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Abstract

This is a report of the results of an experiment: to adapt a Navier-

Stokes code, originally developed on a serial computer, to concurrent

processing on the ICL Distributed A__rrayP__rocessor (DAP). In this paper the

algorithm used in solving the Navier-Stokes equations is briefly described.

The architecture of the DAP and DAP Fortran is also described. The

modifications of the algorithm so as to fit the DAP are given and discussed.

Finally, performance results are given and conclusions are drawn.
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I. INTRODUCTION

The objective of the research reported here was to adapt a Navier-Stokes

code, originally developed on a serial computer, to concurrent processing on the

ICL DAP and to measure the performance of the concurrent version of the code.

Despite the fact that the most powerful existing computers can perform

several hundred MFLOPS (million floating point operations per second), they are

clearly inadequate for many important applications. In part, this inadequacy is

due to the fact that it is generally rather difficult to fully use the vector

capabilities of these "supercomputers". In practice, average processing rates

for many codes are in the range of ten to twenty MFLOPS (see, for example,

Dongarra, 1984). Even if the average processing efficiency could be increased

so as to more nearly reflect the potential processing power of the vector

processors, the processing rates would still be inadequate for many fluid

dynamic applications.

Computational fluid dynamics requires both very large amounts of fast

primary storage, even larger amounts of slow, secondary storage and high average

processing rates. Different individuals and groups have independently estimated

that current needs for some fluid dynamic calculations are, on average, 103

MFLOPS processing rates, 32 x lO6 words of fast primary storage, and 2.56 x 108

words of slow secondary storage. Even higher average processing rates and

larger primary and secondary storage will be needed in the near future.

It appears that future supercomputers will be multiprocessors, in fact

some have already appeared. There are a number of important, unresolved

questions concerning these multiprocessor computers. Among these issues are:

should they consist of a few, rather powerful processors or many, very much less

powerful processors, or something in between? Should the new computers be SIMD

or MIMD? There is a natural expectation that the multiprocessors with a few,

powerful processors will have an MIMD architecture and that the others will have
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SIMD architectures. It seems sterile at this point to argue what, taking into

account total processing power, cost, ease of programming, etc., is the "best"

combination of number of processors and power per processor. Rather, carrying

out experiments with existing multiprocessor computers would appear to be of

greater value.

One approach to concurrent processing for computational fluid dynamics

could be to devlop highly parallel algorithmic modules or kernals to perform

certain computational tasks. Complete computational fluid dynamic algorithms

would then be built by combining these modules. This approach has the advantage

that "good", highly parallel algorithms well suited to the architecture would be

used. It has the disadvantage that much of the algorithmic and code development

effort of the past would be unusable and existing production codes would have to

be abandoned. It would, concievably, be many years before new production codes

would be available.

An alternate approach could be to translate effective algorithms, now

embodied in codes for single processor computers, onto the muiltiprocessor

computer. This has the advantage of using existing, tested algorithms. The

disadvantage is that, because the algorithm may not "fit" the multiprocessor

architecture, this may be very difficult or even impossible. If such

translation is possible, the algorithm may not execute effectively on the

multiprocessor, that is the computational cost may be very high.

There have been a substantial number of theoretical studies of the

performance of algorithms on parallel computers but far fewer actual

experimental studies (see Ortega and Voigt, [1985] for a comprehensive, up to

date review). Even if one agrees that measured performance on an actual

parallel processor is the true measure of computing power, there can be

disagreements as to what performance is to be measured. The time to perform a
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single arithmetic operation, together with the number of processors, can be used

to calculate an upper bound on performance. Such a measure is widely held to be

unrealistic because it does not include any of the omnipresent overhead.

A different approach is to use, as a test problem, the evaluation of a

slightly more complex expression such as a vector dyad, the sum or product of

two vectors or a vector triad, the sum of a vector and the product of two

vectors, etc. (see Hockney and Jesshope [1981] and Hockney [1985] for examples).

While certainly more realistic than using the single operation time, the use of

these test problems can be criticized because they fail to measure the overhead

associated with a complex algorithm and its embodiment in a specific program in

a particular programming language. Thus, these types of tests can be said to

give only a measure of the maximum performance of a microsegment of a code. The

average performance of a complex scientific code is probably quite different,

and less than that of some microsegment. Another approach is to run a specific

algorithm on a particular computer. Despite the fact that this is a very

specific experiment this approach has some advantages, namely it allows an

objective measurement of the performance of a complete algorithm; albeit a

specific one, expressed in a specific parallel language, and executed on a

specific parallel processor; and it can also yield subjective evidence as to how

well an algorithm fits the architecture, how difficult it was to program in the

parallel language, and so on.

The work reported here was just such an experiment. A Navier-Stokes code,

embodying a compact, finite difference form of a vorticity, velocity formulation

of the Navier-Stokes equations (Gatski, Grosch, and Rose [1982]) was

reprogrammed in DAP Fortran and run on the ICL DAP. Although the numerical

scheme and the DAP have been described elsewhere, they are briefly described in

Sections 2 and 3 for the sake of completeness. The implementation is described

in Section 4. The results are given in Section 5. Finally, Section 6 contains



some concluding remarks.
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2. THE ALGORITHM

The basic algorithm used here to solve the Navier-Stokes equations was

first described, along with the results of some test cases, by Gatski, Grosch,

and Rose [1982]. It has since been used by McInville, Gatski, and Hassan [1984]

to study the instability and subsequent nonlinear evolution of a shear layer; by

Gatski and Grosch [1984 a] to study the flow past an open cavity in a boundary;

and finally is being used to study the separating flow past a backward facing

step and the impulsive start of elliptic cylinders [Gatski, and Grosch, 1984

b]. As mentioned above it is briefly described here for the sake of

completeness.

The Navier-Stokes equations for the two-dimensional, time dependent flow of

a viscous, incompressible fluid may be written, in dimensionless variables, as:

ux + Vy = 0 , (2.1)

vx - uy= 7, (2.2)

It + Ulx + V_y = Re-1 ([xx +Iyy), (2.3)

where _ = (u,v) is the velocity, _is the vorticity and Re is the Reynolds

number.

The finite difference scheme used to approximate these equations is based

on a compact difference method described by Rose [1981] and Philips and Rose

[1982]. These schemes involve only variables within and on the boundaries of a

single cell and are second order accurate, with the accuracy independent of the

local cell Reynolds number. Apart from the independence of the accuracy on the

magnitude of the cell Reynolds number, these compact schemes have certain other

advantages in that it is quite simple and straightforward to use variable grids

and to impose boundary conditions.

The compact difference approximation to equations (2.1) to (2.3) can be

briefly described. Consider a rectangular cell, centered at (xi,Yj)' with
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length _ x and height _y, see Figure I, and let unj- u (i_x, jay, nat), for

i, j, and n integers. Define the difference and average operators by:

_xUi,jn - (un + 1/2, j - Ui-I/2, j) /_x, (2.4a)
n

_xUn'j - (un + 1/2, j + Ui-m/2, j) / 2. (2.4b)

Then equations (2.1) to (2.2), hereafter the velocity equations, are

replaced by:

SxUn,j + fyVn,j = O, (2.5)

n n n -1/2 (2.6)xVi,j - _yUi,j = _ i'j

_xUn = n (2.7)j )UyUi'j ,

/x vn, Vn (2.8)j= _yi,j

The vorticity transport equation (2.33) is approximated by the system:

[_t + (_xU[,j)_x + (_yV_,j)_y] n -i_i,j = Re [8x€[, j +_y_,j], (2.9)

fx_' = (/_x- i/2ax q(Bx)_x)_,j (2 IO)j ' •
n n

_y_i'j = (/_y - I/2_y q(Sy)fy) _i'j ' (2.11)

_t] n n n (2.12)i,j = _x_i'j =_y _i'j "

Here, @x and @y are local cell Reynolds numbers given by

@x = Ui'jnReAx/2 , (2.13)

0y = V_,j Reay/2 , (2.14)

and q(O) _ (coth 0) - (i/B) . (2.15)

As was shown by Gatski, et al [1982], the parameter q (@) serves to

reduce the truncation error. Of course q (_) is not computed using the

definition, equation (2.15), as that would be prohibitively expensive because of

the cost of calculating coth (_). Instead the approximation

q(O) = @/3 for 0 small, (2.16a)

= (sgn@) - (i/@) for @ large, (2.16b)

is used, with sgnO _ 0/[@ I .



The solutionprocedurefor these finite differenceequationis

Step (i) Assume that_n-i/2 is known. Then, with one componentof-__i,j

prescribed on the boundary, solve equations (2.5)to (2.8)

by relaxation.

Step (2) Determinethe vorticityboundaryconditions. At inflow

boundaries_ is prescribed. At solid boundaries,an in-

crementof vorticityis createdso that the tangential

velocitycomponentwill equal the speed of the boundary. At

outflow and freestream boundaries the vorticity is

determinedby the flux condition,

a_ + (_._7) _ = 0 (2.17)_t

Step (3) Solve equations(2.9) to (2.11)using an ADI scheme,de-

scribed in detail by Gatski, et al [1982]. Then use

n+I/2
equation (2.12)to advance_in time, yielding _i,j "

Furtherdetails,as needed, will be given in Section4, below, wherein the

implementationon the DAP is described.



3. THE ICL DAP AND DAP FORTRAN

A brief description of the DAP architecture is given here in order to

clarify the way of the Navier-Stokes code, described in Section 2, was adapted

to the DAP architecture. A detailed description of the DAP is given by Hockney

and Jesshope [1981] and in the ICL references which they cite.

The DAP is an SIMD computer with a processor array, a control unit, and an

access control unit, see Figure 2. The complete processor is embedded within an

ICL 2900 system and can be used as a conventional storage unit by the 2900.

Access to the DAP is through the DAP access control unit. The 2900 initiates

the execution of a DAP program by passing control to the DAP master control

unit. Once this is done, the DAP retains control; the 2900 cannot interrupt

program execution.

The DAP control unit is similar to the control unit of a conventional

serial computer. There is an instruction counter, instruction register,

instruction buffer, modifier register; and eight control registers. The

instruction buffer can hold up to 60 instructions, each of which is 32 bits

long. The modifier register acts as a base register for memory references and

the control registers are used for data and/or instruction modifications. The

DAP processes data in a bit serial mode. A 200 ns fetch cycle, in which two

instructions are fetched, and a 200 ns execute cycle are required for an

operation on a single bit. More complex operations such as integer addition,

floating point addition, etc. are microprogrammed using the primitive hardware

operations. This is facilitated by the use of a hardware loop capability,

through the instruction buffer, which permits the rate of instruction execution

to be reduced, asymptotically, to one per cycle. The execution time for typical

high level instruction such as a floating point addition, is quite long,

requiring from about ten to several hundred microseconds. The computational



power of the DAP results from the fact that the arithmetic is performed in a

processorarray,not a single processor.

The DAP processorarray consistsof 4096 single bit processorsarrangedin

a 64 by 64 array. Each processor has a one-bit full adder, three one bit

registers, an input multiplexer, an output multiplexer, as well as a 4096 bit

memory. Thus the processor array has a total of 2 megabytes of memory. This

memory is used to store both data and DAP code, so that in practice the

theoretical maximum of 128 words, each of 32 bits, per processor is usually

reduced to about I00 words of 32 bit data per processor. The DAP has three

basic data modes; matrices which are 64 by 64 arrays, vectorshaving 64 or more

elements,and scalers.

The storage of instructions and data can be easily visualized by

consideringthe DAP memory as a three dimensionalarray of 64 rows, 64 columns,

and 4096 planes. The 32 bit instructionsare stored in planes with two per row.

Matrices are stored on end, so to speak, with each plane containingone bit of

the words. Thus matrices of 32 bit floatingpoint words require32 planes but

logical matrices only a single plane. Vectors with 64 elements are, on the

other hand, stored in one plane with one element per row. Scalersare treated

similarly to vectors.

The DAP array has both global and local communication paths. The global

paths are one bit wide row and column highways (buses). The single bit column

highways interface with the DAP access controller and thus provide the data

paths connecting the DAP to the 2900 host. The column highways are also

connected to the instruction register and master control registers.

Instructionsare fetched from the DAP memory along the column highways and are

sent to the instructionregister. Data and instructionscan also be moved along

the column highways to the master controlregisterswhere they can be modified.

In contrast the one bit wide row highways are only connected to the master
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control registers and are only used to transmit data.

Apart from the data paths internal to the processor, each processor in the

array is connected by four, one bit wide data paths to the four nearest neighbor

processors. Thus instructions may refer to data elements in nearest neighbor

processors. The edge connections can be defined by software in two ways; planer

or cyclic. With a planer connection, data passed out at an edge is lost and

input at an edge is defined to be zero. The cyclic connection defines, as

nearest neighbors, the first and last elements of rows or columns or both.

ICL provides a DAP assembly language and a DAP Fortran, see ICL Manual,

DAP: Fortran Language [1981]. DAP Fortran is an extension of standard Fortran

and incorporates matrix and vector instructions. There is usually very little

advantage to using the assembly language instead of DAP Fortran, as the Fortran

routines are highly optimized and the overhead associated with them is only of

the order of 10%. Some typical Fortran statements, their execution times, and

processing rates are listed in Table 1.

The processing rate is found by dividing the number of operations, 4096 for

matrices and 64 for vectors, by the execution time. Although this is quite

straightforward for a simple arithmetic operation, such as the addition of two

matrices, there is a difficulty when we consider data transfer operations.

Traditional complexity analysis, that is operation counting, has ignored the

cost (time) of data movement. While this may be justified for conventional

architectures, it is certainly not always true for processor arrays such as the

DAP. For example, Grosch [1979] has shown that the data transfer cost (time)

can be the major portion of the cost in the implementation of relaxation and

direct Poisson solvers on processor arrays with architectures similar to the

DAP. Because of the importance, and possible dominance, of the data transfer

cost, all data transfers are counted as floating point operations and the time
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to complete them is includedin the totaloperationtime. Thus, the first

Fortran statement, a matrix transfer, is counted as 4K floating point operations

with an execution time of 17 _s, yielding a processing rate of 241MFLOPS.

Logical matrices may be used as masks in arithmetic operations. The third

Fortran statement in Table 1 is an example of this capability. The index, L, is
\

a 64 by 64 logicalmatrixof one bit elements. The resultsof the righthand

side arithmetic operation, here an addition, are stored in those elements of Z

for which the corresponding elements of L are true.

DiP Fortran provides an extensive set of built-in functions, which belong

to one of three types: computational, aggregate, and error management. The

computational fuctions include most of the standard Fortran functions, ABS,

SQRT, EXP, SIN, and so forth. The execution times and processing rates for some

of these are listed in Table I. These timings show the advantages of bit level

processing. For example, a SQRT is calculated in only about 111% of an addition

time because a bit level Newton interation scheme is used. Similarly, the EXP

is evaluated in little more than one divide time. Although only examples of

matrix functions are given in Table i, the arguments of the computational

functions may be of any mode (matrix, vector, or scalers) and the result will be

of the same mode.

The aggregate functions perform nonnumeric operations, that is data

manipulations, on vectors or matrices. Although generally not considered in

standard complexity analysis, efficient implementation of the aggregate

functions can be the "sine qua non" for efficient use of processor arrays. The

implementation of this class of functions on the DAP is very efficient, for

example the TRAN function, which transposes a matrix, is completed in about

four addition times.

Mixed mode expressions, containing sealers and vectors or sealers and

matrices, are permitted in DAP Fortran. The scalers are expanded to either
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vectors or matrices in context. The vector-matrix combination is invalid

because of the ambiquity in interpretation; the vector could be expanded either

as a matrix of column vectors or of row vectors. The programmer must, in order

to have a vector-matrix combination, use either MATC which generates a matrix of

column vectors or MATR which generates a matrix of row vectors.

The MERGE function sets the elements of matrix Z equal to the corresponding

elements of X, for those elements of L which are true, and to the corresponding

elements of Y, for those elements of L which are false. This function can be

used to implement conditional, data dependent calculations. For example, a

branch instruction with two branches can be implemented by (I) calculating the

results of the first branch and storing them in matrix X; (2) calculating the

results of the second branch and storing them in Y; (3) generating the mask

using the data test with, say, true denoting the first branch and false the

second branch; (4) finally, calling MERGE.

By convention the first index of a matrix, the I of X (l,J), labels the

rows and the second labels the columns, see Figure 3. The DAP convention labels

the first row of the array as the North and the first column as the West. These

conventions are used in the shifting functions, SHEP (X,N) for example. This

function shifts (SH) the X matrix N columns to the East (E), ie the first column

of X becomes the N+I column. The P denotes a planer shift so that the last N

columns of X are shifted out of the array and the first N columns are filled

with zeros. If N is not given it will be taken to be one, and if N is greater

than or equal to 64, the shift will be modulo 64. The SHEC function performs a

cyclic shift in the East-West direction on the matrix. Single row or column

shifts can also be accomplished by using the + or - notation. For example X(,-)

is equivalent to SHEP(X). When using the ± notation the shifts are planer by

default, but a GEOMETRY declaration can be used in any subroutine to declare the
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East-West or North-South shifts, or both, to be cyclic.

The MAXV function returns the maximum element of X, with an option to test

only those elements of X for which the corresponding elements of L are true.

The use of bit level processing yields high efficiency for this function.

Finally, the SUM function calculates the sum of all of the elements of X. It is

noteworthy that this requires an execution time which is slightly less than two

addition times, rather than the 12 (4096 = 212) that might have been expected.

Figure 4 shows, in block form the structure of a typical program. There

can be more than one DAP entry subroutine in a Fortran program, as is shown in

this figure. The call to the DAP entry subroutine must not have any arguments;

all data is transferred via COMMON blocks. Immediately after entering the DAP

entry routine and, again, before returning to the calling routine, the data in

COMMON must be converted. This is because the data storage of standard Fortran

is different from that of the DAP, as described above. The conversion routines,

for example CONVFME (see Table I), are extremely expensive in time and so the

number of transfers between standard and DAP Fortran should be minimized. In

particular, this affects the way in which input and output must be handled.

Because of the difference in data storage format, there is no input or output

from the DAP. The program must return from the DAP segment, at the cost of a

conversion, perform the input and/or output and return to the DAP, at the cost

of another conversion. Because of this overhead cost of conversion, input and

output calls must be minimized. The data can be stored and output, say, done

after final return from the DAP.
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4. IMPLEMENTATION

The data structure of this algorithm, as presented in section 2, does not

quite fit the DAP architecture. This is because the difference scheme is a

compact one with the dependent variables defined on the cell edges rather than

at the corners of a cell as in more familiar schemes. For an N by N array of

cells there are N by N+l cell sides and N+l by N cell tops. So with the

velocity, for example, defined on the cell edges the data arrays do not map

directly onto an N by N array of processors.

On the other hand, there are certain advantages to using the compact

difference scheme on the DAP. First, the application of boundary conditions is

quite simple. There is no need to introduce "ghost" points outside of physical

boundaries. Second, all derivatives are evaluated using variables which can be

seen to be nearest neighbors on the computational grid (see Section 2). Thus,

the amount of long range communication is minimized.

The adaptation of this algorithm to the DAP architecture can be simplified

by the introduction of box variables to represent the velocity field. The

center of a cell is at (i,j). The box variables, P, are defined at the corners

of the cells, points (i!l/2,j!I/2). They are related to the velocity U by

_i, j+_I/2= (P-_i+I/2,j+_i/2+ P-_i-l/2,j+_i/2)/2 (4.l)

U-_i±I/2,j= (_i±I/2,j+I/2 + _i+_I/2,j-I/21/2 (4.21

It is obvious that equations (2.7) and (2.8) are satisfied identically for any

set of box variables. For the cell (i,j), equations (2.5) and (2.6) are

AP = Z (4.3)

where P_j = (Pij, Qij)T (4.4)

and
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j-i/2

I° 2)
I

t Pi-ll2,j-l12

=(INi,j -i >_i,j 1 -Xi, j i -_ki,j -i I , (4.6)A k 1 _i,j-I _ki,j -I-_i,j I -_i,j

i,j m (_ y)i/(_ x)j , (4.7)

is the aspect ratio of cell (i,j).

The box variables lie at the vertices of the computational grid. The

storage pattern used on the DAP is to store Pi-1/2,j+l/2,_i,j, and _i,j in

memory of processor (i,j). Thus with a 64 x 64 array of processors there is an

array of 63 x 63 cells and for each cell we have equation (4.3).

The set of equations is solved by an iteration scheme which was originally

proposed by Kaczmarz [1937] and generalized by Tanabe [1971]. If p(k) is the

value after the k'th iteration, then the residual after the k'th iteration,

R(k), is given by

R(k) = AP(k) - Z. (4.8)

The next iteration is

p(k+l) = p(k)__AT(AAT)-IR(k), (4.9)

which, if _ l, would give

R(k+l) _ O. (4.10)

For Lo 4 I, this is an SOR scheme. On a serial computer the array of

computational cells is swept over, applying equation (4.9) to each, until the

maximum residual is reduced to the desired level.

The key to the adaptation of this relaxation scheme to the DAP is the

realization that each P is updated four times in a sequential sweep over the

array of cells. For example, see Figure 5, if the sweep is across the columns
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and then down the rows, Pi+i/2 ,j+I/2 is changed during the relaxation of cell

(i,j) first, then of cell (i,j+l), then cell (i+i,j), and finally cell

(i+l,j+l). In each of these cases Pi+I/2 ,j+i/2 lies at a different corner of

the cell being relaxed. It is therefore clear that the cell iteration scheme

for the box variables is a four "color" scheme.

The DAP scheme is therefore to relax all of the P's four times; in the

first pass a particular P is treated as lying in the lower right-hand corner of

the cell and is labelled I; in the next pass, labelled 2, as lying in the lower

left-hand corner; in the third, labelled 3, as lying in the upper left-hand

corner; and finally in the last pass, labelled 4, as being in the upper right-

hand corner of the cell.

In detail, the DAP algorithm is implemented by

(I) Computing the residuals, R(k), for all cells using equation (4.8).

(2) Computing the correction to p(k) for all cells, as given in equation (4.9).

Note that the coefficients in the matrices A and

B m AT (AAT)-I (4.11)

are precomputed once and for all and are stored.

(3) Correct and restore the P's.

This sequence must be completed four times in order to complete a sweep.

The only difference between these sequences is the assignment of the data in a

particular processor memory to one of the four logical positions in a

computational cell. This is easily done using logical masks which also mask out

boundary values. The overhead caused by these data transfer is about 7% of the

total.

Figure 6 shows the kernel of the DAP relaxation routine. The subroutine

call statement, COMMON statements, declaration of temporary arrays, shifts of

the data into temporary arrays, etc. are not shown in this figure. The TP's
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TQ's , and R's are temporary matrices of real numbers. The P,Q, matrices are

the first and second components of the box variables, and ZT is defined by

equation (4.5). Finally the ZLT matrix contains the values of _ i,j and CT is

a matrix of coefficients obtained from equation (4.11). The acceleration

parameter,_ , is included in CT.

The residuals for all cells are computed in the first block of six DAP

Fortran statements. These are stored in RI and R2. The next set of four

statements computes the terms in the correction, see equation (4.9), to the

current values. The box variables are finally updated in the next eight

statements.

Figure 7 show the DAP Fortran code used to compute the maximum residual.

The residual matrices are zeroed, and the absolute values of the components of

the residual vector are computed, as above. The matrix MR masks off the

meaningless values generated at the bottom and right hand sides of the array.

The RI and R2 matrices are merged to form a matrix of maximum values. The MAXV

function is then used to extract the maximum residual.

Apart from the branch instructions in the DO loops and GO TO, there are

only three scaler operations in this subroutine. The first of these sets an

error flag to zero, the next is used to test the maximum residual against the

convergence tolerance. If the iteration does not converge in a specified number

of interations, the last of the scaler operations sets the error flag to unity.

The calculation of the velocity field is the first major piece of the

algorithm; the time stepping of the vorticity is the other. The first step in

the vorticity calculation is to set the vorticity boundary conditions, as

defined in Section 2. This relatively expensive because it involves only

vector operations to generate the vectors of boundary values. A typical segment

of the code is shown in Figure 8.
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Here equation (2.6) is used to calculate the vorticity at a solid boundary

at y = 0. It has been assumed that the heights, _y, of the first two cells

bordering the boundary are equal. This gives

(Boundary) = (1/2 u(x,2 _ y)-2u(x,_ y)/ _y, (4.12)

The fact that the velocity is the average of two adajacent box variables

has also been used to simplify the coefficients in this piece of code. In this

figure U2, U3, and ZBOT are 64 element vectors. ZBOT is the vector of boundary

values of the vorticity. Note that U2 and U3 are formed by the reduction

operation of extracting a row from a matrix. In contrast, VEC(DY(63)) forms a

vector by expanding the scaler DY(63). Similar code segments involving vectors

are used to calculate the boundary values of the vorticity on the other three

boundaries.

Once the boundary values of the vorticity have been calculated, one can

proceed to the solution of the advection diffusion equation for the vorticity,

equations (2.9) to (2.15). As was discussed by Gatski, Grosch, and Rose [1982]

and Gatski and Grosch [1985], T n+l/2 is eliminated between equations (2.9) and

(2.12). This gives an implicit system for 3n, which is then solved by an ADI

n n •

method. In the first pass one solves for the set { _i+i/2,j, _i+I/2,j},I =

n rl/2. In the second pass the setO,1,...for all j, using the values of _i, 3
n n

{_i,j+l/2' _i,j+l/2 }' J = O,1...for all i, is solved for. Using these values

T_,_ 1/2, we solve for the next approximation to { _+1/2,j'
and

_il/2,j},n and

so on. In the first pass the set { n_i+i/2,j } is the solution of a tridiagonal

system, ie,

ai,j _n _n =i-I/2,j+ bi,j i+i/2,j+ ci,j [ni+3/2,j qi,j (4.13)

for i = 1,2...,and fixed J. Taking ] = 1,2...gives a set of N tridiagonal

equations, each for N variables. Next we solve for the set {@i+i/2,j}. The

next pass requires the solution of a similar set of tridiagonal systems for
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i,j+I/2], then solving for { _,j+i/2}" One then repeats this sequence.

It can be seen that the coefficients {aij, bij,cij}, for both passes are

functions of the velocity and the parameters (4 t/_ x), (_ t/Re ax2), and the

cell Reynolds numbers. The forcing terms, the {qij}, must be recomputed after

each pass. For example, when solving for the [_+i/2,j} , the q's are functions
n n

of the {_i'j+I/2'_i,j+I/2}" Once the vorticity at time level nm t is computed

using this ADI scheme, the time advance of the vorticity can be the fact that

the time average equals the space average, completed by using see equation

(2.12).

Each pass of the implicit ADI step requires that the coefficients and

forcing terms of the tridiagonal systems be computed. This can be done

concurrently for all N systems, ie all systems in rows or all systems in

columns. A portion of the DAP Fortran code to accomplish this is shown in

Figure 9. The average velocity in the cells is computed in the first four

statements. The next seven statements calculate various terms needed to compute

the a's, b's, and c's. They are combined in the next block of four statements

to form_-,_-, _+, and _+. The next three statements compute the remaining

temporaries required to set the forcing terms, the qij of equation (4.13), for

all of the equations. Note that two of these statements evaluate the advective

and diffusive terms for the orthogonal direction. These terms are then combined

to form the qij matrix. But note that two additional vector operations are

required to set the boundary conditions. Finally, thews and _'s are combined

to give the coefficient matrices for the tridiagonal systems.

The block of code given in Figure 9 constitutes one pass in one direction

and, as such, is about one quarter of the total amount of code to implement the

ADI scheme for equations (2.9) through (2.15). This segment of DiP Fortran, to

compute the vorticity at the tops and bottoms of cells at time level n, is not

completely optimized. There are several uses of the MATC and MATR functions to
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expand vectors to matrices. These matrices could have been precomputed and

stored, but it was decided to minimize the storage used at the cost of a few

expansions and matrix arithmetic operations. It is also possible, by judicious

redefining of some of the temporary matrices, to save two or three matrix

additions in this code segment. However it was decided to forego this in the

interest of clarity of presentation.

There are two matrix functions in the DAP Fortran code shown in Figure i0.

The first of these is QTHETD. The function implements the q(@) function as

defined in equations (2.16 a,b). It is programmed using the MERGE for

evaluating a two branch function as described in Section 3. The second matrix

function is TRIIED, the tridagonal solver.

The DAP Fortran routine TRIIED is given in Figure 9. There are 64 sets of

64 equations for the vorticity values on the tops of the cells. These equations

are solved by the cyclic elimination algorithm, which is the cyclic reduction

algorithm (see Hockney and Jesshope, [1981] applied to all of the equations.

This eliminates the back substitution phase of the reduction algorithm.

This subroutine is reasonbly efficient but does contain some hidden defects

which are inherent in the algorithm. The shift parameter, K, takes on the

successive values 2k for k = 0,1,...,5,so that in each pass 2k rows of data are

shifted off the array and, more importantly, 2k rows of zeros are shifted onto

the array. Thus, although all of the processors are active all of the time,

some of these processors are not doing useful work because they are multiplying

by zero or adding a zero. This must be taken into account in any fair

calculation of processing rate.

The final calculation in a time step is the computation of the total

energy, vorticity and enstrophy (the squared vorticity), as diagnostic measures.

This is a simple, straight-forward computation using the SUM function. Details

will not be given.
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5. Results

The numerical algorithm, the DAP architecture and DAP Fortran, and the

adaptation of the algorithm to this architecture were presented in previous

sections. Timing and performance results are given in this section.

The host program is a standard Fortran program in which COMMON blocks

containing box variables, P and Q, the vorticity, the grid sizes, etc. are

defined. The host program also handles the input and output, initialization of

variables and the calling of the DAP Entry routine. There is only a small

amount of computation in the host program and therefore the amount of time spent

in this section is insignificant. This is evident once it is realized that the

DAP Fortran section is run for a hundred, perhaps several hundred, time steps in

a typical case.

In the DAP Entry routine all of the variables which were passed through

COMMON are converted from Fortran to DAP format. This is a fairly costly

operation: a matrix conversion takes 2252 _s, and a vector or scaler conversion

about 50 _s. In total, 7 matrices, 28 vectors, and 23 scalers are converted on

entry to the DAP program. This takes 18.3 ms which is a little over lO0

addition times. This is a significant overhead only if it is repeated every

time step. Because tens, or hundreds, of time steps are taken for each call to

the DAP Entry routine, this overhead, and that of conversion upon leaving, is

quite unimportant. The only other initialization task in this entry routine is

to generate the one bit logical masks. The total time for this is only about

150 _s; less than one addition time. Again this is negligible.

From this discussion it should be clear that the only substantial costs are

those associated with the application of the numerical algorithm for each time

step. The total overhead in the host Fortran program and in the data

conversions in the DAP Entry routine can be shown to be less than the cost of

three iterations in the relaxation routine. In the calling sequence in the

22



Entry routine there are only four tests on flag variables and seven scaler

arithmetic operations per time step and the time to do this is less than one

fifth of that to carry out one relaxation iteration; a typical time step would

require about fifty iterations.

The required sequence of calls to the various DAP Fortran routines in order

to advance the Navier - Stokes algorithm one time step is: RELAXD (solves for

the velocity field by relaxation), FIXZBD (calculates boundary values of the

vorticity), ZCALCD (advances the vorticity in time); and FNORMD (calculates the

total energy, vorticity, and enstrophy of the field). In ZCALCD there are calls

to the matrix functions discussed previously, QTHETD and TRIIED. The fuction

TRIIED solves tridiagonal equations distributed over columns. There are also

calls in ZCALCD to the matrix function TRIJED which solves tridiagonal equations

distributed over rows.

Table 2 contains a list of these subprograms; the execution time for each,

that for one iteration in the case of RELAXD; and the processing rate. The

processing rate is determined by taking the ratio of the number of effective

arithmetic operations to the total execution time for the subprogram. In

counting the number of effective arithmetic operations only those operations

which truly contribute to the solution are counted. In those cases for which

some of the processors are not performing useful work, as in TRIIED as described

previously, those processors are not counted. Data transfer operations, vital

as they are, were not counted as floating point operations. However, the time

required to do these transfers was included in the total execution time.

One can see that there is a wide range in both execution time, from I to

over 200 msec, and processing rates, 0.3 to 20 mflops, for these subprograms.

The amount of time spent on data transfers is quite modest for most of the

subprograms; in general 2% to 7% except for TRIIED and TRIJED.

There are two reasons why the data transfer overhead is generally so
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unimportant. The first is that the basic algorithm does not contain many data

transfers and these transfers are only between nearest neighbors. The local

nature of the data transfers is due to the fact that the differencing scheme is

a compact one. The second reason is that the DAP has very efficient data

transfer hardware, yielding rates in the neighborhood of 200 x lO6 words per

second. In contrast to most of the subroutines, 27% of the execution time is

used by data transfers in the tridiagonal solvers. These subroutines are mostly

data transfer operations, in fact only 18% of the operations are arithmetic

operations, but these transfer operations take up only about a fourth of the

time because of the efficient implementation of data movements on the DAP.

The subroutine FIXZBD, used to calculate the boundary values of the

vorticity, is very inefficient with a processing rate of only 0.3 mflops. This

is because there are only vector operations in this subroutine and the vector

processing rate is 1/64 of that for matrix operations. Fortunately, the

execution time of FIXZBD is a small fraction, approximately 0.5%, of the total

execution time if a time step requires only one iteration and about 0.04% of the

total execution time if there are I00 iterations per time step. It is obvious

that: FIXZBD uses only vector operations; has a very low efficiency; and has a

negligible effect on the overall efficiency of the code. It would seem that

this conclusion concerning the setting of boundary conditions is independent of

the structure of the algorithm.

Subroutine ZCALCD, within which the vorticity is advanced in time, consists

of two principal operational parts: the generation of the coefficients for the

tridiagonal systems and the solution of these tridiagonal systems. Within this

subroutine there are a number of vector and scaler operations, but the time

required to evaluate them is only about 14% of the total. Generation of the

coefficients for the tridiagonal systems takes about 42% of the execution time

so that even if the tridiagonal solvers ran in zero time the execution time
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would only decrease by a factor of two and the processing rate double. The

effective processing rate of I0 megaflops for this routine is due to, first the

vector and scaler operations required to generate the coefficients of the

tridiagonal systems and, second, the large number of data transfers required in

the tridiagonal solvers. The average processing rate is approximately half the

maximum possible rate. Given the necessity of treating boundaries and solving

the tridiagonal systems, there doesn't seem to be any more efficient way to

handle these problems than that adopted here.

The overall processing rate depends on the number of iterations per time

step. It is clear that if the physics of the flow is such that the field is

evolving rapidly then, with a modest size time step, there will be a large

change in the velocity per time step. This will require a substantial number of

iterations in RELAXD per time step. The alternative is, of course, to choose a

small enough _t so that the number of iterations is small. Considering that

the relaxation routine in the most efficient of all of the routines, extra

iterations for a larger time step would appear to be a reasonable trade off.

This is apparent when one considers some reasonable scenarios. If there is

one iteration per time step, the execution time per step is 0.26 seconds and the

processing rate is 11.3 mflops. If _t were increased and there were i00

iterations per time step then the execution time would increase to 3.25 seconds

per time step, but the processing rate would also increase to 19.5 mflops.

There is one further observation of interest. The DAP Fortran code reveals

blocks of DAP instructions whose structure suggests a way in which this

algorithm might be adapted to an MIMD machine. On an MIMD machine, there would

appear to be a basic requirement for a "good" program: that there be reasonably

large blocks of code which do not require sychronization or have likely memory

conflicts. The size of the code blocks is to be intrepreted to mean the product

of, say, the numbers of arithmetic operations per grid point and the number of
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grid points in the field.

Consider, first, the relaxation routine. This can be partitioned in at

least three ways; geometrically, by color, and in combination. One could split

the array of cells into subarrays and relax these without synchronization. This

would be a form of chaotic block relaxation. This would probably converge under

some conditions, and deserves some study. Color partitioning among four

processors would be a simple extension of the algorithm which was implemented on

the DAP. A combined scheme might be quite effective.

If we consider the DAP Fortran code for the ADI scheme, Figure 8, we can

see that there are blocks of code which contain independent instructions. For

example in Figure 9, the calculation of U and V are independent. If the next

block of code is rearranged so that QT is computed first, then the other six

statements are all independent of each other. The next block of four statements

are also independent, and so on. Finally the tridiagonal systems are all

independent.

One can thus see that there are, on the average, blocks of 4 or 5

independent statements in the code. Each of these performs the same calculation

in all processors. These calculations can thus be split up among the

independent processors of an MIMD computers. Without considering the details of

the MIMD machine it is difficult to say more, but it appears that this algorithm

might be a good candidate for MIMD architectures.
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6. Concluding Remarks

The adaptation of the Navier-Stokes algorithm to the DiP architecture was

quite straightforward and fairly successful. Even though there are a few

sections of the code where vector, rather than matrix, operations were used,

these slow operations did not significantly effect the overall performance

because there are so few of them. There are even fewer scaler operations. The

overall performance of the algorithm ranges from l0 to 20 megaflops, depending

on the number of iterations per time step. This is really about as good as one

could expect, given the basic performance of the DAP. In general the data

transfer overhead is only a minor part of the calculation. This is due to the

high transfer rate, as compared to the arithmetic processing rate. The only

routine that contains many transfers is the tridiagonal solver. It seems

inherent in the algorithm that this is so. It might be desirable to change the

basic Navier-Stokes algorithm and use a relaxation scheme, say, in place of ADI.

Finally it must be noted that a good deal of the success in adapting this

algorithm to the DAP is due to the fact that it is for a two dimensional problem

and the computational array size was chosen to fit the size of the DAP array.

Further work is needed to examine the effect of using a much larger

computational array and treating three dimensional problems.
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DAP Fortran Statment Execution Time Processing Rate
(microseconds) (MFLOPS)

Z = X 17 241
Z = X+Y 175 23

Z(L) = X+Y 179 23
Z = X*Y 274 15
Z = X/Y 386 ii
Y = SQRT(X) 194 21
Y = EXP(X) 414 i0
Y = SIN(X) 862 5
Y = TRAN(X) 714 6
X = MArC(V) 31 132
X = MATR(V) 31 132
Z = MERGE(X,Y,L) 50 82
Y = SHEP(X,32) 227 577
Y = X(,-) 23 178
Y = SHEC(X) 23 178
Z = X(+,)+Y(,-) 221 56
Z = X(+,+)+Y(-,+) 267 77
S = MAXV(X) 56 73
S = MAXV(X,L) 57 72
s = SUM(X) 450 9
CALL CONVFME(X) 2252 2

Table I. Examples of DAP Fortran statements, execution times, and the
corresponding processing rates. Here X, Y, and Z are 64 by 64 matrices of 32
bit floating point numbers; L is a 64 by 64 single bit logical matrix, ie a
mask; V is a 64 element vector of 32 bit floating point numbers; S is a 32 bit
floating point scaler.
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Subprogram Execution Proportion of Processing
Time (msec) Transfer Time (%) Rate (MFLOPS)

RELAXD 30.2* 6.9 20.2
FIXZBD 1.4 5.9 0.3
ZCALCD 222.4 3.0 10.1
FNORMD 5.4 2.8 15.1

QTHETD 1.6 2.1 5.0
TRIIED 32.0 27.2 lO.l
TRIJED 32.0 27.2 lO.1

*Per Iteration

Table 2. Summary of results.
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associated with it.
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TPI = P1 - P3
TP2 = P2 - P4
TQI = Q1 - Q3
TQ2 --Q2 - Q4
R1 = ZLI*(TPI+TP2)-TQI+TQ2
R2 = TPI - TP2+ZLT*(TQI+TQ2)-ZT

TPI = CT_RI
TQI --ZLT*TPI
TP2 -- CT*R2
TQ2 = ZLT_TP2

Pl= PI-TQI-TP2
Q1 = QI+TPI-TQ2
P2 = P2-TQI+TP2
Q2 = Q2-TPI-TQ2
P3 = P3+TQI+TP2
Q3 = Q3-TPI+TQ2
P4 = P4+TQI-TP2
Q4 = Q4+TPI+TQ2

Figure 6. Kernel of the relaxation subroutine in DAP Fortran.
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R1 = 0.0
R2 = 0.0
TPI= P(+,+)-P
YP2 = P(,+)-P(+,)
TQI = Q(+,+)-Q
TQ2 = Q(,+)-Q(+,)
El(MR)= ABS(ZL*(TPI+TP2)-TQI+TQ2)
R2(MR)= ABS(TPI-TP2+ZL*(TQI+TQ2)-Z)
ERR = MAXV(MERGE(RI,R2,RI.GT.R2))

Figure 7. DAP Fortran code to compute the maximum value of
the residuals.

U2 = P(63,)
U3 = P(62,)
U2 = U2+U2(+)
U3 = 0.25*(U3+U3(+))
ZBOT= (U3-U2)/VEC(DY(63))

Figure 8. DAP Fortran code to calculate the boundary values
of the vorticity at a solid wall.
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u = P+P(+,)
U = 0.25*(U+U(,+))
v = Q+Q(+,)
V .= 0.25*(V+V(,+))

TI = 0.51MATC(RLY)
T2 = HATC(RKY)
QT = QTHETD(0.5*RE*V*HATC(DY))
cc: QT-I.0
QQ = QT+I.0
AA = 1.0+V*MATC(RLY)
BB = 1.0-V*MATC(RLY)

ALFAM = TI(-,)*(CC(-,)*AA(-,)+T2(-,))
BETAM= TI(-, )*(CC(-, )*BB(-, )-T2(-, ))
ALFAP= TI*(QQ*AA+T2)
BETAP= TI*(QQ*BB-T2)

CC = O.5/MATR(DX)
AA = ZETA-DT*CC*(U*(ZXC,+)-ZX)-(PHI(,+)-PHI)/RE)
BB = ZETA(-,)-DT*CC(-,)*(U(-,)*(ZX(-,+)-ZX(-,))-(PHI(-,+)-PHI(-,))/RE)

QQ = 2.0*((1.O-QT(-,))*TI(-,)*BB+(I.O+QT)*TI*AA)
QQ(1,) = ZTOP
QQ(64,) = ZBOT

AA = BETAP
AA(I,) = 0.0
AA(64,)= 0.0
BB = ALFAP-BETAM
BB(1,) = 1.0
BB(64,)= 1.0
CC ---ALFAM
CC(I,) ,=0.0
CC(64,) = 0.0

ZY = TRIIED(AA,BB,CC,QQ)

Figure 9. A portion of the DAP Fortran code to carry out
the ADI calculation.
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MATRIXFUNCTIONTRIIED(A,B,C,Q)

REALA(,),B(,),C(,),Q(,)

K = I

DO I00L = 1,6
A = A/B
c = C/B
Q = Q/B
Q = Q-A_SHNP(Q,K)-C_SHSP(Q,K)
B = I.O-A_SHNP(C,K)-C_SHSP(A,K)
A = -A_SHNP(A,K)
C = -C_SHSP(C,K)

I00 K = K+K

TRIIED = Q/B

RETURN
END

Figure i0. Tridiagonal equation systems solver in DAP Fortran.
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