 | 49.9820 | 84.9760 [ ~—-~=---

0.05 30 45 0.8 (a) Unstable | ———eome | mmmmemee | mmmmee ] e ] e
(c) Unstable | ——wm-om | mmmmmmme [ mmmrmee | e | e

dpresent beam theory including Coriolis effects.
bpresent beam theory ignoring Coriolis effects.
CMSC NASTRAN results ignoring Coriolis effects.




TABLE V. — COMPARISON OF NONLINEAR FREQUENCY RATIOS AND STEADY-STATE DEFLECTIONS OF A PRECONED BLADE AT VARIOUS
ROTATIONAL SPEEDS

fa=0°, y=0",R=0" 8y = 15", L/b = 10, d/b = 0.05, Coriolis effects not included. Unstable as negative
p2 obtained for I torsional frequency.]

2/w] | Method Frequency ratio, p/x Steady-state tip deflections
Mode 1 (F1) | Mode 2 (F2) | Mode 3 (F3) { Mode 4 (T1) [ Mode 5 (S1) | Mode 6 (F4) W v ®
0.1 (a) 3.5344 22,0513 61.7139 68.5155 70.5703 120.9191 -0.002803
(b) 3.5594 22,1618 61.9851 68.1727 70.1475 121.4925 -0.002767
0.3 (a) 3.6805 22.1860 61.8476 62.9968 74,5192 121.0572 -0.02326
(b) 3.7062 22.2934 62.1044 63.9497 74.0049 121.6067 -0.02297
0.5 (a) 3.9654 22.4573 62.1175 50.3754 79.1494 121.3362 -0.05572
(b) 3.9950 22.5585 62.3354 57.2115 79.8750 121.8374 -0.05500
0.8 (a) 4.6098 23.1186 62.7814 Unstable 82.3113 122.0243 -0.10620
(b) 4.6451 23.2026 62.8837 48,1742 86.2660 122.3773 -0.10463
1.0 (a) 5.1448 23.7213 63.3947 Unstable 82.2947 122.6629 -0.13383
(b} 5.1781 23.7926 63.4078 44,2514 88.2218 122.8856 -0.13173
2.0 (a) 8.3781 28.3089 68.3326 Unstable 81.0269 127.9159 -0.20305
(b) 8.3385 28.3445 68.0883 39.0512 87.6030 127.5273 -0.20001
3.0 (a) 11.8998 34.6488 75.8305 Unstable 82,1026 136.2440 -0.22464
(b) 11.7580 34.6610 75.5539 34.6610 84.4642 135.4860 -0.22205

Present beam theory.
bMSC NASTRAN results ignoring Coriolis effects.

TABLE VI. - FREQUENCY RATIOS AND STEADY-STATE DEFLECTIONS OF A PRECONED BLADE
NEGLECTING MIL'S TERMS

15°, R = 0, d/b = 0.05, L/b = 10, T2435¢ = T333x

e =y =0°, ch
0. Coriolis effects ignored.]

T91jk = T101jk

Q/w] | Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 Mode 6 W Vie
0.1 3.5344 1 22.0513 | 61.7139 | 68.7889 | 70.3204 | 120.9191 | -0.002803| - | -
0.3 3.6805 | 22.1860 | 61.8476 | 68.8022 | 70.3218 | 121.0572 | -0.02326 | - | -
0.5 3.9654 | 22.4573 | 62.1175 | 68.8274 | 70.3263 | 121.3362 | -0.05572 | - | -
0.8 4.6098 [ 23.1186 | 62.7814 | 68.8879 | 70.3394 | 122.0243 | -0.10620 | - | -
1.0 5.1448 | 23.7213 | 63.3947 | 68.9454 | 70.3505 | 122.6629 [ -0.13383 | - | -
2.0 8.3781 | 28.3089 [ 68.3326 | 69.4571 | 70.4161 [ 127.9159 | -0.20305 | - | -
3.0 |11.8998 | 34.6488 | 70.2570 | 70.5750 | 75.8305 | 136.2440 | -0.22464 | - | -




TABLE VII. - EFFECT OF IGNORING CERTAIN NONLINEAR TERMS ON THE FREQUENCY RATIOS, p/iy, OF ROTATING, PRECONED BLADES

[d/b = 0.06, L/b = 10, a

=v =0.,_R‘=0, n/m1=0.5.

Coriolis effects included.]

ch, nl:r?agzr Tsijk = Tsijk =0 T1ijk = T41‘jk = T3ijk = Tgijk =0 nijk through Aijk =0, Tlijk Aijk = Dijk = Eijk =0 lt\;lm:ori!;;gﬁ:;
degree T81’jk =0 Tmijk are 0 | through Tmijk Tlijk to Tloijk =0
are 0
15 1 3.9650 3.9650 3.9651 3.9651 3.9592 3.9475 3.9475
2 22.4572 22.4572 22,4572 22.4572 22.4563 22.4497 22.4497
3 48.9396 48,8668 58.6064 58.6070 58,6092 58.6104 58.6104
4 62.1176 62.1176 62.1186 62,1186 62,1171 62.1113 62.1113
5 72.6937 72.7639 68.8350 68.8341 68.8342 68.8342 68.8342
6 121.3362 121.3362 121.3362 121.3362 121.3360 121.2972 121.2972
45 1 3.6558 3.6557 3.6474 3.6474 3.6171 3.5543 3.5543
2 22.2614 22.2614 22.2614 22,2614 22,2573 22.2251 22.2251
3 Unstable Unstable 58.6235 58.6273 58.6368 58.6426 58.6426
4 61.9371 61,9371 61.9412 61,9412 61,9360 61.9076 61.9076
5 75.9208 76.1321 68.8184 68.8141 68.8141 68.8141 68.8141
6 121.1544 121.1544 121,1544 121.1190 121.1187 121.1255 121.1255




Figure 1, - Blade coordinate system and definition of blade parameters,
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