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Abstract

Interpolation at grid boundaries is studied for the purpose of solving
partial differential equations using either implicit or conservative explicit
finite-difference methods on multi-component overlapping grid systems.
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Introduction A multi-component grid system, in which several computation

grids are used, is required in the numerical solution of many fluid dynamics
problems involving fldw within or(about a complicated geometric configuration.
From a grid construction point of view, the simplest procedure is to generate
each component grid independently with a sufficient overlap so that information
can be transmitted from one grid to the other. .The development and analysis
‘of solution procedures on this type of grid system was studied by Starius
[8,9]. The practical application of the method to the solution of problems in
computational fluid dynamics was demonstrated in the papers by Atta [1], Atta
and Vadyak [2], and Thompson [11]. This was followed by further studies on
interpolatioﬁ techniques by Kreiss [5] and Mastin and McConnaughey [6]. Each
successful application, sdch as the recent results of Steger and Buning [10]
and Benek, et al [3], serves to reinforce the need for additional work on the
implemenéation of numerical Methods on overlapping grids.

Two popular numerical methods in computational fluid dynamics are tﬁe
alternating direction implicit algorithms and the explicit aigorithms derived
for the soluti?p of conservation laws. Both methods have been used in the
solution of prggieaé on composite grid systeﬁs. However, in each case there
are properties of the numerical solution which are lost when information is

:transmitted between the in@ividual grids. With the implicit algorithms, there
is no technique for generating advanced solution values at all boundary points
of each component grid. Lagging some of the boundary point'values can lead to
a loss of accuracy in the solution of transient problems. Of course, the
temporal step length could be reduced, but that would defeat the purpose of

choosing an implicit method. It is also possible that lagging may effect the



stability of the method, although no problems of that-kind have been reported.

A conservative finite-difference scheme is often selected when solving
partial differential equations in conservation form. Since the classical
interpolation formulas were not derived with conservation properties in mind,
their use in finite-difference approximations on composite grids would result
in the loss-of.an exact conservation property.: An interpolation scheme for
conservative.finite-difference methods was first propbsed by Rai [7]. He
considered composite grid systems which did not overlap but joined along
common grid lines. Berger [4] indicated how the method of Rai could be
generalized and extended to overlapping grids.

This report will describe ways of eliminating the time lag in implicit
solutions and will present a general algorithm for constructing conservative
interface conditions. The variables x and y are used as the spatial variables
in the partial differential equations. Since, in the general case, one would
need to solve the equations'on a curvilinear grid, all equations would be
transformed to curvilinear coordinates before applying the finite-difference
algorithm. In each development the partial differential equation is
sufficiently generally so that the method can be applied to the original or the

transformed e&ﬁation without change. For simplicity, mixed derivative terms
which are normally lagged in the single grid case and source terms are not

included in the partial differential equations.



Implicit Methods The fundamental concepts are quite simple and can be

demonstrated by considering the one-dimensional equation
ut= Lu ’ . (1)

where L is a differential operator of the form

Since implicit methods generally require linearization of the difference
equations, it may as well be assumed that L is linear. Suppose that two grids

G, and G, are given on the intervals [a,d] and [ec,b], respectively, where
a<e<d«<b.

If M denotes the usual second order difference approximation of L, then the

Crank-Nicolson equation can be written as

ntl _ n , At n+1 n
uj o= Uyt (Muj ™~ + Muj). - (2)

Here 1 ié the spatial index, n is the temporal index,Aanq At is the step
length. Now suppose values on G1 and-G2 are known at level n and values at
level n+1 are to be computed on G;. While solution values needed in (2) at
x=d can be interpolated from 02 for level n, the corresponding values at level
n+l1 are unavaiiﬁblé} If these unknown values are replaced by the values ap ‘
level n, then the local truncation error at the neighboring interior point is

increased by a term on the order of 0(At2/Ax?).

The value AX represents the
spatial grid spacing on G1, or the spaciné at x=d in the case of a nonuniform
grid. In any event, when-Ax is small, this lagging of solution values will
‘seriously degrade the temporal accuracy of the approximation. The error can be
reduced by following a particular order in updating the solution values at the

interior grid boundary points. The correct sequence of computations is

indicated in the following steps.



1. calculate u™! on G, with level n values at x=d.
2. calculate u™! on G, with level n+l values at x=c.
3. Calculate un+2 on G2 with level n+1 values at x=c.

4. cCalculate u™*2 on Gy with level n+2 values at x=d.

Now the error induced by'using the preyious value at x=d in step 1 is offset
by the use of the advanced value in step 4. 1In fact, the local truncation
error at the neighboring interior point is increased by a term of order
0(at3/ax2) when the solution is advanced from level n to n+2. The same error
reduction would also occur at X=C.

Clearly, this four-step alternating grid scheme is only a partial
solution. Unless the solution exhibited a linear growth'or decay,bthere would
still be points with a local truncaiion error of order one whenever At=AX.
However, -this does not necessarily mean that the global error in the numerical
solution would be increased to that order. The actual error in the solution
would also depend on other factors such as the extent éf the overlap. Note
that the same updating pfocedure cduld be applied to implicit methods other
than the Crank%Nicholéon method, but the reduction in local trﬁncation error
would not be the same.

The alternating grid concebt has also been used in the developmen£ of
another method for implementing implicit algorithés on composite grid systems.

This method also alternately empioys the forward difference explicit equation

LR I (RO Mu? (3)



and the backward difference imblicit equation

u?+1 = uf + At Mu’i‘+1 . (%)

- The computational sequence is illustrated in the following four-step procedure

which advances the solution from level n to level n+2.

1. Calculate u™*! on C1 using (3).
2. Calculate u™! on G, using (4).
3. - Calculate u"*? on G, using (3).

4. Calculate u™? on Gy using ().

vThe method alternates the explicit and implicit calculations in the same
manner as the well-known hopscotch algorithm. Thus, the name hopscotch will
be associated with this method. The method has several desireable properties.
All values needed at the grid boundaries ¢ and d can be computed by
interpolation from solution values at‘the correct time level.- The overall
method is second-order accurate in time and unconditionally stable. This fact
follgws by noting that the combiﬁed sequence of (3) followed by (4) is
equivalent to a Crank-Nicolson step with step length of 2At.

The cénsequences of lagging solution values at grid boundaries can be
even more seriousAfor multi-dimensional problems. Suppose for example that .

.the operator L in (1) is defined as

Lu = au, + buy +cuy, + duyy .



Let Mx and M, denote the difference approximations of the x and y derivative

y .
parts of L. If the parabolic equation (1). is solved by an ADI method, such as

Peaceman-Rachford, the algorithm becomes

(5a)

+ ——

At
n+1 = un+1/2 (qun+1/2 + Myun""l). (Sb)

Now the error that occurs in the first step of the algorithm is further
magnified in the second step. This argument can be made more precise by
noting that the Peaceman-Rachford ADI method is ‘a perturbation of the

two-dimensional Crank—-Nicolson method with a perturbation term

2
At™ o2, n _  n+l
) .MxMy(u u )

A lagged value in this term produces a truncation error term on the order of
0(At3/Ax%W2). The alternating grid procedure would reduce this to
O(Atu/Ax2Ay2). The one-dimensional hopscotch algorithm would not be a
computationally efficient method for two-dimensional problems. However, the
same effect can be realized by inserting additional steps in the ADI algo-
r;thm. The procedure is again demonstrated using two grids G1 and Gz. Note

that equation (5a) can be written as

nt1/2 _ .n , At n n
v ut ¢ — (Myu™ + Myu ) (6a)

At
un+1/2 = vn+1 /2 + _2 (qun+1/2 - qun), (6b)



while (5b) can be replaced by

At .
vn+1 - un+1/2 + __2_ (qun+1/2 + Mun+1/2) (60)

At ‘ '
un+1 = vn+1 + —E'(Myun+1 - Myun+1/2) . (6d)

* These split forms would require additional computations, and should only be
used to generate interpolated values at interior grid boundaries. The

following steps illustrate one possible method of computation.

1. cCaleulate v1*1/2 on G, using (6a)

un+1/2

2. Calculate on G, using (5a)

3. Calculate unﬂ/2

on G, using (6b) v
4. calculate v*! on G, using (6c)
5. Calculate u™' on G, using (5b)

6. Calculate u™' on G, using (6d)

Note that at eaéh step the necessary boundary values for one grid.can be
interpolated from values at the correct level on the other grid.

The efficacy of the alternating grid and hopscotch methods is exhibited
in the solution of a one-dimensional model problem. The parabolic equation

ug + (u-c)ux = M Uyy (7)

has an exact solution



2(x+1)+(2c-1)t
)
Uy

1
u(x,t) = E‘(1 - tanh

This equation is solved on the interval [-2,2] with the exact initial value at
t=0 and boundary values at x=-2 and x=2., A second order linearization and the
usual central difference approximations -are used. An overlapping set of two
gridé on the intervals [-2,.125] and [-.125,2] is constructed. The solution
for values of c¥0.4 and p=0.05 is computed using three different methods. The
form of the actual solution indicates that an increase in t would result in a
translation of the graph in the positive x direction. When a numerical
solution is computed with the Crank-Nicolson equation (2) and the values at
X=+.125 are lagged,.there is a marked deviation between the numerical and
analytic solutions as they pass through the overlap interval. Although the
numerical solution lags behind the actual solution, they are qualitatively
similar with no indication of instability in the numerical solution. A
comparison of the solutions at various times is plotted in Figure 1. The lag
in the numerical solution is eliminated when the alternating grid method is
used. A careful examination of Figure 2 reveals an anomaly in the graph at
the grid points adjacent to the interior boundary points x=+.125. This is more
evident on the}pnlargement in Figure 3. Note that the problem occurs only at
the points where the exceptional difference approximation is employed. The
most acchrate.ﬁumerical solution for this example is calculated using the
hopscotch algorithm. "That solution appears in Figure 4. 1In all of these
figures, linear intérpolation was used to determine solution values at grid

boundaries.



Methods for Conservation Laws. If the conservation equation

ug + [E(w]y = 0 (8)

is solved on a composite grid system, then there must be some means of
transferring the flux f(u) from one grid to the other. There are two feasible
alternatives. Either the solution u can be calculated by interpolation and
then f(u) evaluated, or‘f(u) caﬁ be interpolated direc£ly from the flux values
on the other grid. The conservative difference schemes which will be
discuésed require interpolation of fluxes. However, before proceeding in that
direction, a comparison of the twd interpolation techniques will be included.
Suppose a solution value u¥* at a boundary point of grid G1 is computed by
linear interpolation from the solution values Uj and u; defined on grid G2.

1

Then an interpolation formula of the form

U*=(!ui_-l +Bui,a+8=1!

|-
holds, and the (flux’can be evaluated as f(u¥). Now if uy is the actual value
of the solution at the boundary point of G1, and hence the true flux value is

f(uo), then the interpolation procedure introduces an error as is seen in the

following expansion.

f(aui_«‘ +Bui) = f(uO)"’fu(uO) (aui-i +Bui-uO)



Since an expansion at the boundary point X, yields

1 2 2
aui_1.+ Bui - UO = E'Uxxo(a(xi_1‘XQ) + B(xi'xO)')t

+

the leading term in the local truncation error is

: |
7 Tultp)Uyyolalx; g =xg)% + B(x;-x0)2).

Whenever the'option of interpolating the fluxes is. selected, then the boundary
flux f* is calculated directly as

£* = a f(ui_1) + Bf(ui).

Expanding about the solution Ug and noting the additional second order term, -

+

.
S Tuulug) (aluy 1 7up)? + Blug-up)?)

The leading term in the local truncation error now has the form

)

14

1 !
5 (Fuugugyo * fuy(p)ugg) (alxg g =xg)% + B(xj=xg)%)).

‘It is clear that both procedures give an interpolation error which is O(sz).
There are many conservative finite-difference algorithms for solving
conservation laws of the type (8). Most of the basic algorithms of practical

interest can be written as



uf*t -l = g(uf,uD) - gululop). (9)

For notational convenience, let

Bi+1/72 = 8(Uj4Huy)

with the implication here being that 8i+1/2 is an approxiﬁation at Xis+1/2°
This notation is appropriate for the central difference approximations‘such as
the Lax or Lax-Wendroff schemes. When one-sided or upwind differencing is
used, the fractional index i+1/2 would be replaced by i or i+1.

Given a grid with gridpoints xi; i=0,1,...,I, the discrete cohservation

property states that

-1 1, n n
Ui = Do uj *t8l-1/2 " B1/2
i=1 i=1 .

The same result can be obtained from (8) by using numerical integration from
X1/2 to X1-1/2 and the flux approximation determined by g. It is this
" derivation that will be used in the composite grid approach.

Let G, and G, be grids defined on the intervals [a,d] and [c,b], a<e<d<b.
The grid G1 hgﬁ points Xi» i=0,1,...,I and grid spacing Ax, and G2 has pdints

yj, j=0,1,...,J and spacing Ay. The difference equations will be written in

terms of scaled solution values v and w defined by
vV = uAx and W = uAy

On G1, the difference equation has the form



ntl _ .n _ .n _ wh
Vi Vi = hys2 ~ g0

and on Gz,

ntl _ .n _ n _oh
j Wi = Kjerz2 T Kj-172 -

W
There is good reason for writing the equations in this form. Firsﬁ of all,
the grid spacing need not be included in the interpolation formulas, but more
importantly, this is the required form of the difference equations when
computing on moving grids.

The correct interface conditions can now be derived by extending the grid
functions to piecewise linear functions and integrating. Suppose a value ki/2
is needed. Then the interval [a,b] is partitioned into two subintervals
[a,y1/2]'and [y1/2,b]. If Yy, lies in the interval [xi_1/2,xi+1/2], and
h;_4, and h;,,,5 are known, then the value for ky,, can be calculated frqm

the integral property

Y1/2 Y3-1/2
f hy + ky = kg-172 ~ M2

*1/2 Y172
. v
Assuming that ﬁ:and'k are piecewise linear, it is easily seen that the needed

value is the linear interpolant defined as

Kiyj2 =ahjq/0 *+ B hjsm

where

o = Jis1/27¥a /2 g = Y127 Xi=1/2
Xi+1/727%{-1/2 Xi+1/727%i-1/2

.



By the same argument, the interval [a,b] can be partitioned into [a,xI_1/2]

and [x1_1/2,b] and the interpolation formula for the value hy_;,, is

hi-1/2 = @ Kjoq/2 * B Kju1/2

where

a::

Y1727 %X7-1/2 g = XI=1/27¥4=1/2
Yjer1/27¥5-172 Yjer1/727¥j5-1/2

The same linear interpolation would be used on a nonuniform grid. Of
course, the scaling factor would vary from point to point. An interpolation
formula could also have been derived using the original equatidn (9), however
the difference in grid spacing on G1 aﬁd 02 would havé resulted ih the

appearance of a scaling factor in the interpolation formula.

A modification of this approach can be used to develop conservative
interface conditions for two and three-dimensional problems. The general
two-dimensional conservation law is
ug + fx + gy = 0,

where x and y are now the spatial variables.. A difference approximation has

the form

n+l _ .n : n _ wn n _ N
Vi, 3 = Vi, 3t hies2,5 T bi-is2,5 ki, ge172 T Ky, g-172- (10)

The grid function v is the product of the solution u and the Jacobian (or cell

area), and the values of h and k are, up to a scalar factor, flux values in



the direction of the curvilinear coordinate lines. Let G1 and 02 be
overlapping grids and suppose values of h are required along the i = 1/2 gri

line of G1. For now, it is assumed that the endpoints of the grid line are

d

on

the boundary of the physical region. The points of G1 along the grid line are

labeled using parameter values from any convenient parameterization. Thus,

let

Py = (X972, 50 Y1/2,35)» 370,100,

while points of intersection of the i = 1/2 grid line of G1 with all grid

lines of G2 are ordered and labeled

QQl = (xi,j"'G' Yl,J+6) or (xi+5,j’ Yj_+5,j)1 2=0,1,...,L

where § denotes a fractional index between 0 and 1, énd i,j are the indices
some point in 02. The first step in the transfer of flux values from G2 to
is to define flux values at the points qq - If qg lies on an i=constant grid
line, as in the first case above, then a value ht is computed by
interpolating the grid function k. On the othér hand, if qq lies on a
j=constant grfﬁ line, then hf is computed by interpolating h. Now the

i = 1/2 grid line divides the physical region into two parts, one covered by
G1 and the other covered by a subset of Gz. If piecewise linear flux |
functions'are constructéd along the grid lines in each subregion and an
integration of the flux derivatives over the complete region is performed,

then the conservation property requires that

m)E?
+
T
=

J

L-1
h +-§i =-E§— + 2, hnf+ fi#é . (11)
g=1

s
]
=

of

G,



Here the i and n indices in (10) have been suppressed.

The interpolatioﬁ formula will be defined using a set of basis functions.
Two additional parameter values are introduced by extrapolating from the
parametric interval. Let q.q = 2q0 - a4 and Qeq = 2qL = qp-q- Let 17} be the

piecewise linear function, with knots Qg £=-1,0,...,L+1, defined as
wl(qm) =
0, m#L

where 2=0,1,...,L, and m=-1,0,...,L+1. The following integrals can be easily

computed from the parametric values of the points along the grid line.

AL+
8y = %
79
“’1/2
bgrg = )
¢p0
\'.F:
v (pjﬂ/z )
Al,j = wl y J=1,2,-..,J_1
IPj-1/2
)
Py
LYY B by

’

These integrals are used in calculating the coefficients of the interpolation

formulas. The formulas can now be written as



L Al j
hj =2 Z v hf for j=0 and j=J,
2=0 '3
and . (12)
Ao -
hj = SE 2.3 hi for j=1,2,...,Jd-1 .
S

The fact that property (11) holds is readily verified.

oL %t e ey,
: j=1 1o j=0 2=0 be :
L 1 J

) :L:'o hizz Jg’o "

i
Yk
:

A few remarks are sufficient to indicate how the same interpolation
method can be employed in more general composite grid configurations. If
interpolation is required on a boundary component consisting of several
i=constaﬁt and j=constant segments, then each boundary segment could be
treated separately with either an h value or a k value calculated from
equations (12). However, the extrapolated parameter values would not be used
in computing tpe coefficients, but insteaJ a single parameterization wouid be
defined for thé;engire boundary component. If the boundary compénent were a
closed contour in the interior of the physical region, then the special
boundary interpolation formulas for j=0 and j=J in (12) would be unnecessary.

The selection of a set of piecewise linear basis functions to define the
interpolation'coefficients may be changed with only slight modification. One
could just as easily use piecewise constant functions or use higher degree

polynomials such as quadratics or cubics. The degree of interpolation may

have differing effects on the numerical solution. The use of a piecewise



constant basis may produce shock-like discontinuities, whereas a linear basis
would tend to smear out any discontinuities in the solution.
The conservative finite-difference scheme of MacCormack is used to solve

the parabolic equation (7) which can be written in éonservation form as
u, + (1/2(u~c)2 “pwu,), =0
t XX .

This equation is solved on two overlapping grids on the intervals [-2,.25] and
[-.25,2] with the Same values of ¢=0.4 and p=0.05 as in the previous section.
‘The numerical dissipation in the MacCormack scheme permits the use of a
coarser grid than was used for the implicit methods. Figure Y4 contains the
solution plotted for various values of t. For this example, there was no
noticeable difference between solutions computed with flux values interpolated

and those computed with interpolation of solution values.



Conclusions. The accuracy of the transient solution of a hyperbolic or
parabolic partial differential equation is dependent upon the procedures used
to transfer information between grids ip a composité grid system. The error in
the numerical solution can be reduced by using the techniques developed here.
While the attempt has been to construct algorithms that are easy to implement,
the degree of difficulty would ultimately be linked to the complexity of the

grid structure.
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Figure 1. Implicit solution with boundary values lagged
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Figure 2. Implicit solution with alternating grid update at boundary




Figure 3. Spurious values resulting from alternating grid update '
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Figure 4. Implicit solution with grid hopscotch
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Figure 5. Conservative explicit solution
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