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ABSTRACT

We consider the effect of localized, time-periodic surface heating and

cooling over a curved surface. This is a mechanism for the active control of

unstable disturbances by phase cancellation and reinforcement. It is shown

that the pressure gradient induced by the curvature significantly enhances the

effectiveness of this form of active control. In particular, by appropriate

choice of phase, active surface heating can completely stabilize an unstable

wave.
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I° INTRODUCTION

The effect of surface curvature on laminar-turbulent transition in

compressible flows can be calculated from the Navier-Stokes equations. From

both a theoretical and an experimental point of view, it is natural to inquire

as to how transition is affected by a pressure gradient induced by surface

curvature. The pressure gradient introduces a coupling of the mean flow with

external disturbances (sound, vorticity or entropy disturbances) that is much

stronger than in flows with zero pressure gradient (i.e., flows over a flat

plate). This coupling, in turn, causes rapid changes in the boundary layer

when outside disturbances have sufficient amplitude to trigger the

instability. Put another way, the receptivity of the flow is significantly

enhanced.

,
References [1,2] show direct experimental evidence of this. Historical-

ly, these disturbances, interacting with the mean flow in regions of

significant pressure gradient, have been the source of discrepancies in the

transition Reynolds numbers that have been reported. The receptivity of flows

has been systematically investigated recently [1,2] and used as a mechanism

for boundary layer triggering and for transition control [3,5].

Receptivity in its full meaning refers to the effect of both steady and

unsteady disturbances on a mean (i.e., steady) flow.** The use of unsteady

disturbances to modify features of a flow field is called active control.

*See also Kozlov, V. V. and Levchenko, V. Ya: "Lam'inar-turbulent transition

control by localized disturbances." Preprint.

Nishioka, M. and Morkovin, M. V.: "Boundary-layer receptivity to unsteady

pressure gradient: Experiments and overview," 1984.
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Typically, active control techniques introduce unsteady disturbances to modify

growing waves propagating through the flow. Active control can be used to

cancel growing disturbances [5] or to trigger instabilities and instantaneous

transition [3]. Active control can be effected by localized time periodic

surface heating [5], or by introducing localized vibrations [7]. Active

control by time-dependent surface cooling has not been accomplished but is at

least theoretically possible at very low frequencies by using Peltier chips on

the surface [8].

Specifically, it was shown in [5] that time-dependent, localized surface

heating could be used to cancel growing disturbances in water. An analysis of

the effect of surface heating in both water and air was presented in [3],

[6]. In [7] vibrating ribbons were used to both cancel and amplify

disturbances in air. In these experiments there was no surface curvature and

thus little, if any, mean pressure gradient. On the other hand, it was shown

in [3] that instantaneous transition in air could be achieved by heating near

a leading edge where the pressure gradient is very large. No such effect was

obtained when the flow was heated in regions where the surface was flat and

the pressure gradient was weak.

A numerical simulation of the active control of unstable waves by

localized, time-periodlc surface heating and cooling in air was presented in

[9,10]. These results are for compressible, subsonic flows over a flat plate

so that there was no mean pressure gradient. The results demonstrated that

both surface heating and cooling could be used to generate out of phase

disturbances and cancel growing disturbances. In particular, active heating

could be used to stabilize the flow, whereas steady heating of a flow over a

flat plat is destabilizing. The amount of reduction of the amplitude of the
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fluctuating disturbance was modest, although a larger reduction could be

obtained by using multiple heating or cooling strips.

The objective of this paper is to study wave phenomena in a mean flow

with a pressure gradient induced by surface curvature. The behavior of

uncontrolled disturbances and the effect of active surface heating and cooling

are studied. The numerical simulations are obtained by solving the

compressible, two-dimensional Navier-Stokes equations over a curved surface.

Clearly, the inclusion of curvature permits a much wider range of

features in the associated steady flow. The curvature can accelerate a

subsonic flow into the transonic and supersonic regimes and shocks can

develop. In particular, compressibility effects can be expected to become more

important for accelerating flows with non-zero pressure gradient. In general,

the enhanced receptivity of the mean flow due to the induced pressure gradient

means that active surface heating and cooling would be expected to be

considerably more effective than when applied over a flat plate. It will be

shown that this is, in fact, the case.

The remainder of this paper is organized as follows. In section 2 the

numerical scheme is discussed. In section 3 we present numerical results and

in section 4 we summarize our conclusions.

2. NUMERICAL METHOD

We consider the compressible, two-dimensional Navier-Stokes equations.

In Cartesian coordinates, x and y, these equations can be written in the

conservation form

Wt = F + G . (2.1)x y
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In (2.1) W is the vector (p, pu, pv, E)T, P is the density, u and v are

the x and y velocities respectively, and E is the total energy. The

functional forms of the flux functions _ and G are standard and will not be

reproduced here for brevity. The system (2.1) is supplemented by the equation

of state for an ideal gas

p = pRT,

where p is the pressure, T the temperature, and R is the gas constant.

In order to deal with surface curvature we consider a general, non-

orthogonal coordinate transformation

= $(x,y)

• (2.2)
q = q(x,y)

The wall is the curve q = 0. Applying the transformation (2.2), the system

(2.1) can be transformed to the new system

(JW)t = F$ + Gq . (2.3)

In (2.3) J is the Jacobian

J = x_ yq - xq y_

and the new flux functions F and G are given by

F = Fyq - Gxq and G = Gx_ - Fy_.
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The transformed system (2.3) is solved by an explicit finite difference

scheme using a uniform (_,n) grid in the computational plane. The viscous

stresses must be transformed to the new coordinate system. The precise form

of the transformed system of equations is omitted for brevity. The use of the

Navier-Stokes equations in a transformed coordinate system is a common

technique for dealing with curved boundaries. A more detailed discussion can

be found in [ii,12]. If the equation of the wall is given as

y = f(x),

then the coordinate transformation is

= x (2.4a)

(y - f(x))

= (YT - f(x)) YT (2.4b)

where YT is the top of the computational domain. An additional exponential

stretching is applied to (2.4b) to increase the grid resolution near _ = 0

where large variations in the solution have to be resolved. The transforma-

tion (2.4) is not orthogonal near the wall; however, the types of curvature

considered in this paper are not particularly severe and the transformation

(2.4) has been found to be adequate.

The finite difference scheme is a modification of the MacCormack scheme

making it fourth-order accurate on the convective terms. The scheme is

second-order accurate in time and is second-order on the viscous terms for

non-constant viscosity. The fourth-order accuracy is essential in order to:
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a) prevent viscous-like truncation errors on the convective terms from

artificially decreasing the effective Reynolds number of the computation, and

b) prevent numerical dispersion and dissipation from altering the character of

the waves which are computed in the mean flow.

The numerical scheme is described in detail in [13]. The discussion

below will therefore be brief. The numerical scheme applied to the one-

dimensional equation

ut = FX

consists of a predictor of the form

-- N At

ui = ui +-6-Ax (- 7F. +l 8Fi+ 1 - Fi+2) (2.5a)

together with a corrector of the form

uiN+l =__(uil-- + u.Nz+ 6-Ax(At 7_i - 87i_ 1 + _i_2 )). (2.5b)

In (2.5) the subscript i denotes the spatial grid point and the superscript

N denotes the time level. The scheme (2.5) is alternated with an obvious

symmetric variant.

Two-dimenslonal problems are treated by operator splitting. For example,

if Lx denotes the solution operator symbolized by (2.5) for the equation

Wt =F 'x

and Ly denotes the similar operator for the equation
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Wt Gy,

then the solution to the equation

W =F +G
t x y

is obtained by

WN+2 = L L L L WN. (2.6)
x y y x

The split scheme (2.6) preserves the second-order accuracy in time. We stress

that in the applications the scheme described above is applied to the

transformed system (2.3).

A typical computational domain is shown in figure I. In practice, a

steady solution is first computed for a given geometry. The computed steady

flow is disturbed by specifying an inflow disturbance. The inflow data can be

written as

= W + _ real part (ei_t H(y)) (2.7)Win flow mean

where m is the frequency and H(y) is a solution of the Orr-Sommerfeld

equation for the inflow profile (assuming a flat geometry). The profiles used

here were obtained from a program developed at NASA Langley Research Center by

J. R. Dagenhart. The parameter s is used to adjust the strength of the

inflow disturbance.

A detailed discussion of boundary conditions is given in [13] and the

reader is referred to that reference for details. For subsonic flows (2.7) is
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used to provide three conditions at inflow. Approximate radiation conditions

are used at the outflow and at the upper boundaries. At the wall the

temperature is specified and the pressure is obtained from a first-order

extrapolation in the n direction. Surface heating and cooling are simulated

by locally modifying the temperature at the wall.

3. RESULTS

In this section we discuss the numerical results over the curved and the

flat region of the surface. The results reported here will be for a curved

surface with a height of 0.02 ft. We are currently investigating more

severely curved surfaces and will report those results at a later date. The

inflow Mach number is Me = 0.7 and the unit Reynolds number is 3 x 105 .

The steady state Mach number and pressure coefficient are shown in figure 2.

Upstream the surface is flat and the pressure gradient zero. This is the in-

flow region. Downstream the initial curvature is concave then it reverses

into a convex shape, and further downstream it returns to its original flat

shape. The pressure gradient and the flow Mach number change over the

curvature. The pressure coefficients, Cp, increases along the concave region

as the Mach number decreases due to adverse pressure gradient. Downstream in

the convex region Cp decreases as the Mach number increases reaching a

constant over the flat portion of the surface.

The curved wall is defined by a fourth degree polynomial

4
y = ax + bx3 + cx2 + dx + e (3.1)
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where the coefficients are determined so as to specify the maximum height at

x = 1.2 ft. and to insure that the surface smoothly becomes flat at the

inflow and at the maximum. A fluctuating disturbance is induced at the inflow

with nondimensional frequency F = ((2_fv)/U_) of 0.8 x I0 _. (Here f is

the frequency, v the kinematic viscosity, and Ue the free stream velocity.)

It is known that this frequency is linearly unstable for the Reynolds number

used at the inflow.

In figure 3 we compare the growth rates for the inflow disturbance over

the curved surface with the growth rates obtained from the same inflow but on

a flat surface. The parameter E is chosen so that the maximum inflow

disturbance is 2% of the free stream. The growth rates are computed by

computing the RMS_(pu - (PU)mean)2 and integrating this quantity in y

and normalizing by the value at inflow. The integration is taken up to the

point where the Orr-Sommerfeld perturbation goes through zero for the

particular x location. Qualitatively similar results were obtained by

choosing the maximum disturbance level or integrating up to the edge of the

boundary layer.

It is apparent from the figure that in the flat case the disturbance

grows and decays in a manner similar to what would be expected from linear

theory. With curvature the growth is initially enhanced due to the

unfavorable pressure gradient and then stabilized due to the favorable

pressure gradient. Once the surface becomes flat the solution exhibits a

strong growth. This is because at the beginning of the flat region the

magnitude of the disturbance has become sufficiently large so that the growth

and decay are not governed by linear theory. In [9,10] the authors observed
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that disturbances which were sufficiently large would not decay in the stable

region whereas smaller disturbances would follow the stability curve closely.

The effect of active control is investigated in two regions of the

surface corresponding to adverse and favorable pressure gradient. Surface

heating and cooling are accomplished by modifying the temperature boundary

condition over a small strip (~ 10% of the wavelength of the disturbance at

inflow) on the surface. The formula is

T T ( 82 _t)_ w ± +
sin2 _--+ _) , (3.2)

Tref Tre f

with the plus sign for the heating and minus sign for cooling. In (3.2) Tw

is the temperature of the wall (520°R) and Tre f is the reference

temperature. The functional form of (3.2) models a D.C. current (e) and an

A.C. current (8) with phase i. A typical grid size for the calculation is

251 x 61.

The parameters for the heated case are e = I, 8 = 2.76 corresponding to

a peak temperature of 1650°R. For the cooled case the parameters are

= 0.77, 8 = 1.7 with a minimum temperature of about 190°R. In the heated

case the maximum temperature corresponds to roughly three times the unheated

wall temperature which is close to the temperature obtained in [4] using a

tungsten wire. In the cooled case the parameters are chosen so that the

temperature will stay in the range where Sutherland's law is valid for the

viscosity as a function of the temperature. Such a periodic cooling is not

attainable by experimental techniques available at the present time except for

very low frequencies. There were no numerical instabilities due to the large

temperature perturbation but the heating forced a reduction in the allowable

time-step.
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In figures 4-7 we present growth rates for four cases of active

control. In figures 4 and 5 the flow is heated and cooled with a strip

centered at x = 0.3 ft. where Cp = 0.03. In each case the heating and

cooling is effected with two different phases (i = 0° and i = 90o). In

figures 6 and 7 the strip is placed at x = 0.7 ft. corresponding to Cp =

-0.015. In all cases the growth rates are compared with the uncontrolled

results.

The results in these figures demonstrate that the solution is very

sensitive to the phase of the control heating and cooling. In particular, the

phase of the heating can be chosen to reduce the disturbance level to the

point where there is no growth over the flat portion of the surface. By

changing the phase the overall growth can be significantly enhanced. The

effect of cooling is less dramatic but still strongly dependent on the phase.

We have not investigated intermediate phases. For maximum control or

amplification one needs to explore a range of phases between 0° and 90°.

However, the results demonstrate:

(a) Heating can be used to either trigger or stabilize the flow via the

mechanism of phase cancellation or amplification;

(b) Both active heating and cooling are considerably more effective than

in the cases with no curvature reported in [9,10].

In figure 8 we plot the RMS of the fluctuating pu as a function of the

vertical coordinate B (defined by (2.4b)) at x = 0.5 ft. The results for

heating with the two different phases and the uncontrolled case are shown.

The heating strip was at x = 0.3 ft. It is apparent that the heating does

not change the basic structure of the Orr-Sommerfeld profile. We stress that
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the inflow profile was obtained from an incompressible stability code which

did not account for the curvature. It can be seen that the spatial behavior

of the disturbance accounting for compressibility and curvature is

qualitatively similar to profiles obtained for incompressible flows over flat

surfaces.

In figure 9 we present the same results at x = 1.5 ft. In this case the

heated case with _ = 0° is stabilized while the uncontrolled case and the

heated case with _ = 90° exhibit a nonlinear growth. All three profiles,

however, are very similar except for the amplitude.

In figure i0 the time varying pu fluctuation at the first grid point

above the wall is plotted for the two heated cases (heating strip at x = 0.3

ft.) and for the uncontrolled case. The plots are for x = 0.3, 0.4, and

0.5 ft. A significant amount of distortion is evident near the heating

strip. However, at x = 0.5 ft. there is little remnant of this distortion

due to the heating strip. This is presumably due to diffusion of heat. The

residual effects of the heating at x = 0.5 ft. are an amplitude change and a

slight change of phase. Observe that the uncontrolled disturbance at x = 0.5

ft. exhibits clear nonlinear distortion. Nonlinear distortion is also

evident for _ = 90 ° but the solution for _ = 0° for which cancellation

seems to have occurred, is quite sinusoidal.

Finally, in figure II we plot the fluctuating pu at selected locations

across the boundary layer for x = 0.5 ft. At all locations the amplitude is

larger for _ = 90° and smaller for _ = 0° as would be expected from the

integrated data in figure 4. The thermal diffusion is sufficiently strong so

that no distortion due to the heating strip is evident. There is, however, a

marked effect on the amplitude and phase.
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4. CONCLUSION

The results presented here for a single curved surface demonstrate the

enhanced receptivity of a mean flow with a non-zero pressure gradient to

active surface heating and cooling. This is particularly striking in view of

the small size of the curved wall and the small amount of acceleration. This

is because the curvature is large on the viscous length scale even though it

is very small on the inviscid scale.

It is clear that phase cancellation and amplification and not just static

heating and cooling contribute to the control that is demonstrated in figures

4-7. In particular, active surface heating appears to be a viable mechanism

for flow control in the presence of a favorable pressure gradient. We are

presently extending these results to cases with more severe curvature yielding

larger acceleration of the mean flow velocity.
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