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ABSTRACT

This report establishes a number of mathematical results

relevant to the problem of constructing a triangulation, i.e., a

simplicial tessellation, of the convex hull of an arbitrary

finite set of points in n-space.

The principal results of the present report are

(a) A set of n+2 points in n-space may be triangulated in

at most 2 different ways.

(b) The "sphere test" defined in this report selects

a preferred one of these two triangulations.

(c) A set of parameters is defined that permits the

characterization and enumeration of all sets of n+2

points in n-space that are significantly different from

the point of view of their possible triangularizations.

(d) The local sphere test induces a global sphere

test property for a triangulation.

(e) A triangulation satisfying the global sphere

property is dual to the n-dimensional Dirichlet

tessellation, i.e., it is a Delaunay triangulation.
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1. Introduction

Let P denote a set of m distinct points in n-space (n > 2,

m > n + 1.) Let C denote the convex hull of P. .Assuming P does

not lie entirely in some (n-1)-dimensional manifold, we are

interested in the problem of constructing a simplicial

tessellation, T, of C such that each simplex, t e r, has n + 1

points of P as its vertices, has non-null n-dimensional volume,

and contains no other points of P. Such a tessellation will be

called a triangulation.

Another type of tessellation with which we shall be

concerned is the Dirichlet tessellation. This is the set of. m

cells, cf , defined as

cf/ = {q : l lq-p . l l S llq-p .11 for all p . e p )
J J

Thus the interior points of the cell d are the points of n-space

that are closer to the point p. than to any other point of P . A

triangulation of P can be defined that is, in a certain sense,

dual to the Dirichlet tessellation. Such a triangulation is

called a Oelaunay triangulation and will be defined in Section 9.

Triangulations of point sets in 2-space are used in a

variety of applications, particularly as an initial step in the

analysis of data that is available at scattered points in the

plane. After triangulation one may carry out interpolation,

regridding to a rectangular grid, contour plotting, or other

processes. The Dirichlet tessellation is used as a model in

various scientific fields where it is appropriate to associate a

unique region of space with each point in a finite point set.

- 1 -



Examples of applications of the Dirichlet tessellation are

summarized and referenced in [Green '78].

Similar needs arise for the analysis of data defined at

scattered points in higher dimensional spaces, but much less

study has been devoted to triangulation algorithms and

interpolation methods for these problems.

Some early algorithms proposed for triangulation in the

2
plane required O(a? ) time. Since 1972 a number of computer

programs for this problem, or the closely related Dirichlet

tessellation problem, have been reported with estimates of

1 3 1 5execution time in the range of at to m ' . See [Lawson '72],

[Lawson '77], [Akima '78], [Green '78], [Cline '84], and [Renka

*84b]. Triangulation on the surface of a sphere is treated in

[Lawson '84] and [Renka '84a]. The methods of various of these

papers have been used in a number of proprietary graphics

packages, and in the portable Fortran programs described in

[Renka '84a] and [Renka '84b] that are available from the ACM

software distribution service.

Bowyer [Bowyer '81] devised and implemented an algorithm for

constructing the n-dimensional Dirichlet tessellation and the

dual (Delaunay) triangulation. A very satisfactory execution

time estimate of 0(a n +t> n) was reported. The algorithm
K K

was implemented in ISO Fortran and performed well in a variety of

test cases.

Barnhill and Little [Barnhill '84] presented ideas on a

different approach to the n-dimensional triangulation problem and

- 2 -



also gave interpolation methods for use with triangular grids in

3- and 4-dimensional space.

The present report establishes some mathematical properties

of n-dimensional triangulations that provide additional

understanding of the problem. These results are generalizations

of properties of the 2-dimensional problem given in [Lawson '77],

The algorithm given in [Lawson '77] operates by successively

triangulating various 4-point subsets of the given point set P .

It is easily seen that a set of 4 points in the plane admits of

at most 2 different triangulations. In [Lawson '77] a local

"circle test" was introduced that selected one qf these two

possible triangulations. It was shown that the triangulation

produced according to this criterion satisfied a global circle

test property, a max-min angle property, and was dual to the

Dirichlet tessellation. The equivalence of these latter two

properties was established independently by Sibson in [Sibson

•78] .

The principal results of the present report are

(a) A set of n+2 points in n-space may be triangulated in

at most 2 different ways.

(b) The "sphere test" defined in this report selects

a preferred one of these two triangulations.

(c) A set of parameters is defined that permits the

characterization and enumeration of all sets of n+2

points in n-space that are significantly different from

the point of view of their possible triangularizations.

(d) The local sphere test induces a global sphere

test property for a triangulation.

- 3 -



(e) A triangulation satisfying the global sphere

property is dual to the n-dimensional Dirichlet

tessellation, i.e., it is a Delaunay triangulation.

2. Barycentric coordinates and their geometric interpretation

The convex hull of n+l points is called a simplex. The

convex hull of a subset consisting of n of these points is called

a facet of the simplex.

Let p , ..., p , be n+l distinct points in n-space.

Define the matrix

r i i i ! '
B = I

L Pl P2 • - •

Let t be the (possibly degenerate) simplex with vertices p ,

..., p . The n-dimensional volume of t is given by

Vol(t) = |Det(B)|/n!

Let q be an arbitrary point in n-space. If t is

nondegenerate, i.e., if Vol(t) * 0, the numbers, t> , ..., to ,

satisfying

i i ' x i r i 1p i • i : \ = \ I \
2 ' ' • pn + l j I I L q' J

L

are called barycentric coordinates of q relative to the simplex,

t .

- 4 -



For each s, the sign of b indicates the position of q

relative to the hyperplane, HS> containing the facet of t

opposite vertex p . Thus b =0 when q is in H , b > 0 when q
S S S S

is on the same side of H as p , and b < Q when q is on the

opposite side of H from p .

Some consequences of these facts are:

(a) The point, q, is in the simplex, t, if and only if all

b > 0.

(b) If q is strictly outside the simplex, t, then one or

more .of the b 's are negative. These negative b 's

identify the facets of t with whose vertices q can be

connected to form nondegenerate simplices neighboring

to t .

(c) At least one of the b 's must be positive since

zb = i.

3. Triangulations of sets of n+2 points

In the 2D problem, study of all possible ways of

triangulating the convex hull of four points provided the key

ideas that led to a systematic procedure for improving the

triangulation of the convex hull of larger sets of points as one

point at a time was introduced. The study of sets of n+2 points

provides similar insights in the n-dimensional problem.

In 2-space all of the different possibilities for

configurations of four distinct points, not on a common line, are

illustrated by the three cases in Figure 1.

- 5 -



CASE 1.
.2

CASE 2.

CASE 3.

Figure 1. Configurations of four distinct

non-colinear points in 2-space.

In Case 1 there is a unique triangulation using two

triangles. In Case 2 there are two possible triangulations, each

using two triangles. In Case 3 there is a unique triangulation

using three triangles.

One might expect the general n-dimensional case to be much

more complicated than the 2-D case. Although there is more

- 6 -



complexity in the higher dimensional cases, there are,

fortunately, two very useful properties that persist. It remains

true that a given set of n+2 points in n-space admits of at most

two different triangulations by n-dimensional simplices.

Furthermore, if the n+2 points do not all lie on a common

n-sphere, one of the possible triangulations is uniquely selected

by the sphere test that will be described shortly.

These facts will be established in the following two

sections.

4. Signature sets

Theorem 1 Let P be a set of n+2 points, p , . . . , p , in

n-space not. lying entirely in any (n-1) -cfi mensional manifold.

There is a partitioning of the index set {1, 2. .... n+2} into

three sets, s . S , ancf S . and a set of numbers, c., satisfying

(2) Z cp - Z c p
/€S1 /€S2

(3) Z c - Z c = 1

'e5l '€S2

(4) c. = 0. / € SQ

(5) c. > 0. / e S1<JS2

The numbers c. are uniquely determined by the set P. The

sets S . S . and S . are also unique, with the understanding that

the labeling of S and S could be arbitrarily interchanged.

Proof. The (n+l)x(n+2) matrix

A _

- 7 -



is of rank n+l due to the hypothesis that the points of ? do not

all lie in any (n-l)-dimensional manifold. The system

(6) Ax = 0
*

has a 1-dimensional space of solution vectors. Let x be a

nonzero vector satisfying Eq.{6) and normalized to satisfy

zjx.| = 2. Since the first row of Eq.(6) is zx = 0, the vector
*

x must have both positive and negative components, and the sum

of the positive components must equal the sum of the magnitudes

of the negative components. In fact, with the specified

normalization, these sums must each be 1.
*

If any components of x are zero, let s be the index set

for these components. Let s be the index set for components of
* *

x of one sign and let s be the index set for components of x

of the other sign. Both S and S are non-null. Define
*

c . = \x . | , / =1, . . . , n+2

Then Z .c . =2 and all of the Eqs.(2-5) are satisfied.

This specification of the sets, s , s , and s , and the

numbers, c., is unique to within the possible interchange of s

and s , since if Eqs.(2-5) were satisfied by any other sets, S',

s' and S' and numbers, c•, it would permit the construction of

a solution vector for Eq.(6) not in the same 1-dimensional
*

subspace as x . D

For any point set P satisfying the hypotheses of Theorem 1,

the associated sets, s , s , and s , will be called the signature

sets of f .
*

Let p be the point given by the equal left and right
*

members of Eg.(2). Note that p is in the convex hull of

{p.-.ies^} and also in the convex hull of {p^des }. In fact the

- 8 -



geometric interpretation of Theorem 1 is that the subsets of P

indexed by s and 5 are.the smallest two disjoint subsets of f

whose convex hulls have a point in common, and the common point,
*

p , is unique.

As examples, in Fig. 1, we can identify the signature sets
*

and the common point p as follows:

Case I SQ = {2}, S^ = {4}, Sg = {1, 3), p* = p^

Case II SQ = Null, S^ = {1, 3), S2 = {2, 4}, p* = the

intersection of lines p.p., and p p .
1 *3 ^4

Case III 5Q - Null, S^ = {4}, Sg .= {1, 2, 3}, p* = P4

To relate this to the possible triangulations of the convex

hull of P, we next identify the possible nondegenerate simplices

that can be formed from the points of P.

For each / = 1, ..., n+2, let t. denote the (possibly

degenerate) simplex formed using the points P\p. as vertices.

(The notation P\p. denotes the subset of P remaining when point

p is removed.) The n-dimensional volume of t is Ac. where the

c 's are given by Theorem 1, and A is a positive constant

independent of /. Thus the nondegenerate simplices are just the

set {t . : IGS^US^.

What are the possible groupings of these simplices to form a

triangulation of the convex hull of P?

5. Admissible triangulations of n+2 points

Theorem 2 Let P be a point set as in Theorem 1. There are

at most two distinct triangulations of the convex hull of P.

namely, T * {t.:/es } and T - (t.:/eS }, where the sets S and

- 9 -



5 are as defined in Theorem 1, and t . is the simplex with vertex

set P-{p.}. If one of the sets S or S is of cardinality 1. the

corresponding set T or T is not an admissible tr iangulat ion .

Proof . This theorem will be proved by establishing the

following four assertions:

(a) Any pair of simplices, one indexed in S and the

other indexed in s , is mutually overlapping and

thus cannot be used in the same tr iangulat ion.

(b) Any pair of simplices, both indexed in s or both

indexed in s , is nonover lapping, and thus the

sets T = {t . :ies } and T {t . :/es } are each

nonover lapping sets of simplices.

(c) Each of the sets r and T covers the entire

convex hull, c, of ? , i.e., any point q ec is also
«r

contained in some t er and in some t fT .

(d) T . is not an admissible tr iangulat ion of c if

Note that Eg. (2) can be solved for any one of the p. 's,

/es us_, and the resulting equation gives the barycentric

coordinates of one point of P with respect to the simplex formed

by the others. For example, choose an index, *es , and solve

Eq.{2) for p , obtaining

(7) PR = z (c /c )pt - Z '(c /c )p + Z (c./c^p.
/€S2 /eS1\ft /€SQ

from which we may write the barycentric coordinates of p
n

relative to the simplex t as
K

(8) i>/ = c./c^ > 0 for /«S2

(9) t> . = -c . /c < 0 for /€(S -{k})
i i K JL

(10) b. = 0 for /eSQ
- 10 -



Eq.(8) implies that for each ies_, p. and p are on the same
£ I K

side of the common facet shared by t. and tfc . Thus t. and t

overlap, establishing assertion (a). Eq.(9) implies that for

each /€S \k , p. and p are on opposite sides of the common facet
1 / X -

shared by t . and t . Thus t . and t do not overlap, establishing
I K t K

assertion (b) .

Let q be an arbitrary point in c. Then there are

non-negative coefficients, d., such that

n + 2
(11) q = Z dp

n+2
(12) 1 = Z d

Rewrite Eqs.(2-3) as

( 13) 0= Z c.p.- Z c.p.j / i j

(14) 0 = Z c . - Z c .
/€S1 ' /€S2 '

Using an indeterminate, A, form A times Eq.(13) plus

Eq.(ll), and A times Eq.(14) plus Eq.(12):

(15) q = z (a +AC )p + z (cf -AC )p -t- z dp

(16) 1 = z (d +AC ) + z (d -AC ) + z d
/€S1 '€S2 /€S0

There is a range of values of A , A . < A < A , for whichman max

all of the coefficients, (d.+Ac.), /es and (d.-Ac.), '€S_,

appearing in Eqs. (15-16) are nonnegative. At the low end of this

range, at least one of the coefficients indexed in s , say

d .+AC ., is zero, showing that qet .. Similarly at the high end of

the A range at least one of the coefficients indexed in S , say

- 11 -



d -Ac , is zero, showing that q €*,- These limiting values of A

are given by

Amin '

Amax =

This establishes assertion (c).

Consider now the case in which one of the sets S or s has

cardinality 1, e.g., suppose IS.) = 1. Then the triangulation,

T , consists of a single simplex, say t .. The point p. that is

not a vertex of t . is therefore not a vertex in the
./

triangulation, T . Thus the triangulation r is not admissible

because it does not include all points of P as vertices. Q

In a different context, namely in developing a stable method

for evaluation of multivariate splines, Grandine [Grandine '84]

proved a theorem encompassing a subset of the above Theorem 2.

His theorem states that an arbitrary point in the convex hull of

a set of n + 2 points in n-space can be in the interior of at most

two of the n + 2 simplices that can be formed using these points.

As examples of Theorem 2, consider again Figure 1. In Case

1, with s = {4} and S = {1, 3}, the triangulation T = {t , t }
X & b J. w

is admissible while T = {t } is not, again because p is not'

used as a vertex. In Case 2, with s = {1, 3} and S = {2, 4},

there is a choice of two admissible triangulations, T = (t , t }
1 1 3

and ro = {t., t .}. In Case 3, with sn = {4} and S_ = {I, 2, 3),2 2 4 1 2

the triangulation T - {t , t , t } is admissible while T = {t }
i. 1. <£ O 14

is not, because p is not used as a vertex.

Corollary 1 In the context of building triangulations, an

enumeration of all possible significantly different

- 12 -



configurations of n+2 distinct points in n-space. not tying in

any Cn-13 -d imens i onal manifold, is given. Jby all of the possible

ways of assigning values to |S|. |S|. and |S \ satisfying

> 1(17)

(18)

(19)

(20)

|52I

|S.|
' 2 '

' 5 o '
Is 1

* ! <

> 2

> 0

+ | | + |S2| = n+2

Proof. The sets S and S must each be nonempty to satisfy

Eq.(3). Since the sets s and s are not mutually distinguished

we may arbitrarily use s as the label of the smaller of the two

sets when they are not of the same size. These considerations

establish Eq. (17) .

The sets S and S cannot both be singletons for then they

would have to index the same single point in order for Eq.(2) to

hold. This is ruled out by the hypothesis that all points of ¥

are distinct. Along with the convention of Eq.(17) this gives

Eq.(18).

Eqs . ( 19-20) follow from previous discussions. o

Using Corollary 1 one may list the values of (|s |, |S |,

|s |) for all significantly different configurations of n+2

points in n-space. This is done for dimensions 1, 2, 3, and 4 in

Table 1.

- 13 -



Table 1. Characterizing parameters for all of
the significantly different configurations
of n+2 points in n-space for n = 1, 2, 3, and 4.

n = 1 n = 2

|s1! !S2| |SQ| |sij |S2|

I 2 " I i 2 "
0 2 2
0 1 3

n

l s o '
2
1
1
0
0

= 3

15,1

1
2
1
2
1

|5 2 I

2
2
3
3
4

/?

IV
3
2
2
1
1
0
0
0

= 4

IV
1
2
1
2
1
3
2
1

i » 2 i
2
2
3
3
4
3
4
5

For each dimension in Table 1 the triples are listed in

reverse lexicographic order. With this ordering cases in the

same row have the same pair of values of |S | and |s |, differing

only in |s |. Since the possible triangulations are determined

by js | and |s |, there is a significant geometric relationship

between the possible triangulations for cases appearing in the

same row. This will be explained further after introducing

Figure 2.

The three cases shown for n = 2 are those previously

illustrated in Figure 1, and in the same order. Diagrams

illustrating the five cases for n = 3 are given in Figure 2.

Recall that cases with |S | = 1 admit only one triangulation each

while cases with |s I > 1 admit two distinct triangulations each.

- 14 -



CASE 1.

CASE 2.

CASE 3.

CASE 4.

CASE 5.

Figure 2. Configurations of five distinct

non-coplanar points in 3-space.
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Note that in the first three cases of Figure 2 the base

facet of each diagram has the same configuration as the

corresponding case in Figure 1. Case 1 admits of a further stage

of reduction since the base edge in Figure 1 is the diagram for

the case of 3 points in 1-space, i.e., the case corresponding to

the first and only entry for n = 1 in Table 2.

These are examples of the following general principle: If a

point set P has parameters (o a , a ) with o * 0, the subset
*

P consisting of the points indexed in s and s will lie in an

(n-o )-dimensional manifold and have a (0, o , a ) configuration.

(Note that these two related configurations are in the same row

in Table 2.) Any triangulation of P is related to a tesselation
*

of P by the fact that any simplex in a triangulation of P is the
*

convex hull of the union of a simplex in a triangulation of P

with .the points of P\P .

6. Configurations having all pairs of points connected

Note that in Case 3 and in the second triangulation shown

for Case 4 in Figure 2, every pair of points is connected by an

edge used in the triangulation. This is true of any

triangulation of n+2 points in n-space if the triangulation

consists of three or more simplices. This follows from the

observation that if any three different subsets of size n+l are

selected from a set of n+2 points, every possible pairing of

points must appear in one or more of the selected subsets.

This observation has particular significance in dimensions 4

and higher, since then there are configurations of n+2 points

having 3 or more points in both S and S ; e.g., see Row 6 for

- 16 -



n = 4 in Table 1. In such cases both of the possible

triangulations will have all points connected by edges of the

triangulations. Therefore the two possible simplicial

triangulations are not distinguished from each other by

information about connectivity of pairs of points.

We shall return to this point in Section 9 in connection

with the Dirichlet tessellation.

7. The sphere test for a set of n+2 points in j?-space

Let P continue to denote a set of n+2 points in n-space, not

lying entirely in any n-1 dimensional manifold. In the preceding

section it was seen that there may be either one or two ways to

triangulate the convex hull C of such a set P. For the cases in

which two triangulations are possible we introduce the sphere

test as a way of choosing one of the triangulations.

Suppose P is a configuration that admits two possible

triangulations. Using the notation and results of Theorems 1 and

2, it follows that \S^\ > 2, |S2( i 2, and n z 2. The two

possible triangulations are T ̂  = {t . -.les^} and T^ = {t . :ies^},

where t is the nondegenerate simplex with vertex set P\p,.

For each ies us , let E be the unique n-sphere

circumscribing the simplex t and let B be the open n-ball whose

boundary is E ..
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The Sphere Test

If all points of P lie on the same sphere, i.e.,

all of the spheres E . are coincident, then the

sphere test does not distinguish between T and r .

Otherwise choose j^s us . If p .<B select the
<J J

triangulation T or T that includes t , while if

p .eB . select the triangulation r or r that does not

include t . .

As an example consider Case 2 of Figure 1 with s = {1,3}

and s = { 2 , 4}. To apply;the sphere test we may choose any one

of the four points and ask whether it is inside or outside the

open ball circumscribing the other three points. Figure 3

illustrates the four possible ways of applying the test for this

example. We find p eB , p.es , p «B , and p eB . Thus any one
l l O w f c ^ 4 4

of these tests results in the selection of Tn = (tn, t .} as the
f. £. 4

preferred triangulation.
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PI€BI

Figure 3. Example of application of the sphere test.

The crucial fact that the result of the sphere test is

unique independent of the choice of the test point is established

by the following theorem.

Theorem 3 Let P be a point set satisfying the hypotheses of

Theorem 1 with signature sets satisfying \S \ > 2 and \S | > 2.

If the points of P do not all lie on the same n-sphere then

eitner

p.«B. for all i€S. and p.es. for all 'eS2

or

.CB. for all iesn and p.eB. for all /eS .
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For the proof of this theorem it is useful to have the

following two lemmas on intersecting spheres.

Lemma 1 Let E and E be two distinct n-spheres in n-space,

(n > 2), intersecting in a set E consisting of more than a

single point. '• Then E is an C n-1) - sphere contained in a

uniquely determined hyperplane h .

Lemma 2 let B and B denote the open balls bounded by E

and E , respectively. On one side of the hyperplane, h , B

w i l l contain B , while the reverse inclusion w i l l prevail on the

other side of h . Let H denote the open halfspace on the side

of h in which B contains B and let H denote the other open

halfspace. Then

(21) HinB2 C H1OB1

(22) (n^B2) n («1n£1) = Null

(23) B n (H.nE ) = Null

(24) H2nBl C H2nB2

(25) («2nB1) n (H2nE2) - Null

(26) B n (H HE2) = Null

Proof of Lemmas. The validity of these lemmas for n=2 is

clear from consideration of Figure 4.
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H H,

Figure 4. Configuration of Lemmas 1 and 2 in 2-space.

In higher dimensional spaces the configuration of the two

intersecting balls is symmetric about the line, « , connecting the

centers of the two balls. Thus the intersection of the objects

E , E , B , B , h , H , and H with any 2-dimensional manifold
J. £ .1 ^ JL fc X £•

containing * again gives the configuration of Figure 4. We omit

further details of the proof, a

The principal conclusions to be used subsequently from Lemma

2 are Eqs.(23) and (26). For example from Eq.(23) we know that

if a point, q, is in H r\E , then q«B .

Proof of Theorem 3. Without loss of generality let j^S and

suppose p .tB . so that r is selected. It suffices to show that
*/ •/

p.«B. for every /€S and p.eB. for every / e s .

Let *€S US . Let t . denote the (n-1)-simplex forming the

common facet of the simplices t. and t . Thus t . . is the

(n-l)-simplex with vertex set P\{p.,p.}.
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Let ti . . denote the unique hyperplane containing t . .. The
J - i/

intersection of the n-spheres E. and £ is the (n-1)-sphere £. .

that circumscribes t .... E.. lies in*,,. On one side of ft. ., B .

is contained in B ., while on the other side of h , B . is

contained in B From information about one point of £., namely

p., that is not in ft. ., the relative containment relations

between B. and B . can be determined.

Let H denote the open halfspace on the same side of ft as
•J J

p . and let H '. denote the open half space on the other side of ft .

See Figure 5.

H.

C A S E O F i c S 1 CASE OF i € S,

Figure 5. Configuration of Theorem 3 in 2-space.

Since p .<B . but p .*E . , it follows that
J ./ J

(27) B nw . c B.nw

Then, as in Lemma 1, in the other half space, H'., we have
J

(28) B .DH '. c B .n« '.

We now consider the two possible cases of i*S or .

If '€S. -then p. and p . are on opposite sides of ft . . and thus
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p.eH* . Also PJ€E , and thus p^eE n»'. From Eq.(28) and Lemma 2

it follows that P^B. .

If i€S then p^ and p are on the same side of h and thus

p «H Also Pye£y and thus p «E nw . From Eq.(27) it follows

that Pe*. • D

8. The local and global sphere tests

Let T be a triangulation of a point set P in n-space. The

triangulation T satisfies the global sphere test if for each

simplex t .er the open n-ball B. circumscribing t . contains no

points of P.

A pair of n-simplices, tf and t ., sharing a common

(n-1)-dimensional facet t.. will be said to satisfy the local

sphere test if the vertex of t. not in t . . is outside the open

ball B circumscribing t . By Theorem 3, this is equivalent to

the requirement that the vertex of t . not in t is outside the
J J

open ball B circumscribing t..

Theorem 4 If a triangulation T of a point set P has the

property that every pair of sinplices sharing a common facet

satisfies the local sphere test, then T satisfies the global

sphere test .

Proof . The proof will be by contradiction. Suppose the
*

hypothesis is satisfied, but there is some point p ep and some

.simplex t'er such that the open ball B1 circumscribing t'
*

contains p .
• *

Let « be a line segment from p to some point q interior to

t'. By a small perturbation of the position of the end point q,

if necessary, we may assume that wherever « passes from one
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simplex to another it intersects the relative interior of a

common facet.

Relabel the simplices intersected by t so they are denoted

by t , t , ..., t , ordered along the line < from t , which was
*

previously called t' , to t , which has p as one of its vertices,
f\

For i -2, . . . , k, let p.. be the vertex of t . that is not a

vertex o f t . . For / = 1, ..., *, let £. be the sphere

circumscribing t , and let B. be the open ball whose boundary is

E .. Note that pR = p* and B = B1.

By hypothesis, p.«B._ , / =2, ..., k, but we are assuming

p eB . Since P.SB and
K J. K.1

, there exists a smallest index,

j , such that p.€B . and pt«B . Let h denote the unique
** J " J T J.

hyperplane containing the facet common to t . and t . . Figure 6

illustrates t ., t , and related objects for the case of n = 2.

Figure 6. Configuration of Theorem 4 in 2-space.

Let H be the open halfspace on the same side of n as

t . Let H. be the opposite open halfspace, i.e., the halfspace

on the same side of n as t . . Then

and
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thus

contradicting the assumption that p .*B . 0

9. The global sphere test and the Dirichlet tessellation

Let P again denote a finite set of distinct points in

n-space, not lying entirely in any (n-l)-dimensional manifold.

With each point, p.ep, we associate the cell,

d . = {q : l lq-p. l l S llq-p II , for all p . e / > }

The cell d. is called the Dirichlet cell associated with p

relative to the point set P. ' The set of all d.'s is called the

Dirichlet tessellation of n-space associated with the point set

p. Clearly the cells cf. are disjoint except for common

boundaries, and the union of all of the d. 's covers all of

n-space. .

Each cell, d., is the intersection of a finite number of

halfspaces. Each such halfspace is bounded by the hyperplane

that perpendicularly bisects the line segment connecting the .

point p. to another point of P.

Let Q denote the set of points, q ., that occur as vertices

of the d.'s. Each q . is the unique intersection point of at

least n facets of some cell, d., and thus is the unique
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intersection point of at least n of the bisection hyperplanes,

with some n of them being linearly independent.

Let r . = \\q .-p. n . Since q .ecf. , there are no points of f

whose distance from q . is less than r .. For each bisecting
./ */

hyperplane on which q . lies, there is another point, pep, which

is the reflection of p. relative to this hyperplane and whose

distance from q is also r .. Thus there are n + 1 or more points
J ./

of ? at the distance r . from q ., and this set of points does not

lie in any (n-1)-dimensional manifold.

Conversely it can be verified that any point in n-space that

attains its minimum distance from points of P at n+l or more

points of F that do not lie in an (n-l)-dimensional manifold must

be a vertex of one or more of the cf 's, i.e., must belong to the

set Q .

With each point q .eQ, associate the convex hull, s ., of the

points of P that are at the minimal distance, r ., from q .. The
J J

set, s ., is called a Delaunay cell. The set of all s .'s
J J

constitutes the Delaunay tessellation of the convex hull of P .

In particular it can be verified that the s .'s are mutually

disjoint except for common boundaries, and the union of all of

the s .'s coincides with the convex hull of P.

The Delaunay tessellation and the Dirichlet tessellation are

dual to each other in the sense that each cell, d., of the

Dirichlet tessellation is associated with a vertex, p , of the

Delaunay tessellation, and each cell, s , of the Delaunay

tessellation is associated with a vertex, q , of the Dirichlet

tessellation.
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If the points of P are in "general" position, each celi, s.,

will have just n+1 vertices, and thus will be a simplex. In this

case, the Delaunay tessellation may be called a triangulation.

In practical applications, e.g., [Bowyer '81], where one uses the

Delaunay tessellation as a means toward producing a

triangulation,. one can replace any cell, s , that has more than
J

vertices by an arbitrary triangulation of that cell, thus

producing an overall triangulation of P . It appears common to

extend the name Delaunay tessellation to such a triangulation.

We may now observe that a triangulation satisfying the

global sphere test of Section 8 is, in fact, a Delaunay

tessellation, possibly in the extended sense just mentioned. Let

T be a triangulation of P satisfying the global sphere test.

With each simplex, ter , associate the point, q, at the center of

the circumsphere of t . If two of more simplices have the same

circumcenter , replace these simplices by their union, s. Note

that all vertices of such a cell, s, lie on a common sphere.

The circumcenter points, q, associated with the cells of

this tessellation satisfy the properties of the set, Q, noted

previously. Thus these cells are all Delaunay cells. Since

their union covers the convex hull of P, no Delaunay cells are

missing, so this is a Delaunay tessellation for P .
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