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INTRODUCTION

The development of high-speed computers and sophisticated display devices has
encouraged the development of advanced algorithms for manipulating and displaying
multidimensional data. The area of computer-aided geometric modeling (CAGM), in par-
ticular, has advanced significantly during the past few years. In CAGM, computa-
tional geometry and computer graphics have combined to give mathematical and graphi-
cal representations of curves, surfaces, and volumes. A wide variety of applications
may be found in the design of automobiles and aircraft and in the mathematical repre-
sentation of various physical phenomena, such as geophysical maps and meteorological
data.

In CAGM it is often desirable to interpolate three-dimensional surface data con-

sisting of two independent variables (x and y) and one dependent variable. A num-
ber of techniques have been developed for surface interpolation, including Coons and
Bezier patches and tensor products of Bezier curves, cubic splines, and B-splines
(ref. I). A difficulty can arise with these methods, especially the spline methods:
abrupt changes in the dependent variable of the data may induce artificial or exag-
gerated hills and valleys in the interpolating surface.

One way to reduce or eliminate the unwanted hills and valleys in an interpolat-
ing spline surface is to apply tension to the surface. Applying mathematical tension
to a spline is analogous to grasping the opposite edges of a membrane and stretching
the membrane to remove wrinkles.

This paper discusses two algorithms for interpolating surfaces with spline func-
tions containing tension parameters. Both algorithms are based on the tensor prod-
ucts of univariate rational splines (ref. 2). The simplest algorithm, which uses a
single tension parameter for the entire surface, is the birational spline algorithm
developed by Spath (ref. 2). This algorithm is generalized in this paper to use a
separate tension parameter for each subinterval along both the x- and y-axes. The
new algorithm allows for local control of tension on the interpolating surface. Both
algorithms are illustrated and the results are compared with the results of bicubic
spline and linear interpolation of terrain elevation data.

SYMBOLS

Aij 4 by 4 matrix of coefficients

aijk£ coefficients of multivariate rational spline in the subregion Rij
(k,£ = I, 2, 3, 4)

CXi coefficients in equation for FXij

CYj coefficients in equation for FYij

Cik coefficients in univariate rational spline on interval i (k = 1, 2, 3, 4)

dxi difference between consecutive values of x equal to xi+I - xi



dyj difference between consecutive values of y equal to Yj+I - Yj

Fij data value at (xi,Yj)

FXij partial derivative of fij(x,y) with respect to x evaluated at (xi,Yj)

FYij partial derivative of fij(x,y) with respect to y evaluated at (xi,Yj)

FXYij partial derivative of fij(x,y) with respect to x and y evaluated at
(xi,Yj)

fij(x,y) rational spline on the subregion Rij

Gi 4 by 4 matrix of functions gik(X)

gik(X) functions of x used in rational spline representation on interval i
(k = I, 2, 3, 4)

4 by 4 matrix of functions hj£(y)

hj£(y) functions of y used in rational spline representation on interval j
(£ = 1, 2, 3, 4)

m number of data points along x-axis

n number of data points along y-axis

P tension factor for entire surface

Pi tension factor for interval i

qj tension factor for interval j

Rij rectangular subregion in xy-plane defined by x.l< x < xi+I and

Yj _ Y < Yj+I

Sij 4 by 4 matrix of function and derivative values

r,s,t,u variables used to define rational spline

x independent variable

y independent variable

z dependent variable in univariate rational spline

Ax,Ay differences with respect to x and y variables, respectively

Subscripts:

i index along x-axis

j index along y-axis

k,£ general indices
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Superscripts:

T matrix transpose

-1 matrix inverse

A prime indicates first derivative with respect to the independent variable. A
double prime indicates second derivative with respect to the independent variable.

RATIONAL SPLINES

In this section both the univariate and the bivariate rational splines are de-
scribed. Because the bivariate rational spline is the tensor product of two univari-
ate rational splines, the characteristics of the univariate rational spline are
discussed first.

Univariate Rational Spline

Let a given set of n data points be represented by (xi,zi), where
i = 1,2,...,n and xI < x2 < "'" < xn. The values of the independent variable xi
need not be equally spaced. The rational spline on interval i (i = 1,2,...,n-I) is
defined in references 2 and 3 to be

4

z = _ Cik gik(X) (x < x < ) (I)l xi+1
k=1

where Cik are unknown coefficients, Pi is the tension parameter for interval i,
and

3
U

gi1(x) = u gi3(x) -
pit + I

t3
gi2(x) = t gi4(x) =

piu + I

where

xi+1 - x
u =

dx.l

X m Xo
l

t =-- = I - U
dx.
1

3



dxi = xi+I - xi

Equation (I) is defined for all values of the independent variable x in the

data range if the tension parameter Pi is restricted to Pi > -I. If Pi is set
to zero, equation (I) reduces to a cubic spline function. As Pi increases from
zero, the cubic terms decrease in magnitude and the function tends to the equation of

the line joining the knots at xi and xi+1. Because a distinct, independent ten-
sion parameter is associated with each interval, the behavior of the function in each
interval may be locally controlled.

Evaluation of equation (I) for each subinterval requires knowledge of the four

coefficients Cil, ci2, ci3, and ci4. Thus, for n data points (equivalently,
for n - I subintervals), 4n - 4 coefficients must be determined. Spath (ref. 2)
reduces the magnitude of this problem by writing the coefficients in terms of the
values of the function and first derivative at the knots. End conditions are applied
to the first derivative, and equations ensuring the continuity of the second deriv-
ative at the interior knots are derived. This derivation yields a system of n - 2
equations for the n - 2 unknown interior first derivatives. Frost and Kinzel
(ref. 3) extend Spath's approach by allowing for three different end conditions and
by developing an iterative method for determining the tension parameters. Tension
parameters are found so that the rational spline deviates from the line joining knots
by no more than a prescribed value.

Another approach to determining a good fit to the data was taken by Schiess and
Kerr (ref. 4) in deriving a least-squares rational spline approximation. The ra-
tional spline is reformulated in terms of the unknown spline function and its second
derivative at the knots. The conditions imposed at the interior knots are that the
first derivatives be continuous. This leads to a constrained least-squares problem
in the 2n values of the unknown function and its second derivative at the knots.

Bivariate Rational Spline

Let a given set of m by n data points in three dimensions be represented by

(x.,y.,F.), where i = 1,2,...,n and j = 1,2,...,m. It is assumed that the inde-l 3 13
pendent variables are ordered (xI < x2 < .'" < xn and Yl < Y2 < "'" < Ym ) and form
a rectangular grid, but are not necessarily equally spaced. An interpolating surface

through the given points is desired.

The bivariate rational spline on the subregion Rij defined by xi < x < xi+I

(i = 1,2,...,n-I) and Yj _ Y < Yj+I (J = 1,2,...,m-1) is defined in reference 2 by

4 4

fij(x,y) = _ _ aijk£ gik(X) hj£(y) (2)
k=1 £=I



where gik(X) and Pi are the same as for the univariate spline, aijk£ are
unknown coefficients, qj is the tension parameter for interval j, and

3
s

hjl(Y) = s hj3(Y) -
qjr + I

3
r

hj2(Y) = r hj4(Y) -
qjs + I

where

Yj+I - yS =

dyj

y - Yjr -I -s

dyj

dyj = Yj+I - Yj

As defined by equation (2), the bivariate rational spline on each subregion Rij
is a function of 2 tension parameters and 16 coefficients. The coefficients are
determined so that the rational spline and its first and second derivatives are con-
tinuous over the entire region. The m + n - 2 tension parameters may be adjusted
individually; each parameter affects the behavior of the rational spline in a strip
parallel to either the x-axis (for q_) or the y-axis (for p_). In this paper, this3
form of rational spline is called the multiple-parameter rational spline.

Since 16 coefficients are needed on each subregion, a total of 16(m - 1)(n - I)
coefficients must be determined to define the entire rational spline. For example,
for a 30 by 30 grid (m = n = 30), 13 456 coefficients are needed. Spath (ref. 2)
reduces the actual number of unknown quantities by writing the coefficients as linear
combinations of the values of the function and its derivatives at the grid points.

Let FXij and FYij be the first derivatives of fij(x,y) with respect to x

and y, respectively, and FXYij the cross derivative, all evaluated at the point
(xi,Yj). For the subregion Rij, define the following 4 by 4 matrices:

Fij FYij Fi(j+l ) FYi (j+1) -

FXij FXYij FXi(j+I ) FXXi (j+I )
Sij =

F(i+l)j FY(i+l )j F(i+l )(j+1) FX(i+1 )(j+1)

FX(i+I)j FXY(i+I )j FX(i+I )(j+1) FXY(i+I )(j+1)
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--aij11 aij 12 aij I3 aij 14-

aij21 aij22 aij23 aij24
A. •

_3

aij31 aij32 aij33 aij34

a, •

_ 1341 aij42 aij43 aij44

gi1(xi ) gi2(xi ) gi3(xi ) gi4(xi ) --

' (x.) ' (x) ' (x.) gl4(xi)gil i gi2 i gi3 l
Gi =

gi1(xi+1) gi2(xi+1) gi3(Xi+l) gi4(xi+1)

_g_l(Xi+1 ) gl2(Xi+l) g! (x ) ' )13 i+I gi4(xi+1

1 0 1 0 -

I I 3 + Pi
o

dx. dx. dx°
1 1 1

0 I 0 I

I I 3 + Pio
dx. dx. dx.

_ 1 1 1

--hjl (yj) hj2 (yj) hj3 (yj) hj4 (yj)-

hj1(YJ ) h32(YJ) h!B(YJ)3 h'j4(Yj)

5=
hj1(Yj+1 ) hj2(Yj+l ) hj3(Yj+1) hj4(Yj+ I)

h'. ) h'o ) ' ) h_4(yj )_3 I(yj+I 32(Y9+I hj3(Yj+l +I_

1 0 1 0 -

I I 3 +qj o
dyj dyj dyj

0 1 0 1

1 1 0 3 +qj

_ dyj dy9 dyj



Then in matrix notation,

Sij = G.A .HT (3)i 13 3

Equation (3) can be verified by differentiating equation (2), as appropriate, and
evaluating the results at the corners of the subregion. Note that G_ and wi 3
depend on the grid spacing and tension parameters but not on the function values.

Since the matrices Gi and _ are nonsingular, equation (3) can be solved for
the matrix of coefficients:

Aij = G-lsijIH_)-II (4)

Therefore, for any subregion the 16 coefficients can be determined from the values of
the function, its first derivatives with respect to x and y, and its cross deriv-
atives at the four corners of the subregion. Therefore a total of 4mn function and
derivative values are needed to calculate the coefficients. In addition to the given
function values, the algorithms to be described require values for the derivatives

FXij on the boundaries x = xI and x = Xn, for the derivatives FYij on the
boundaries Y = Yl and Y = Ym' and for the cross derivatives at the four corners
of the region. This reduces the problem to one of solving for 3mn - 2(m + n) - 4
derivative values. The magnitude of this problem is further reduced by decomposing
it into four smaller subproblems, each of which consists of solving tridiagonal
systems of equations.

RATIONAL SPLINE ALGORITHMS

In this section algorithms for finding the surface-interpolating rational spline
in terms of the function and its derivatives are presented. The first algorithm pre-

sented is for the general case of n - I values of the tension parameters Pi

(i = 1,2,...,n-I) and m - I values of the tension parameters qj (j = 1,2,...,m-I).
This is a new algorithm not presented elsewhere; the algorithm is derived in the
appendix. The second algorithm is for the special case of a single tension param-
eter P for the entire surface. This algorithm was originally developed by Spath
(ref. 2).

Multiple-Tension-Parameter Algorithm

Let the data (xi,YjfFij) and tension parameters Pi and q (for
i = 1,2,...,n and j = ],2,...,m) be given. In addition, 2m +32n + 4 boundary
conditions must be given: the derivatives with respect to x along the boundaries

x = xI and x_ (FXA. and FXnj, , ... ,,L i3 j = 1 2, ,m) the derivatives with respect to
y along the boundaries Y = Yl and Ym (FYil and FYim, i = 1,2,...,n), and the
cross derivatives at the corners (FXY11, FXYIm, FXYnl, and FXYnm).
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The algorithmfor findingthe remaining 3mn - 2(m + n) - 4 derivativespro-
ceeds in four stages:

_. Find the derivativewith respectto x at each interiorpoint; for each

value of j (j = 1,2,...,m),solve for n - 2 valuesof FXij in the equations

CXi__ FX(i_I)j + [(2 + Pi_1)CXi_1 + (2 + Pi)CXi]FXij + CX.i FX(i+_)j

3 + Pi-_ 3 + Pi
+ --CX. A F.. (i = 2,3,...,n-1) (5)

-- dxi_I CXi-I AxF(i-I )j dx.1 i x 13

where

2
Pi + 3Pi + 3

cxi = 2
[(2+pi) -1]axl

AxFij = F(i+1)j - Fij

2. Find the derivative with respect to y at each interior point; for each

value of i (i = 1,2,...,n), solve for m - 2 values of FYij in the equations

CYj_ I FYi(j_ I) + [(2 + qj-1)CYj-1 + (2 + qj)CYj]FYij + CY. FY3 i(j+l )

3 +qj
3 + qj-1 CYj_1 AyFi(j_1 ) + CY. A F.. (j 2,3,.. ,m-1) (6)
dyj_1 dyj 3 Y 13

where

2

qj + 3qj + 3
CYj =

[(2 + qj)2 _ 1]dyj

AyFij = Fi(j+1) - Fij



3. Find the cross derivativesalong the boundaries Y = Yl and Ym; for j = I

and m, solve for n - 2 values of FXYij in the equations

CXi_I FXY(i_I)j + [(2 + Pi-I)CXi I + (2 + Pi)CXi]FXYij + CX. FXY(- l i+1 )j

3 + Pi

= 3dxi_1+Pi-1CXi_ I AxFY(i_1)j + --CX.dx.ll AxFY..13 (i = 2,3,...,n-I) (7)

where

AxFYij = FY(i+I)j - FYij

4. Find the cross derivatives at the interior points; for each value of i

(i = 1,2,...,n), solve for m - 2 values of FXYij in the equations

CYj_I FXYi(j_I) + [(2 + qj-1)CYj-I + (2 + qj )CYj]FXYij + CYjFXYi(j+1)

3 +qj
3 + qj-1 CYj_I AyFXi(j_I) + __ CY. A FX . (j = 2,3,...,m-I) (8)

- dyj-1 dyj 3 Y i3

where

AyFXij = FXi(j+1) - FXij

Equations (5) to (8) have a similar form; in fact the coefficients of equa-
tions (5) and (6) are identical to those of equations (7) and (8), respectively. The
similarity of the equations can be exploited to reduce computational requirements
since only two distinct matrices must be inverted.

The final step of the procedure is the application of equation (4) to the deriv-
atives in order to calculate the coefficients needed for equation (2). Depending on
the availability of computer time and memory, the user may prefer to store the deriv-
atives and to calculate coefficients only as they are needed.



Single-Tension-Parameter Algorithm

The algorithm requiring only one tension parameter value P uses the same data
and derivative values that are required for the multiple-tension-parameter algorithm.
However, the equations for this algorithm can be obtained from the equations for the

preceding algorithm by setting all the tension parameters equal to P (Pi = P for

i = 1,2,...,n-I and qj = P for j = 1,2,...,m-1). Using a single tension param-
eter simplifies the coefficients of equations (5) to (8) considerably.

The four stages of the algorithm are as follows:

1. Find the derivative with respect to x at each interior point; for each

value of j (j = 1,2,o..,m), solve for n - 2 values of FXij in the equations

FX(i_1)j + (2 + P)(d_i_ I + .1-!--hFX.. + Idxi_ 1 axi/ 13 _ FX(i+I )j

AxFi-1j AxFij_

= (3 + P) - ---_- + _x_ / (i = 2,3,...,n-I) (9)_dxi_ 1

2. Find the derivative with respect to y at each interior point; for each

value of i (i = 1,2,...,n), solve for m - 2 values of FYij in the equations

__ )/I_ lhFy + I
I FY + (2 + P _ + --FYi(j+ I)dyj_I i(j-1) dyj_I dyj/ 13 dyj

/AyFi (j-1) AyFij_
= (3 + P) _---7 + ----_ (j = 2,3,...,m-I) (10)

dyj_I dyj /

3. Find the cross derivatives along the boundaries Y = Yl and Ym; for j = 1

and m, solve for n - 2 values of FXYij in the equations

I FXY(i_I + (2 + P)<d I + .I hFXY . + Idxi_I )J X?l_I axi/ 13 _ FXY(i+1)j

fAxFY (i-1)j AxFYij_
= (3 + P) _-- + (i = 2,3 ... n-l) (11)

dxi_I dxi

I0



4. Find the cross derivatives at the interior points; for each value of i

(i = 1,2,...,n), solve for m - 2 values of FXYij in the equations

I-- FXYi( + (2 + P)Idy_---+ 41 hFXY + Idyj_1 j-1 ) -1 dyj/ 13 _ FXYi(j+I)

fAyFXi (j-I ) AyFXij_
= (3 + P) - --_-- + ---_ (j = 2,3,...,m-I) (12)

dyj_1 dyj J

Equations (9) to (12) are identical to equations (8.25) to (8.28), respectively,
of reference 2. All the equations have the same general form and the coefficients of
equations (9) and (10) are identical to the coefficients of equations (11) and (12),
respectively.

Selection of Tension Parameters

Although an automated procedure for adjusting tension parameters is available
for univariate rational splines (refs. 3 and 4), no such procedure has been devised
for bivariate rational splines. Instead, it is recommended that the user visually
examine three-dimensional or contour plots of the data and the rational spline inter-
polating surface and then use engineering judgment to select tension-parameter
values. This approach is outlined here.

First the user should obtain a plot of the original data. This plot will show
both general trends and local anomalies of the data. Second the user should compute
the interpolating cubic spline surface by calculating the interpolating rational
spline with all tension parameters set to zero. Comparison of the data and the cubic
spline plots will indicate regions where the cubic spline exhibits undesirable or ex-
aggerated hills and valleys. Using small to moderate tension-parameter values (say,
from 1 to 10) for those regions, the user can recalculate an interpolating rational
spline. In this way, after a few trials with different tension values, a rational
spline surface can be obtained which the user considers representative of the data.

EXAMPLE

For this example a set of data was chosen to show the flexibility and capabili-
ties of the interpolating rational spline. The data consist of terrain elevation
measurements on a rectangular area of size 2600 by 2000 feet. The measurements were
taken at 100-foot intervals in both the x- and the y-direction. Elevations were
measured to an accuracy of 0.1 foot.

Figure I shows a surface plot of the terrain elevation data. Note the cliff
along the line x = 1800 feet. Because of this cliff, extra measurements were taken
at the base of the cliff along the line x = 1795 feet. Including this set of mea-
surements, the size of the data grid is 28 by 21. The elevations range from 7.9 feet
(at x = 2300 ft, y = 100 ft) to 42.6 feet (on the cliff at x = 1800 ft,
y = 800 ft). The maximum rate of change in elevation also occurs at the point of
maximum elevation, where the elevation increases 11.2 feet in a distance of 5 feet
(from x = 1795 ft to x = 1800 ft).

11



It is desired to produce a finer grid by interpolating the data every 25 feet
in both the x- and the y-direction. As a basis of comparison with the rational
splines, a bilinear interpolation was first performed. The bilinear interpolation
consists of a linear Lagrange interpolation in each of the x and y variables
(ref. 5). Figure 2 shows a surface plot of the bilinear interpolation of the terrain
data.

Computer software used to determine the interpolating bivariate splines in this
study is based on the software published by Spath (ref. 2). For the single-parameter
rational spline the FORTRAN code given in reference 2 was used. This code solves
equations (9) to (12). For the multiple-parameter bivariate rational spline the
Spath software was modified to solve the multiple-tension-parameter equations
(eqs. (5) to (8)). Neither the original Spath software nor the modified software has
been optimized to take advantage of the similarity in the respective sets of equa-
tions. Rather, each of the equations is re-solved as many times as are dictated by
the algorithms. Timing comparisons were made on a Control Data Corporation CYBER 175
computer at Langley Research Center. For the example given here the required central
processor times were 4.7 seconds for the bilinear interpolation, 9.2 seconds for the
single-parameter rational spline, and 9.4 seconds for the multiple-parameter rational
spline. Both rational spline algorithms therefore require approximately the same
amount of central processor time. Times for both rational spline algorithms can be
reduced considerably by taking advantage of the similarity of the equations solved.

Derivative information along the surface boundaries is needed for both rational
spline algorithms. A simple way to estimate these derivatives, which is also the
method used in the example, is to calculate one-sided finite differences. These dif-
ferences are calculated from data points on the boundaries and immediately interior
to the boundaries.

With the tension parameters set to zero in either bivariate rational spline
function, a bicubic spline function results. Figure 3 illustrates the interpolating
bicubic spline surface for the terrain data interpolated at 25-foot increments in
each direction. For univariate data having a drastic change in slope, the cubic
spline typically deviates extensively from the desired trend between data points
(ref. 3). Figure 3 shows that the same phenomenon occurs with the bicubic spline.
The interpolating bicubic spline has exaggerated the height of the cliff between data
points to an elevation of approximately 75 feet (at y = 925 ft). At the same time
another oscillation in the surface has created a valley and hill in front of the
cliff. In some areas the bicubic spline surface (fig. 3) appears to be slightly more
rounded with low hills where the bilinear surface (fig. 2) is essentially flat.

The single-parameter rational spline was applied first in order to reduce the
artificial hills and valleys created by the bicubic spline. Recall that this type of
rational spline is analogous to grasping the surface at all the edges and pulling to
stretch the surface. Figure 4 shows the result of applying a tension of 40. Most of
the exaggerated cliff height and the artificial valley and hill in front of the cliff
have been eliminated. The surface in this figure closely resembles the original
surface in figure I.

The advantage of the multiple-parameter rational spline is that it allows local
control of surface undulations through selective assignment of nonzero tension param-
eters. In this example it is especially desirable to eliminate surface oscillations
in the neighborhood of the cliff. This can be accomplished by applying nonzero
tension in the neighboring intervals parallel to the cliff. A tension value of 40

12
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Figure 1.- Terrainelevationdata.

1500 2000
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Figure 2.- Bilinearinterpolationof terrainelevationdata.

2000"

1500- 2000

x, ft i00( 1500

500 1000

500 y, ft
0

0

Figure 3.- Bicubic spline interpolation of terrain elevation data.
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Figure 4.- Single-parameter rational spline interpolation of terrain
elevation data with tension of 40.
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Figure 5.- Multiple-parameter rational spline interpolation o£ terrain
elevation data with tension of 40 for 1700 ft 4 x 4 1900 ft; i.e.,

P18 = P19 = P20 = 40.
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Figure 6.- Multiple-parameter rational spline interpolation of terrain
elevation data with tension of 100 for 1700 ft _ x _ 1900 ft; i.e.,

P18 = P19 = P20 = 100.
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(which was used for the single-parameter rational spline) was assigned to param-

eters P18' P19' and P20" The nonzero tension parameters are in the range
1700 ft _ x _ 1900 ft, which is centered about the cliff ridge. All other tension
parameters are zero. The result of this rational spline interpolation is shown in
figure 5. This figure shows that the cliff elevation has been reduced considerably
and the valley and hill in front of the cliff eliminated. The remaining areas of
this surface are the same as the bicubic spline surface.

As a further test of the multiple-parameter rational spline, the values of the
same three nonzero tension parameters were increased to 100. Figure 6 shows that the
larger tension reduces the cliff height even further. Note, however, that most of
the excessive height was reduced by increasing the tension from zero to 40. The
result of the tension value of 100 is to produce an interpolating surface that is
essentially linear along the x-direction near the cliff and cubic in x and y
otherwise.

CONCLUDING REMARKS

Two algorithms for surface interpolation with bivariate rational spline func-
tions on a rectangular grid have been presented. The rational spline functions com-
bine the advantages of a cubic function having continuous first and second deriva-
tives throughout the interpolatory region with the advantage of a function having
variable tension. Adjustment of one tension parameter in the single-parameter
rational spline allows the user to reduce unwanted oscillations to any desired extent
across the entire surface. The multiple-parameter rational spline provides adjust-
able parameters for each rectangular subregion and thus gives the user control over
local behavior of the interpolatory surface. A new algorithm for finding the coeffi-
cients of the multiple-parameter rational spline has been derived and presented.

The terrain elevation example presented illustrates the reduction in undesirable
oscillations that is possible with a bivariate rational spline. The example demon-
strates that the single-parameter rational spline can be adjusted to behave like any
interpolatory surface ranging from a bilinear to a bicubic spline surface. The exam-
ple also illustrates that the multiple-parameter rational spline provides the cap-
ability of controlling local oscillations in the surface caused by abrupt changes in
trends in the data.

There are two major disadvantages to using the bivariate rational spline.
First, the algorithms for finding the rational spline coefficients and interpolating
points may require significantly more central processor time than does a bilinear
interpolation. However optimizing the computer code for these algorithms can reduce
the necessary central processor time. Second, several computer runs with different
tension values may be necessary to find an interpolatory surface satisfactory to the
user. The single-parameter rational spline in the terrain example required four
computer runs to attain the results presented. These results, however, immediately
led to the first results of the multiple-parameter rational spline interpolation.
The second disadvantage can be overcome with experience in applying the rational
splines. An alternative approach would be to apply an expert system to selection of
the tension parameters.

NASA Langley Research Center
Hampton, VA 23665-5225
October 28, 1985
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APPENDIX

DERIVATION OF CONTINUITY EQUATIONS

In this appendix equations (5) to (8), which are solved for the unknown first

derivatives and cross derivatives at interior grid points, are derived. All four

sets of equations have comparable derivations.

Derivation of Equation (5)

Using the definition of the rational spline in equation (2), consider the

interval xi _ x < Xi+l, fix j, and evaluate fij(x,y) at yj. Then
hj1(Yj) = hj3(Yj) = 1, hj2(Yj) = hj4(Yj) = 0, and

4

fij(x,yj) = _ gik(x)(aijkl + aijk3) (At)k=1

For simplicity, define bijk = aijkl + aijk3. Then from equation (A1) and the defi-
nitions of gik(X),

fij(xi,Yj) = bijI + bij3 = Fij

J (A2)

fij(xi+1,Yj) = bij2 + bij4 = F(i+l)j

where Fij and F(i+1)j are known functionvalues at the grid points.

The first derivativesof gik(X) are

I -3u2(Pit + I) - u3pi

' (x) = g[3(x) =gil dx. 2

l dxi(Pit + 1)

(A3)

1 3t2(PiU + 1) + t3pi' ' (x)=
gi2 (x) = d--_ gi4

l dx'(PiUl+ 1)2 J
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Differentiating equation (At) with respect to x, applying equations (A3), and evalu-

ating at xi and xi+I yields

.. bijI bij2 3 + Pi
_fl3(xi,Yj) = --- + b. = FX.._x dx. dx. dx. lj3 l_1 1 1

(A4)

_fij bij I bij 2 3 + Pi
_x (Xi+l'Yj) = - dx--_ + _ + dx. bij4 = FX(i+I)j

where FXij and FX(i+I)j are the unknown first derivatives with respect to x at
interior grid points.

The second derivatives of gik(X) are

g' '1(x)= g[2(x)--o

6u(Pit + I)2 + 6u2pi(Pit + I) + 2u3p_

g[3(x) =

dx_(Pitr + I)3 (A5)

6t2pi 3 26t(PiU + I)2 + (piu + I) + 2t Piw!

gi4 (x) = 2dx (pi u + I )3

Differentiating equation (AI) twice with respect to x, applying equations (A5), and

evaluating the results at xi and xi+1 leads to

2
.. 2Pi +

+ 6

_2f_3(xi,Yj) = 6Pi bij3_x2 dx_
1

(A6)

2

_2fij 2Pi + 6Pi + 6

_x2 (Xi+l'Yj) = 2 bij4dx.
1

17



Solve equation (A2) for bij1 and bij2, substitute into equations (A4), and
rearrange the results to obtain

-(2 + Pi)bij3 - bij4 = dxi FXij + Fij - F(i+1)j (A7)

bij3 + (2 + Pi)bij4 = dxi FX(i+I)j + Fij - F(i+1)j (A8)

Define AxFij = F(i+1)j - Fij and solve equation (A7) for bij4 to get

bij4 = -(2 + Pi)bij3 - dxi FXij + AxFij (A9)

Substituting equation (A9) into equation (AS) and solving for bij3 yields

mx.°

(3 + pi)AxFij - dxi FX(i+I)j - (2 + Pi)dxi 13 (AI0)

)2
bij3 (2 + Pi - 1

Substituting equation (AI0) into equation (A9) gives

-(3 + Pi)AxFi_ + (2 + Pi)dxi FX(i+I)j + dx. FX..l 13 (AII)
bij4

(2 + pi )2 - I

The continuity condition to be imposed at xi is that the second derivative is
continuous:

f" (xi,Yj ) = f,.,(xi,Yj )(i-1)j lj

or from equations (A6),

2 2
Pi-1 + 3Pi-1 + 3 Pi + 3Pi + 3

b(i-I)94 = dx_ bij3
dx_-1 l
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Substitutingequation (AI0) and equation (All)with i replacedby i - I and rear-
rangingyields

2 2 31(2 + )Pi-1 + 3Pi-1 + 3 + 3Pi-1 + Pi-1

FX(i-1)j + )2[(2+pi_1)2-1]dxi_I [(2+pil -1]dxil

2

<p_.3pi.3)(2.pi) pi.3pi.3
. ........

)2 ]dxi FXij + FX(i+I)j[€2+Pi i [€2+pi12_]dxi

[(2 + Pi-1 )2 I] 2 AxF(i-1)j + l A F. (A12)dxiI [(2+Pi12-I]dx2 x_J

Equation (A12) is identical to equation (5), which holds for j = 1,2,...,m and
i = 2,3,...,n-I.

Derivation of Equation (6)

The derivation of equation (6) is very similar to the derivation of equa-

tion (5). For this derivation, fix i and consider the interval Yi _ _ < [j+_"
Proceed through the same steps as before, but consider the first and-second aerlva-

tives with respect to y of fii(xi,Y) evaluated at yj and Yj+I" Equations (5)
and (6) have a similar form because the derivations are entirely analogous.

Derivation of Equation (7)

The derivations of equations (7) and (8) are very similar to the derivations of
equations (5) and (6). The major difference is that the conditions imposed in this
derivation and the next are the continuity of the mixed third-order derivatives at
the grid points.
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First consider the first derivative of equation (2) with respect to y evalu-

ated at y = yj, which will remain fixed. This derivative can be written

4 4

 fij xYJl gikcxl8y aijk£ h3£ (Yj)k=1 £=I

4

= k_1 /-aijkl aijk2 3 + qj 31= \ dyj + dyj dyj aijk gik(x)

4

= _ dijk gik(X) (A13)k=1

where dijk has been defined for convenience. Differentiate equation (A13) twice
with respect to x and evaluate at xi and xi+I to get

2

_3f (xi,Yj) 2Pi + 6Pi + 6

ij = di j
2x _y 3 dx 2

1

(A14)

_3f. 2
_j(xi+ 1,yj) 2Pi + 6Pi + 6

- dij 4 dx2
_2x _Y i j

The continuity condition to be fulfilled is that the third-order mixed deriva-

tives are continuous at xi:

_3f (xi,Yj ) _3f )(i-I)j = ij(xi'Yj

_2x _y _2x _y

or from equations (A14),

2 2

Pi-1 + 3Pi-1 + 3 Pi + 3Pi + 3

= dij 3 2 (AI 5 )

d(i-1 )j4 dx2_1 dx.l
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Equation (A15) may be used to solve for FXYii (i = 1,2,...,m). In order to do so,
the derivative with respect to x of equatio_ (A13) and equation (A13) itself must

be evaluated at xi and xi+I. Evaluating equation (A13) at xi and xi+I gives

_fij (xi'Yj)
_y = dijI + dij3 = FYij

(A16)

_fij (Xi+l'Yj)
_y = dij2 + dij4 = FY(i+I)j

Solving equations (A16) for dij1 and dij2 in terms of dij3, dij4, FYij, and
FY(i+1)j yields

/

dijl = FYij - dij3 1 (A17)

Jdij2 = FX(i+l)j - dij4

Since equation (6) was previously solved for FYii (i = 1,2,...,m; j = 1,2,...,n),
these quantities are now known. Differentiating _quation (A13) with respect to x

and evaluating at xi and xi+I gives

_2f.

lj(xi'Yj ) = __I [_dijl + dij2 - (3 + Pi)dij3] = FXYi]3x _y dxi

(A18)

_2fij (xi+1'Yj) I
= -- [-dijI + dij2 + (3 + Pi)di94] = FXY(i+I)j_x _y dxi

Substitute in equations (A18) for dijI and dij2 from equations (A17) and rear-
range to get

-(2 + Pi)dij3 - dij4 = dxi FXYij + FYij - FY(i+I)j 1 (A19)

Jdij3 + (2 + Pi)dij4 = dxi FXY(i+I)j + FYij - FY(i+I)j
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Using the notation AxFYij = FY(i+I)j - FYij, equations (A19) can be solved for dij3
and dij4 to yield

(2 + Pi)dx. FXY. + dx. FXY - (3 + )A FY.1 lj 1 (i+I)j Pi x lj

dij3 = )2 [I - (2 +pi

(A20)(

-dx.lFXY..ij- (2 + Pi)dx.1FXY(i+I)_ + (3 + Pi)AxFYi3" I

dij4 = )2 J1 - (2 +pi

use equations (A20) to substitute for dij3 and d(i_1)j4 in equation (A15); then
combine and rearrange terms so that the unknown cross derivatives are on the left
side of the equation. The final result is

2 _[2 31¢2+Pi-1Pi-1 + 3Pi-1 + 3 Pi-1 + 3Pi-1 + )
FXY(i_I +

dxi_1[1€2+Pi_l L dXi_lii +pi_1

2

<p_+3pi+3)c2+pi_ Pi.3Pi.3
+ FxY.. + FXY

dx.l[1- (2 + pi )2] 13 dx.l[1- (2 + pi )2] (i+I)j

= AxFY ( + A FY. (A21)
2 [I - (2 + )2] i-1)j dx2[1 - (2 + pi)2] x ljdxi-1 Pi-1

Equation (A21) is solved for FXYij for i = 2,3,...,n-I and for j = I and m;
this gives the cross derivatives along the boundaries Y = Yl and Ym"

Derivation of Equation (8)

Equation (8) is derived in a manner similar to the way equation (7) is derived.
However for this derivation the continuity condition

83fi(j-1) 83fij

_x 82y (xi'Yj)= 8x 82y (xi'Yj)

22



is imposed. This is accomplished by fixing i and using an expression analogous to
equation (A13) for the first derivative with respect to x. The derivation then
proceeds comparably to the derivation of equation (7).
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