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ABSTRACT

This report establishes a number of mathematical results
relevant to the problem of constructing a triangulation, i.e., a
simplicial tessellation, of the convex hull of an arbitrary
finite set of points in n-space.

The principal results of the present report are

(a) A set of n+2 points in n-space may be triangulated in
at most 2 different ways.

(b) The "sphere test" defined in this report selects
a preferred one of these two triangulations.

(c) A set of parameters is defined that permits the
characterization and enumeration of all sets of n+2
points in n-space that are significantly different from
the point of view of their possible triangularizations.

{d) The local sphere test induces a global sphere
test property for a triangulation.

(e} A triangulation satisfyving the global sphere
property is dual to the n-dimensional Dirichlet

tessellation, i.e., it is a Delaunay triangulation.
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1. Introduction

Let P denote a set of @ distinct points in n-space (n 2 2,
m =2 n+l.) Let € denote the convex hull of P, ”Assuming P does
not lie entirely in some (n-1)-dimensional manifold, we are
interested in the problem of constructing a simplicial
tessellation, T, of € such that each simplex, t € T, has n+l
points of P as its vertices,'has non-null n-dimensional volume,
and contains no other points of P. Such a tessellation will be
called a triangulation.

Another type of tessellation with which we shall be
concerned is the Dirichlet tessellation. This is the set of m

cells, di' defined as

di = {q : ig-p Il < nq—pju for all pjer}

Thus the interior points of the cell d, are the points of n-space

i
that are closer to the point P, than to any other point of P. A
triangulation of P can be defined that is, in a certain sense,
dual to the Dirichlet tessellation. Such a triangulation is
called a Delaunay triangulation and will be defined in Section 9.
Triangulations of point sets in 2-space are used in a
variety of applications, particularly as an initial step in the
analysis of data that is available at séattered points in the
plane. After triangulation one may carry out interpolation,
regridding to a rectangular grid, contour plotting, or other
processes. The Dirichlet tessellation is used as a model in

wvarious scientific fields where it is appropriate to associate a

unique region of space with each point in a finite point set.



Examples of applications of the Dirichlet tessellation are
summarized and referenced in [Green '78].

Similar needs arise for the analysis of data defined at
scattered points in higher dimensional spaces, but much less
study has been devoted to triangulation algorithms and
interpolation methods for these problems.

Some early algorithms proposed for triangulation in the
plane reguired O(mz) time. Since 1972 a number of computer
programs for this problem, or the closely related Dirichlet
tessellation problem, have been reported with estimates of

execution time in the range of m1'3 to m1'5.

See [Lawson '72],
[Lawson '77)], [Akima '78), [Green '78), [Cline '84], and [Renka
'84b]. Triangulation on the surface of a sphere is treated in
{Lawson '84] and [Renka '84a]j. The methods of various of these
papers have been used in a number of proprietary graphics
packages, and in the portable Fortran programs described in
[Renka '84a] and [Renka '84b] that are available from the ACM
software distribution service.

Bowyer [Bowyer '81] devised and implemented an algorithm for
constructing the n-dimensional Dirichlet tessellation and the
dual (Delaunay) triangulation. A very satisfactory execution
time estimate of O(akn(1+1lk)+bkn) was reported. The algorithm
was implemented in ISO Fortran and performed well in a variety of
test cases.

Barnhill and Little [Barnhill '84) presented ideas on a

different approach to the n-dimensional triangulation problem and



also gave interpolation methods for use with triangular grids in
3- and 4-dimensional space. ‘

The present report establishes some mathematical properties
of n-dimensional triangulations that provide additional
understanding of the problem. These results are generalizations
of properties of the 2-dimensional problem given in [Lawson '77].

The algorithm given in [Lawson '77] operates by successively
triangulating various 4-point subsets of the given point set P.
It is easily seen that a set of 4 points in the plane admits of
at moét 2 different triangulations. 1In [Lawson '77] a local
"circle test" was introduced that selected one qQf these two
possible triangulations. It was shown that the triangulation
produced according to this criterion satisfied a gldbal circle
test property, a max-min angle property, and was dual to the
Dirichlet tessellation. The equivalence Of these latter two
properties was established independently by Sibson in [Sibson
'78].

The principal results of the present report are

(a) A set of n+2 points in n-space may be triangulated in
at most 2 different ways.

{b) The "sphere test" defined in this report selects
a preferred one of these two triaﬁgulations.

(c) A set of parameters is defined that pepmits the
characterization and enumeration of all sets of n+2
points in n-space that are significantly different from
the point of view of their possible triangularizations.

(d) The local sphere test induces a global sphere

test property for a triangulation.



(e) A triangulation satisfying the global sphere
property is dual to the n-dimensional Dirichlet

tessellation, i.e., it is a Delaunay triangulation.

2. Baryceﬁtric coordinates and their geometric interpretation

The convex hull of n+1 boints'is called a simplex. The
'convex hull of a subset consisting of n of these points is called
a facet of the simplex.

Let pi; e, ph+1,'be n+1 distinct points in n-space.
Define the matrix

B‘=|r'11...1 }
{ Pr P2 -+ * Ppy1
Let t be the (possibly degenerate) simplex with vertices Py

< P The n~-dimensional volume of t is given by

n+l’

Vol(t) = |Det(B)j/n!

Let 9 be an arbitrary point in n-space. If t is
nondegenerate, i.e., if Vol(t) # O, the numbers, b,, ..., b,

satisfying

(1

e o eeund

| AU R —
il
— e —
Q -

are called barycentric coordinates of ¢ relative to the simplex,

t,



For each s, the sign of bs indicates the position of q

relative to the hyperplane, H_, containing the facet of ¢

opposite vertex P- Thus bs = 0 when q is in HS, b > 0 when g

s

is on the same side of HS as pg. and bS < 0 when g is on the

opposite side of HS from P,

Some consequences of these facts are:

(a)

(b)

(c)

The point, q, is in the simplex, t, if and only if all

b =z 0.

S

1f g is strictly outside the simplex, t, then one or
more of the bs's are negative. These negative bs's
identify the facets of t with whose vertices q can be
connected to form nondegenerate simplices neighboring
to t.

At least one of the b_'s must be positive since

Ib = 1.
s

3. Triangulations of sets of n+2 points

In the 2D problem, study of all possible ways of

triangulating the convex hull of four points provided the key

ideas that led to a systematic procedure for improving the

triangulation of the convex hull of larger sets of points as one

point at a time was introduced. The study of sets of n+2 points

provides similar insights in the n—dimensional problem.

In 2-space all of the different possibilities for

configurations of four distinct points, not on a common line, are

illustrated by the three cases in Figure 1.



CASE 1.

o2
3e . .l
4
CASE 2.
| .,
3 el
04'
CASE 3.
o2
4
3e el

Figure 1. Configurations of four distinct

non-colinear points in 2-space.

In Case 1 there is a unidue triangulation using twd
triangles. In Case 2 there are two possible triangulations, each
using two triangles. 1In Case 3 there is a unique triangulation

using three triangles,

One might expect the general n-dimensional case to be much

more complicated than the 2-D case. Although there is more

-6 -




complexity in the higher dimensional cases, there are,
fortunately, two very useful properties that persist. It remains
true that a given set of n+2 points in n-space admits of at most
two different triangulations by n-dimensional simplices.
Furthermore, if the n+2 points do not all lie on a common
- n-sphere, one of the possible triangulations is uniquely selected
by the sphere test that will be described shortly.

These facts will be established in the following two

sections.

.4. Signature sets

Theorem 1 Let P be & set of n+2 points, Pyt ++ts Ppins in
n-space not lying entirely in any (n-l)-dimensional manifold.
There (s a partitioning of the index set (1, 2, .... n+2} into
three sets, SO‘ Sl' and 32. and a set of numbers, ¢, satisfying
(2) izs P T 125 P

1 2
{3) zZ ¢, = zZ c = 1
ies ! ies_ !
1 2
. ’ [ € S
(4) ¢, = (o) o
c. > . i € 5 _Us
(5) ’ i ° 172

The numbers c, are uniquely determined by the set P.. The
sets~so. Sl, and 52. are also unique, with the understanding that
the labeling of S1 and 52 could be arbitrarily interchanged.

Proof. The (n+l)x(n+2) matrix



is of rank n+1 due to the hypothesis that the points of P do not
all lie in any (n-1)-dimensional manifold. The systen

(6) . : - Ax = 0

has a l1-dimensional space of solution vectors. Let x* be a
nonzero vector satisfying Eq.(6) and normalized to satisfy-

quil = 2. Since the first row of Eg.(6) is le = 0, the vector

*
¥ must have both positive and negative components, and the sum

of the positive components must equal the sum of the magnitudes
of the negative components. In fact, with the specified
normalization, these sums must each be 1.

*
If any components of x are zero, let S, be the index set

o
‘for these components. Lets1 be the index set for components of
* ' *
x of one sign and let 52 be the index set for components of x
of the other sign. Both Slland 52 are non-null. Define
*
c, = ix.{\, i =1, ..., n+2
{ ot
Then Eici = 2 and all of the Egs.(2-5) are satisfied.

This specification of the sets, S_., S and S and the

o" "1’ 2’
numbers, C i is unique to within the possible interchange of s1

and s since if Egs.(2-5) were satisfied by any other sets, Sb'

2l

si, and Sé, and numbers, c;, it would permit the construction of

a solution vector for Eq.(6) not in the same l-dimensional
subspace as x*. a

For any point set P satisfying the hypotheses of Theorem 1,
the associated sets, so, Sl' and 52, will be called the signature
sets éf P.

Let p* be the point given by the egual left and right

*
members of Eg.(2). Note that p is in the convex hull of

{pi:iesl} and also in the convex hull of (pi:desz}. In féct the

- 8 -



geometric interpretation of Theorem 1 is that the subsets of P

indexed by S1 and 52 are_the smallest two disjoint subsets of P

whose convex hulls have a point in common, and the common point,

*
p , is unique.

As examples, in Fig. 1, we can identify the signature sets

*
and the common point p as follows:
x

Case 1 So = (2}, S1 = {4}, 52 = {1, 3}, p = p4
*
Case II SO = Null, S1 = {1, 3}, 52 = (2, 4}, p = the
intersection of lines P.P4 and,p2p4.
x
Case III So = Null, Sl = {4}, 52-=,{1' 2, 3}, p = P,

To re;ate this to the possible triangulations of the convex
hull of 7, we next identify the possible nondegenerate simplices
- that can be formed from the points of P.

For each i = 1, ..., n+2, let ti denote the (possibly
degenerate) simplex formed using the points P\pi as vertices.
(The notation P\pi denotes the subset of P remaining when point
P, is- removed.) The n-dimensional volume of t 6 is Aci where the

i

°1'S are given by Theorem 1, and A is a positive constant

independent of i. Thus the nondegenerate simplices are just the
set (ti : ieslusz}.
What are the possible groupings of these simplices to form a

triangulation of the convex hull of »7?

5. Admissible triangulationé of n+2 ppinté

Theorem 2 Let P be & point set as in Theorem 1. There are
at most two distinct trianqulations of the convex hull of P,

namely, T, 6 = (ti:iesl} and T

1 1

2 = (tiftesz}, where the sets S, and



2

set P-{pi}. If one of the sets S1 or 52 is of cardinatlity 1., the

S, are as defined in Theorea 1, and-ti is the simplex with vertex

corresponding set T1 or T2 is not an admissible triangulation.

Proof. This theorem will be proved by establishing the
following four assertions:

(a) Any pair of simplices, one indexed in S1 and the

other indexed in s is mutualiy overlapping and

2!
thus cannot be used in the same triangulation.

(b) Any pair of simplices, both indexed in sl or both

indexed in s is nonoverlapping, and thus the

2'
sets T1 = {ti:lesl) and T2{t1:1652}_are each

nonoverlapping sets of simplices.

(c) Each of the sets Tl and 72 covers the entire

convex hull, ¢, of P, i.e., any point q €C is also

contained in some t,erl and in some'tjerz.

(d) Ti is not an admissible triangulation of C if

Is.] = 1.

i
Note that Eq.(2) can be solved for any one of the pi's,

ies1U52' and the resulting equation gives the barycentric-

" coordinates of one point of P with respect to the simplex formed

by the others. For example, choose an index, ke&S and solve

1I
Eq.(2) for P, + obtaining
(1) p, =2 (c,/ec p, - Z (e, /e dp, + 2 (c,/c )p,

1e52 tesl\k teso

from which we may write the barycentric coordinates of Py

relative to the simblex t, as

K
(8) b, = ci/ck > 0 for 1&52 .
(9) - b, = -c./c, <0 for ie(s5,-{(k})
(10) b, = 0 for teso

- 10 -



Eq.(8) implies that for each iesz, P; and p, are on the same

side of the common facet shared by ti and tk. Thus ti and t

K
overlap, establishing assertion (a). Eq.(9) implies that for

each iesl\k, P,

; and p, are on opposite sides of the common facet

shared by ti and t,. Thus ti and t, do not overlap, establishing

Kk R

assertion (b).
~ Let q be an arbitrary point in €. Then there are

non-negative coefficients, di' such that

_ n+2
(11) Q= Z d,p,
. i
i=1
n+2
(12) 1 = Z d,
i=1

Rewrite Eqs.(2—3)‘as

(13) 0= Z c,p; - z c,P;
lesl 1652

{14) 0= 2z ¢, - z <,
1€S1 1€52

Using an indeterminate, A, form A times Eq.(13) plus

Eq.(11), and A times Eq.(14) plus Eg.(12): -

(15) qQ = Z (di+Aci)pi + Z (di-Aci)pi + Z d

i€sS i€s i€s ipi
1 2 0
(16) 1= Zz (di+Aci) + Z (di—Aci) + Z di
ies )
ies, {552. leso
There is a range of values of A, A_. < A < A , for which
min max

all of the coefficients, (d[+Aci), iesl,-and (di-Aci), iesz,

appearing in Egs.(15-16) are nonnegative. At the low end of this

range, at least one of the coefficients indexed in s say

ll
_dj+ch, is zero, showing that qetj. Similarly at the high end of

the A range at least one of the coefficients indexed in 32, say

- 11 -



de—Acz’ is zero, showing that q €t . These limiting values of A
are given by

A
min

max{—di/cizlesl}

A
max

mln{di/cizzesz)
This establishes assertion (c).

Consider now the case in which one of the sets S. or S_ has

1 2
cardinality i1, e.g., suppose gsll = 1. Then the triangulation,
Tl, consists of a single simplex, say tj. The point pj that is

not a vertex of tj is therefore not a vertex in the
triangulation, Tl' Thus the triangulation T1 is not admissible

because it does not incliude all points of P as vertices. 0O

In a differenf'context, namely in deQelopiﬁg a stable method
for evaluation of multivariate splines, Grandine [Grandine '84]
proved a theorem encompassing a subset of the above Theorem 2.
His theorem states that an arbitrary point in the convex huil of
a set of n+2 points in n-space can be in the ;nteriqp of at most

two of the n+2 simplices that can be formed using these points.

As examples of Theorem 2, consider again Figure 1. In Case
i, with 51 = {4} andls2 = {1, 3}, the triangulation T2 = {tl, t3)
is admissible while Tl = {t4} is not, again because p4 is not-
used as a vertex. In Case 2, with S1 = {1, 3} and 52 = (2, 4},
there is a choice of two admissible triangulations, T1 = {tl, t3}
and T2 = {t2, 34}. In Case 3, with S1 = {4} and 52 = {1, 2, 3},
the triangulation T2 = {tl, t2, té} is admissible while Tl = {t4}

is not, because P, is not used as a vertex.
Corollary 1 In the context of building triangulations, an

- enumeration of all possibile significantly different .

- 12 -



confiqurations of n+2 distinct points in n-space, not lying in

any (n-1)-dimensional manifold, is qiven by all of the possible

ways of assigning values to |So|. |Sl|, and |52] satisfying
(17) '52' 2 |51| 2 1
(18) s,z 2
(19) “Isgl 2z 0
(20) ISol + ISg1 + |5,] = n+2
Proof. The sets S1 and 52 must each be nonempty to satisfy
Eg.(3). Since the sets S1 and 52 are not mutually distinguished
we may arbitrarily use S1 as the label of the smaller of the two

sets when they are not of the same size. These considerations
establish Eq.(17).

The sets S1 and 52 cannot both be sinéietohs.for then they
would have to index the same single point in order”for Eq.(2) to
hold. This is ruled out by the hypothesis that all points of »
are distinct. Along with the convention of Eq.(l?)'this gives
Eq.(18).

Egs. (19-20) follow frdm previous discussions. @

Is

Using Corollary 1 one may list the values of (|s

OII 1"

|52') for all significantly different configurations of n+2
points in n-space. This is done for dimensions 1, 2, 3, and 4 in

Tabie 1.



Table 1. Characterizing parameters for all of
the significantly different configurations

of n+2 points in n-space for n =1, 2, 3, and 4.

n =1 n = 2 n =3 n =4
ISgl ISy 1 IS0 Isgl ISyl IS, ISl IS0 1,0 Isgl IS0 15,
0 1 2 1 1 2 2 1 2 3 1 2
0 2 2 1 2 2 2 2 2
0 1 3 1 1 3 2 1 3
0 2 3 1 2 3
o 1 4 1 1 4
0 3 3
0 2 4
o 1 5

For each dimension in Table 1 the triples are listed in
reverse lexicographic.order. With this ordering cases in the

same row have the same pair of values of |s and |3 differing

2|'
Since the possible triangulations are determined

1

only in 1501.

by Is_.} and |52[, there is a significant geometric relationship

1
between the possible,triangulations for cases appearing in the
same row. This will be explained further after introducing
Figure 2.

Thé_threq cases shown for n = 2 are those previously
illustrated in Figure 1, and in the same order. Diagrams
illustrating the five cases for n = 3 are given in Figure 2.

Recall that cases with |s = 1 admit only one triangulation each

1!

while cases with |s > 1 admit two distinct triangulations each.

1!



CASE 1.

CASE 2.

 CASE 3.

CASE 4.

 CASES.

Figﬁre 2. Configurations of five distinct

non—copianar points in 3-space.
..15_



Note that in the first three cases of Figure 2 the base
facet of each diagram has the same configuration as the
corresponding case in Figure 1. Case 1 admits of a further stage
of reduction since the base édge in Figure 1 is the diagram for
the case of 3 points in l-space, i.e., the case corresponding to
the first and only entry for n = 1 in Tablé 2.

These aré examples of the following géneral principle: If a
02) wjtﬁ o. # 0, the subset

point set P has parameters (o, ©
’

1’ 0

*
P consisting of the points indexed in s, and s_ will lie in an

1 2
(n—oo)~dimensional manifold.and have a (0, Ty 02) configuration.
(Note that these two related configurations are in the same row
in Table 2.) Any triangulafion of P is related to a tesselation
of P* by the fact that ény simplex in a triangulation of P is the

R . x
convex hull of the union of a simplex in a triangulation of P

o : *
with the points of P\P .

G.JConfigurations having all pairs-.of points connected

Note that in Case 3 and in the second tfiangulation shown
for Case 4 in Figure 2, every pair of poinfs is connected by an
edge usea in the triangulation. This is true of any
triangulation of n+2 points in n-space if the triangulation
consists of three or more simplices. This follows from the
observation that if any three different subsets of siie n+l are

"selected from a set of n+2 ‘points, every possible pairing of
points must appear in oné,qr ﬁore of the selected subsets.

This observation has. particular significance in dimensions 4
and higher, since thgn there are cqnfigurations of n+2 points

having 3 or more points in both S1 and 52; e.g., see Row 6 for
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n = 4 in Table 1. In such cases both of the possible
triangulations will have ‘all points connected by edges of the
triangulations. Therefore the two possible simplicial
triangulations are not distinguished from each other by
information about connectivity of pairs of points.

We shall return to this point in Section 9 in connection

with the Dirichlet tessellation.

7. The sphere test for a set of n+2 points in n-space

Let 7 continue to denote a set of n+2 points in n-space, not
lying entirely in any n-1 dimensional manifold. In the preceding
section it was seen that there may be either one or two ways to
triangulate the convex hull ¢ of such a set P. For the cases in
‘which two triangulations are possible we introduce the sphere
test as a way of choosing one of the triangulations.

Suppose P is a configuration that admits two possible
- triangulations. Using the notation and results of Theorems. 1 and

2, it follows that |s 2 2, 152| 2 2, and n 2 2. The two

1' -

possible triangulations are T1 = {ti:lesl} and 12 =1{ti:1e52},

where ti is the nondegenerate simplex with vertex set P\pl.

For each ieslusz, let E’ be the unique n-sphere
circumscribing the simplex tl and let 81 be the open n-ball whose

boundary is Ei'



The Sphere Test
If all points of P lie on the same sphere, i.e.,
all of--the spheres Ei are coincident, then the

sphere test does not distinguish between.- 7 "and T _.’

1 2
Otherwise choose jeslusz.i'If pjesj select the
triangulation T1 or T2 that includes tj, while if
pjij select the triangulation Tl or T2 that does not
include tj.
As an example consider Case 2 of Figure 1 with 51 = {1, 3}
and 52.='{2, 4)}. To apply:the sphere test we may choose any one

of. the four points and ask whether it.is inside or outside the
open ball circumscribing the other three points. Figure 3
illustrates the four possible ways of applying the test for this
example. We find plesl,.péeaa, p2e32, i

of these tests results in_the selection of T2 = {tz, t4) as the

and.p4e3 Thus .any one

preferred triangulation.



) 2
3©1 . l |
4
2
| ]

4
p €8 P3 € By
2 .
- ol
4
P2¢ B, Py¢ By

Figure 3. Example of application of the  sphere test.

The crucial fact that the result of the sphere test is
unigque independent of the choice of the test point is established
by the following theorem.. |

Theorem 3 Let P be a point set satisfying the hypotheses of

Theorem 1 with signature sets satisfying |51| 2z 2 and |s 2 2.

2l -

If the points of P do not all lie on the same n-sphere then
eitner

pieBi for all i€sS, and PieBi for all Iie€s

1 2

or

&€B., for all ie€3 and . &€B. for &all i€S
pl i Pt i

2 1’



For the proof of this theorem it is useful to have the

following two lemmas on intersecting spheres.

2

(n 2 2), intersecting in a set Elé consisting of more than &

Lemma 1 Let El and E,_, be two distinct n-spheres in n-space,

single polnt. :  Then E is an (n-1)-sphere contained in a

12

uniquely determined hyperplane n12.

Lemma 2 Let B, and B, denote the open balls bounded by E

i 2 1
and 52' respectively. O0On one side of the hyperplane, h12, B1
will contain 82, while the reverse inclusion will prevail on the
other side of n12. VLet Hl denote the open halfspace on the side
of h12 in which Bl contains 82 and lel H2 denote the other open
halfspace. Then
(21) H NB, < HlﬂBlv
(22) ' - (H,NB,) N (H NE ) = Null "~
(23) B, n (HinEl) = Nulil
(24) - H,NB, < H,NB,

(25) (HZnBl) n (Hanz) = Null
(26) B, N (HNE,) = Null

Proof of Lemmas. The validity of these lemmas for n=2 is

clear from consideration of Figure 4.



Figure 4. Configuration of Lemmas 1 and 2 in 2-space.

In higher dimensional spaces the configuration of the two
intersecting balls is symmetric about the line, &, connecting the
centers of the two balls. Thus the intersection of the objects
El’ E2, Bl' 82, h12' Hl' and H2 with any 2-dimensional manifold
containing ¢ again gives the configuration of Figure 4. We omit

further details of the proof. O

The principal conclusions to be used subsequently from Lemma
2 are Egs.(23) and (26). For example from Eqg.(23) we know that
if a point, q, is in H,NE , then q¢B,.

Proof of Theorem 3. Without loss of generality let jes1 and
suppose pjij so that T1 is selected. It suffices to show that

and PiGBi for every i€s

pieai for every lesl 2°
Let leslusz. Let tlj denote the (n-1)-simplex forming the
common facet of the simplices ti and tj. Thus tij is the

{(n-1)-simplex with vertex set P\{pi,pi).
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Let hij denote the unigue hyperplane containing ti The

j

intersection of the n-spheres Ei and E, is the (n—l)—sphere'Ei

J J

that circumscribes t, .. E.. lies in h,.. On one side of n, ., B.
iy ij ij ij i

is contained in Bj' while on the other--side of hi B is

J' T
contained in Bi' From information about one point of Ei’ namely

pj, that is not in hij’ ‘the relative containment relations

between Bi and Bj can be determined.

Let Hj denote the open halfspace on the same side of nlj as

pj and let H} denote the open halfspace on the other side of hij‘

See Figure 5.

n;
v H
¥ j
{
\ t.
I
B. nH.
E) |
j P; ’
E
CASEOF i €S, CASEOF i €5,

Figure 5. Configuration of Theorem 3 in 2-space.

Since pst,'but PjeEi’ it follows that

27 - B NH, K < B NH
(21) - Sy BNy
Then, as in Lemma 1, in the other halfspace, H}, we have
(28) : - B.NH' < B NH'
r ) J J
We now consider the two possible cases of ie€S, or [é&S

1 2°

if iesl.then P; and pj are on opposite sides of nij and thus
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pieH}. Also p,€E and thus p,€E ny' From Eq.(28) and Lemma 2

J J g

it follows that piesi.
If.ies2 then P, and pj are on the same side of ni/ and thus
!

-PleHj' Also pleEJ and thus p,eEjnHj. From Eqg.(27) it fo;lows

that PieBi' u|

8. The local and global sphere tests

Let T be a triangulation of a point set P in n-space. The
triangulation 7 satisfies the global sphere_tegt if for each
simplex tieT the open n-ball Bi circumscribing_ti.contajns no
points of »P.

A pair of n-simplices, tl and tj, sharing a common
v(n-l)—dimensional facgt tij will be said to éatisfy the local
sphere test if the vertex of t .  not in tij is outside the open
ball B Acircumscribing tj’ By Theorem 3, this is equivalent to

J

the requirement that the vertex of_tj not in tlj is outside the

open ball B, circumscribing ti'

i

Theorem 4 If & triangulation T of a point set P has the
property that every p&air of simplicgs énaring a coammon f;cet
satisfies the local sbnere test, then T satisfies the qlobal
spneré test,

Proof. The proof will be by contradiction. Suppose the
hypothesis is satisfied, but there is some point p*eP and some
_simplex t'eTr such that the opgﬁ ball B' circumscribing t:*

. .
contains p .
Let ¢ be a line segment from p* to some point ¢ interior to

t*. By a small perturbation of tﬁe position of the end point q,

if necessary, we may assume that wherever & passes from one
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simplex to another it intersects the relative interior of a
common facet.

Relabel the simplices intersected by ¢ so they are denoted

by tl' t2, cees Toy ordered along the line ¢ from ti, which was
previously called t', to t, whiéh has p* as one of its vertices.

For i =2, ..., kK, let pl.be the vertex of ti that is not a
vertex of ti—l' For i =1, ..., k, let Ej be the sphere

Circumscribing t. ., and let Bi be the open ball whose boundary is

i

*
Ei' Note that pk = p and Bl = B'.

By hypothesis, pieBi_l, i =2, ..., k, but we are assuming
pkeal. Since pkeB1 and pRQBR_l, there exists a smallest index,
J+. such that pkij and pkeaj+l. Let h denote the unique
hyperplane containing the facet common to tj and tj+1. Figure 6

illustrates tj, t and related objects for the case of n = 2,

J+1’

Figure 6. Configuration of Theorem 4 in 2-space.

Let Hj+ be the open halfspace on the same side of h as

1
tj+1‘ Let Hj be the opposite open halfspace, i.e., the haifspace
on the same side of h as tj. Then
Pivs € B ea™ jig
and ' '
Piv1 3



thus

j+1 J+1 T j+1

Py € BjnHj+1

Pp € BpyMH 0y

~contradicting the assumption that Pjij+l' a

9. The global sphere test and the.Dirichlet tessellation

Let P again denote a finite set of distinct points in
. n-space, not lying‘entirely in any (n-1)-dimensional manifold.
With each point, pieP, we associate the cell,

di = {q : Hq—pin < Mq-pju, for all pjeP}

The cell di is called the Dirichlet cell associated with P;
relative to the point set P. ' The set of all di‘s is called the
Dirichlet tessellation of n-space associated with the point set
P. Clearly the cells di are disjoint except for common
boundaries, and the union of all of the di}s covers all of
n-space.

Each cell, di, is the intersection of a finite number of
halfspaces. Each such halfspace is bounded by the hyperplane
that perpendicularly bisects the line segment connecting the .
point P, to another point of 7.

Let Q@ denote the set of points, qj’ that occur as vertices

of the di's. Each qj'is the unique intersection point of at

least n facets of some cell, di' and thus is the unique
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intersection point of at least n of the bisection hyperplanéé,
with some n of them being linearly independent.

Let rj = nqj—piu. Since qjedi, there are no points of P
whose distance from qj is less than‘rj. For each bisecting
hyperpiane on which qj lies, there is another point, peP, which
is the reflection of pi=ré1ative to this hyperplane and whose
distance from qj is also rj. Thus there are n+l1 or more points
of P at the distance rj from qj, and this set of points does not
lie in any (n-1)-dimensional manifold.

Conversely it can be verified that any point in n-space that
attains itsvminimum distance from points of P at n+l1l or more
points of P that do not lie in an (n-1l)-dimensional manifold must
be a vertex of one or more of the di's, i.e., must belong to the
set Q.

With each point qjeQ, associate the convex hull, sj, of the
points of P that are at the minimal distance, rj, from qj' The
set, sj, is called a Delaunay cell. The set of all sj's
constitutes the Delaunay tessellation of the convex hull of P.

In particular it can be verified that the sj'S'are mutually
disjoint except for common boundaries, and the union of all of
the sj's'coincides with the convex hull of P.

The Delaunay tessellation and the Dirichlet tessellation are
dual to each other in the sense that each cell, di' of the
Dirichlet tessellation is associated with a vertex, P of the
Delaunay tessellation, and each cell, sj' of the Delaunay
tessellation is associated with a vertex, 9 of the Dirichlet

tessellation.
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If the points of P are in "general" posifion, each cell, sj,
will have just n+l1 vertices, and thus will be a simplex. 1In this
case, the Delaunay tessellation may be called a triangulation.
In practical applications, e.g., [Bowyer '81), where one uses the
Delaunay tessellation as a means toward producing a

triangulation, one can replace any cell, s that has more than

J'
n+1l vertices by an arbitrary triangulation of that cell, thus
producing an overall triangulation of P. It appears common to
extend the name Delaunay tessellation to such a triangulation.

We may now observe that a triangulation satisfying the
global spﬁere test of Section 8 is, in fact, a Delaunay
tessellation, possibly in the extended sense just mentioned. Let
T be a triangulation of P satisfying the global sphere test.

With each simplex, ter, associate the point, g, at the cgnter of
the circumsphere of t. If two of more simplices have the same
circumcenter, replace‘these‘simplices by their union, s. Note
that all vertices of such a cell, s, lie on a common sphere.

The circumcenter points, q, associated with the cells of
this tessellation satisfy the properties of the set, Q, noted
previously; Thus these cells are all Delaunay cells. Since
their union covers the convex hull of 7, no Delaunay cells are

missing, so this is a Delaunay tessellation for r.
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