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SUMMARY 

A study was conducted to define an annular ring, discrete roller assembly 

concept for the design of the Space Station transverse boom rotary joint. The 

concept was analyzed using closed-form and finite element techniques, to size 

structural members for a range of joint diameters and to determine necessary 

equivalent stiffnesses for roller assemblies. Also, a mass study of the system 

was conducted to determine its practicality, and maximum member loads in the 

joint were identified. All analyses were based on the reference Space Station 

Initial Operating Capability (IOC) configuration. 

INTRODUCTION 

NASA has defined a reference configuration for Space Station (see figure 1) 

which is a gravity gradient stabilized design using either photovoltaic or solar 

dynamic methods for solar energy conversion (ref. 1). To allow for a continuous 

correction for the solar incidence angle, these power conversion devices are to 

be structurally supported with rotational deyrees of freedom in two orthogonal 

directions. 

Figure 2 shows the orbital orientation of Space Station in the gravity 

gradient stabilized attitude, with its central keel beam aligned with the nadir. 

Also depicted in this figure are the two solar array rotational degrees of free-

dom, the alpha and beta angles. The alpha rotation is accommodated by two iden-

tical large rotary joints in the truss structure of the transverse boom. 



This rotary joint must provide stiffness and strength equivalent to the 

parent truss structure of the transverse boom. In addition, the joint must 

rotate more than 1800 on the sunny side of the orbit, and either rewind or 

rotate continuously on the shady side of the orbit to reposition the solar 

wings for the next orbit. Finally, the joint must permit on-orbit assembly, 

growth, and maintenance over a long lifetime. 
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Four primary truss concepts for space station were evaluated in reference 

2. The results of this trade study indicate that a 15 foot square bay truss is 

preferred on the bases of growth potential and customer accommodations. This 

truss is the largest and the stiffest of the concepts considered, and there is 

concern that a rotary joint designed to maintain this truss stiffness would be 

prohibitively heavy. This paper presents a concept for such a joint, parametric 

analyses of the concept, and a mass study of the rotary joint structure. 

SYMBOLS 

a. alpha rotation angle of solar wing 

E = Young's modulus 

G = shear modulus 

I = moment of inertia 

J = torsion constant 

A = area 

p = annular ring load 

ilp = deflection in annular ring due to load P 

R = radius of annular ring 

Mx = resultant internal bending moment in annular ri ng 

Mz = resultant i nterna 1 torsion moment in annular ring 

P<p = resu ltant internal shear force in annular ring 
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~ arc angle 

Po = boundary force on arc segment of ring 

Mxo ' Mzo = boundary moments on arc segment of ring 

t = thickness of cross section of ring 

U = internal strain energy 

CONCEPT DEFINITION 

The rotary joint concept to be studied is shown in figure 3. The rotational 

interface consists of an annular ring and roller track connected to the 15 foot 

box truss by a system of 24 transition truss members, 12 inboard and 12 outboard 

of the ring. The transition members terminate at eight discrete attachment 

points on either side of the ring, forming regular octagons around the ring. 

The inboard transition members are solidly fixed to the ring. The outboard 

transition members are fixed to eight discrete roller assemblies which are, in 

turn, mounted to the roller track portion of the annular ring. These assemblies 

are also interconnected with cross tie members which maintain spacing and trans­

mit circumferential loads between assemblies. Each roller assembly transmits 

radial loads and thrust loads to the ring (thrust loads are normal to the plane 

of the ring). Also, one of the roller assemblies incorporates a drive mechanism 

to rotate the joint and transmit circumferential loads to the ring. The rotary 

joint occupies two bays of the 15 foot truss beam. 

Figure 4 shows a structural characteristic of this conceptual joint design 

that arises from the discrete bearing approach. For a = 00 and mUltiples of 45 0 , 

transition truss attachment points are aligned across the ring. However, for 

all rotation angles in between, the transition struts are not aligned across the 

ring and load transfer across the ring will involve bending and torsion of the 

ring. Subsequent analyses will examine the structural performance of the rotary 
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joint concept presented for the two cases, a = 00 and a = 22.50 • The study 

will examine the influence that the joint rotation angle and the various system 

design parameters have on structural performance. 

ANALYSIS OF THE ANNULAR RING 

Internal forces in the transition truss members will be generated during 

bending and torsional vibration of the transverse boom. 

the loading condition on the annular ring will change. 

As the boom rotates 

For a highly flexible 

ring, the stiffness of the rotary jont system will vary greatly with rotation 

angle and there will be a corresponding variation in the vibration frequencies 

of the transverse boom. Therefore, the ring should be designed to eliminate, 

within practical limits, the variation of structural performance with rotational 

position. 

To study the elastic response of the ring, a static ring deflection analysis 

was conducted for the external loading condition shown in figure 5. The eight 

inboard attachments of the annular ring were considered to be simple supports 

and the eight roller assembly reactions were considered to be equal forces (P), 

all perpendicular to the plane of the ring. This is an approximation of the 

load condition that the ring would see for a = 22.5 0 and the transverse boom 

being compressed by a force of 8(P). Due to symmetry, it is only necessary to 

consider 1/8 of the annular ring, the 450 arc section connecting any two adja­

cent inboard simple supports. 

For this study, an energy method approach for the static analysis of 

curved beams was used (ref. 4). The deflection of a linearly elastic curved 

beam of radius R and arbitrary cross section (EI, EA, GJ) at the point of appli­

cation of a load P was found by deriving an expression for the total internal 

strain energy of the curved beam and applying Castigliano's theorem. 
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Neglecting transverse shearing, the expression for the total internal 

strain energy of an arc segment of the ring (seen in figure 6) is: 

U = ( 1 ) 

where Mx and Mz are resultant internal bending and torsion moments, respectively. 

It will be shown that these quantities are functions of the applied load P and 

the angle ~ only. Also shown in figure 6 are boundary loads, Po' Mxo ' and Mzo 

applied to the arc segment to represent the removed portion of the ring, and 

P~, the resultant internal shear force in the ring. For Simplicity, the 

ring is assumed to be loaded through its elastic axis. This assumption is 

justified in Appendix A. 

Equilibrium of forces for the arc shows that P¢ = Po = P/2, for a = 27.50 • 

Equilibrium of moments at any arbitrary location along the arc, given by ¢, 

results in expressions for Mx and My. 

For the range, 0 ~ ¢ < 22.5°: 

Mx = Mxo cos ¢ - Mzo sin ¢ 

Mz = Mzo cos ~ + Mxo sin ~ 

PR/2 sin ¢ 

PR/2 (l-cos ¢). 

For the range, 22.5 ~ ¢ < 45.0°: 

Mx = Mxo cos ¢ Mzo si n ~ PR/2 sin ¢ + PR sin (¢ - 7f/8) 

Mz = Mzo cos ¢ + Mxo sin ¢ - PR/2 (l-cos ¢) + PR (l-cos(¢ - 7f /8)). 

Using these expressions and satisfying the symmetry condition that the 

boundary loads at ¢ = 0 equal the boundary loads at ¢ = 45° results in: 

Mzo = 0, = .09945(PR) 

(2 ) 

(3 ) 
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The equations for Mx and Mz can be expressed in terms of the variables P and ~, 

and the internal strain energy can be found by substituting these quantities 

into equation (1) and integrating over the limits of ~ from 0° to 45°. This 

will give: 

(2.03 x 10-5 ) 

Applying Castigliano's Theroem (ref. 4) yields deflection of the curved 

beam at the point of application of the bearing load P, 

in the direction of the load. or: 

which results in: 

I1p = aU 
lfP 

(4) 

= PR3 { 2.6 x 10-3 + 
EI 

4.1 x 10-5 } • 
GJ 

( 5) 

The deflection of the annular ring increases with the cube of its radius, 

and depends both on its bending stiffness and torsional stiffness. However, 

the contribution due to torsion is about two orders of magnitude less than 

that for bending, provided the torsional stiffness is equal to or greater than 

the bending stiffness. This result has implications for design of the ring 

cross section. The bending moment of inertia (1) can be studied alone if the 

torsional constant (J) is large enough to neglect torsional effects. 

Figure 7 shows the general ring cross section that is considered herein. 

It is a square box, six inches by six inches with a variable thickness t. The 

expressions for the moment of inertia and the torsional constant as functions 

of the thickness, t, are: 



I = 

J = 

(6 + t)4 - (6 - t)4 
12 

(6 - t) 3t 

It can be shown that the torsional constant is greater than the moment of 
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(6 ) 

inertia for values of t less than about 0.7 inches. The cross sectional geometry 

presented in figure 7 is not necessarily intended to be indicative of an actual 

ring design. This geometry is considered to give physical significance to the 

values of the cross sectional parameters (I, J) and provide an estimate of ring 

size for ring mass calculations. For the analysis herein, it is assumed that 

the ring has this cross section and is made of aluminum (E = 10 x 106 psi, 

p = .1 lb/in3). 

FINITE ELEMENT MODELS 

A linear finite element analysis of the rotary joint configuration was 

conducted. Figure 8 shows three models of the space station transverse boom 

that were used for this analysis. These include one model of the boom canti-

levered without a rotary joint, and two models of the boom cantilevered with 

the rotary joint included, one for the joint at a = 00 and the other for the 

joint at a = 22.50 • The model of the boom without the joint is included to 

provide a basis of comparison of the stiffness of the rotary joint assembly and 

the parent truss. 

In these models, the truss struts were axial elements representing graphite/ 

epoxy tubes, two inches in diameter, with a cross sectional area of .3657 in 2, 

a Young's modulus of 40 x 106 psi (EA = 1.46 • 107 lb), and a density of .058 

lb/in3• Rigid masses were attached at the nodes to represent joints, and the 

joints were assumed to have the same stiffness as the struts. The solar arrays 

were modeled as rigid beams with outrigger supports having masses scaled from 



the Solar Array Flight Experiment (SAFE) as indicated in reference 5. The 

arrays were assumed to be rigid to eliminate solar blanket vibrations from the 

analysis. The transition truss members of the rotary joint were assumed to be 

graphite/epoxy elements also but with arbitrary cross sectional area. The 

annular ring was modeled as a 6 x 6 inch aluminum box beam with a thickness 

which will be varied. Finally, the outboard transition truss was attached to 

the ring with three mutually perpendicular linear springs having variable 

stiffnesses to represent the radial, drive and thrust stiffness components of 

the roller assemblies. 
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A number of non-structural components were not considered in these models. 

Among them are, masses of the roller assemblies and masses and locations of 

power coupling, fluid coupling, drive system hardware, and utility lines. 

FINITE ELEMENT ANALYSIS 

The primary design goal for the rotary joint is to maintain the stiffness 

of the parent 15 foot truss. A number of variables exist that affect this 

stiffness: (1) ring cross section, (2) ring diameter, (3) transition truss 

member stiffness, and (4) roller assembly stiffness. A reduction of the rotary 

joint stiffness will reduce the vibration frequencies of the transverse boom. 

Therefore, studying the effect these parameters have on reducing boom frequen­

cies will identify their effect on overall rotary joint stiffness. The first 

bending and first torsional frequency of the wing were calculated for ranges of 

each of the variables. This information was used to arrive at acceptable 

values for these variables. 
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Sizing of Annular Ring Thickness 

The primary cause of variations in the transverse boom frequencies as a 

function of the alpha rotation angle would be flexibility of the annular ring. 

As indicated in equation (5), for a fixed ring cross section, the deflection is 

greatest for the largest ring diameter. By studying the maximum diameter sys-

tern and choosing the ring cross sectional size that will result in the transverse 

boom frequencies being essentially invariant with rotation angle, alpha, it 

follows that this thickness would be adequate for smaller diameter rings. 

Because the usable cargo envelope for the shuttle is slightly less than 15 feet 

in diameter, a maximum diameter of 14 feet was considered for the rotary joint 

annular ring, as it was assumed that the annular ring, roller assemblies, drive 

unit, and a power transfer device would be carried to orbit pre-assembled. 

Assuming 14 feet for the diameter of the annular ring, .3657 in 2 for the 

cross sectional area of the transition members, (same as regular truss members), 

and 109 lbf/in (essentially infinite rigidity) for the roller assembly stiffness 

components, the first bending and first torsional frequencies of the transverse 

boom were calculated using the finite element models defined, for a = 00 and 

22.5 0 • These results are shown in figure 9 as a function of the thickness (t) 

of the annular ring cross section. The first bending (f = .9252 hz) and first 
, 

torsion (f = .6919 hz) frequencies of the transverse boom with no rotary joint 

are also shown in figure 9. As the thickness and, correspondingly, the bending 

stiffness of the ring is increased, the frequencies at a = 22.5 0 (maximum 

elastic deformation in ring) approach the frequencies at a = 0.0 0 (minimum 

elastic deformation in ring). At a cross sectional thickness of 1/4 inch, the 

first bending frequency of the wing at alpha equal to 22.5 degrees is less than 

five percent below the first bending frequency at alpha equal to 0.0 degrees, 

and the first torsional frequencies are virtually equal. For thicknesses 



. larger than 1/4 inch, the bending frequency increases very slowly, whereas for 

thicknesses much less than 1/4 inch, both the bending and torsion frequencies 

begin to drop off fairly rapidly. For this study, 1/4 inch was chosen for the 

thickness of the annular ring. 

Effect of Transition Truss Member Stiffness and Ring Diameter 
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With essentially a rigid annular ring and roller assemblies, the stiffness 

of the rotary joint is attributable to the geometry of the transition truss, 

which changes with ring diameter, and the extensional stiffness (EA) of its 

members. As the diameter is reduced, the depth of the truss decreases as do the 

angles the truss members make with the plane of the ring. To regain the truss 

stiffness lost by a reduction in the ring diameter, it is necessary to increase 

the extensional stiffness, or cross sectional area of the transition truss 

members. 

Figure 10 shows the effect of ring diameter and transition truss member 

stiffness on the first bending and torsional frequencies of the transverse boom 

for a = 00 • In this figure, the actual frequencies are normalized to design 

frequencies and plotted for ranges of the two variables. The design frequencies 

that were used are f1 = .6919 hz and f2 = .9252 hz. These frequencies corres­

pond to the first torsion and first bending modes of the transverse boom where 

the rotary joint has been replaced with the parent 15 foot truss (see figures 8 

and 9). 

For a stiff rotary joint, f1 is the first torsional mode of the wing and 

f2 is the first bending mode of the wing. However, as the ring diameter and/or 

the truss member stiffness are reduced, both frequencies decrease and the mode 

shapes couple, and then switch. For the more flexible rotary joint, f1 is the 

first bending and f2 is first torsion, and for intermediate stiffness both f1 

and f2 are coupled bending-torsion. This effect is shown in figure 10. 
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An acceptable design for the rotary joint would display a combination of 

ring diameter and transition truss stiffness that results in the frequencies of 

the boom being equal to the design values (ie, the normalized frequencies equal 

one). These design points are determined from figure 10 as the intersection of 

the curved lines with the horizontal lines corresponding to f/fdesign = 1.0. 

For example, referring to figure lOa, an acceptable joint design based on f1 

with a ring diameter of 12 feet would need transition truss members with an 

extensional stiffness of slightly less than 1.46 • 107 lb. 

Comparing design points based on f1 (figure lOb) to the design points based 

on f2 (figure lOa), it is shown to be impossible to have a combination of ring 

diameter and truss member stiffness that results in both frequencies being equal 

to their design values simultaneously. This is due to the fact that given a 

rotary joint design that matches the bending stiffness of the parent truss 

(i.e., bending frequency), the torsional stiffness of the joint is greater than 

that of the parent truss (i.e., torsional frequency). A conservative design 

approach would match the bending stiffness of the parent truss (figure lOb) and 

the resulting design will, therefore, be more stiff in torsion than necessary. 

These design values are given in figure 11 where transition truss member stiff­

ness is plotted against ring diameter. It is noted that, as the ring diameter 

decreases, the necessary stiffness of the transition truss members increases 

rapidly and at small ring diameters the transition truss member stiffness 

needed would be prohibitively large. Therefore, for this study, diameters 

.below eight feet will not be considered. 

Rotary Joint Structural Mass 

Using the transition truss cross sectional area given in figure 11 

(assuming E = 40 x 106 lb/in2), and ring design parameters given in figure 9, 

the total structural mass of the rotary joint may be calculated as a function 
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of ring diameter. Figure 12 shows the variation of mass with ring diameter of 

the transition truss, the annular ring, and the total system. Due to the fixed 

cross section of the aluminum (p = 0.1 lb/in 3) ring, its mass varies linearly 

with diameter. The mass of the graphite/epoxy (p = 0.058 lb/in 3) transition 

truss is dependent on both the length of the truss members, as determined by 

joint diameter, and the cross sectional area of the truss members (see figure 

11). The total mass shown is the sum of these two values, and does not include 

any non-structural masses such as roller assemblies, thermal control, or power 

transfer hardware which will probably be approximately constant with diameter. 

For comparison purposes, the mass of two bays of the parent 15 foot truss that 

was removed to accommodate the rotary joint assembly is shown. 

Figure 12 shows that structural mass decreases with increasing joint 

diameter up to approximately 14 feet. This trend is dominated by the mass of 

the transition truss and, as previously discussed, decreasing the diameter very 

much below 8 feet will cause the transition truss mass and, correspondingly, 

the total structural mass to become excessively large. 

It is possible to reduce the rotary joint structural mass by relaxing the 

joint stiffness requirement. Figure 13 shows the effect that reducing the 

frequency ratio (ratio of the first bending frequency to the design frequency -

.9252 hz) has on rotary joint structural mass. With the ring size fixed, a 

reduced stiffness requirement will lower the mass of the transition truss. To 

design a joint with a diameter less than 14 feet, but with no more stuctural 

mass than the 14 foot joint (approximately 550 lbm), it would be necessary to 

compromise the stiffness of the joint and reduce the vibration frequencies of 

the transverse boom. For example, a 7 foot diameter rotary joint with a mass 

of 550 lbm would drop the first bending frequency of the transverse boom approxi­

mately 20% below the design value (f/fdesign = 0.8). Therefore, no apparent 
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useful purpose is served by considering smaller diameter, reduced ,p~rformance 

rotary joints, when the large diameter (~141), full performance rotary joint is 

also the minimum mass design. 

Effects of Roller Assembly Stiffnesses 

. Another design feature that will affect the stiffness of the rotary joint 

is the stiffness of the roller assemblies that tie the outboard transition 

truss to the annular ring. These assemblies are envisioned to be rollers sup­

ported in housings that tie the outboard transition truss to the roller track. 

These housings will transmit loads from the truss members to the rollers and 

allow the rollers to be pre-loaded onto the roller track. Each of the components 

of the assemblies will contribute to an overall stiffness for the assembly and 

may exhibit some nonlinear characteristics. Without a detailed design of the 

roller assembly, the stiffness contributions due to individual components can­

not be quantified. Therefore, it is assumed that the assemblies are linearly 

elastic with three mutually orthogonal stiffnesses: (1) normal to the ring 

plane, (2) tangent to the ring, and (3) parallel to the radius of the ring. 

These stiffness components are referred to as: thrust, drive, and radial, 

respectively (see figure 14), and to this point they have been assumed to be 

equal to 109 lbf/in. To identify any effects the roller assembly (stiffness) 

may have on the vibration frequencies of the transverse boom, the magnitude of 

each component is varied independently while the other components remain equal 

to 109 lbf/in. 

Roller Assembly Thrust Stiffness 

Figure 15 shows the effect that roller assembly thrust stiffness has on 

the first bending and first torsional frequency of the transverse boom for two 

values of rotary joint diameter (14 feet and 8 feet). These curves were 

generated assuming the other two roller assembly stiffness components were 



equal to 109 lbf/in. Decreasing the thrust stiffness of the rollers reduces 

the bending stiffness of the joint, and consequently, the bending frequency of 

the wing. To m~intain the first bending frequency, the thrust stiffness would 

have to be approximately 0.5 x 106 lbf/in for the 14 foot diameter joint, and 

approximately 2 x 106 lbf/in for the 8 foot diameter joint. 
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Reducing the bending stiffness of the rotary joint also affects the torsion 

frequency of the transverse boom. The orthogonal tetrahedral truss configuration 

used as the parent truss exhibits a coupling between bending and torsional defor­

mations due to location of the diagonal members (ref. 6). Therefore, torsional 

vibrations in the wing are accompanied by slight bending deformations, and 

reducing the bending stiffness of the rotary joint effectively decouples the 

'torsional deformations from the bending deformations, and consequently, raises 

the torsional frequency. 

Roller Assembly Drive Stiffness 

The drive stiffness component is attributed to the rotary joint drive 

mechanism (anticipated to be a traction or gear drive device) which, for this 

study, is assumed to be located at one of the roller assemblies (see figure 14). 

Figure 16 shows' the effect that the stiffness of this drive unit has on the 

boom frequencies. As expected, reducing the drive stiffness reduces the tor­

sional stiffness of the rotary joint and the torsional frequency of the boom. 

The values for the drive stiffness necessary to maintain the boom torsional 

frequency are shown to be close to the values needed for the bearing thrust 

stiffness (0.5 x106 lbf/in for the 15 foot ring, 2 x 106 lbf/in for the 8 foot 

ring). It is conceivable, however, that mUltiple drive units (which are desire­

able) could work in unison from more than one roller assembly, and thus increase 

the torsional stiffness of the rotary joint without increasing the stiffness of 

each individual drive unit. 
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Roller Assembly Radial Stiffness 

The final roller assembly stiffness component to be considered is the 

radial stiffness. Figure 17 shows the effect that this stiffness component has 

on the boom frequencies. Since this configuration has only one drive location, 

torsional forces in the rotary joint are resolved into a drive force at the 

drive roller assembly, and radial forces at the other roller assemblies. There-

fore, reducing the radial stiffness of the roller assemblies reduces the tor-

sional stiffness of the rotary joint and the torsional frequency of the trans-

verse boom. The radial stiffnesses that are needed to maintain the torsional 

frequency for this rotary joint/drive configuration are roughly 0.1 x 106 lbf/in 

for the 14 foot ring, and 0.5 x 106 lbf/in for the 8 foot ring. Providing a 

second drive unit opposite to the first would allow torsional forces to be 

carried by the drive mechanisms only and would minimize the effect of radial 

stiffness in the roller assemblies. 

Maximum Internal Forces in Rotary Joint 

The primary loads that occur at any point within the space station structure 

are due to the structure's response to transient external forces. In reference 

1, a transient response analysis was conducted on a model of the 9 foot reference 

space station subjected to a series of possible external forces. Maximum internal 

forces were calculated for various critical locations throughout the station's 

structure including the transverse boom rotary joint. From this analysis it was 

predicted that the maximum bending moment that would occur at the rotary joint 

would be approximately 3,200 ft·lb, while the maximum torsional moment would be 

approximately 2,500 ft· lb. These loads were predicted for a shuttle docking 

maneuver. 

These forces were statically applied to the present rotary joint concept 

for the range of ring diameters to calculate the resulting maximum internal 
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loads. Plotted in figure 18 are the maximum compressive loads predicted for 

any single transition truss member, as well as the maximum roller assembly 

thrust load, (i.e. the maximum ring load occurring normal to its plane of 

curvature). The transition truss strut compression loads were found to be at 

least an order of magnitude less than the Euler buckling load of the member for 

all designs considered over the range of joint diameters. The maximum roller 

assembly thrust loads were found to be less than 200 pounds for the 14 foot 

diameter ring, and increase, linearly at first, as the joint diameter is 

decreased. 

CONCLUDING REMARKS 

An annular ring, discrete roller assembly concept for the Space Station 

transverse boom rotary joint was studied to determine whether this concept 

could be designed to maintain the stiffness of the parent truss with reasonable 

structural mass. Design parameters were identified and analyses conducted to 

investigate their effects on rotary joint stiffness. Values for these para­

meters were selected to provide acceptable rotary joint designs. The corres­

ponding mass of these designs was determined for a range of ring diameters. 

Additionally, the effects of roller assembly stiffnesses were studied and the 

maximum predicted internal forces in the rotary joint were quantified. 

To obtain the optimum balance between high stiffness and low structural 

mass in the design of the rotary joint, it is necessary to maximize the dia­

meter of the annular ring within operational constraints (i.e. shuttle cargo 

bay size). Further, a rotary joint designed with the largest possible ring 

diameter will result in minimum operational loads in both the roller assemblies 

and the transition truss members while also allowing minimum design stiffnesses 

for the roller assemblies. 
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Figure 1. Space Station Reference Configuration 
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Figure 11. Design Curve For Transition Tru~~ Member Size vs, ~ing Diameter 
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Figure 12. Rotary Joint Structural Mass 
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Figure 13. Rotary Joint Structural Mass for Reduced Joint Stiffness 
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APPENDIX A 

Eccentricity in the Annular Ring Cross Section 

In modeling the rotary joint it was assumed that the truss attachment 

points on the annular ring coincide with the elastic axis of the ring, or the 

ring is loaded non-eccentrically. While this may not necessarily be the case 

in a final design of the ring, this assumption can be used for designs in which 

the eccentricity is within a certain range. 

Referring back to the internal strain energy method for curved beam 

analysis a similar calculation can be performed for the ring with eccentricity 

(h). Figure A-I shows a diagram of the ring cross section with eccentricity 

indicated. A positive value of h represents a load path which lies radially 

outside of the ring's elastic axis. Computing the static deflection of this 

ring in general results in: 

= PR 3 { 2.6 x 10-3 + 4.1 x 10-5 } 
EI GJ 

+ 

p { 

which reduces to equation (5) from the Analysis of the Annular Ring section for 

h equal to zero. 

If the properties of the annular ring being considered are inserted into 

this equation (EI, GJ, R = 7.5 ft) and a load of one pound is assumed, then the 

equation reduces to a quadratic in h. This solution is plotted in figure A-2. 

In the region -3" 2. h 2. 3" (i.e.- the depth of the ring) the quadratic function 

is fairly flat with the value of the deflection varying by only about 25 percent. 

Analysis of a proposed design should definitely include consideration of eccen-

tricity effects. However, the results shown in Figure A-2 indicate that 
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eccentricity of ring loading (within the indicated range) would not significantly 

affect the study results (i.e.- Figures 9-18). 
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