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Abstract

Downstream marching iterative schemes for the solution of the

Parabolized or Thin Layer (PNS or TL) Navier-Stokes equations are

described. Modifications of the primitive equation global relaxation

sweep procedure result in efficient second-order marching schemes.

These schemes take full account of the reduced order of the approximate

equations as they behave like the SLOR for a single elliptic equation.

The improved smoothing properties permit the introduction of Multi-Grid

acceleration. The proposed algorithm is essentially Reynolds number

independent and therefore can be applied to the solution of the subsonic

Euler equations. The convergence rates are similar to those obtained by

the Multi-Grid solution of a single elliptic equation; the storage is

also comparable as only the pressure has to be stored on all levels.

Extensions to three-dimensional and compressible subsonic flows are

discussed. Numerical results are presented.
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i. INTRODUCTION

Considerable evidence accumulated recently about the applicability

of the Parabolized Navier-Stokes equations for high Reynolds number flows

with a principal flow direction; see Rubin [i]. The PNS equations are

obtained by neglecting the streamwise viscous terms in the Navier-Stokes

(NS) equations. When the viscous terms in the circumferential direction

are also - _I^__ gets the m_-,,e_ed, one ......Layer approximation.

The steady PNS equations still have an elliptic nature, and there-

fore the initial value problem in the marching direction is not well

posed [2]. A well posed initial-boundary value problem can be formulat-

ed by specifying (for example) upstream and side conditions for the

velocities and one downstream condition for the pressure. This coupled

system of partial differential equations behaves like a single elliptic

equation for the pressure. Therefore the PNS equations must be solved

globally and cannot be solved by a single sweep marching. The reduced

order of the PNS equation can be exploited by constructing an iterative

marching method for updating the pressure field only. Such a multiple

sweep iteration method has the advantage that the velocity fields are

generated during the marching process and only the pressure field has to

be stored from sweep to sweep. A considerable saving in storage results.

However, simple minded marching does not result in good convergence

properties and sometimes diverges. For the two-dimensional incompres-

sible case, Israeli and Lin [3] devised a stable marching scheme that

behaves like the Successive Line Over Relaxation (SLOR) method for a

single elliptic equation. The good smoothing properties of the above

mentioned scheme can be used in a Multi-Grid (MG) framework in order to

accelerate the convergence of the solution of the PNS (or TL) equations.

The marching scheme is implemented using a new stable algorithm which is

second order also in the marching direction. The same method can be

used without modification for the subsonic Euler equations as the effect

of the Reynolds number on the convergence rate is insignificant. In two

dimensions the PNS and TL equations are identical and therefore the same

analysis applies to both.



It turns out that the extension to three-dimensionsis conceptually

simple; but the resulting algorithm, a successiveplane over relaxation,

is complicated by the requirementof the simultaneoussolution of the

equations in planes perpendicular to the marching direction. This

problem can be alleviated by splitting of the equation of continuity

from the momentum equations.

The extension of the method to compressible flows is conceptually

non trivial. The original iterative method is based on the concept

that the convergence relies on the implicit relaxation of a single

quantity, the pressure, which approximatelysatisfies a single elliptic

equation. In the compressible case a viable approach is to eliminate

the pressure and to derive an equation for p, the logarithm of the

density. It can be shown that p satisfies approximatelyequation (i.i),

N

- + = O, (l.l)(I M2)_ss Pnn

where M is the Mach number and s and n are coordinates along and

perpendicular to the flow direction. Although this equation is never

derived or used in the algorithm, it reveals the fact that for M < 1

the upstream influence is transmitted through the quantity _, and

therefore only this quantity should be stored or updated. The flow of

information should be downstream for the velocity and temperature and

upstream for the density, and the difference scheme must be built

accordingly. For supersonic flows the flow of information should be

only downstream and the marching method is non-iterative. For super-

sonic flows with imbedded subsonic regions, the iteratlve method should

be used, combined with an appropriate switching at shock waves and sonic

lines.

It should be pointed out here that the present approach is very

different conceptually from that of Reddy and Rubin [4]. Although they

used our idea* of backshlftlng the pressure, one full mesh distance,

with respect to the velocity for incompressible flows, their

generalization to compressible flows is a Mach number dependent shift

*Israeli, M. (1982), NASA Lewis seminar, July 1982.



which vanishes for M > 1. This smooth transition from subsonic to

supersonic flows is questionable since the change of type of equation

(I.I) is sudden, at M = i. Indeed, only our full shift is used in their

papers and properly results in a conservative scheme across a shock.

Another question raised by the above mentioned paper is that of the

distinction between the pressure which uses downstream data and the

density which uses upstream data. This obscures the issue of the direc-

tion of flow of information and proper location of boundary conditions.

This approach should result in inconsistency of boundary data and may

eventually lead to ill posedness and divergence.

In the next sections we will summarize our previous theoretical

results, present some new numerical results and the extensions to 3-D

and compressible flows.

2. FORMULATION FOR THE INCOMPRESSIBLE CASE

For simplicity we will consider initially the case of the steady,

incompressible, and two-dimensional PNS (or TL) equations in cartesian

coordinates [x;y]:

U + V = 0 (2.i)x y

(U2)x + (UV)y = -Px + Uyy/Re (2.2)

+ (V2) = -P + V /Re (2.3)(UV)x y y yy

where x is the mainstream direction, Re is the Reynolds number. U

and V are the nondimensional velocity components in the x and y

direction, respectively. P is the nondimensional pressure.

The two-dimensional NS equations are elliptic of order four - Brandt

and Dinar [5]. The PNS are elliptic only of order two like the Poisson

equation (the mathematical nature of several two-dimensional and three-

dimensional approximations to the Navier-Stokes equations was analyzed

in [6]). This ellipticity is due to the pressure gradient terms via

the continuity equation. A well posed problem can be formulated by

defining the boundary conditions as described in Fig. 2. The following

Dirichlet conditions may be specified:



* upstream boundary (AB): U = U. ; V = V. (2.4)
in in

* at a solid wall (AD): U = Uwall; V = Vwall (2.5)

* at the outer boundary (BC): U = U ; V = V (2.6)out out

* at the downstream boundary (CD): p = Pdown" (2.7)

Other boundary conditions can be used, but the same number of conditions

on each boundary must be kept.

In order to separate linear and non linear effects, some of the

convergence tests were performed with the following linear version of

equations (2.1)--(2.3):

u + v = 0 (2.8)
x y

(aU) + (bU) = -P + Uyy/Re (2.9)x y x

(aV) + (bV) = -P + Vyy/Re (2.i0)x y y

where a and b are known functions of x and y.

3. DISCRETIZATION AND MARCHING

Numerical solutions of Eqs. (2.1)-(2.3) are obtained by spreading

a grid over the computational domain. Let us assume that the grid points

are distributed evenly along the x and y coordinates with the spac-

ing _x and by respectively. When differencing these equations it

should be remembered that their nature should be reflected [i,7] in

the finite difference approximation. In order to be consistent with the

boundary layer (parabolic) nature of the flow, the axial gradients of

the velocities should be computed using only upstream values, while the

elliptic nature is preserved by forward differencing the axial pressure

gradient [I,7,8].Consequently, it was assumed that a stable marching

scheme must be of the first order in the marching direction. It turns

out that this effect can be achieved by a judicious choice of the place-

ment of the variables to be solved at each station. The choice can be
1

explained most easily by taking V = 0 and R-_= 0 in Eq. (2.2) for U,

yielding
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Ux = - Px"

A first order difference scheme then becomes

U2 _ U2
m,j m-l,j = Pm,j - Pm+l,j ;

the unknowns are Um, i_ and Pm,j" The scheme first suggested by Israeli
[9,10] is:

2 _ U2
Um+l,j m,j = Pm,j - Pm+l,j

1

with the unknowns Um+l, 5_ and Pm,j" The scheme is centered about m+

and is second order. This approach was subsequently used by Rubin and

Reddy [8] and Reddy and Rubin [4].

In addition, one may stagger the velocity V with respect to the

other variables as shown in Fig. 3, where the centering points of the

different difference equations are also plotted. The differential equa-

tions are approximated by central second-order approximations whenever

needed averaging was used as is usually done for staggered grids.

Numerical experiments with a first order computer code show that

the solution after one marching sweep is not close to the final solution

of the PNS equations when the initial pressure field is constructed

using the boundary layer assumption py 0. Since the Px term is
forward differenced, some global iterations over the whole solution

domain should be performed in order to converge the explicit contribu-

tion to this pressure ter_. The simplest global iterative technique to

solve the equations is by multiple marching sweeps with the primitive

equations where only the pressure field is kept from iteration to itera-

tion [i]. Numerical experiments also show that for certain nets this

procedure diverges. The divergence occurs also for the linearized ver-

sion of Eqs. (2.1) -(2.3). Figure 1 presents the residual of the pressure

field as a function of the global iteration's sweep number for a 21 x ii

field. A jump is encountered every i0 iterations (probably related to

the arrival of the boundary pressure pulse traveling at the numerical
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scheme speed) leading to ultimate divergence. However convergence was

reported with different mesh and boundary conditions and also when

combining the above procedure with a multigrid technique [4]. It was

thought that the replacement of one of the momentum equations by the

Poisson equation for the pressure will improve the convergence rate, but

the solution did not satisfy the replaced momentum equation. A success-

ful implementation of the marching technique is derived in the next

section. A short and reduced version of the analysis was presented first

in [3].

4. A MULTI-GRID ALGORITHM

The Multi-Grid technique is a numerical strategy for substantially

improving the convergence rate of an iterative procedure. In order to

facilitate comparison with theory, the accomodative C-cycle MG algorithm

was chosen.

Each MG process consists of three basic parts: relaxation, restric-

tion, and interpolation [5].

The Relaxation Scheme

The overall convergence rate of any MG process is greatly influenc-

ed by the smoothing properties of the relaxation scheme. It can be shown

analytically and experimentally that the usual multiple sweep marching

[i] does not have good convergence and smoothing properties because short

wave errors are not efficiently smoothed. Israeli and Lin [3] showed

that certain modifications in the streamwise momentum equation, which

vanish upon convergence, give rise to an iterative scheme which is equi-

valent, in the linear case, to the SLOR method for one Poisson equation.

In the general nonlinear case the modified iterative process is essential-

ly equivalent to the relaxation of a single nonlinear Poisson-like equa-

tion for the pressure. The velocities can be viewed as auxiliary vari-

ables needed during the marching since they have no "memory" by them-

selves.

Furthermore, we have automatically gained the good smoothing

properties of the line relaxation scheme of a single Poisson equation.

The problems associated with the loss of ellipticity of the difference

* Some of the elements of the present approach were used independently by
Rubin and Reddy [7]. Detailed comparisons cannot be made because converg-
ence rates and storage estimates were not presented there.



approximation for the Navier-Stokes equations at high Reynolds number

[5] are thus avoided and no upstream-weighting or artificial viscosity

are required. There results a considerable saving in storage, as well

as a simpler relaxation scheme (compare to the distributive relaxation

[5]) where the convergence rate is essentially independent of the

Reynolds number. We note that the same marching algorithm can thus be

used for the (subsonic) Euler equation with the same favorable converg-

ence rate. (For supersonic flows the marching method is non iterative.)

A part of the analysis of [3] is repeated here to motivate the

later extensions to three-dimensional and compressible flows. We start

with the PNS equations (2.1)-(2.3) and linearize them about a constant

state. We also introduce

2

L(f) = _x (_f) + _y (_f) Re 2 f (4.1)
_y

where U and V are constant reference velocities. The next step is

to discretize the equations only in the x direction to obtain:

Um_l-Um
+ (V) = 0 (4.2)

_x y m

Pm+l-Pm
D(U ) = (4.3)m _x

D(Vm) =-(P ) (4.4)ym

where Um, V and P are functions of y. Here D(f ) is the semim m m

discretized form of L(f) at the marching station m. The semi -

discretized system should be discretized also in the y direction befo_

solution is attempted, but since the specific form of this discretization

is not important for the following argument, we postpone this step for

the sake of transparency.

k(y) kThe marching iterative procedure assumes that U1 , Vl(Y) are
k-i

known as well as P for m = 2,3,4,... M, where k is the currentm

iteration index. Therefore, the marching scheme for m 9 2 is:

Uk Uk
m-l- m

+ (V) = 0 (4.5)
Ax y m

pk-i pk
m+l- mk

D(Um) = _x (4.6)



OIVm C0.71
We now apply D to Eq. (4.5) and differentiate Eq. (4.7) with

respect to y. Elimination of the V terms between Eqs. (4.5) and

(4.7) gives:

D(uk 1 - Uk) =_(pk ) Ax (4.8)yy m

Now by substitution of Eq. (4.6) into Eq. (4.8) we get:

pk-i pk pk-i + pk = 0 • (4.9)m+l - m - m m-i + Ax2(p_y)m

It follows that the marching scheme for the primitive system (4.2)-(4.4)

can be viewed as a line iterative scheme for the semi-discretized Laplace

equation; indeed upon convergence Eq. (4.9) will become:

Pm+l-2Pm+Pm_l

_x2 + (Pyy)m = 0 (4.10)

In order to find out the rate of convergence of Eq. (4.9) to the final

state (4.10),we Fourier transform Eq. (4.9) in y assuming appropriate

boundary conditions in that direction:

pk I ny pk-1 I ny= Z e , = Z e (4.11)m m m m

where 12 = -i and n is the Fourier wave number. After substituting

these definitions into Eq. (4.9) we get:

Zm+1 - Z - Z + Z - Ax2n2Z = 0. (4.12)m m m-i m

Transforming in the x direction we define again

Z = AeI ex (4.13)

where 8 is the wave number in the x direction. By substitution of

this definition into Eq. (4.12)we get:

:I l-e- e
l+Ax2n2_e_iSl " (4.14)

This means that all the long waves (with small Ax2n2) in the cross flow



direction are only weakly damped irrespective of their structure in the

marching direction. In particular the n= 0 modes which exist for

derivative boundary conditions in the cross flow direction are not

affected at all by the relaxation, i.e.,

=i
On the other hand, the well known SLR scheme for the Poisson equation

gives (after the same Fourier transformations):

Zm+ 1 - (2+ Ax2n2)Zm + _m-I = 0 (4.15)

and

-I_ ; q = 2 + Ax2n 2 _
2 (4.16)

q-e

and also

I _12= i (417)A
q2+l-2qcos8

This quantity is less than 1 for all acceptable q's and cos8 < i.

Most waves are strongly damped, and only the longest waves in both direc-

tions are weakly damped by the iteration. This behavior was used to

accelerate the convergence as is done by the SLOR technique, Chebychev

acceleration, or Multi-Grid method.*

The question is how to generate an equivalent relaxation scheme

for the primitive system in the marching form. This means that we may

add terms which can be evaluated during the marching process but should

vanish upon convergence.

A rational approach to the construction of the relaxation scheme

is to retrace back'_ards the steps of the derivation of the discrete

Laplace equation from the discrete primitive equations. We start from

the SLOR equation (4.15):

Zm+ 1 - 2£ + Z = Ax2n2_,m m-i m

which we inverse Fourier transform with respect to y to get:

k-i 2pk + pk = _Ax2(Pk )Pm.l - m-i yy m

_It was pointed out by J. South that (4.9) can be viewed as an over-
relaxed version of (4.10) with an over-relaxation factor: _ = 2 which

is not a good choice for _.
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Now, we substitute Eq. (4.8) for the right hand side of the last equa-

tion to get:

k-i k kPm+l - 2P + Pm_l = AxD(uk 1- Umk)

which can be written as:

k-i k (pk-i _ (pk-i k(Pm+l - P ) . _ pk) _ P _ .m m m _i ) =AxD (Urn_1 U ) ,m

adding the equations from m= 2 and using the linear form of D we get:

m

- (Pm+l i - -
i=2 m '

but from Eq. (4.3):

k-i k kP2 - PI = -AxD(U ); (4.18)

therefore, we get for m > 2

pk-i pk

m+l- m (pk-i _ pk) . (4.19)(Om) 1
D Ax Ax i=2

Eq. (4.19) contains all the modifications required in order to

convert the iteration scheme of (4.5)-(4.7) into a scheme equivalent to

the SLOR scheme for one Laplace equation with "over-relaxation"factor

= I. We see that in this approach only the x momentum equation is

modified. The new added term can be generated easily during the

marching process and is inexpensive in storage (one extra line vector)

and computation (one substruction per grid point). In what follows we

will derive Eq. (4.19) in a more general way and introduce the over-

relaxation parameter _ > I.

In practice we will use difference approximations and boundary

conditions also in the y direction, and the resulting scheme may not be

amenable to the discrete analogue of the Fourier transform. It is

therefore worthwhile to generalize the previous approach by using the

matrix finite difference formulation.

Let the vectors U , V , P contain the N values of the cor-m m m

responding variables on the m-th line (x = constant) of the marching

sweep (including the specified boundary values). The U-momentum
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equation (1.5) can be written in the form:

Pm+l - p = -AxD(U ) = R (4 20)m m m

On the other hand elimination of V between the continuity and them

V-momentum equations will result in:

FPm = Rm - Rm_1 (4.21)

where F = Ax2I 22
_y2 " Substracting successively U-momentum equations

(4.20) and using Eq. (4.21) gives:

Pm+l - (2I+ F)Pm+Pm_I = 0, m = 3,4,... (4.22)

which is Laplace's equation. The first equation of (4.20) can be used

as a derivative condition at the left (inlet) boundary, namely:

P3 - P2 = R2 • (4.23)

We now apply the SLOR scheme to the last two equations (ignoring

temporarily the downstream boundary condition) to get the downstream

marching form:

* _(k-l) = R2 (4.24)-P2 + _3

(k) (2I + F)P* p(k-l)Pm-i - m + m+l = 0, m = 3,4,... (4.25)

* (i__)p (k-l)where p(k) = _p + ; _ is the overrelaxation factor, andm m m

the superscript denotes the iteration sweep number. In order to recover

the primitive variable formulation, we relate the velocity field in Eq.

(4.21) to the starred pressure field, i.e.,

FP = R - (4.26)m m Rm-l"

Substitution in Eq. (4.25) gives:

* p (k-l)p(k) _ 2P + = R - m = 3,4, (4.27)m-i m m+l m Rm-l' "'"

Successive summations of Eqs. (4.24) and (4.25) give:

(k-l) *
P - P = R + S , m = 2,3,4 .... (4.28)
m+l m m m
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which is the primitive variable marching form of the U-momentum equation.

The source term S in Eq. (4.28) satisfies:m

* P(k-1) * _ p(k)
Sm = Sm-i + (P - ) + (Pm 1 ) m = 3,4 (4.29)m m - m-i ' '''"

with S2 = 0. It can be seen that S vanishes upon convergence Them

computational form of (4.28) for m = 3,4,... is:

-2P=R +
m m m _.Ju)

_ p (k-l) * _ (k) * *
m = m-I - m+l + 2Pm-i - Em-l; $2 = -P2 - P3 • (4.31)

Thus, the theory of overrelaxation can be applied exactly to the

constant coefficient case of system (2.8)-(2.10). For the non-linear

case this theory can serve as a guide to the choice of _. Alternately,

one can choose _ = 1 and apply the Multi-Grid procedure.

Restriction and Storage Requirements

Let the finite difference approximationof equations (2.1)-(2.3)

on the finest grid M be represented as in [5]:

= FM( ) (4.32)3

where x = (x,y), _M = [uM,vM,pM]T is the exact solution of the dif-

ference equations, and j is the number of the differential equation,

j = 1,2,3.

The problem is transferred from the current level k to a coarser

level k-l, see Fig. 4, by correcting the right hand side of (4.32)

j j j,k' "' _ Ij,k[F (_) - L _k(_)] (4.33)

in the Full Approximation Storage (FAS) mode. wk(x) is an approximation
k-i ~k-i

to wk(x) in the finer level. Ij,k and Ij,k are proper restriction
operators for equation j.

The term in square bracket in equation (4.33) is the residual of the

j-th equation. For the present marching scheme there is no residual in

the continuity and in the y-momentum equations since they are solved

exactly in each step. The residual of the x-momentum equation results
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only from the streamwise pressure gradient term and its comFutation needs
~k-i

only one substraction. Ij,k was chosen to be linear interpolation,

k-l.~k-l~k (_)) 0 Ik-I
which yields for the continuity equation: L1 (Ii,kW = " j,k '

j = 1,2 is computed by averaging in both the x and y directions.

Ik-I is a simple injection.3,k

In summary, equation (4.33) takes the following terms:

k-i (_) = 0
F1

F2k-i&)=L2k-i( 2,kw-k-l~k(x))"+i2,kk-1- k
k-l(_) k-i ~k-l~k ~
F3 = L3 (I3,kW (x))-

Two consequences should be emphasized:

k-l(_)) have to be computed and(a) Only two corrections (F_-l(x), F3
stored.

(b) All the dependent variables must be transferred in order to compute

the corrections (Lk-l(Ik-lwk(x)) j = 2,3) Since only the pressurej j,k ' "
is stored, these corrections must be computed during the marching

process.

It follows that in addition to the pressure on all grids, one has

to save one correction term for each momentum equation on the coarser

grids. Assuming N Computational points on the finest grid, a simple-

minded estimate gives 39N/7 storage locations for the three-dimensional

NS Multi-Grid solution, and 1IN/7 for the PNS marching MG solution.

For the two-dimensional case the corresponding figures are 14N/3 and

6N/3.

Interpolation

Since the present marching scheme generates the velocity field from

the p_essure, only the correction to the pressure must be interpolated

back to the fine grid.
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5. GENE_LIZATIONS

In order to generalize the preceding approach we note that the

essence of the relaxation procedure is the replacement of the term

AxZP/Sx by the marching difference form:

_P _ -(2P_ + L) (5.1)

where S is already known. If (5.1) is differenced it will (usingm

the definition of S ) give rise tom

2(P_- Pro_l)+ Sm - Sm-i -(Pm+l

Thus, the correct successive line over relaxation form is implicitly

obtained for the second derivative of the pressure in the marching

direction. (It should be emphasized again that the second order elliptic

equation for the pressure is neither derived nor used in the algorithm

itself.)

The implication of the present technique is: if it is known that

the equations can be manipulated so that some variable will satisfy

approximately a second order elliptic equation, we should use the replace-

ment (5.1) for the derivative of that variable in the main flow direction.

An efficient marching scheme will thus be generated.

The present version of the algorithm will be applied to the sub-

sonic compressible multi-dimensional Navier-Stoke's equations. Several

particular cases will be examined.

The first step is the derivation of an elliptic equation starting

with:

v

p

-4b

where V is the velocity vector. In addition we will require the equa-

tion of state of a perfect gas

p = ORT (5.3)

and the continuity equation in the form

W.V = -V-?£np. (5.4)

It follows from (5.3) that
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1
- ?p = RTV£np + RVTo (5.5)

and therefore

?._ Vp = RTV2£np + RV2T + l.o.t. (5.6)p

(l.o.t. st_ds for lower order terms).

Also

V. (V.VV) = (V.V)(V-V) + l.o.t. = -(V.V)2£np+ l.o.t. (5.7)

Taking the divergence of (5.2) and using (5.6) and (5.7) we get

(_-V)2£np RTV2Zn0 + RV2T+ _ V2(V'V)+ l.o.t. (5.8)

Several special cases follow:

i) Incompressible case. Here ?.V = 0, and we get directly (taking the

divergence of (5.2)):

V2p = l.o.t.; (5.9)

thus the gradient term was differentiated once and the replacement

(5.1) should apply in two or three dimensions. In the later case

we have to compute simultaneously all the variables in the marching

plane, m, and so we get a successive plane overrelaxation scheme.

It is possible that an alternating direction scheme can be used to

solve the coupled system in the mth plane, but a multi-grid

approach seems to be preferable. At the present time numerical

results for the three dimensional case are not available.

2) Isothermal case. We get

a2
(_'V)2inp = _ V2£np + l.o.t. + v.t.

Y

where a2 = yRT is the adiabatic speed of sound, y is the ratio

of specific heats, and v.t. is the viscous term to be discussed

later.

3) Isentropic case. Here, (y-l)V£np = V£nT and therefore:

(V'V)2£np = a2V2£n0 + l.o.t. + v.t.

4) Constant stagnation enthalpy. Here, a2 = a2 + Y-I_ 2 and we geto 2

(V'V)2£np + (y-l)V.(V.V)-V = a2V2£np + l.o.t. + yv.t.

In all the compressible cases considered the prominent balance is:
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(V.V)2£np _ a2V2£np

Using local stream aligned coordinates s and n, we find

($.v)2= v2 2
_s2

V2 _2 _2= + ;

_s2 _n2

therefore p _ £np appears in the form:

(l_M2) ___2_+ D2_ = other terms.

_s2 _n2

After the parabolization of the viscous term, only the left hand side

has a second derivative of p in the streamwise direction.

Specifically vV2V.V is replaced by

_2 _2 +
-- V.V = -u -- V.V£np .

_n2 _n2

This term cannot become large since the pressure does not have large

gradients in the boundary layer.

We argue that if our iteration is appropriate for the p equation

it will be a good scheme overall.

To get a successive line (or plane) over relaxation scheme, all we

have to do is replace all the occurrences of _x with the marching form

(5.1). All the properties of Section 4 will be the same as long as

M2 < i.

in fact, better convergence can be expected as M 2 approaches i

since the quantity q of (4.16) will become now 2+ (Ax2n2/l-M2).

Only p will have memory and must be globally saved and updated by the

iteration procedure, p will also transmit the downstream information

and must be specified there.

For transonic flows a conservation form is preferred and it may be

more convenient to work with P rather than £nP. An elliptic equation

can be derived for p, but care must be taken to transmit the downstream

information via p. Upstream information should not be transmitted by

p and p should not be specified at the inflow; otherwise, the problem

will be overspecified. Consider, for example, the term 8pu2/_x; it is

discretized as
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(PmU_ U2 )-Pm-lm-i

however, at the station m we should compute the Um velocities coupled

With the Pm-I densities. The approach of Reddy and Rubin [12] where the

pressure is specified both at inflow and at outflow is inconsistent unless

one happens to know the right pressures before the computation. The

inconsistency and consequent error can be easily demonstrated by one-

dimensional examples.

6. RESULTS

In order to check the MG algorithm,we choose the following analytic-

al solution. It satisfies the continuity equation but gives rise to

source terms in the momentum equations:

U = A + (x+y)m; V = -(x+y)m; P = -(El+E2)(x+y)m (6.1)

where a and b from equations (3) are defined by:

a = E1 + F(x+y)n; b = E2 - F(x+y)n (6.2)

and E1 = i; E2 = .2; F = .2; A = 5; Re = i000; m = 4; n = 2. The

coarsest grid consists of 4 × 4 intervals.

Figure 5 compares the MG convergencehistory of different relaxation

schemes. In the MG solutions three levels were involved (M=3). The

horizontal coordinate gives the number of Work Units (WU), where each

work unit is equivalent to one global iteration on the finest grid. The

vertical coordinate gives the logarithm of the dynamic residual _. The

dots show the solution of the equivalent Poisson equation (with the same

solution for the pressure but with Dirichlet condition over all the

boundaries). The linearized PNS equations were solved with and without

the streamwisepressure gradient correction of [3]. The corresponding

(17× 17 points) single grid convergencehistory is plotted for compar-

ison (for the case of _ = I). The corrected discrete equations and

the Poisson equation exhibit very similar convergencewhereas the conver-

gence of the unmodified equations is much worse. Upon increasing the

number of grids in the unmodifiedequations, the convergencedeteriorates.

The Reynolds number independenceof the scheme is demonstrated in

Figure 6, where the convergencehistory is presented for Reynolds numbers

i, 103 and infinity.

In order to check the non-linear version of the code, several test



18

cases were run; the incompressible flow over a flat plate, the flow

along an axisymmetric cylinder, entrance flow between two flat plates,

and the flow behind the trailing edge of a flat plate. In all cases

good agreement was obtained with known solutions. The details will be

presented elsewhere. Here we show (Figure 7) the convergence history

for a flow over a flat plate with uniform upstream profile and Neumann

condition for the pressure at the exit. While the number of levels is

varied, the finest grid remains the same and consists of 65 x 65 points.

In Figure 8 there is a comparison between the present results for the

flow near the trailing edge of a flat plate and the results of refer-

ence [ii]. The skin friction coefficient CF is shown for z < 1 while

the center line velocity UC is shown for z > i. The trailing edge is

at z = i.
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