
Compiled by:
P. Panda
V. Gray
C. Marsh

September 1, 1985

Prepared for
U.S. Department of Energy
Through an Agreement with
National Aeronautics and Space Administration
by
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

JPL Publication 85-52

Compiled by:
P. Panda
V. Gray
C. Marsh

September 1, 1985

Prepared for
U.S. Department of Energy
Through an Agreement with
National Aeronautics and Space Administration
by
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

JPL Publication 85-52
TECHNICAL REPORT STANDARD TITLE PAGE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>85-52</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

|-----------------------|-------------------------|--------------------------------|

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Panda</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Performing Organization Name and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>JET PROPULSION LABORATORY</td>
</tr>
<tr>
<td>California Institute of Technology</td>
</tr>
<tr>
<td>4800 Oak Grove Drive</td>
</tr>
<tr>
<td>Pasadena, California 91109</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Work Unit No.</th>
<th>11. Contract or Grant No.</th>
<th>12. Type of Report and Period Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JPL Publication</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Type of Report and Period Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPL Publication</td>
</tr>
</tbody>
</table>

|---------------------------|

<table>
<thead>
<tr>
<th>15. Supplementary Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sponsored by the U.S. Department of Energy through Interagency Agreement DE-AM04-80AL13137 with NASA; also identified as DOE/JPL-1060-87 and as JPL Project No. 5105-160 (RTOP or Customer Code 776-81-62).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>The bibliographical listings in this publication are documentation products associated with the Solar Thermal Power Systems Project carried out by the Jet Propulsion Laboratory from 1976 to 1986.</td>
</tr>
</tbody>
</table>

| Documents listed herein are categorized as conference and journal papers, JPL external reports, JPL internal reports, or contractor reports (i.e., deliverable documents produced under contract to JPL). Alphabetical listings by titles were used in the bibliography itself to facilitate location of the document by subject. Two indexes are included for ease of reference: one, an author index; the other, a topical index. |

<table>
<thead>
<tr>
<th>17. Key Words (Selected by Author(s))</th>
<th>18. Distribution Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Conversion</td>
<td>Unclassified-Unlimited</td>
</tr>
<tr>
<td>Energy Production</td>
<td></td>
</tr>
<tr>
<td>Solar Cells</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>94</td>
<td>JPL 0184 R 9/83</td>
</tr>
</tbody>
</table>
The bibliographical listings in this publication are documentation products associated with the Solar Thermal Power Systems Project carried out by the Jet Propulsion Laboratory from 1976 to 1986. Documents listed herein are categorized as conference and journal papers, JPL external reports, JPL internal reports, or contractor reports (i.e., deliverable documents produced under contract to JPL). Alphabetical listings by title were used in the bibliography itself to facilitate location of the document by subject. Two indexes are included for ease of reference: one, an author index; the other, a topical index.
ACKNOWLEDGMENTS

The Solar Thermal Power Systems Project Office and Leuann Burrus of the Solar Data Library provided valuable assistance in locating documents for this bibliography. Appreciation is also expressed to Leonard Jaffe who prepared the topical index and to Justine Weiher and Arlene Rush of the JPL Document Review Group who helped prepare the contractor report section.

This report was compiled by the Jet Propulsion Laboratory, California Institute of Technology, for the U.S. Department of Energy Solar Thermal Division Technical Program Integrator at Sandia National Laboratories-Livermore through an agreement with the National Aeronautics and Space Administration (NASA Task RE-152, Amendment 342, Change 7; SNL(L)/DOE/NASA Interagency Agreement No. 92-9458).
CONTENTS

I. **INTRODUCTION** .. 1-1

II. **CONFERENCE AND JOURNAL PAPERS** 2-1

III. **EXTERNAL DOCUMENTS** 3-1

IV. **INTERNAL DOCUMENTS** .. 4-1

V. **CONTRACTOR REPORTS** ... 5-1

VI. **AUTHOR INDEX** .. 6-1

VII. **TOPICAL INDEX** .. 7-1

VIII. **CONTENTS OF ANNUAL REVIEW PROCEEDINGS** 8-1
In 1976, the Jet Propulsion Laboratory (JPL) was given responsibility for solar thermal parabolic dish technology development by the Energy Research and Development Administration (predecessor agency to the current U.S. Department of Energy). Initial comparative assessment studies conducted by the JPL Solar Thermal Power Systems (TPS) Project showed that, in addition to central receivers, distributed receivers (such as dishes having power conversion units at their focal points) had potential for cost-effective production of electricity.

This bibliography of JPL-related efforts in solar thermal parabolic dish/dish-electric technology development is a comprehensive list of reports published by JPL and its contractors during the period from 1976 through 1985. It was assembled to help facilitate an orderly transition of work on this technology from JPL to Sandia National Laboratories—Albuquerque (SNLA) during 1984. Compilation of the listings was made through reference to records kept by the TPS Project and the JPL library and through a survey of documents used as sources for TPS work. Material was also contributed by individuals who were involved in the TPS Project during the eight-year period.

An objective in assembling the bibliography was to include those publications deemed most central to the work of the project and those for which complete reference background is available. Not included are status reports that were prepared periodically for specific events and would be less useful from a technological perspective. The bibliography, which covers the full range of the TPS effort from the standpoints of time, subject matter, and participants, is divided into seven parts:

(1) Conference and Journal Papers
(2) External Reports
(3) Internal Reports
(4) Contractor Reports
(5) Author Index
(6) Topical Index
(7) Contents of Annual Review Proceedings

Papers in the first four categories are arranged alphabetically by title to aid in identification of subject material. The topical index provides more specific guidance for locating a particular area in which the TPS Project was involved. Because many papers by JPL personnel as well as contractors were presented at the TPS annual reviews, the contents of five review proceedings (covering activities from January 1979 through December 1983) are listed in Section VIII.
The majority of the publications are included in a library of JPL documents managed by the DOE Solar Thermal Division's Technical Program Integrator's Office at Sandia National Laboratories in Livermore, California. Copies of external publications listed can be obtained from the National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield, Virginia 22161.
SECTION II
CONFERENCE AND JOURNAL PAPERS

Dynamics and Control of Stirling Engines in a 15-kWe Solar Electric Generation Concept, R.L. Das and K.A. Bahrami, 14th Intersociety Energy Conversion Engineering Conference, Boston, Massachusetts, August 1979; American Chemical Society, 1979.

Effects of Pointing Errors on Receiver Performance for Parabolic Dish Solar
Concentrators, R.O. Hughes, 13th Intersociety Energy Conversion Engineering
Conference; San Diego, California, August 1978.

Effects of Surface Optical Characteristics on Point-Focusing Solar Collectors,
L. Wen and R. Caputo, Selective Absorber Coating Workshop, Golden, Colorado,
December 1977.

Effects of Thermal Buffer Storage Performance on Parabolic Dish Solar Power
Systems, Y.C. Wu, Third International Conference on Alternate Energy Sources,
Miami Beach, Florida, December 1980; "Alternative Energy Sources III," Vol. 3,

Effects of Tracking Errors on the Performance of Point Focusing Solar

Efficiency Degradation Due to Tracking Errors for Point-Focusing Solar
Collectors, R.O. Hughes, American Society of Mechanical Engineers Winter

Environmental Responses of Solar Reflective Surfaces, F.L. Bouquet, Paper

Evaluation of Solar Reflective Surfaces for Dish Concentrators, F. Bouquet,
17th Intersociety Energy Conversion Engineering Conference, Los Angeles,
California, August 1982.

Evaluation of Solar Thermal Power Plants Using Economics and Performance
Simulation, N. El Gabalawi, International Symposium – Workshop on Solar
Energy, Cairo, Egypt, June 1978.

Experimental Simulation of Latent Heat Thermal Energy Storage and Heat Pipe
Thermal Transport for Dish Concentrator Solar Receivers, R. Narayanan,
W.F. Zimmerman, and P.T.Y. Poon, American Society of Mechanical Engineers

General Sensitivity Analysis of Solar Thermal Electric Power Systems,
F.L. Lansing, 14th Intersociety Energy Conversion Engineering Conference,
Boston, Massachusetts, August 1979.

Heat and Electricity from the Sun Using Parabolic Dish Collector Systems,
V.C. Truscello and A. N. Williams, Solar Energy Industries Association Solar
Power Generation Conference, San Jose, California, August 1979.

Heat Engine Development for Solar Thermal Power Systems, H.Q. Pham and L.D. Jaffe,
American Society of Mechanical Engineers/DOE Solar Simulation and Operation

Heat Engine Requirements for Advanced Solar Thermal Power Systems, L.D. Jaffe
and H.Q. Pham, SAE Technical Paper 81-0454, Society of Automotive Engineers,

Heat Transfer from Combustion Gases to a Single Row of Closely-Spaced Tubes in a
Swirl Crossflow Stirling Engine Heater, C.P. Bankston and L. Back, American
February 1982.

Pipeline from Ocean to Desert to Provide Cooling for Solar Power Plant
Complex, R.H. Turner, International Solar Energy Society American Section

Point Focusing Dishes, J.W. Lucas, DOE Advanced Technology Semiannual Review,
Long Beach, California, June 1979.

Potential Benefits from a Successful Solar Thermal Program, K. Terasawa and
E.S. Davis, Parabolic Dish Solar Thermal Power Annual Program Review,
Atlanta, Georgia, December 1981.

Power Converters for Parabolic Dishes, V.C. Truscello and A.N. Williams,
International Solar Energy Society Annual Meeting, Philadelphia,

Power from Parabolic Dishes: Progress and Prospects, V.C. Truscello and
A.N. Williams, November 1980.

Power Processing and Control Requirements of Dispersed Solar Thermal Electric
Generation Systems, R.L. Das, 15th International Energy Conversion

Power Processing, Power Management, and Utility Interface for Advanced
Dispersed Solar Thermal Systems, K. Bahrami, S. Krauthamer, and R. Das,
Advanced Solar Thermal Power Systems Conference, Denver, Colorado,
November 1978.

Preliminary Results from a Test Array of 3X CPC Collectors in a School Heating
Application, C. Stein, M. Collares-Perevia, J. O’Gallagher, A. Rahe,

Progress in Point-Focusing Solar Concentrator Development at JPL, W.J. Carley,
International Solar Energy Society American Section Solar Jubilee, Phoenix,
Arizona, June 1980.

Projected Techno-Economic Improvements for Advanced Solar Thermal Power
Plants, T. Fujita, R. Manvi, and E.J. Roschke, 14th Intersociety Energy
Conversion Engineering Conference, Boston, Massachusetts, August 1979.

R&D Targets for Advanced Solar Thermal Power Systems, L. Leibowitz and
M. Costello, International Solar Energy American Section Annual Meeting,
Denver, Colorado, August 1978.

Reflectance of Indium Mirrors for Solar Energy Applications, F.L. Bouquet,
1981 Spring Meeting of the American Physical Society Ohio Section,
Granville, Ohio, May 1981.

Secondary and Compound Concentrators for Distributed Point-Focusing Solar

2-7.

The Sun Tracking Control of Solar Collectors Using High-Performance Step Motors, R.O. Hughes, Energy Research and Development Administration (Now DOE) Conference on Concentrating Solar Collectors, Atlanta, Georgia, September 1977.

SECTION III
EXTERNAL DOCUMENTS

Overview of Software Development at the Parabolic Dish Test Site, C. Miyazono, July 15, 1985, DOE/JPL-1060-90, JPL Publication 85-56.

Software Used with the Flux Mapper at the Solar Parabolic Dish Test Site, C. Miyazono, September 15, 1984, DOE/JPL-1060-78, JPL Publication 84-76.

The JPL Flux Mapper, W.A. Owen, September 15, 1985, DOE/JPL-1060-95, JPL Publication 85-95.

SECTION IV

INTERNAL DOCUMENTS

*Copy not available

Heat and Electricity from the Sun Using Parabolic Dish Collector Systems, V.C. Truscello, August 9, 1979, 5105-2.

Methodology to Establish Goals for ERDA Solar Thermal Technology Development Programs, R.S. Caputo, June 21, 1977, 5102-40.

Parabolic Dish Program: The 1980 Multi-Year Plan - Preliminary, May 12, 1980, 5105-4 Rev. A.

*Copy not available

*Copy not available

Solar Ponds for Power Generation, J. Biddle, September 1, 1979, 5102-100.

Systems Requirements for Power Plant: Small Community Solar Thermal Power Experiment No. 1, L.D. Jaffe, May 1, 1984, 5105-96, JPL D-18, Rev. B.

Systems Requirements for Power Plant: Small Community Solar Thermal Power Experiment No. 2, L.D. Jaffe, May 1, 1984, 5105-123, JPL D-597, Rev. A.

Thermal Storage Applications Workshop, Volume I - Plenary Session Analysis, Volume II - Contributed Papers, February 15, 1978, 5102-78

*Copy not available

SECTION V

CONTRACTOR REPORTS

Acurex Corporation, Advanced Concentrator Design Review, Tasks 2 and 6, Parts 1 and 2, (Contract No. 955477, JPL Internal Report 9960-175), Mountain View, California, March 6, 1980.

Acurex Corporation, Parabolic Dish Concentrator (PDC-2) Drawing Package, (Contract No. 955790, JPL Report 9950-1100), Mountain View, California, September 27, 1983.

Ford Aerospace and Communications Corporation, Inverter Control Methods and PCS Electrical Matching Characteristics, TR014, (Contract No. 955637, JPL Report 9950-1107), Newport Beach, California, September 15, 1980.

Ford Aerospace and Communications Corporation, Engineering Unit Scaling and DAC/ADC Conversions in SCSE Software, TR024, (Contract No. 955637, JPL Report 9950-1110), Newport Beach, California, December 2, 1980.

Ford Aerospace and Communications Corporation, Control Subsystem Description [for a Solar Thermal Systems Experiment], TR031, (Contact No. 955637, JPL Report 9950-1111), Newport Beach, California, December 16, 1980.

Ford Aerospace and Communications Corporation, Software Documentation Definition and Guidelines [for a Solar Thermal Systems Experiment], TR033, (Contract No. 955637, JPL Report 9950-1112), Newport Beach, California, December 17, 1980.

SECTION VI
AUTHOR INDEX

Authors listed alphabetically are followed by titles that are also alphabetized. Each title is followed by a letter in parentheses that refers to the section in which the complete bibliographical information is contained. (C/J = Conference and Journal Papers, Section II; E = External Documents, Section III; and I = Internal Documents, Section IV.)

Argoud, M., JPL Tests of a LaJet Concentrator Facet, (E).

Test Bed Concentrator Mirrors, (C/J).

Configuration Selection Study for Isolated Loads Using Parabolic Dish Modules, (C/J).

Back, L.H., Dish Stirling Solar Receiver Combustor Test Program (E).

Dynamics and Control of Stirling Engines in a 15-KWe Solar Electric Generation Concept, (C/J).

Bloomfield, H.S., Solar/Fossil Hybrid Systems Program Plan for Retrofit and New Hybrid Configurations, (I).

Dish PRDA: Engineering Experiments Selection, (I).

Industrial Application Experiment Series, (C/J).

Parabolic Dish Market Assessment First Interim Report, (I).

Cost/Performance of Solar Reflective Surfaces for Parabolic Dish Concentrators, (E).

Criteria for Evaluation of Reflective Surfaces for Parabolic Dish Concentrators, (E).

Evaluation of Solar Reflective Surfaces for Dish Concentrators, (C/J).

Evaluation of Solar Reflective Surfaces, (I).

Measurements of Coefficients of Thermal Expansion for High Temperature Polymers, (C/J).

Comparison of Advanced Engines for Parabolic Dish Solar Thermal Power Plants, (C/J).

Configuration Selection Study for Isolated Loads Using Parabolic Dish Modules, (C/J).
Kinematic Stirling Engine as an Energy Conversion Subsystem for Paraboloidal Dish Solar Thermal Power Plants (The), (E).

Caputo, R., An Initial Comparative Assessment of Orbital and Terrestrial Central Power Systems, (I-Presentation), (E).

Brief Review of Increasing Geometric Concentration Ratio Vs. Improving Receiver Surface Characteristics, (I).

Effects of Surface Optical Characteristics on Point-Focusing Solar Collectors, (C/J).

Methodology to Establish Goals for ERDA Solar Thermal Technology Development Programs, (I).

Thermal Storage Role Within a Solar Thermal-Electric Power Plant, (I).

Carley, W.J., Comparative Study of Solar Optics for Paraboloidal Concentrators, (C/J).

Progress in Point-Focusing Solar Concentrator Development at JPL, (C/J).

Collares-Perevia, M., Preliminary Results from a Test Array of 3X CPC Collectors in a School Heating Application, (C/J).

Das, R.L., Dynamics and Control of Stirling Engines in a 15-kWe Solar Electric Generation Concept, (C/J).

JPL Tests of a LaJet Concentrator Facet, (E).

Development and Testing of Parabolic Dish Concentrator No. 1, (E).

View-Limiting Shrouds for Insolation Radiometers, (E).

Edmiston, W., Measurements of Coefficients of Thermal Expansion for High Temperature Polymers, (C/J).

Solar Brayton Systems Transient Performance, (C/J).

Fellows, M., Site Participation in the Small Community Experiment, (C/J).

JPL Small Power Systems Applications Project, (C/J).

Small Power Systems Applications Project, (C/J).

Fortgang, H.R., Computer Model for Pricing of Thermal Power Systems Engines for Annual Production of 25,000 through 400,000 Units, (I).

Cost and Price Estimate of Brayton and Stirling Engines in Selected Production Volumes, (E).

Costing the Omnium-G System 7500, (C/J).

Manufacturing Cost Estimate of a Ceramic Receiver in Selected Production Volumes, (I).

Comparison of Advanced Engines for Parabolic Dish Solar Thermal Power Plants, (C/J).

Comparison of Advanced Thermal and Electrical Storage for Parabolic Dish Solar Thermal Power Systems, (C/J), (I).

Configuration Selection Study for Isolated Loads Using Parabolic Dish Modules, (C/J).

Projected Techno-Economic Improvements for Advanced Solar Thermal Power Plants, (C/J).

Thermal Buffering of Receivers for Parabolic Dish Solar Thermal Power Plants, (C/J).

Comparison of Advanced Engines for Parabolic Dish Solar Thermal Power Plants, (C/J).

Glyman, J., Computer Model for Pricing of Thermal Power Systems Engines for Annual Production of 25,000 through 400,000 Units, (I).

Market Assessment Overview, (C/J).

Hagen, T., JPL's Parabolic Dish Test Site, (C/J).

Optical Performance of a Fresnel-Type Concentrator with Truncated Paraboloidal Facets, (C/J).

Optical Performance of Several Point-Focusing Solar Concentrators, (C/J).

Hoag, J., Cost Goals, (C/J).

Holbeck, H.J., Site Participation in the Small Community Experiment, (C/J).

Sites for Experimental Solar Thermal Systems, (C/J).

Huang, L., Comparative Study of Solar Optics for Paraboloidal Concentrators, (C/J).

Hughes, R.O., Effects of Pointing Errors on Receiver Performance for Parabolic Dish Solar Concentrators, (C/J).

Efficiency Degradation Due to Tracking Errors for Point-Focusing Solar Collectors, (C/J).

Optimal Control of Sun Tracking Solar Concentrators, (C/J).

Solar Tracking and Control Considerations, (C/J).

The Sun Tracking Control of Solar Collectors Using High-Performance Step Motors, (C/J).

Jaffe, L.D., Availability of Solar and Wind Generating Units, (C/J).

Optimization of Dish Solar Collectors, (C/J).

Small Community Solar Thermal Power Experiment, (I).

The Small Community Solar Thermal Power Experiment, (C/J).

The Small Community Experiment (SCSE), (C/J).

Ceramic Technology for Solar Thermal Receivers, (C/J), (I).

Use of Ceramics in the Point-Focus Solar Receiver, (C/J).

Advanced Solar Thermal Technology - Potential and Progress, (C/J), (I).

High Temperature Solar Thermal Technology, (C/J).

Levin, R.R., The JPL Isolated Application Experiment Series, (C/J).

Ceramic Technology for Solar Thermal Receivers, (I).

Point Focusing Dishes, (C/J).

Presentation of Solar Thermal Power Systems Project - Energy Options for Industrial Users and Suppliers, (I).

Presentation to Solar Thermal Energy Division of the Solar Energy Industries Association (SEIA), (I).

Solar Thermal Power Systems Point-Focusing Distributed Receiver (PFDR) Technology: A Project Description, (C/J).

Subsystem Technology and Cost Targets, (I).

Projected Techno-Economic Improvements for Advanced Solar Thermal Power Plants, (C/J).

Thermal Buffering of Receivers for Parabolic Dish Solar Thermal Power Plants, (C/J).

JPL Small Power Systems Applications Project, (C/J).

Small Community Solar Thermal Power Experiment, (I).

Small Power Systems Applications Project, (C/J).

Solar Electric Power from Parabolic Dishes, (C/J).

The Small Community Solar Thermal Power Experiment, (C/J).

6-14
Miyazono, C., Overview of Software Development at the Parabolic Dish Test Site, (E).

Software Used with the Flux Mapper at the Solar Parabolic Dish Test Site, (E).

O'Gallagher, J., Preliminary Results from a Test Array of 3X CPC Collectors in a School Heating Application, (C/J).

The JPL Flux Mapper, (E), (C/J).

Patzold, J.D., Omnium-G Concentrator Test Results, (C/J).

Poon, P., Comparative Study of Solar Optics for Paraboloidal Concentrators, (C/J).

Optical Analysis of Cassegrainian Concentrator Systems, (C/J).

Optical Performance of a Fresnel-Type Concentrator with Truncated Paraboloidal Facets, (C/J).

Optical Performance of Several Point-Focusing Solar Concentrators, (C/J).

Rahe, A., Preliminary Results from a Test Array of 3X CPC Collectors in a School Heating Application, (C/J).

Revere, W.R., A Comparative Assessment of Solar Thermal Electric Power Plants in the 1-10 MWe Range, (E).

Configuration Selection Study for Isolated Loads Using Parabolic Dish Modules, (C/J), (I).

Projected Techno-Economic Improvements for Advanced Solar Thermal Power Plants, (C/J).

Solar Thermal Power Systems Point-Focusing Distributed Receiver (PFDR) Technology: A Project Description, (C/J).

Wind Loading on Solar Concentrators: Some General Considerations, (E).

Rose, W., Measurements of Coefficients of Thermal Expansion for High Temperature Polymers, (C/J).

Rosenberg, L.S., A Comparative Assessment of Solar Thermal Electric Power Plants in the 1-10 MWe Range, (E).

The Application of Simulation Modeling to the Cost and Performance Ranking of Solar Thermal Power Plants, (C/J).

Ross, D.L., Parabolic Dish Test Site, (C/J).

A Nomogram for Parabolic Dish Solar Concentrator Efficiency Determination, (C/J).

Dish-Stirling Module Performance As Evaluated from Tests of Various Test Bed Concentrator/Stirling Engine Configurations, (I).

Parabolic Dish Test Site: History and Operating Experience, (E).

Simmons, H., Preliminary Results from a Test Array of 3X CPC Collectors in a School Heating Application, (C/J).

Use of Ceramics in the Point-Focus Solar Receiver, (C/J).

Stallkamp, J.A., Control System for Parabolic Dish Concentrator No. 1, (E).

Starkey, D.J., Characterization of Point-Focusing Test Bed Concentrators at JPL, (C/J).

Initial Test Bed Concentrator Characterization, (C/J).

Steele, H.L., Comparison of Electrochemical and Thermal Storage for Hybrid Parabolic Dish Solar Power Plants, (C/J).

Stein, C.K., Preliminary Results from a Test Array of 3X CPC Collectors in a School Heating Application, (C/J).

Terasawa, K., Potential Benefits from a Successful Solar Thermal Program, (C/J).

Thostesen, T.O., Development and Testing of Parabolic Dish Concentrator No. 1, (E).

Innovative Concentrator Requirements Definition, (I).

Truscello, V.C., Comparison of Parabolic Dish Systems with Other Solar Technologies, (C/J).

Heat and Electricity from the Sun Using Parabolic Dish Collector Systems, (C/J).

JPL Small Power Systems Applications Project, (C/J).

Parabolic Concentrating Collector - A Tutorial, (E).

Parabolic Dish Collectors - A Solar Option, (C/J).

Parabolic Dish Technology, (C/J).

Power Converters for Parabolic Dishes, (C/J).

Small Power Systems Applications Project, (C/J).

Status of the Parabolic Dish Concentrator, (C/J).

The JPL Parabolic Dish Project, (C/J).

The Parabolic Concentrating Collector, (C/J).

Pipeline from Ocean to Desert to Provide Cooling for Solar Power Plant Complex, (C/J).

Comparative Study of Solar Optics for Paraboloidal Concentrators, (C/J).

Comparison of Electrochemical and Thermal Storage for Hybrid Parabolic Dish Solar Power Plants, (C/J).

Effects of Surface Optical Characteristics on Point-Focusing Solar Collectors, (C/J).

Thermal Performance Trade-Offs for Point-Focusing Solar Collectors, (C/J).

Wharton, L., Preliminary Results from a Test Array of 3X CPC Collectors in a School Heating Application, (C/J).

Parabolic Dish Technology, (C/J).

Power Converters for Parabolic Dishes, (C/J).

The JPL Parabolic Dish Program, (C/J).

Winston, R., Preliminary Results from a Test Array of 3X CPC Collectors in a School Heating Application, (C/J).

Experimental and Theoretical Study of a Solar Thermochemical Receiver Module, (E).

Solar Pond Power Plant Feasibility Study for Davis, California, (E).

Zitek, W., Preliminary Results from a Test Array of 3X CPC Collectors in a School Heating Application, (C/J).

Documents are listed alphabetically under topics and subtopics and are identified by the first words of the title, the publication category (C/J = Conference or Journal Paper, E = External Document, and I = Internal Document), and by the page on which they appear in the bibliography.

Applications

Energy for California, (I), p 4-2.
Industrial, (C/J), p 2-5.
Selection, (C/J), p 2-8.
Siting, (E), p 3-5.

Balance of Plant

A Standard, (E), p 3-1.

Chemical Applications

Performance and Costs, (I), p 4-3.

Collectors

Brief Review, (I), p 4-1.
CONC/11, (E), p 3-2.
Optimization, (C/J), p 2-6.
Optimization ... With, (E), p 3-3.
Parabolic Concentrating, (E), p 3-4.
Parabolic Dish Collectors, (C/J), p 2-6.
Review of Distributed, (I), p 4-4.
Thermal and Optical, (C/J), p 2-10.
Thermal Optical Surface, (C/J), p 2-10.
Line-Focusing

Preliminary, (C/J), p 2-7.

Point-Focusing

The Parabolic, (C/J), p 2-10.

Commercialization (See also Markets)

Assessment and Planning, (I), p 4-1.
Barriers, (C/J), p 2-2.
Demonstration, (I), p 4-2.
Perspectives, (I), p 4-3.
Regulations, (I), p 4-4.
Utility, (C/J), p 2-12.

Concentrators

Concentrator, (E), p 3-2.
Dish Concentrators, (E), p 3-3.
Innovative, (I), p 4-3.
JPL Tests, (E), p 3-3.
Omnium-G, (C/J), p 2-5.
Optimization, (E), p 3-3.
Point Focusing, (C/J), p 2-7.
Progress, (C/J), p 2-7.
Secondary, (E), p 3-5.
Software, (E), p 3-5.
The Effects of Soiling, (C/J), p 2-10.
The JPL Flux Mapper, (E), p 3-6.
Wind Loading, (E), p 3-6.

Control

Control, (E), p 3-2.
Effects of Pointing, (C/J), p 2-4.
Effects of Tracking, (C/J), p 2-4.
Efficiency, (C/J), p 2-4.
Optimal, (C/J), p 2-6.
The Sun Tracking, (C/J), p 2-11.
Cost

Configuration, (C/J), p 2-2.
Configuration, (I), p 4-2.
Design, (I), p 4-2.
Methodology, (I), p 4-3.
Performance and Costs, (C/J), p 2-6
Performance and Costs, (I), p 4-3.
Regional, (I), p 4-4.
Review of the Projected, (I), p 4-4.
Subsystem, (I), p 4-5.
The Application, (C/J), p 2-10.

Of Output

Effects of Regional, (E), p 3-3.
Electric, (I), p 4-2.
The Effects of Regional, (C/J), p 2-10.

Of Production

A Standard, (E), p 3-1.
Computer, (I), p 4-1.
Cost Analysis, (I), p 4-2.
Cost and Considerations, (I), p 4-2.
Costing, (C/J), p 2-3.
Manufacturing Cost Estimate of a Ceramic, (I), p 4-3.
Manufacturing Cost Estimate of an Organic, (I), p 4-3.

Economics

Economic Cost, (I), p 4-2.
Economic Feasibility, (I), p 4-2.
Economic Value, (I), p 4-2.
Impact, (C/J), p 2-5.
Perspectives, (I), p 4-3.
Projected, (C/J), p 2-7.
Projection, (I), p 4-4.

Engines

An Overview, (I), p 4-1.
Computer, (I), p 4-1.
Survey, (E), p 3-5.
Turbine Sizing, (C/J), p 2-11.

Brayton

Rankine, Organic

Bearing, (E), p 3-2.
Development of, (E), p 3-3.

Rankine, Steam

Stirling

Activity, (E), p 3-1.
Dish Stirling, (E), p 3-3.
Dish-Stirling Module, (I), p 4-2.
High Performance, (C/J), p 2-5.
Kinematic, (E), p 3-3.

Environment

Effects of

Environmental, (C/J), p 2-4.
The Effect of Urban, (C/J), p 2-10.
Urban Air Pollution and Its Effect, (C/J), p 2-11.
Urban Air Pollution and Solar, (C/J), p 2-12.

Effects on

Experiments
Isolated Loads
The JPL Isolated, (C/J), p 2-10.
Dish PRDA, (I), p 4-2.

Small Community
Site Participation, (C/J), p 2-8.
Sites for, (C/J), p 2-8.
Siting, (C/J), p 2-8.
Siting, (E), p 3-5.
Small Community Solar, (I), p 4-4.
Systems Requirements ... Experiment No. 1, (I), p 4-5.
Systems Requirements ... Experiment No. 2, (I), p 4-5.
Systems Requirements for Experimental, (I), p 4-5.
The Small Community Experiment, (C/J), p 2-11.

Fuel Production

Generators
Application, (E), p 3-2.

Insolation
Average, (I), p 4-1.
Perspectives, (I), p 4-3.
Manufacturing

A Survey, (E), p 3-1.
A Survey, (I), p 4-1.
Survey, (E), p 3-5.

Materials

Aging, (C/J), p 2-1.
Aging, (I), p 4-1.
Assessment, (C/J), p 2-1.
Assessment of Ceramic, (I), p 4-1.
Ceramic, (C/J), p 2-2.
Ceramic, (I), p 4-1.
Cost/Performance, (E), p 3-2.
Criteria, (E), p 3-2.
Evaluation of Solar, (I), p 4-3.
Fracture Mechanics, (E), p 3-3.
Glass, (I), p 4-2.
Measurements, (C/J), p 2-5.
Mixtures, (C/J), p 2-5.
Reflectance, (C/J), p 2-7.
Status, (E), p 3-4.
The Effects of Soiling, (C/J), p 2-10.
Thickness, (C/J), p 2-11.
Use of Ceramics, (C/J), p 2-12.
UV Transmission, (C/J), p 2-12.

Markets (See also Commercialization)

Irrigation, (E), p 3-3.
Market, (C/J), p 2-5.
Parabolic Dish Market, (I), p 4-3.
Small Community Solar, (I), p 4-4.
Utility, (C/J), p 2-12.
Optics

Effects of Surface, (C/J), p 2-4.
Optical Analysis, (C/J), p 2-6.
Optical Performance of a Fresnel, (C/J), p 2-6.
Optical Performance of Several, (C/J), p 2-6.
Test Bed, (C/J), p 2-10.
Thermal and Optical, (C/J), p 2-10.
Thermal Optical, (C/J), p 2-11.

Performance

A Graphical, (C/J), p 2-1.
A Modularized Computer, (I), p 4-1.
A Nomogram, (C/J), p 2-1.
A Nomographic, (E), p 3-1.
A Program, (E), p 3-1.
A Simulation, (C/J), p 2-1.
Analytical Foundations, (I), p 4-1.
Brief Review, (I), p 4-1.
CONC/II, (E), p 3-2.
Configuration, (C/J), p 2-2.
Configuration, (I), p 4-2.
Design, Cost, (I), p 4-2.
Dish-Stirling Module, (I), p 4-2.
Effects, (E), p 3-3.
General, (C/J), p 2-4.
HEAP, (E), p 3-3.
Optimization, (C/J), p 2-6.
Performance, (I), p 4-3.
Presentation to Workshop, (I), p 4-4.
The Application, (C/J), p 2-10.
The Effects of Regional, (C/J), p 2-10.
The SYSGEN, (E), p 3-6.
Thermal and Optical, (C/J), p 2-10.
Thermal Performance, (C/J), p 2-11.

Plant Design

Configuration, (C/J), p 2-2.
Configuration, (I), p 4-2.
Review of Arkansas, (I), p 4-4.
Review of Brevard, (I), p 4-4.
Review of City, (I), p 4-4.
Review of Mississippi, (I), p 4-4.
Review of New Mexico, (I), p 4-4.

Ponds

A Review, (E), p 3-1.
Conference, (I), p 4-2.
Regional, (E), p 3-4.
Salton Sea, (E), p 3-4.
Solution, (I), p 4-5.

Power Processing

Process Heat

Design, Cost, (I), p 4-2.
Industrial, (I), p 4-3.
Parabolic Dish Technology for Industrial, (C/J), p 2-6.

Program and Project

Display Posters, (I), p 4-2.
JPL Small, (C/J), p 2-5.
Parabolic Dish Project, (E), p 3-4.
Parabolic Dish Program, (I), p 4-3.
PDTB, (E), p 3-4.
Presentation of Solar, (I), p 4-4.
Presentation to Solar, (I), p 4-4.

7-8
Solar/Fossil, (I), p 4-4.
Solar Thermal Power Systems Point-Focusing Distributed Receiver (PFDR)
Solar Thermal Power Systems Point-Focusing Distributed Receiver (PFDR)
Summary Assessment, (E), p 3-5.
The JPL Parabolic, (C/J), p 2-10.
Thermal Power, (I), p 4-5.
Third Semiannual Advanced Technology Meeting - Display Posters, (I), p 4-5.
Third Semiannual Advanced Technology Meeting - Abstracts, (I), p 4-5.

 Receivers

Advanced Receiver, (C/J), p 2-1.
A Simulation, (C/J), p 2-1.
Dish Stirling, (E), p 3-3.
Evaluation, (I), p 4-2.
Experimental, (E), p 3-3.
HEAP, (E), p 3-3.
Manufacturing Cost Estimate of a Ceramic, (I), p 4-3.
Manufacturing Cost Estimate of an Organic, (I), p 4-3.
Second-Law, (E), p 3-5.
Solar Receiver, (I), p 4-4.
Solar Thermal Power Point-Focusing Distributed Receiver (PFDR)
Systems Approach, (I), p 4-5.
Thermal Response, (I), p 4-5.

 Research and Development

Storage

Application, (C/J), p 2-1.
Chemical Energy, (I), p 4-1.
Comparison of Advanced, (I), p 4-1.
Comparison of Electrochemical, (C/J), p 2-2.
Effects of Thermal, (C/J), p 2-4.
Electrochemical, (E), p 3-3.
Experimental, (C/J), p 2-4.
High Temperature Heat, (C/J), p 2-5.
High Temperature Latent, (C/J), p 2-5.
Thermal, (E), p 3-6.
Thermal Buffering, (C/J), p 2-10.
Thermal Storage, (C/J), p 2-11.
Thermal Storage Applications, (I), p 4-5.
Thermal Storage Role, (I), p 4-5.

Systems

Brayton

A Preliminary, (E), p 3-1.
Analytical Foundations, (I), p 4-1.
Dish Brayton, (C/J), p 2-3.
Systems Requirements for the Brayton, (I), p 4-5.

Comparison

A Comparative, (E), p 3-1.
Comparison of Parabolic, (C/J), p 2-2.
Decision, (E), p 3-2.
Design, Cost, (I), p 4-2.
Initial (An), (E), p 3-1.
Initial, (I-Presentation), p 4-3.
Regional, (I), p 4-4.

General

Focus, (E), p 3-3.
Heat, (I), p 4-3.
Power from, (C/J), p 2-7.
Technologies, (C/J), p 2-10.

Rankine, Organic

Development of, (E), p 3-3.
NASA ESD, (I), p 4-3.

Rankine, Steam

A Preliminary, (E), p 3-1.

Stirling

Activity, (E), p 3-1.
Dish Stirling, (C/J), p 2-3.
Dish-Stirling Module, (I), p 4-2.
Thermal and Optical, (C/J), p 2-10.

Technology

Advanced Solar Thermal Development, (I), p 4-1.
Advanced Solar Thermal Technology, (I), p 4-1.
Advanced Subsystems Development, Second, (E), p 3-1.
Advanced Subsystems Development, Third, (E), p 3-1.
Focus, (E), p 3-3.
High Temperature Solar, (C/J), p 2-5.
Parabolic Dish Technology, (C/J), p 2-6.
Parabolic Dish Technology for Industrial, (C/J), p 2-6.
Perspectives, (I), p 4-3.
Projected, (C/J), p 2-7.
Subsystem, (I), p 4-5.

Testing

Documentation, (I), p 4-2.
Initial, (C/J), p 2-5.
JPL's Parabolic, (C/J), p 2-5.
Materials, (I), p 4-3.
Overview of Software, (E), p 3-3.
Parabolic Dish Test, (C/J), p 2-6.
Parabolic Dish Test, (E), p 3-4.
Point Focusing, (I), p 4-4.
Procedure, (I), p 4-4.
Software, (E), p 3-5.
Test Plan, (I), p 4-5.
Testing, (E), p 3-5.
The JPL Flux Mapper, (C/J), p 2-10.
The JPL Flux Mapper, (E), p 3-6.
Thickness, (C/J), p 2-11.
User's, (I), p 4-5.

Transport of Energy
Application, (C/J), p 2-1.
Experimental, (C/J), p 2-4.
Experimental, (E), p 3-3.
Low-Cost, (C/J), p 2-5.
Pipeline, (C/J), p 2-7.
Thermodynamics, (C/J), p 2-11.

Utility Interface
Availability, (C/J), p 2-1.
SECTION VIII

CONTENTS OF ANNUAL REVIEW PROCEEDINGS
OPENING SESSION

Introductory Remarks, G.W. Braun, United States Department of Energy 1

Overview of Distributed Receiver Program, J.E. Rannels, United States Department of Energy 5

Heat and Electricity from the Sun Using Parabolic Dish Collector Systems, V.C. Truscello and A.N. Williams, Jet Propulsion Laboratory 19

Line Focus Concentrating Collector Program, V.L. Dugan, Sandia Laboratories, Albuquerque 27

SESSION I: CONCENTRATOR DEVELOPMENT

Test Bed Concentrator (TBC), V.R. Goldberg, E-Systems, Inc. 35

Test Bed Concentrator Mirrors, M.J. Argoud, Jet Propulsion Laboratory 41

Initial Test Bed Concentrator Characterization, D.J. Starkey, Jet Propulsion Laboratory 47

The Omnium-G HTC-25 Tracking Concentrator, S. Zelinger, Omnium-G Company 53

First Generation Low Cost Point Focus Solar Concentrator, J. Zimmerman, General Electric Company 63

A Cellular Glass Substrate Solar Concentrator, R. Bedard and D. Bell, Acurex Corporation 69

SESSION II: RECEIVER DEVELOPMENT

Development of an Air Brayton and Steam Rankine Solar Receiver, M. Greeven, AirResearch Manufacturing Company of California 75

Non-Heat Pipe/P-40 Stirling Engine, R.A. Haglund, Fairchild Stratos Division 95

SESSION III: POWER CONVERSION DEVELOPMENT

The SCSTPE Organic Rankine Engine, F. Boda, Ford Aerospace and Communications Corporation 99

The United Stirling P40 Engine for Solar Dish Concentrator Application, L.G. Ortegren and L.E. Sjostedt, United Stirling, Inc. 113

SESSION IV: HARDWARE TEST AND EVALUATION

JPL's Parabolic Dish Test Site, T.L. Hagen, Jet Propulsion Laboratory 119

Omnium-G Concentrator Test Results, J.D. Patzold, Jet Propulsion Laboratory 125

The JPL Flux Mapper, W.A. Owen, Jet Propulsion Laboratory 133

SESSION V: MASS PRODUCTION COSTING

Costing the Omnium-G System 7500, H.R. Fortgang, Jet Propulsion Laboratory 139

TBC Costing, H.L. Kaminski, Pioneer Engineering and Manufacturing Company 145

Cost Estimating Brayton and Stirling Engines, H.R. Fortgang, Jet Propulsion Laboratory 153

SESSION VI: PARABOLIC DISH APPLICATIONS

The Dish-Rankine SCSTPE Program (Engineering Experiment No. 1), R.L. Pons and C.E. Grigsby, Ford Aerospace and Communications Corporation 159

Siting Solar Thermal Power Experiments, H.J. Holbeck, Jet Propulsion Laboratory 169
The JPL Isolated Application Experiment Series,
R.R. Levin, Jet Propulsion Laboratory 175

Industrial Application Experiment Series, S.A. Bluhm,
Jet Propulsion Laboratory 181

SPS Market Analysis, H.C. Goff, General Electric Company 185

Military Markets for Solar Thermal Electric Power Systems,
J.S. Hauger, Consultant 191

Solar Thermal Plant Impact Analysis and Requirements
Definition, Y.P. Gupta, Science Applications, Inc. 197

A Study of Mass Production and Installation of Small Solar
Thermal Electric Power Systems, J. Butterfield,
Arthur D. Little, Inc. 211

SESSION VII: TROUGH AND BOWL SYSTEMS

The Crosbyton Project, J.D. Reichert,
Texas Technological University 217

IEA/SPS 500 kW Distributed Collector System, T.W. Neumann
and C.D. Hartman, Acurex Corporation 221

Coolidge Solar Powered Irrigation Pumping Project,
D.L. Larson, University of Arizona 229

The 50-Horsepower Solar-Powered Irrigation Facility Located
Near Gila Bend, Arizona, W.A. Smith, G. Alexander and
D.F. Busch, Battelle, Columbus Laboratories 235

Preliminary Operational Results from the Willard Solar
Power System, D.L. Fenton, et al., New Mexico
State University .. 241

Solar Total Energy — Large Scale Experiment Shenandoah,
Georgia, W.R. Hensley, Georgia Power Company 247

Solar Total Energy Project at Shenandoah, Georgia System
Design, A.J. Poche, General Electric Company 251

APPENDIX A: Attendees List A-1
SESSION I

Introduction ... 1
Energy Conversion 3
The SCSE Organic Rankine Engine 5
Jay Carter Enterprise, Inc., Steam Engine 11
Steam Engine Research for Solar Parabolic Dish 17
Solar Brayton Engine/Alternator Set 23
First Phase Testing of Solar Thermal Engine
 at United Stirling 37

SESSION II

Receivers .. 45
Non-Heat Pipe Receiver/P-40 Stirling Engine 47
Heat Pipe Solar Receiver with Thermal Energy Storage 51
The Development of an 85 kW (Thermal) Air Brayton
 Solar Receiver 57
The Development of an 85 kW (Thermal) Steam Rankine
 Solar Receiver 67
Organic Rankine Cycle Receiver Development 75

PANEL DISCUSSION I

Technology Development Issues 81
Garrett Turbine Engine Company, Paul Craig 83
United Stirling, Inc., Worth Percival 85

PRECEDEING PAGE BLANK NOT FILMED
SESSION III

Concentrators and Collector Systems ... 131

Introduction .. 133

Characterization of Point Focusing Test Bed Concentrators at JPL 135

General Electric Point Focus Solar Concentrator Status 143

Low Cost Concentrator ... 149

Advanced Concentrator Panels .. 155

Development and Testing of the Shenandoah Collector 161

Fresnel Concentrating Collector .. 171

Luncheon Speaker: Marshall E. Alper ... 179

SESSION IV

Application Experiments ... 185

The Small Community Solar Thermal Power Experiment (SCSE) 187

Development of the Small Community Solar Power System 191

Site Participation in the Small Community Experiment 197

Definitive Design of the Solar Total Large-Scale Experiment at Shenandoah, Georgia 205

JPL Isolated Application Experiment Series 209

Industrial Application Experiment Series 215

A Fresnel Collector Process Heat Experiment at Capitol Concrete Products ... 217
PANEL DISCUSSION II.

Application/User Needs .. 223
Introduction, R. Riordan .. 225
Acurex, C. Strong .. 229
Morgan Guaranty Trust Company, R. Zanard 233
Pasadena Municipal Utility, J. Lohr 235

SESSION V

Economics and Applications .. 239
Market Assessment Overview ... 241
Cost Goals .. 247
An Assessment of the Industrial Cogeneration Market for
Parabolic Dish Systems .. 251

SESSION VI

Advanced Development .. 255
Advanced Development -- Fuels 257
Fuels and Chemicals from Biomass Using Solar
Thermal Energy ... 263
Solar Thermal Materials Research and Development 269
Solar Energy Water Desalination in the United States
and Saudi Arabia ... 275

APPENDIX: Attendees .. A-1
SESSIONS

Introduction .. 1

Development Status of the PDC-1 Parabolic Dish Concentrator,
I.F. Sobczak, R.L. Pons, T. Thostesen 3

Acurex Parabolic Dish Concentrator (PDC-2), P. Overly,
R. Bedard ... 15

The PKI Collector, M. Rice 21

Thin Film Concentrator Panel Development, D. Zimmerman 25

A Transmittance-Optimized, Point-Focus Fresnel Lens Solar

The Small Community Solar Thermal Power Experiment,
T. Kiceniuk ... 49

Development Status of the Small Community Solar Power
System, R.L. Pons 53

Organic Rankine Power Conversion Subsystem Development for
the Small Community Solar Thermal Power System,
R.E. Barber and F.P. Boda 101

Verification Testing of the PKI Collector at Sandia National
Laboratories, Albuquerque, New Mexico, J.S. Hauger and
S.L. Pond ... 115

PKI Solar Thermal Plant Evaluation at Capitol Concrete
Products, Topeka, Kansas, J.S. Hauger and D.N. Borton 119

Recent Tests on the Carter Small Reciprocating System Steam
Engines, T. Kiceniuk and W. Wingenbach 123

400 kW High Efficiency Steam Turbine for Industrial Cogeneration
H.M. Leibowitz 147

Modifications and Testing of a 4-95 Stirling Engine for Solar
Applications, H.G. Nelving and W.H. Percival 179

Dish Stirling System Integration and Test Progress Report,
R.A. Haglund .. 191

PRECEDEING PAGE BLANK NOT FILMED
Commercialization of Parabolic Dish Systems, B. Washom 201

A Point-Focusing Collector for an Integrated Water/Power Complex, H. Zewen, G. Schmidt, S. Moustafa 207

The French Thermo-Helio-Electricity-kW Parabolic Dish Program, M. Audibert and G. Peri 225

Ceramic High-Temperature Receiver: Design and Tests, S.B. Davis 247

Garrett Solar Brayton Engine/Generator Status, B. Anson 257

Application of Subatmospheric Engine to Solar Thermal Power, Garrett AirResearch Manufacturing Company 283

An Economic Evaluation of Solar Energy, D. Wood 329

PANEL DISCUSSION

Industrial Support Sector Requirements 339

APPENDIX: Attendees A-1
CONTENTS OF PROCEEDINGS FOURTH PARABOLIC DISH SOLAR THERMAL POWER PROGRAM REVIEW (NOVEMBER 30-DECEMBER 2, 1982), DOE/JPL-1060-58, JPL PUBLICATION 83-2

GENERAL SESSION

Introduction and Welcome, C. Stein, Jet Propulsion Laboratory 1

Solar Thermal Program Overview - DOE, J. Rannels, U.S. Department of Energy 5

Parabolic Dish Project - JPL, V. Truscello, Jet Propulsion Laboratory 35

SESSION I: STIRLING MODULE

Stirling Module Cooperative Agreement, B. Washom, Advanco Corporation 39

Testing of 4-95 Solar Stirling Engine in Test Bed Concentrator, H. Nelving, United Stirling-Sweden 55

Stirling Engine Ceramic Heater Head Development, V. Van Griethuysen, USAF-APL 63

SESSION II: ORGANIC RANKINE MODULE

Status of the Small Community Solar Power System, R. Babbe, Ford Aerospace and Communications Corporation 73

Control System Development for the Small Community Solar Power System, G. Fulton, Ford Aerospace and Communications Corporation 83

Test Results for the Small Community Solar Power System, F. Boda, Ford Aerospace and Communications Corporation 95

Solar Tests of Materials for Protection from Walk-Off Damage, L. Jaffe, Jet Propulsion Laboratory 109

SESSION III: BRAYTON MODULE

Results of Brayton Module System Trade Studies, T. Nussdorfer and J. Kesseli, Sanders Associates, Inc. 119

Solar Advanced Gas Turbine Brayton Power Conversion Assembly, B. Anson, Garrett Turbine Engine Company 133

8-13
Distributed Solar/Gas Brayton Engine Assessment, J. Rousseau, AirResearch Manufacturing Company 145

Prospects for Enhanced Receiver Efficiency, W. Owen, Jet Propulsion Laboratory ... 155

SESSION IV: CONCENTRATOR DEVELOPMENT

Parabolic Dish Concentrator (PDC-1) Development,
F. Sobczak, Ford Aerospace and Communications Corporation
and T. Thostesen, Jet Propulsion Laboratory 161

PDC-1 Control System, J. Stallkamp,
Jet Propulsion Laboratory .. 169

PDC-1 Optical Testing, E. Dennison and M. Argoud,
Jet Propulsion Laboratory .. 177

Commercialization of Solar Energy Resources, W. Gould,
Southern California Edison Company 187

Stirling Module Concentrator, T. Hagen, Advanco Corporation 195

A Transmittance-Optimized, Point-Focus Fresnel Lens
Solar Concentrator, M. O'Neill, V. Goldberg,
D. Muzzy, E-Systems, Inc. .. 209

Non-Imaging Secondary Concentrators, R. Winston and
J. O'Gallagher, University of Chicago 221

SESSION V: ECONOMICS

Solar Thermal Technology: Potential Impacts on Environmental
Quality and Petroleum Imports, W. Gates,
Jet Propulsion Laboratory .. 235

Impact of the Federal Energy Tax Credit on the Solar Thermal
Industry and Government Tax Revenue, H. Habib-agahi,
Jet Propulsion Laboratory .. 247

SESSION VI: INTERNATIONAL DISH SYSTEM DEVELOPMENT

Advantages of Large Parabolic Dish Systems for Power
Generation, A. Sutsch, Institute for Computer-Assisted
Research in Astronomy, Alterswil, Switzerland 265

Development of Lightweight Dish Concentrators in
Combination with Free Piston Stirling Engines,
J. Kleinwachter, Bomin Solar, Lorrach, F.R.G. 275
Design and Construction of a 3-kW Sealed Stirling Engine
Test Model, M. Dancette and G. Wintrebert,
Bertin et Cie, Plaisir, France 283

Solar Power for Israel, A. Roy and M. Izygon, Ben Gurion
University, Beersheva, Israel; and S. Hoffman, Energy
Projects Corporation, Jerusalem, Israel 297

The White Cliffs Solar Power Station, S. Kaneff,
Australian National University, Canberra, Australia 299

APPENDIX: Attendees .. A-1
SESSION I

Introduction and Welcome, J.W. Lucas,
Jet Propulsion Laboratory 1

Prologue, M.E. Alper, Jet Propulsion Laboratory 1

DOE Solar Thermal Program Overview, R. San Martin,
U.S. Department of Energy 1

The Parabolic Dish Project at JPL: A Brief History,
A.T. Marriott, Jet Propulsion Laboratory 2

Future Dish Project Activities, J. Leonard,
Sandia National Laboratories 4

SESSION II

Concentrator Development - Introduction and Overview,
W.A. Owen, Jet Propulsion Laboratory 14

Parabolic Dish Concentrator (PDC-1), E. Dennison,
M. Argoud, Jet Propulsion Laboratory 15

Parabolic Dish Concentrator (PDC-2) Development,
D. Rafinejad, Acurex Corporation 16

A Transmittance-Optimized Point-Focus Fresnel Lens Solar
Concentrator, M. O'Neill, Entech, Inc. 25

Optical Analysis of Cassegrainian Point Focus Concentrators
S. Waterbury, W. Schwinkendorf, BDM Corporation 38

SESSION III

Engine/Receiver Development - Introduction and Overview,
T. Kiceniuk, Jet Propulsion Laboratory 47

Current Status of an Organic Rankine Cycle Engine Development
Program, R. Barber, Barber-Nichols Engineering Company 48

Overview of Advanced Stirling and Gas Turbine Engine
Development Programs and Implications for Solar
Thermal Electric Applications, D. Alger,
NASA Lewis Research Center 49
Advanced Solar Receivers; W.A. Owen, Jet Propulsion Laboratory

Solar Tests of Aperture Plate Materials for Solar Thermal Dish Collectors, L. Jaffe, Jet Propulsion Laboratory

SESSION IV

Non-DOE-Sponsored Domestic Dish Activities - Introduction and Overview, T. Fujita, Jet Propulsion Laboratory

On Solar Thermal Electric Power Capacity Sizing, J. Clark, Deltatemp Energy Corporation

Recent Developments - PKI Square Dish for the Soleras Syltherm Project, W. Rogers, Power Kinetics, Inc.

Continuing Research at Solar Steam, Inc., D. Wood, Solar Steam, Inc.

SESSION V

Stirling Module Development - Introduction and Overview, F.R. Livingston, Jet Propulsion Laboratory

Parabolic Dish Stirling Module, B. Washom, Advanco Corporation

United Stirling's Solar Engine Development - The Background for the Vanguard Engine, S. Holgersson, United Stirling - Sweden

Testing of the United Stirling 4-95 Solar Stirling Engine on Test Bed Concentrator, H-G. Nelving, United Stirling AB, Sweden

Vanguard Concentrator, T. Hagen, Advanco Corporation

SESSION VI

Brayton Module Development - Introduction and Overview, H.J. Holbeck, Jet Propulsion Laboratory
Near-Term Brayton Module Status, S.B. Davis, Sanders Assoc., Inc. 113
Sub-Atmospheric Brayton-Cycle Engine Program Review
R. Johnson, AirResearch Manufacturing Company 122
LEC System Development, D. Halbert, La Jet Energy Company 127

SESSION VII

Business Views of Solar Electric Generation,
John Stolpe, Southern California Edison Company 129

Panelists:
Edward H. Blum, Merrill Lynch Capital Markets 130
Robert Danziger, Sunlaw Energy Corporation 131
Richard J. Faller, McDonnell Douglas Astronautics Company 132
Lynn Rasband, Utah Power and Light Company 134
Carl Weinberg, Pacific Gas and Electric Company 135

SESSION VIII

Distributed Systems Operating Experiences - Introduction and
Overview, J.A. Leonard, Sandia National Laboratories 136

Solar Total Energy Project (STEP) - Performance Analysis of
High Temperature Thermal Energy Storage Subsystem,
D. Moore, Georgia Institute of Technology 137

Whitecliffs - Operating Experience, S. Kaneff,
The Australian National University 146

Operational Experience from Solar Thermal Energy Projects,
C. Cameron, Sandia National Laboratories 159

SESSION IX

International Dish System Development - Introduction and
Overview, L. Jaffe, Jet Propulsion Laboratory 169

Deployment of a Secondary Concentrator to Increase the
Intercept Factor of a Dish with Large Slope Errors,
U. Ortabasi, E. Gray, University of Queensland, Australia,
and J. O'Gallagher, University of Chicago 170
Recent Advances in Design of Low-Cost Film Concentrator and Low-Pressure, Free-Piston Stirling Engines for Solar Power, J. and H. Kleinwachter, Bomin Solar, Germany, and W. Beale, Sunpower, Inc. .. 179

The Base Engine for Solar Stirling Power, R. Meijer and T. Godett, Stirling Thermal Motors, Inc. 197

SESSION X

Testing and Instrumentation - Introduction and Overview, D. Ross, Jet Propulsion Laboratory 214

Special Pyrheliometer Shroud Development, E. Dennison, Jet Propulsion Laboratory 215

Rapid Test Bed Concentrator (TBC) Alignment Techniques, M. Argoud, Jet Propulsion Laboratory 226

Implementation of the Sun Position Calculation in the PDC-1 Control Microprocessor, J. Stallkamp, Jet Propulsion Laboratory ... 227

Recent Solar Measurement Results at the Parabolic Dish Test Site, D. Ross, Jet Propulsion Laboratory 236

APPENDIX: Attendee List ... 245