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ABSTRACT

In this report, we investigate a cascaded coding scheme for error
control. The scheme employs a combination of hard and soft decisions in
decoding., Error performance is analyzed. If the inner and outer codes are
chosen properly, extremely high reliability can be attained even for a high
channel bit-error-rate. Some example schemes are evaluated. They seem to be

quite suitable for satellite down-link error control.
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l. Introduction

In this paper we investigate a cascaded coding schéme for error control
for a binary symmetric channel with bit-error-rate €< l/é. In this scheme,
two linear block codes, C1 and C2, are used. The inner code Cl is a binary
(ny,k,) code with minimum distance dl' The inner code is designed to cor-

rect t, or fewer errors and simultaneously detect Al (Al Z'tl) or fewer

errors where tl+Al+1_5 dl [1]. The outer code C, is an (ny,k,) code with
symbols from the Galois field GF(2£) and minimum distance dz. If each code

symbol of the outer code is represented by a binary Q-tuple based on certain

basis of GF(2%), then the outer code becomes an (nzl,kzl) linear binary code.
For the proposed coding scheme, we assumed that the following conditions hold:

k1 = mll ' (1)
and ,

ny = mymy . (2)

where m and m, are positive integers.

The encoding is performed in two stages as shown in Fiqure 1. First a

message of k22 binary information digits is divided into k2 bytes of %

information bits each. Each g-bit byte (or binary_ﬁ-tuéle) is regarded as a
symbol in GF(ZQ). These k2 bytes are encoded according to the outer code

C, to form an ny~byte (n,% bits) codeword in C,. At the second stage of

encodlng, the nz-byte codeword at the output of the outer code encoder is

divided into m2 segments of m1 bytes (or m, 2 bits) each. Each mj-byte
segment is then encoded according to the inner code C1 to form an nl-bit
codeword. This n,-bit codeword in €, is called a frame. Thus, corre-
sponding to a message of k22 bits at the input of thé outer code encoder,
the output of the inner code ehcoder is a sequence of m, frames of n, bits

each, This sequence of m, frames is called a block. A block format is



depicted in Figure 2. We may view that the entire encoding operation is to

cascade the two block codes, C1 and Cz. The resultant cascaded code,

denoted C, is a binary (mznl,kzz) linear code. If m1==1, the cascaded code
C is a concatenated code [2].

In the proposed scheme, the decoding also consists of two stages as shown
in Figure 1. The first stage of decoding is the inngr code decoding.

Depending on the number of errors in a received frame, the inner code decoder

performs one of the three following operations: error-correction, erasure and

leave-it-alone (LIA) operations. Wwhen a frame in a block is received, its

syndrome is computed based on the inner code Cl' If the syndrome corre-

sponds to an error pattern e of t. or fewer errors, error correction is per-

1

formed by adding e to the received frame. The nl-k1 parity bits are removed

from the decoded frame, and the decoded m

l-byte segment is stored in a

receiver buffer for the second stage of decoding. A successfully decoded seg-

ment is called a decoded segment with no mark. Note that the decoded segment

is error-free, if the number of transmission errors in the received frame is
tl 6r less. If the'ﬁumber of transmission errors in a received frame is
more than Al’ the errors may result in a syndrome which corresponds to a
correctable error pattern with tl or fewer errors. 1In this case, the
decoding will be successful, but the decoded frame (or segment) contains
undetected errors. If an uncorrectable error.pattern is detected in a

received frame, the inner code decoder will perform one of the following two

operations based on a certain criterion [3]:

1. Erasure Operation -- The erroneous segment is erased. We will call

such a segment an erased segment.

2. Leave-it-alone (LIA) Operation -- The erroneocus segment is stored in

the receiver buffer with a mark. We call such segment a marked

segment.



Thus, after m2 frames of a received block have been processed, the receiver
buffer may contain three types of segments: decoded segments without marks,
errbneous segments with marks, and erased segments.

The above inner code decoding consists of three opefations: error-
correction, erasure and LIA operations. The decoding operation is described

by the flowchart in Figure 3. An inner code decoding which performs only the

error-correction and erasure operations is called an erasure-only decoding.

on the other hand, an inner code decoding which performs only the error-

correction and LIA operations is called a LIA-only decoding.

As soon as m2 frames in a received block have been processed, the

second stage of decoding begins and the outer code decoder starts to decode
the m, segments stored in the buffer. Note that an erased segment creates

m, symbol erasures (or m 2-bit byte erasures). Symbol errors are con-

1
tained in the segments with or without marks. The outer code C2 and its
decoder are designed to correct the combinations of symbol erasures and symbol
errors, Maximum-distance-separable codes with symbols from GF(ZQ) are most
gffective in correcting symbol era;ures and errors.

Now we describe outer code decoding process. Let i and h be the numbers
of erased segments and marked segments respectively. The outer code decoder

declares an erasure (or raises a flag) for the entire block of m, segments

2

if either of the following two events occurs:
(i) The numbgr i is greater than a certain thrgshold Tes with Te3<5
L(dz-l)/mlj .
(ii) The number h is greater than a certain threshold Tég(i) with
Togli) S 1{d,-1-m;i)/2) for a given i.

I1f none of the above two events occurs, the outer code decoder starts the

error-correction operation on the m, decoded segments. The mli symbol



If the syndrome of the m

erasures and the symbol errors in the marked or unmarked segments are cor-

rected based on the outer code Cz. Let tz(i) be the error-correction
threshold for a given i where
t,(1) < l(dz-l-mll)/ZJ. (3)

5 decoded segments in the buffer corresponds to an

error pattern of mli erasures and tz(i) or fewer symbol errors, error-
correction is performed. The values of the erased symbols, and the values and
the locatiéns of symbol‘errors are determined based on a certain algorithm.

If more than tz(i) symbol errors are detected, then the outer code decoder
égain declares an erasure (or réises a flag) for the entire block of m2
decoded segments. The entire outer code decoding operation is described by
the flowchart shown in Figure 4.

In the ieét of this paper, the error performance of the proposed cascaded
coding scheme is analyzed. We show that, if proper inner and outer codes are
chosen, the scheme provides extremely good reliability even for high bit-
error-rate ¢ =10-2. The scheme is particularly suitable for down link error
eontrol in satellite communications. We also éonsider interieavigéughe outer

code. The minimum distance of the cascaded code is studied, and a lower bound

is derived.

2. The Minimum Weight of a Cascaded Code

Consider the code C obtained by cascading the inner code Cl and the

outer code C2 as described in Sectidn 1. This cascaded code is an
(mznl,kzk) binary linear code. Let 4 be its minimum distance. For Ogjsml,

let 4, . be the minimum weight of those codewords in C

1 which have exactly
1 .

1

i nonzero symbols (a symbol is an Z-bit byte) in the first m, f-bit bytes.

Then we have that



m

2
a> min (la . (4)
0_<_il,i2,_...,imz§ml j=1 '3
m22 )
i.>d
=1 37
It is readily seen that
dlrdz/ml] , for ml<dl (5)
d >
d2 ' for mo> dl (6)

Suppose that the outer code C, is a maximum-distance-separable code over

Gr(2%) [4-8]. Then

Let Rl' R2 and R be the rates of Cir Cy and C respectively. Then
k2£ k2ml£
R = = = R. R . (8)
n.m n,m.m 12

12 112

Let 6§ be the ratio of d to the length n m, of C. It follows from (5) to (7)

1
that
(d,/n)) ([(nsk,+1) /m | /my),  for m <d; (9)
5>
(R,/2) (1 -R/R, +1/n,) , for m >d . (10)

For a nontrivial maximum-distance-separable code with symbols from GF(ZQ), the
code length is 22+2 or less. Therefore, for a given %, the length of the
cascaded code is upper bounded by a constant. Since ml/nl = Rl/l, we see
that, if dl/nl is lower bounded by a positive conétant, then the condition

my < dl
holds for large n2. Suppose that ml< dl and k2 is divisible by m, .
It follows from (2) and (9) that

-5=



§ 3_(dl/nl)(l—R/Rl+l/m2) . (11)
If the inner code meets the Varshamov-Gilbert bound [5-7), then
-l L] -

6§ > H "(1-R;)-(1 R/Rl + l/m2) ' (12)
where H-l(x) is the inverse of the binary entropy function H{x) = -xlogzx -
(l—x)logz(l-x).

Equation (12) gives a lower bound on the ratio ¢ of the minimum distance
to the length of the cascaded code C with a maximum-distance-separable as the
outer code C.. This bound is a generalization of 2Zyablov's bound [2] for con-

2

catenated codes,

§ > 8 (1-R))+(1-R/Ry+1/ny) . (13)
S?nce ﬁzfimz, the bound given by (12) is tighter than that of Zyablov's.

Blokh and Zyablov [10] showed that the general concatenated codes with
varying binary linear block inner codes exist which asymptotically meet the
Varshaﬁov-Gilbert bound for all rates. Thommesen [11] showéd that there exist
concatenated codes with yarying nonsystematic binary linear block inner codes
and Reed-Solomén outer codes which asymptotically meet the Varshamov-Gilbert
bound for all rates. A concatenated code with varying binary linear block
inner code can be regarded as a cascaded code with n2;=m1 and m2==l.

\

It is unknown whether there exist concatenated codes with.n23;2 and a

single inner code or cascaded codes with m2252 which asymptotically meet the

Varshamov=-Gilbert bound.

3. Probabilities of Correct Decoding, Incorrect Decoding and Decoding
Failure for a Frame

In this section, we analyze the inner code decoding. We assume that the

channel is a binary symmetric channel with bit-error-rate c<1/2. Let Pél)

be the probability that a decoded segment is error-free. A decoded segment

is error-free if and only if the corresponding received frame contains t, or

1

fewer errors. Thus



1l /n . n -i
L ,
P =} (il)el(l—e) o (14)

Let Pié) be the probability of incorrect decoding for a frame. This is
actually the probability of an error pattern of A1+1 or more errors whose
syndrome corresponds to a correctable error pattern of t1 or fewer errors.

Let P( ) be the probability of a frame erasure, and let P(i) be the probabi-
lity that a LIA operation is performed on a frame. Let P( ) be the probability

that a decoded segment with or without a mark contains errors. Then
(1) (1) (1) (1)

S P, +P,  +P _ +P =1, (15)
an P(l) 6 DI ¢ : (16)

———_____er ic Per © T
Note that P(l) + P( ) is the probability that a received frame is decoded

successfully, and P(l) + P(é) represents the probability of a decoding

failure,

(1)

(1)
Let Ai

and B; be the numbers of codewords of weight i in the

L
inner code C1 and its dual code C1 respectively. Let w(l)(n) denote the

number of binary n-tuples with weight j which are at a Hamming distance s

from a given binary n-tuple with weight i. Thelgenerating function for
(1)

I

(n) (12] is

n . . .
Z Ew ( 1%y = (axn T et oan
j=0 s=0 38

It was proved by MacWilliams [12] that

n t

' 1 1 n.-j
1 1 ]
Pc( )+Pi(c) = ) A (l) 2 Z w (n )e (1-€) 1 ' (18)
i=0 j=0 s=0 1'%
'ri "1 O . t |
=2 Z B,” (1-26)" ] P_(i,n)) , (19)
1=0 s=0



where rl==nl--kl is the number of parity-check bits of thé inner code, and

Ps(',-) is a Krawtchouk polynomial {7, p. 129] whose generating function is
n
n-i .
e my’ = )" Tt (20)
s=0 :
Equations (18) and (19) are useful for computing Pél)-+P§i) if a formula

(1) (1)

for A or Bi is known, or min(kl,rl) is small enough (say less

- 1 1 :
than 25) to be feasible to compute A; ) or B; ) by generating all the

codewords in C1 or C;.

1
In order to evaluate the probability Péz), we need to specify the

condition under which the LIA operation is performed. For the LIA-only

decoding, the LIA-operation is performed whenever an incorrectable error

pattern in the received frame is detected. 1In this case, the frame erasure

probability P( ) is "zero®". For the erasure-only decoding, it is obvious that

é;)==0. Now we consider the following case. Let d1==2t1+2. Suppose

that t1 is odd (or even), and the LIA-operation is performed whenever an

incorrectable error pattern with even (or 0dd) number of errors is detected.

Erasure-operation is performed otherwise. For odd tl' we have

. n t
. n, =3 n 1 1 -
1 17 » 1
(B 1 Faa™ () - T 0]
even j . i=0 s=0
j <y
-1 o 1nl | ny-is (22)
=2 {1+ (@1-28) " - Z B Dia-2e0d + (1-2¢) - B¢ (i-1,n)-1).
(See Appendix A for a derivation of (22)). For even tl, we have
. n t
. n.-j n 1 1 .
l 1
e = 1 daotTich - 1A 1w, (23)
odd j ] i=0 * s=0 I”
i<ng
-1 n, ! nl—i
=2 {1-(1-2¢) " -2 Z Dia-200t - (1-2¢) I, (i-1,n,-1). (24)

(See Appendix A for a derivation of (24)).



(or Péi)) and Péi) can

(1) (1), . (1)
If Pek (or Pes ) is known, then Pes

be computed from (14) to (16) and (18) (or (19)).
4, Detail Error Probabilities for a Decoded Segment with no Mark

(1)
<y <
For 0__w__ml, let Pe,w

be the probability that the number of symbol (or

byte) errors in a decoded segment without a mark is w. It is clear that

p(l) = p(1)
and ¢ .0
my
p{) ) p) (25)
ic 5 e,w
w=1
To obtain the probability of a correct block decoding, we need to know Péll
!

(1)

foroiwim e, W'

1 In this section we will derive a formula for P

For a binary n,~tuple v,:we divide the first k =m % bits into m 2-bit

1 1

bytes as shown in Figure 5. For lj}]inh, let i, be the weight of the
h-th f-bit byte of V. Let i be the weight of the last r

ml+l

Then the (ml+l)-tuple, (il,iz,...,im +l)' is called the weight structure of V.
' 1

Suppose that a frame u is transmitted and an error pattern e with weight

1= nl-kl bits.

structure (Jj;, Joreees] ) occurs. The probability of occurrence of e is
1 ml+l

n ml+1 5
(1-e) T T (if—e) h (26)
h=1 .

I}

P (e)

Suppose that there is a codeword Vv in C1 which is at a distance tl or less

from e. Since the minimum distance of C, is assumed to be greater than 2t

e 1

1’
such a codeword v in Cl is uniquelyVéetermined. Then the innef code decoder
assumes that the frame u+v was sent, and the error pattern e+v occurred. The
decoded segment is the first kl-bits of'G+V. If v is a nonzero codeword,

the decoding is incorrect, and the first ki—bits of v represent the errors

1’

then the inner code decoder performs either the LIA-operation or the erasure-

introduced by the inner code decoder. If there is no such codeword v in C

operation. Conversely, for a codeword V in C whose weight structure is

(11,12,...,1ml+l), there are



™ (i) (i)
mw, hs @] ew, ™M (x,) (27)
h=1 3h’%h 3m1+l'sml+l

error patterns e's with weight structure (31s3psve0s3y 41) Such that the

weight structure of v+e is (S1¢8y0eeess 1)e Let all) . be the

1 11,12,...,Lml+l

number of codewords in Cl with weight structure (il'iz"“'iml+l)' For

piwimy.mt

= i i PP : <i < i
I, {(11,12, ,lml+l) 0<i <& for 1<h<m,, 0_<_1ml+lirl, and
exactly w components of (il'iz""’im ). are nonzerol} , T (28)
1
Then, P(l) is given below:
1
r
3 2 1
(1) 1
Few T (i, .1 ! i )ET A:{1)"12"“’1 +1 'z—.o”'z—o ' : =0
0 i LR S L 7 10T I, 7Y I 41T
1 1 1
m . , m :
. 1 (1h) (1ml+l) n 1 e I
) M, 7 ), R € R = i IR U I B
. = ’ [} = -
(sl,sz,...,sm +l)estl h=1 “h""h ml+l ml+l. h=1
(29)
where
= e :0< <L, < <
St {(51,52, 'sm +1) O__sh_JL for l_himl, Oism +1__rl
1 1 1
m_+1
anq Zl s, < tl} . ‘ | (30)

The formula given by (29) is useful if either (1) the dimension of Cl, kl,

is small enough (say kl-<25) to be feasible to compute the detail weight

1 .
distribution, {Af ). . }, by generating all the codewords in C,, or
1 '1 '-00'1 l
1 2 ml+l

(2) the dimension of C;, rl,is small enough to be feasible to compute the

ES
detail weight distribution of C, and the number of elements in Iw' v,

is small enough to be feasible to enumerate all the elements in Iw and
g})i yenesid } by using the generalized MacWilliams' Identity
1'72

ml+l

compute {A

[71.

-10-
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OF POOR QUALITY

(1)
Next we will express the probability P o in terms of the detail weight

dlstrlbutlon of the dual code C1 of C1 Let H be a subset of {1,2,...,m

Let P(l)(H) be the probab111ty that for he H, the h-th &-bit byte of a .

decoded segment is error-free. Define the following set:

I(H) = {(11,12,...,1ml+1): iy =0 for heH, 0<i < for heH, and
Oiim +lirl} . (31)
1
where ﬁo = {l,2,...,ml}—H. Then we have that
r
e - ) Al - :
: : L1 S 1 NI B
(“'1'12""'lm1+1) € I(H) l 2’ ml+l 31-0 Jml—o. jml-!-l—o (sl,sz,...,sml+l) CStl
my (i.h) (im1+l) \ . m1+1- ; (32)
I w, (R} w, (r)) (1-€) n (<& By,
h=1 n’%h Iny 41/ +1 h=1 7€
Define
o (i,n,my) = Z % eyt (33)
3=0
0, (imym,y) = Z Q_li,n,mY) . (34)
=0
It follows from (20) and (33) that
. . n+m s
(1+Y¥)m(l+Y)n gt = z Qs(i,n,m,Y)Y . (35)
s=0
A
Let BFl). . be the number of codewoxds in C1 with weight structure
i ,i,eee,d
1"72 m.+1
(i.,3i ,0...1 )% Let H be the complement of H in {1,2,...,ml+1}. Then we
1/72f ml+l el e 3
- T have Lemma 1.
Lemma 1:
xR 3 1 iy
p Wy =z 2 § ..y a ( M_-20) P ey 2l
€ $,50  ig=0 g =0 f1r¥2r oIl ned
(Y i .n-2iu],2lul.e/-e)) . ‘
Y hez:ﬁ " (36)

where IH[ denotes the number of elements in H.

-]1]1-




ORIGINAL PAGE IS

OF POOR QUALITY
Proof: See Appendix B. AA

Forx Ojisinﬁj let Gs be the sum of Pél)(H) where H is taken over all the

subsets of {l,2,...,ml} with s elements. Define

i

.. . : L
05(11,12,--.,1m +l;€) = 2 [ T_(1-2¢) h] {(1-g) S
1 HE{l,Z,...,ml} heH
lu| = s
-9, () i ,n -s,8s,e/(1-€)) . (37)
Y hea M 1! .
Then it follows from (36) and (37) that
-r 2 2 r
= 1 (1) . .
U_ =2 ) ) ) B, . U_(io,i,e..,i . zE) . (38)
s 120 ip =0 ip 410 1'tartciripgyy L2 my 1

In the sum Gs, error patterns with ml-s-l or less symbol (or byte) errors in a

- decoded segment are counted more than once. In fact,

m
_ (1) s+1._ (1) s+2. (1) : ’ 1 (1) .
s Pe,ml—s + 1 )Pe,ml~s—l-+ ( 2 )Pe,m —gm2 T ¥ (m —S)Pe,O ‘

U

Using the principle of inclusion and exclusion [13], we have that

j m, -j+h
pi) = ¥ (-1)h< 1 )Gm
=0

. . (39)
e,] h h 1 J+h
For Oijﬁml, define
J m, -j+h
.. . h{™"1 ~ (i.,1i,,+0.,1 ;E) (40)
T. (i, ,i ,...,1 ;E) = z (-1) ( )U s 1772 m,+1
j 1l T2 ml+l h=0 h my j+h 1
Then it follows from (38) to (40) that we have
Theorem 1:
r
~-r. £ L L 1
(1) 1 (1) .. . .
P R =2 X E s Z z B, N . T.(l s 1 '---'l +ll€)
€rJ 1,20 4,=0 i '=0 i =0 "1772'"" im 41 102 Bt
i | (41)
. . . . . (1) }
1t is feasible to obtain the detail weight distribution {B,

11,12,...,lm £1
by generating all the codewords in C; for relatively small £,s say less

than 25. Note that the number of terms to be addgd in the right-hand side of

-12-



m ' :
. 1
(37) is ( s). and therefore the number of terms to be added or subtracted in

m
the right-hand side of (40) is at most 2 1. Por small I PE TP S

i, +17€) can be easily computed and added for each codeword generated. If the

1
1
dual code of Cl of Cl contains the all-one vector, then-P(lz can be computed
r

by generating every codeword in the even-weight subcode and using

Tj(ll,l ;€) + Tj(£—11,2-12,...,2-1m 59

reeesd
2 ml+l 1

-i ;€)
1 ml+l

instead of Tj(il'iz""'iml+l

For =1, the outer code is a binary code. 1In this case, the formula

;E) .

given by (4l) is not easy to evaluate since m, is relatively large. For

1
2=1, let iil)i be the number of codewords in Cl whose weight in the first
B R _ ' -
kl bits is il and weight in the last r, bits is i2. Then
r k Y . .o .
1 1 1 _ . (i) J,%] n.=3,-3]
= 1l -1 -2
SIS D B ) w;“; k¥, 2 wpet 2ase
’ ;o= [ - s = [ 14 r
1 i, 0 71" 72 3 0 i, 0] (sl,sz)estl 1'71 2772 .
(42)
where
LI . < < .
stl {(s‘l,sz). 0<s <k, 02s,<r; and 0<s +5s, <t} (43)
Let Eil)i be the number of codewords in the dual code of C1 whose weight in
1’72 : ’
the first kl bits is il and weight in the last r, bit is i2. Define
s m .
: . h
o' Genhmy) = Y P (i) )W @y (44)
S s-u . J.,u
u=0 3=0
t
Q' (i,n,h,m,y) = ) Q'(i,n,h,m,Y) (45)
t s=0 s )

Note that Q_(i,n,m,Y) = Qé(i,n,O,m,Y). It follows from (17), (20) and (44)

that
n+m

A" Pt a-nt = ) Q;(i,n,h,m,Y)Ys (46)
s=0

Then we have Theorem 2.

-}13-



Theorem 2: For =1,

W g E h, .
P T2-*(-e) T} ] B, (1-2¢) P, (h),k)Q! (hy,r i),k e/ (1=¢€)).
‘71 . h;=0 h,=0 "1'"2 ! 1

(47)
Proof: See Appendix C.

For k1'>rl, it is more convenient to use (47) than (42) to evaluate Péll
14
1

5. Detail Error Probability for a Marked Segment

In this section we will evaluate the probability of symbol errors in a

(1)

marked segment. Let P
gm e eQ,W

be the probability that the number of erroneous

symbols in a marked segment' is w. Then

A

(1) (1)

m
1
Pe% = 2 PeQ,,w (48)
w=1

We first consider the LIA-only decoding. Define

= o rdareecrd : <j, < <h< <3 <
I, = 1Gy03, Jml+l) 0<jy <t for 1<hz<m, °—3m1+1—r1 ’
and there are exactly w nonzero components in (jl'jz""’j

)}

m+l

(49)

(1)

e, that

Then it follows from the definition of P

m k. -2w 2 '3
p =( 1)[1—(1—5)2]‘”(1—5) SR NP

el,w w

r . .
1 (i, ) J
-y Al 7| m w.lhS (e (1-€)
i =0 "1'M2 =1 Jn'®h
ml+l

Q-Jh
resegl
+ =

ml 1 Jw Stlh

(im +l) J r.=j ’
. oW (e ™Mta-g ™ (50)

j 'S 1
ml+l ml+l

where Stl is defined by (30). The first term of (50) represents the probabi-
lity that there are exactly w erroneous symbols (or bytes) in the first m,
bytes of a received frame, and the second term is the probability that the

syndrome of these symbol errors corresponds to an error pattern of tl or fewer

errors.
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Define
] B
R (i, ,i_ ,...,i :€) = n {@-2¢)
w2 M1 He{1,2,...,m} hen

(1] =w
where the summation is taken over all the subsets of {l,2,...,ml} with exactly

(1)

g can be expressed in terms of the detail weight distri-
14

- (1—5)2} , (51)

w elements. Then P

bution of the dual code of C,.

L
Theorem 3:
k. -w( m
(1) _ 1 1 L.w
Py, = (1-€) {(w)(l -0 MY -
r .
2 ) ) iiedgseeesi g (1-26)
i =0 i =0 1i =0 1°2 m -+
1 m m, +1 1
1 1
mlgl }
« P ( i -1,n. -1)R (i ,i ,...,1 ;€)}." (52)
. t ’ [4
s N h 1 w 1°72 my
Proof: See Appendix D. JiYa)

For =1, Rw(il’iz""’im ;€) can be simplified as follows. Let i denote

ml 1
hzl i - Since 0<i <1 for 1<h<m,
o200 P - qeert = (1) P e
Consequently, we have that
w ..k, -1
R, (i1 ,...,iml;e) = ¢" hzo(-l)h(;)( o (53)

Using the definition of Krawtchouk polynomial [7, p. 151], we have that

R (i) siyreeeri s€) = €'B (i,kp) . (54)
Define
I, = {(il,iz,...,iml): 0<i <1 for 1<h<m =k, and
™
hzlih =i | ' =2
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Then

—(l) _
J B . ) . (56)
1’ I. 172 m

It follows from (52), (54) and (56) that we have Corollary 4 [see Appendix Ej.

Corollary 4: For %=1,

k r
k,=-wj/k - 1 i
(1) W 1 1 1 1
Popw = € (1-€) |(w)-2 y Z B( ) (1 2¢) 2
i =0 i —0 1y’
1 )
. ptl(il+i2—l,nl—l)Pw(il,kl)‘ . (57)

Now we consider the decoding in which both LIA and erasure operations are
perfbrméd. Suppose that the LIA-operation is performed whenever an incorrect-
able error pattern with even (or odd) weight is detected. 1In a similar way

to that for deriving (22), formulas (52) and (57) can be modified.as follows:

m k, ~2w r
(1) _ -1 1),y 2 ' W NN S A o1
Peg,w =4 (w)(l €) {I(1-(1-e) )" + ((1-2€)" = (1-e) ) 1 (L £ (1-2e) *)
r
r -0 h Y- (1m0t - a-e MM aE a-2e 1
X, =Sw L 2 ry mj+1
S e ) Y B(l) 1( 2 i, -1,n,-1)
150 i =0 ip,+1=0 Lyeeserimen
i r,—ip. +1
« {(1-2¢) m R (11,12 . 'ml;e) + (1-2¢) 1 1
(58)

-Rw(l—ll,l—lz,...,2—1ml;€) .

where the upper sign is taken for the even case, and the lower sign is taken for

the odd case [see Appendix F for the derivation of (58)]. For the special case,

£=1, we have that
r

k,-w, /k
pM) L N b (( 1)[1 + (1-28) Y1/2
eﬂ, w
k r . .
1 1 i r.—i
27y 7 B a2 2 (20 13
1,=0 1,=0 1,015

o e . (59)
. Ptl(ll+12 l,nl l)Pw(ll;kl) ’
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where + (or -) is taken for even w, and - (or +) is taken fo; odd w [see Appendix
F for the derivation of (59)].
An important question is which provides better performance, "the LIA-only

decoding,"” or "the erasure-only decoding." LIA-only decoding: may be reasonable

only if
my
B M) (o
w=im /2]+1 ex v €
if
y
P(le) <1 - pH 4 )
w=lm /2)41 &5 € e

(1)

where Pel w is computed under the assumption that the inner code decoding is
14
a LIA-only decoding, then a LIA-only decoding provides better performance than

the erasure-only decoding.

6. The Probability of a Correct Block Decoding

In this section, we will evaluate the probgbility that a block of m segments
will be decoded correctly by the outer code decoder. Let Pe(j,i,h) denote the
probability that there are h segments with marks and j symbol errors in a set
consisting of i decoded segments without marks or segments with marks.: : It

follows from the definition of Pe(j,i,h) that

. 1 .

Pe(J,l,O) = Pe(:,; for Oi:)iml ' (61)

P (§,1,1) = p) for 0<3<m (62)

e’’’ el,j ' —J =%

Pe(j,l,O) = Pe_(j,l,l) =0, for j>m1 ’ (63)

and
min(j,m. )

> (3,ih) = ) e Gt 4 e GewsicLie1ye D) (64)
Pe(a'l' ) = =0 Pe(J_w’l +h) e,w e(J Wed=t Tel,w

From (6l) to (64), Pe(j,i,h) can be computed readily.

=17~



The probability that, after the inner code decoding of a block of m, frames,

2
there exist i erased segments, h marked segments, and j symbol errors in the

marked and unmarked (or decoded) segments is
m
(1),1 . .. .
(:L)[P ] Pe(J,m2 i,h) . (65)

Therefore, the probability of correct decoding of a block denoted Pc’ is

given by
T : t (1)
9v(1)

es
Fe = Z( )l (1)1 ) 2 Pelimy=ih) o (66)
i=0 h=0 j =0

Let Pes and Per dencte the probabilities of a block erasure and an incorrect
decoding respectively. Then

P +P + P =1. (67)
c es er i

It follows from definitions that the following equality and bounds hold:

T T (i) n.-m i
™\ _a).if et 2.1 L
PeS+Per = 2 i [Pes ] 2 z Pe(],mz—l,h)
B i=0 h=0 j=t2(i)+l B
m_-i .
2 m m_-i-h
b1 (T eghre ey
h=T _ (i)+1l\ h . .
m .
2 m -1
+ ) -<i)[ Wyt- P(l)) (68)
i=T +1
es
. Tes m, ). i Tel(i) Myt ‘
p_< ¥ (.)[p ) ) P (imy=ih) (69)
er — = i es neo J—d2 mll t (i)
m
2 m
1
> ) (i)[ e(l)]l(l P( ))
i=T _ +1
e
es m2 (1). i e (1) dz-mll—tz(l)-l . '
CRRD N G |40 ek ) ) P, (3,m,=i,/h)
i=0 h=0 j=t, (1)+1
m_-i .
2 m m _l"'h (70)
N ) (2 >[P(}L)]h( P, )
(1)+1 h e c ic )
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where

d2-mll—t2(1)—l

P (§,m.-i-h,h) = 0
3=t (D) +1 e 2

if d2—m11-1==2t2(1).
If every error pattern of symbol-weight equal to or greater than

dz—mli—tz(i) causes an incorrect block decoding, then the equality holds in

(69). We consider the number of those error patterns of the smallest symbol-

weight w==d2—m i—tz(i) which lead to an incorrect decoding. Suppose that C._ is

1 2

a maximum-distance-separable code over GF(ZR). Let L be a set of w symbol posi-
tions outside the erased segments such that every marked segment has a symbol

position in L. Tbe number of codewords in C, of weight jg:dz whose nonzero

2

positions are specified is [6, p. 71]
j-d . 2(j-h-d_+1)
2 h 2
poentR e -1 -

h=0
Let E(L) be the set of vectors of symbol-weight w which satisfies the following
conditions: (1) L is the set of nonzero symbol positions of each vector, and
(2) there exists a codeword in C2 which is at a distance {(outside the erased

segments) tz(i) or less from each vector. If such a codeword exists, then

the codeword is unique, has weight d, and has a nonzero symbol at every symbol

2

position in either L or an erased segment. The number of such codewords in

n_-m.i-w
2717 Vot . (71)
t2 (J}) ‘

Therefore the number of error patterns in E(L) is

C2 1s

n.-m_i-w t.(1)+1
Eml=(2 " ) et <ot e wr (72)
t2(i)
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The ratio of IE(L)I to the number of error patterns whose set of nonzero symbol
positions is L is

n.-m.i-w,
2™ o itl-d
( ) Y1)tV oty L ‘?/tz(i)!
tz(l) 0 -2t (i)

< (27-1) /t2(i)! ' (73)

If any nonzero symbol error occurs with the same probability and Pe(w,m ~i,h)

2

is dominant in the summation of (692), then Per is nearly equal to

=2t _(1i)
(2“—1) 2 /tz(i)! times of the right-hand side of (69). On the other hand,

if a symbol error with a small bit-weight is more likely than the symbol errors
with a larger bit-weight, then the right-hand side of (69) might be a tight
bound.

No feasible procedure for computing PeS or Per has been devised except
for small k,% or (n,-k,)f. The following simple bounds on P +P and P are

2 2 72 es er es

useful for small bit-error rate €. We will consider an erasure-only decoding.
If there are s symbol errors in a set of ml decoded segments, then there are

at least [s/mll segments containing error symbols. Hence

n_-m i ' m_~i o
2y 27 \p Ly [s/m] (74)
Z Pe(],mz—l,O) < / exr
j:s [S ml]

It follows from (68), (69) and (74) that

T .
es ,m_, sm_-i . £ (1)
2 2 (L i (Y.’ o
Pes+Per < z ( >( >[Pes 1P ]

120 i fél) er
m2 m m_ ~-i
v ) (Pefhita-eh? (75)
j=r St d es es
es
Tes m, mz—i (1y.i (1) fl(i)
Por b 2 ( i>( [Pes ]l[Per ] ! ; (76)
e 1=0 £, (4) .
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where
fo(i) = [(tz(i)+l)/ml] and fl(i) = [(dz—mli-tz(i))/ml] .

Suppose that dl>‘2tl+l. In the right-hand sides of (72) (73), the product,

oy, 5
L~es ] [3er !
for =0 or 1, is upper bounded by
. £ (1)
max xl(l—Pél) -x) & BT ED
X
under the constraint,
d .-t _~1
11 n . n,-i (1)
< < 1-
z (::) El(l—e) 1 <x <1 Pc p (78)
1=tl+l
since
d, - 1
171 n . n_-i
1
pt) s Z (.l)sl(l-e) 1
es — . i
i=t,+1 .
1
L (1) (1) . '
and Pes i.Per --l--PC . Let ILHdenote the 1eft—hand side of (78). Then the

(1)

C

maximum of (77) occurs at x =1LH for i (1-p

(

. 1 . . . - S .
x==1(l—Pc ))/(1+fa(l)) otherwise. Similarly, in the second summation of (72),

(1) . (1) . (1) . . (1)
Pes is upperbound by 1 Pc if l—Pc :il/mz, otherwise Pes

)/ (i+£, (1)) <LH, and

is upperbounded
by i/m2.- The bounds derived from (75) and (76) in this way are weak for large
£, however they are useful for a quick estimation of the system reliability
because they do not depend on the detail weight structure of the inner and outer

codes, Cl and C2.

7. 1Interleaving

In this section, we investigate how interleaving affects the error perfor-
mance of the cascaded scheme. Suppose that the outer code Cz is interleaved in
such a way that each symbol (oxr 2-bit byte) in a segment is from a different

outer code codeword as shown in Figure 6. Thus, the interleaving depth (or

PU— i e g
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frames and is transmitted column

degree) is m, . The code array consists of n,

by column. As for the decoding, after n_ received frames have been decoded,

2

the n, decoded segments are arranged into an array as shown in Figure 7. Then

each row is decoded based on the outer code Cz. Note that buffers are needed

to store code arrays at both transmitter and receiver.
For lf}yin&, let pe(u) be the probability that the u-~th symbol of a

decoded segment with no mark is erroneous. If the inner code Cl is quasi-

cyclic by every s-bit shift where s divides %, then pé(u) is independent of u.

It follows from the definition that

), p) Pél)({u}) ' (79)

pe (w) = PC 1cC

where pé;)({u}) is given by (31) or (35). Hence pe(u) can be computed from

either (18) and (31) or (19) and (35).

Let pez(u) be the probability that the u-th symbol of a ﬁarked segment is

erroneéhs. We first consider the LIA-only decoding is considered. Define

J(u) = “jyj ) : Oijhiﬁfm:lihiﬁjju¢0ami

2""Jml+l
O—<~Jm1+l—<-rl}

Modifying the derivation of (50) or (52), we have that

% L 1
(1)
pR(U)=1‘(1"€)R" 22 2 Ai i ,ee.,i z 2
€ 150 =0 o T177277 7 Tml J(w) s
1 my ml 1
m ) . (i ) ] .
1 (i) j -3 m, +1 m 1 )7+l ,
1 w, h (Ve h(l-e) h *W, . {(r )€ {1-€) 1
~, 3.8 o +1°5m 41 T
h=1 h h m, 1 (80)

and
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1
p o) =1 - ot -2 * T Y Bi()i i
€ i=0 i =04i_ . =0 "1'72"7""'"m +l
1 m m, +1 1
1 1
ml+1 ih . . - mlfl
© I (1-2¢) T(1-(1-e)"(1-2¢) "1 B ( ) i -1, n-1) . (81)
h=1 1 h=l

\
[See Appendix G for the derivation of (81)].

Suppose that the LIA-operation is performed whenever an incorrectable
error pattern with even (or odd) number of errors is detected. Then (81) can

be modified as follows:

' n fﬁ
PeZ(u) = 4_1{(1-F(l-2€)£-2(l—€)2)(li (1-2¢) t )

2 _ nl-l
+ (1-(1-2€)7) (1 + (1-2¢) )}
+1
-r. -1 2, Q/ ml
1 (1) - . .

-2 5o} Y B, : Py, ( } i -1, n -1)
\ . . i1,39,00.,im. +1 "t h 1
11=0 1m1=0 1m1+1=0 1rt2 my h=1

m1+1 i - n m1+1 -3
« NI (1-2¢) h(l—(l-—s)l(l-Ze) Uy (1-2e) T M (1-2¢) P
h=1 h=1
. i-2
.« (1-(1~e)"(1-2¢) ¥ )1}, _ (82)

where the upper sign is taken for the even case, and the lower sign is taken

for the odd case {see Appendix H for the derivation of (82)].

Since the outer code is interleaved by a depth of m,, the u~th symbol of

ll

every segment is from the u-th outer code codeword for l<u<m Let Pc(u),

1
Pes(u) and Per(u) denote the probabilities of a correct decoding; an erasure
and an incorrect decoding for the u-th outer code codeword respectively. Then

formulas or bounds for Pc(uj, Pes(u) and Per(u) can be derived from those for

. X : s
PC, Pes or Per by the following replacements: mll i, mz-*n2 and
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e b e s e

Z Z P_(3,m,=i-h,h) > 2 ( 2 ) ) (nz_:_h)(j:) [pe(uils

J s= O

o i-h-s :
. (1) _ (l) 2" . j=s (1) . ‘h~j+s
D. el -P Olﬂ [Pel(u)] [PeR p Q( 1)l .

The restrictions on thresholds, Tes' Tez(i) and t2(i) can be relaxed as follows:

[

TooSd, -1, T_(i) < (dy-1-1)/2,  t,(i) < (4,-1-i)/2.

8. Example Schemes

In the following we consider example schemes using cascaded coding for

error control. 1In these example schemes, the outer code C, is either a

2
Reed-Solomon (RS) {(or a shoftened RS) code with symbols from GF(28), or a
code obtained by interleaving a RS (or shortened_RS) code with symbols from
GF(28). The binary inner codes with their parameters and generagor polyno-
mials are given in Table 1. ‘The first inner code Cl(l) in the table is
obtained by deleting 4.information bits from the distance-8 (63,44) BCH code.
The~code is capable of correcting three or fewer bit-errors in a frame, Since

the code contains only even-weight codewords, it is capable of detecting all

the error patterns of weight 4 and all the error patterns of odd weight

greater than 4. Moreover, the code is majority-logic decodable in two steps
{1], and hence the decoder can‘be easily implemeqted. Tbe second and third
innef éodes, Cl(2) anéACi(3), listed in Table } are obtained from the
distance-6 (63,50) Bcﬁ code by deleting 10 and 2 information bits respec-
tively. These two codes are capable of correcting all the double and single
errors. They are also capable of detecting all the error patterns of odd
weight greater than two. These two codes can be decoded Qith a table look-up
decoding. The fourth inner code Cl(4) is obtained by de}eting one infor-
mation bit from the (31,25) distance-4 Hamming code. This code is capable of
correcting any single error in a frame, and detecting ali double errors and‘

error patterns of odd weight.
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For various combinations of code parameters and bit-error-rates, the sum
of the probability of a block erasure (decoding failure) and that of a

decoding error, Pes+Per [given by (68)], and the upper bound on the proba-

bility of a decoding error given by the right-hand side of (69), denoted

Per' are given in Table 2. The degree of interleaving, denoted Id, is

+Per) and mlP are

either 1 or m,. For an interleaved outer code, ml(Pe er

1 [}

given, which represent upper bounds on the probabilities for an entire set of

interleaved my blocks. Thresholds, T,  and t,, which are independent of the

number of erased segments are considered here, The parameter, mlTes/Id +
2t2+1, is used as a measure of the complexity of the outer code.

Symbol "E" (or "L") shown in Table 2 jindicates that an erasure-only inner
decoding (or a LIA—only inner decoding) is used. For a comparison, we also
consider a combined erasure and LIA inner decoding where the LIA-operation is
performed whenever an incorrectable error pattern whose weight parity (even or

odd) is the same as the parity of t_+1 is detected in a received frame.

1

Symbol "E-~L® indicates that the combined inner decoding is used.
Given the inner code Cy(i), ny, Iy and the type of inner code decoding,

the values of t2, Teg and Tel are chosen to minimize m TeS/I +2t2+1 under

1 d

the condition that
..l_

+ <
(Pes Per)Id 10

for bit-error-rate €==10-2, and then the minimum value of d2 is chosen to

satisfy the following condition

P <1010
er

for €==10-2. If the exact value of Per could be computed, we would have
smaller values of dz. The difference, however, is smaller than

- o - . . . , . rleaved
d2 mlTes/Id 2t2 1, and its ratio to n, is small especially for interle

2
outer codes.

~2
The error performance of the example schemes for bit-error-rate €210

is also shown in Tables 3-10.
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9. Conclusion

In this report, we have investigated a cascaded coéing scheme for error
control, The scheme employs a combination of hard and-soft decisions in
decoding. Error performance is analyzed. If the inner and outer codes are
chosen properly, extremely high reliability can be achieved even for a high
channel bit-error-rate, Many example schemes ére being evaluated. They all
use shortened BCH codes gs the inner codes. The inner code Cl(l) has a rate
of 2/3, and is majority-logic decodable. Hence the decoding can be imple-
mented easily. The other inner codes have rates about 4/5. Since the number
of parity bits for each of these.codes is small, they can be decoded by a

table-look-up decoding [1]. Based on our computation results, all the example

schemes given in Table 2 provide high reliability even for a high bit-error-
rate, say £==10_2. They seem to be quite suitable for satellite down-1link
error control. Since the inner codes have rates greater than 1/2, the example
schemes definitely have advantage in bandwidth over the usual concatenated
coding scheme using a rate 1/2 convolutional code as the inner code and a RS
code as the outer code. Further evaluation of these example schemes will be

reported in our next technical report to NASA.
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APPENDIX A

Derivation of Expression (22) and (24)

It follows from (17) and MacWilliams' identity ([11] that

ny n, .
1 n -i .
EA( ) 2 zw Lty )x3yS = XAJ.(Ll)(1+XY) b ket
i=0 j=0 s=0 Jes i=0
-r, My n, -i , n-i .
=2 Z B ! (1+%) (1-%) " (14Y) (1-v)* .
1=0 (a-1)
Therefore, we have that
|
T i
z A ) ) W, s(nl)xjy

i=0 even j s=0 3.

{(or odd j)

r. -1 n n -i n_-i i
-r - - . - : ny~i .
=2 1 lei(l){(ler) 1 (1-x)" + (1-X) L et L (1-v)t . (a-2)
i=0

where the "+" and "-" signs of the second term in the bracket for even and

odd j respectively.

nl t
] at g zwm x7y®
i=0 even j s=0 38

(or odd j) ’

-r. -1 l n_-i .

=2 ! z (l)‘(l+X) Pt
Note that
2 P (i,n)

=0

[see Ref. 7, p. 153}.

n
both sides of (A-3) by (1-€)

and the second term of (24) for odd j.

1t follows from (20) and (A-2) that

!

ny-i i s
(1+X) } z P_(i,n)Y . (A-3)
s=0

£ (1-X)

= P, (i-1,n-1) (a~4)

Substituting €/(1-€) for X and 1 for Y and multiplying

, Wwe obtain the second term of (22) for even j



APPENDIX B

Proof of Lemma 1

Let |H| = u. It follows from (17) that

(1) ™R i ;
(i rdseeeri ) I(H)Ail'i2""'i a 1L % w‘(lh) (2 Py P
17427t 41’ E ™™ h=1 .20 s %0 Jh'%h
1 h h
(ipy41) j s
1+1 my+1 Smy+l
) ) wj (r)X 1
j =] S =] “m +l’ n +1
ml+l : ml+;:. . 1l 1 m+1 _—
) 1 1
n- ) o 2 "h
- (1) h=1 h=l
. . By i, ...,i D (X+¥)
(11,12,...,1m +l) €I(H) "1’ 2 ml+l " .
™ 1
nl—.lu- Z lh Z lH
% 1) h=1 h=1
= (1+XY) A7, . (1+XY) (X+Y)
) ) ) - 11’12""’lm +1 g
(lll 121 .- 'ln11+1) (H)

(B-1)

The set of codewords in C, whose weight in the h-th 2-bit byte is zero for every

1

Let Cl(H) denote the linear

h in H is a linear (nl,kl—lu) subcode of Cl'

(nl—ﬁu,kl-ﬂu) code obtained from the above subcode by deleting the u zero f-bit
. 1
bytes for the u positions in H. Let Ai )(H) denote the number of codewords of

weight i in Cl(H). Then

\ ‘ (1)
Al = ) A

io,di, 00,4 1 (B-2)
.. . s 1772 m
(11,12,...,1m1+1)€ I(H;i) 1
where

I(H;l) = {(llllzl-"llml+l):(111121---llml+1) CI(!‘I)

ml+1

and Y io= i}l .
h=1

The right-hand side of (B-1) can be rewritten as

n,-2u ,
- 1 n,~-2u-1i
(L) ¥ Y Ai(l) (H) (14+XY) *

i=0

(x+az)i . ' (B-3)



(1) ,
Let Bi (H) be the number of codewords of weight i in the dual code of Cl(H).

Then, by MacWilliams' identity [7), (B-3) can be written as

-r nl-lu n_-fu-i n_~-u-i i
> Tasn®™ 5 e®maw L (-1t (1ayy L a-n’ . (B-4)

i=0 *
It follows from (35), (B-~1l) and (B-4) that

m .
1 2 L (i) j. s
) al) ; mly Y ow " xRt
(i rdy0everdp ) €T "1772°77" 41 b=l |3 =0 5 =0 In'®n

m_+1 1 h

1
x e . .
. 1 1 (1ml+l) Imp+1l Smy+1
‘ 2 ) Wj s (r))X Y
. _ _ '
jml+l—0 sm1+l 0 ml+l ml+1

-r nl'_Ru n, -fa-i i n1 . s

' - ' i,n ~Ru, B-5
N 1 2 Bil)(H)(1+X) 1 (1-X) Z Qs(l,nl Ru,fa,X)Y ( )
1=0 s=0

Taking the terms on both sides of (B-5) for which the degree of Y is t, or less

and substituting "1" for ¥, we have that

r

L L 1
(1) 3 .
R A rieeead Lol ) Jes
(11'12""'lm +l) eI(H) "1'72 ml+l 31=0 i, fO 3, +l—0 ﬁsl's2""'smv+l €s,
1 1 1 1 1
ml+l _
mo. : V3
1 (lh) (lm1+l) h=1 h
I w, g (M- W, s (ry) X
h=1 Jh’°h Im, +1" % +1
1 1
-r, nl—Ru n_-fu-i .
i (1) 1 i- . . -
=2 YooB (1) (14x) (1-x)* 9. (i,n -%u,u,X) (B-6)
i=0 1

Ssubstituting €/(l-g) for X and multiplying the left-hand side of (B-6) by
n
(1-€) l, we obtain the right-hand side of (32). Therefore we have that

n_ ~-2u

~r., 1 .

PP =2 1] P wa-2eta-e0™ g 0 -t tu,e/0-e)). (B-7)
e 120 i t 1



Since a generator matrix of the dual code of Cl(H) can be obtained from a

parity-check matrix of C., by deleting all columns corresponding to the h-th

1
f£-bit positions for h € H, the following relation holds.

Bi(l) (H) = ) Bi(l)i N
I.(H) "1'72'""""""m +1
i 1
where
= T S . <i < <h< < i <
I, (H) {(11,12, 'lml+l)' 0__1h__2 for 1<h<m,, 0__1ml+1__rl '

and 2 ih = i}.
heH

Then, expression (36) of Lemma 1 follows from (B-7) and (B-8).

(B-8)




APPENDIX C

Proof of Theorem 2

It follows from (17) that

r k k : . r r
1. 1 1 (i) i, s.ll 1 1 (i) j, s
-(1 1
1 A; 31 '2 ) W, kX e | ) W 25 (x))x 2y 2
12—0 172 31—0 sl=0 171 jl=0 s2=0 272
. r
k,-1i. i 1 r. -i i
171 (1 . :
= (14xY) o) ) A amn b Zaen % (c-1)
. X, ,1
12=O 1772

By the generalized MacWilliams' identity [7, p. 147], we have

-r kl rl
-1 1 o
Ai )i =2 ) Bél)h P, (h k)P, (hy,x)) . (C-2)
1’72 h.=0 h,=0 "1'2 N1 2
12
It follows from (20) that
! r -i i r.-h h r -h h
I e, yrpanm b 2oy 2= am b %aen Zan t %aen 2 e
1,20 2

It follows from (C-1l) to (C-3) and (46) that

r r

r k k : . : . .
1 1 1 (i) j. s 1 1 (i) J, s
- 1
y Ail)i [ D) W, (k)X Ly 1][ y 3 W, 28 (x)X 2y é]
i = ' j = = 4 I = = ’
12—0 172 iy 0 s1 0-1'"1 2 0 s, 0 “2"72
k r
-r k,~i S B | r.-h h
: = 172 2
=2 Yamn Pt P ) ) B(l)h P, (h,k;) (14X) (1-X)
h.=0 h_=0 “1'"2 1
1 2
r.-h h
c(4y) T %aew @
k r n
-r 1 1 r_-h h -1
- . S
=2 1y ) B e mpaxpam b Pamn 2 ) orth,r ik 00y
h)=0 h,=0 “1'72 “1 s=0

(C-4)
Taking the terms on both sides of (C-4) for which the degree of Y is tl or
less, substituting €/(1-€) for X and 1 for Y and multiplying the both sides by

n
(1-g) L, we obtain Eq. (47) from (42).




APPENDIX D
A
Proof of Theorem 3

Let F(Xl'XZ""'Xml+l'Y) be defined as follows
L 2 Iy
F(xl,xz,...,xml+l,y) = 20.:. Zo _ Y —oAil'iz""'i
11— 1ml— 1ml+l— .ml+1

mocoof 8 (i) j. s i)
AR AT
1=0 jh=0 sh=0 h""h 3

)X Y

. 3 s
=0 Jm +l'sm +1 1 )

(D-1)
It follows from (17) and generalized MacWilliams'identity (7, p. 147] that

£ L m
= (1) 1
F(xl,xz,...,xml+l,y) = Y ... ) Y

A 9 -
120 i =01 =0 1’2 ?1‘“’%‘”

i ,i ,..0,1
m, +1
1 ml ml+

i
l " h

i r"‘i l irn
© X HY) h(1+xi y) T (X. +y) 1t

ml+l lml+l

-r. L % ) m L-i i
=2 Y-l 1 e [ nas h(l—xh)‘ﬂ
il=0 im=0 im +l=0 17720 ml+l h=1
1 1 ml+l ml+l

i | i n- L4, Loy,

Y. - . i .
17Mm 41 m 41 b=
+1) (1=X_ ;) 177 (1+y) (1-Y) (D-2)

(l+Xm
1 1

Let H be a subset of {1,2,3,...,ml} and FH,tl(Xl'XZ"°°'Xml+l'Y) be the sum

of the terms of F(Xl,x ,...Xml+l,Y) for which the degree of X, is nonzero for

2 h

heH and is zero for h E{l,2,...,ml}—H, and the degree of Y is tl or less.

Using (20), and (D-2), we have that

: -r L L .
1 (1)
F (X, /X ,eee X ,Y) =2 ) y Yy B, .
H,I "1 2 ml+l 120 i =01 -0 11'12""'lm +1
1 m m. +1 1
1 1
t m.+1 . .
1 1 S 2-1h i ' rl—lml+1
-[2 P (] ih,nl)Y] . 1 Euxh) (1-X ) -1] S5 S
s=0 h=1 heH . 1
i .
. (1~ my+1 _ (D-3)




PR 4
1 2 ml+l

over all the subsets, H's, of {1,2,...,ml} with exactly w elements. Then the

Let Fw (Xl,XZ,---,X Y) be defined as the sum of F (Xl,X YY)

second term of (50) is equal to

n
—(-g) * F, . (€/(1-€),8/(1-€), ..., &/ (1-€) ,1) (D-4)

1

It follows from (D-3), the definition of Rw given by (51) and (A-4) that (D~4)
is equal to
i

-r k,-2w £ m, +1
(1-2¢)

X
% 1
1 1 1
-2 T (l-€) Y oo ) y s .
~ . . 11,12,...,lm +1
1 m, =0 *m, +1=0 1

1

ml+1

. Pt ( 2 1h—1,nl—1)Rw(11,12,...,1 ;eY .
1 nh=1 1



APPENDIX E

Derivation of (57)

Let
k
1 4 -y koK (i) 3, 8 o0
Fx,x,¥) = } ] A ) Z Wi g xS )]
l=0 12-0 l 2 31—0 sl—O J1¢ 1 32=0 sz=
(i) i, s
2 2
. W, (r)X,” ¥ ©. (E-1)
Jyrs, 1°7°2

It follows from (17), (20) and the generalized MacWilliams' identity [7, p. 147]

that
k r
1 k., -i i r -i i
F(X,,%,,¥) = ) 2 A Ly b e tason B g 2
1%2 1 1 2 2
i,=0 i.=0 *1'%2
179 1,
k. -i ‘ i r -i i
=2 13 { B ) Dlaxy tas) P 2a-x) ?
i,=0 i_=0 *1’ 1 . 2 2
170 1
n, -i -i i+
s Y 2aey b2
ky 13 ky r -i i

I B ) _(l)- [ 2 P, (i) k)X ](1+x2)_l 2(1-x2) 2

11—0 1 =0 M1’ 2 3=0 171

= 2

n

[ z P (i, +i,,n))Y ] . (E-2)

Let Fj ¢ (Xl,Xz,Y) be the sum of the terms on the right-hand side of (E-1) for
14
1

which the degree of X. is jl and the degree of Y is t. or less. Then, it follows

1 1

from (E-2) that

k r . . .
N -X 1 l J r. -1 1
P, (KXY =2 Ly oy e, ey G Lk ) PPy 2
'y i=0 i=0 ‘1°%p ‘
170 3y
£ .
. Lot E-3
2 Ps(11+12,nl)Y . ( )
s=0
By (56), we have that
» () 1y 71 k=3, ny '
=(Veta-o r tg-e T, (e/(-0) e/ (1-€),1) . (E-4)
Feg, N J Jl:tl

Thus (57) follows from (E-3) and (E-4).



APPENDIX F

Derivation of Expressions of (58) and (59)

The probability o that a byte has a nonzero even number of bit-errors is
i+ a2t - a-e’,
and the probability § that a byte has odd number of bit-errors is
%[l- (1—26)2] .

The probability that w bytes have an even number of bit-errors and each byte

has at least one bitferror is
1 w w
S8 + (a-B)"] .

The probability that w bytes have an odd number of bit-errors, and each byte

has at least one bit-error is
1
SHaB)” - (a-B)"1 .

Hence the probability that there are exactly w erroneous bytes in the first

my bytes of a received frame, and the bit-weight of errors in the frame is

even (or odd) is given by,

') r

m k.-
a7t (wl) (1-e) 1 “{1+R) " + (@-B) "1 (1 ¢ (1-¢) T

]

by
+ @B’ - @B T a-e Y. (F-1)

Let G denote the term derived from the second term (without the negative

sign) of the right-hand side of (50) by replacing Jw with the following set,
ml+l
J& = {(31,32,...,3m +l) €Jw: z Jh is even (or odd)} .
1 h=1
(1)
el,w

terms in F N (X,X,...,X,Y) (defined in Appendix D) forwhich the degree of X is
T Tw,
71

even (or odd). Then

Then P is obtained by subtracting G from (F-1). Let G(X,Y) be the sum of



isl
G = (1-g) =~ G(g/(l-€),1) . (F-2)

Since

1
G, =3{F . (X, X, ¥) £ F L (-X,"X, ... X, 00 ),
g ’ l ’ 1

the second term of (58) is equal to -G.
For 2=1, the expression of (59) is derived from (58) by using (54), (56)

and the fact that, for =1,

2,...,im iE) .

. . . o W s s
Rw(R—ll,Q—lz,...,R 1m1,€) = (=1) &Jll,l .




APPENDIX G

Derivation of (81)

'

Let Fu (Xl ' X

2,...,X +l,Y) be the sum of terms of F(Xl'XZ"°"Xml+1'Y)

m
1
defined in Appendix D for which the degree of Xu is nonzero and the degree of

Y is t. or less. Using (20) and (D-2), we have that

1
-r, & ) 1
F (XX, ..., X,) =2 * ) ... § p osM, :
e i= i =0i =0 '1't2rttttin
1 ™} ml+l 1
tl ml+1 . Q"ih %h ﬂ‘iu i
| L (% i)Y T X)) (1-% 77+ S (a-x) Ul
s=0 ° h=l 1<h<m,
h#u
17 hmy +1 i1mg+l
) TV ey T (F-1)

The second term of (80) is equal to

\
n
- (-e) ¥ (e/(1-e) e/ (1-€) ... 6/ (1-€) 1) .

Then (8l) follows from (D-5).



APPENDIX H

Derivation of Expression (82)

The first term Gl in the right-hand side of (82) fepresents the probability

that the u~th byte of a received frame has errors, and the bit-weight of errors

in the frame is even (or odd). Let G2 be the term obtained from the second

term (without the negative sign) of the right-hand side of (80) by replacing

J(u) with following set,

m, +1

(o84

j. is even (or odd)}

€J(u): h

J'(u) = {(jl.jz,....j

Il =~

ml+l hel

Then
1 ™M
G, = 5(1-¢) {r (e/(1-€),e/(1-€),... €/ (1~€),1)
*+ F_(~€/(1-€),~€/(1-€),...,-e(l-e), 1)} ,
which equals to the second term (without the negative sign) of the right-hand
4

side of (82). Hence,

Pog(w) =G -6, -
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Table 3:

Probabilities of Decoding Failure or Decoding

Error and Upper Bounds on the Probability of Decoding Error
for the Cascaded Coding Scheme such that
1) the inner code is the shortened (59,40) triple-error-correcting

BCH code with generator polynomial
(1+X) (1+x+xX8) (1+x+x2+x%+x6) (1 +x+x2+x5+x8)

2) erasure-only inner decoding is used ,

and

3) the outer code is not interleaved.

€ Tes t, Pes*Por Upper bound on P, given by (68)
dy=17 dy=22 dy=27 dy=32
1 0 1.20E-2 6.71E-11| 1.02E-14 | 9.92E-19 | 6.95E~23
1.00E-2 | 3 0 2.31E~3 9.60E-T 7.30E-10 | 2.04E-13 | 2.97E-17
5 0 2.29E~3 | ~-=----- 4.50E-7 { 8.84E-10 | 6.39E-13
5 2 2.10E~3 | ====—e= | —omemes 4,21E-7 | 1.02E-10
1 0 .73E-1 1.31E-6 | 4.05E-9 | 8.37E-12 | 1.32E-14
2.00E-2 | 3 0 1.05E-1 5.43E-3 7.97E-5 4, 42E-7 1.31E-9
5 0 4,63E-2 | —==—=—- 1.55E~-2 5.60E-4 7.78E-6
5 2 4,29E-2 | ==—==== | me——e—- 1.38E-2 7.32E-5
1 0 9.72E- 1.32E-5 2.29E-T 2.88E-9 2.89E-11
3.00E-2 | 3 0 7.91E-1 3E-2 1.94E-3 5.56E-5 9.14E-T
5 0 4.,90E-1 | =====—- 2.20E-1 3.53E-2 2.36E-3
5 2 §,B2E~1 | —mmmmemm | e 1.92E-1 6.87E-3
1 0 1.00EO 1.35E-6 8.13E~8 3.73E-9 1.36E-10
4,00E-2 | 3 0 9.98E~1 1.71E-3 3.40E-U 3.10E-5 1.78E-6
5 0 9.77E-1 | =~===-=== 3.10E-2 1.22E-2 2.28E-3
5 2 9.76E~1 | ======= | ==———ee 2.76E~2 4.03E-3
1 0 1.00EQ 4, 29E-9 6.89E~10 | 8.40E-11 | 7.93E-12
5.00E-2 | 3 0 1.00E0 3.94E-6 1.64E-6 3.65E~7 5.55E-8
5 0 1.00E0 | —-—===-- 1.55E-4 1.03E~-4 4, O4E-5
5 2 i 1.00EQ | ======= | =w==—-- 1.45E-L 5.57E=5

L




Table 4:

Probabilities of Decoding Failure or Decoding

Error and Upper Bounds on the Probability of Decoding Error
for the Cascaded Coding Scheme such that

1) the inner code is the shortened (59,40) triple-error-correcting
BCH code with generator polynomial
(1+%) (14%X+X8) (1 4%+ %2+ x%+x0) (1 +x+x2+35+%5)y,

2) LIA-only inner decoding is used , '

and

3) the outer code is not interleaved.

€ Teg ts PagtPep Upper bound on P,. given by (68)
2 2 6.22E-2 2.83E~1 3.19E-15 | 2.69E-19 | 1.09E-21
2 5 2.59E-3 3.64E-9 6.U6E-13 | 7.57E~17 | 2.69E-19
1.00E-2{ 3 8 8.11E-5 3.10E-6 9.36E-10 | 1.55E-13 | 8.U42E-16
5 11 1.89E-6 | -—--—-- 5.35E-7T 3.72E-10 | 3.10E~12
8 14 3.92E-8 | ~=mmmmms | emmmee- | 3.92E-8 | 6.90E-10
2 2 6.02E-1 1.32E-6 4,34E-9 1,03E-11 | 2.32E-13
2 5 2.72E-1 3.97E-5 1.62E-7 4.36E-10 | 1.03E-11
2.00E-2| 3 8 9.29E-2 4.51E-3 3.66E-5 1.65E-7 5.15E-9
5 11 1.95E=2 | =====—- 8.11E-3 1.18E-4 6.11E-6
8 14 3.76E-3 | =—===== | ==——--- 3.74E-3 5.99E-4
2 2 9.81E-1 3.89E-5 7.70E-7 1.08E-8 7.07E-10
_ 2 - 5 9.22E-1 3.60E-4 8.65E-6 1.43E~7 1.08E-8
'3.00E-2| 3 8 7.97E-1 1.99E-2 9.33E-4 2.46E-5 2.22E-6
5 11 5.60E-1 | =-=-—-= 1.28E-1 9.85E-3 1.44E-3
8 14 3.46E-1 | ==mmmmm | mmmmeee 2.91E~1 | 1.35E-1
2 2 1.00ED 9.03E-6 6.05E-7 2.89E-8 4.09E-9
2 5 1.00EO 3.79E-5 3.17E-6 1.84E-7 2.89E-8
4.00E-2} 3 8 9.98E-1 1.33E-3 2.01E-4 1.78E-5 3.42E-6
5 11 9.86E~1 —————— 2.25E=2 5.16E-3 1.54E-3
8 i 14 9.53E~1 | =—=m=m—= | mmm———— 2.35E-1 1.76E~-1
2 1 2 1.00EO 5.46E-8 | 9.26E-9 | 1.15E-9 | 2.87E-10
2 5 1.00EO 1.31E-7 2.78E-8 4.,14E-9 1.15E-9
5.00E~2| 3 8 1.00E0 3.U3E-6 1.20E-6 2.64E~T 8.90E-8
5 11 1.00E0 | =====-- 1.35E-4 . | 6.45E-5 3.22E-5
8 14 1.00E0 | ======= | ===———- ‘| 5.87E-3 5.37E-3
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Table 7: Probabilities of Decoding Failure or Decocding

Error and Upper Bounds on the Probability of Decoding Error

for the Cascaded Coding Scheme such that

1) the inner code is the shortened (53,40) double~error-correcting
BCH code with generator polynomial

(1+X) (1+x+x8) (1+x+x2+x4+x6)y

2) erasure-only inner decoding is used ,

and

3) the outer code is not interleaved.

€ Tes ts Pos*Pep | UppPer bound on Pop given by (68)
2 0] 7.30E-2 4 ,55E~11 2.14E-12 2.93E-14
1.00E-2 3 y 9.86E-3 2.58E-6 .T3E~8 2.80E-9
4 4 2.83E-3 | ——===—- 1.08E-5 4.70E-7
b 5 1.53E-3 | ======= | ==m———- 1.28E-6
2 -0 8.6LE-1 1.23E-6 2.39E~7 1.66E-8
2.00E-2| 3 y 6.48E-1 1.76E-2 | 4.02E-4 | 4.11E-5
] ] 4. 56E-1 | ~===—m- 9.37E-3 1.86E-3
it 5 Y J7E~1 | =—=mmmem | e 3.99E-3
2 0 1.00E0 3.99E-6 1.U6E-6 2.87E-7
3.00E-2 3 y 9.96E-1 6.81E~4 3.42E-4 9.47E-5
i 4 9.86E~1 | ==——=-—- 4.66E-3 1.92E-3
y - 5 9.85E-1 ——————- ————— 2.91E-3
2 0 1.00E0Q 8.45E-8 4.85E-8 1.94E-8
4,.00E-2 3 y 1.00EQ 3.90E-6 2.92E-6 1.62E-6
y ] 1.00EQ0 | ===—=== 3.13E~5 2.18E-5
] 5 1.00EQ | =====—= | —=e———- 2.56E-5
2 0 1.00EQ 7.28E-11 5.80E-11 3.86E-11
5.00E-2 3 y 1.00E0 1.67E-9 1.55E-9 1.30E~9
] 4 1.00E0 [ ======- 1.71E-8 1.58E-8
] 5 1.00E0 | ===mme= | sscoee- 1.64E-8




Table 8:

Probabilities of Decoding Failure or Decoding -

Error and Upper Bounds on the Probability of Decoding Error

for the Cascaded Coding Scheme such that

1) the inner code is the shortened (53,40) double-error correcting

BCH code with generator polynomial
(1+%) (1+X+x0) (1+x+x2+x%+x6y ,

2) LIA-only inner decoding is used ,
and

3) the outer code is not interleaved.

€ Tel ts Pes+per Upper bound on Per given by (68)
dy=27 dy=29 d,=32
3 ] .97E-2 5.28E-11 3.35E-12" | 4.27E-14
3 7 1.56E-2 3. 48E-9 2.15E-10 | 3.35E-12
1.00E-2 5 10 29E-3 1.88E-6 - 1.59E-7 3.61E-9
7 13 9.40E-5 9.28E-5 1.39E-5 5.79E-7
7 15 1.52E-5 | ======= | ====w-- 5.05E-6
3 4 8.80E-1 4 20E-6 7.91E-7 5.96E-8
3 T 7.17E-1 I 52E~-5 9.37E-6 7.91E-7
2.00E-2 5 10 4,31E-1 8.27E- 2.32E-3 2.87E-4
7 13 2.16E-1 1.55E~1 7.09E-2 1.62E-2
7 15 1.33E-1 | =====e= | ~memeee 4,49gE-2
3 y 1.00EQ 2.46E-5 9.09E-6 1.86E-6
3. 7 9.98E-1 9.T4E-5S 3.96E~5 9.09E-6
" 13.00E-2 5 10 9,86E-1 1.03E-2 5.45E-3 1.79E-3
7 13 9.48E-1 1.50E-1 1.15E~1 6.17E-2
7 15 9.13E-1 | ======= | =—ome—- 9.55E~-2
3 y 1.00EC 8.20E-7 4,82E-7 1.98E-7
-3 7 1.00E0 1.65E-6 1.05E-6 4.82E-7
4,00E-2 5 10 1.00E0Q 1.39E-4 1.09E-4 6.68E-5
T 13 1.00E0 2.53E-3 2.39E-3 2.Q1E-3
7 15 1.00E0 | =—=====— | ===c=—=—- 2.29E-3
3 y 1.00E0 1.03E-9 8.34E-10 5.67E-10
3 7 1.00E0 1.32E-9 1.13E-9 8.34E-10
5.00E-2 5 10 1.00EQ 1.29E-7 1.22E-7 1.08E-7
7 13 1.00EQ 4,.34E-6 4,32E-6 4,23E-6
T 15 1.00E0 | —====== | ====o=- 4,30E-6




Table 9::

Upper Bounds on the Probabilitiy of Decoding Failure or- Decoding

Error and Upper Bounds on the Probability of Decoding Error

for the Cascaded Coding Scheme such that

1) the inner code is the shortened (53,40) double-error-correcting
BCH code with generator polynomial
(14X) (1+%+x8) (1 +x+x24x3+x5) ,

2) erasure-only inner decoding is used ,

and .

3) the degree of interleaving I4=5.

€ Tes t5 [(Pog*Pep) xIy Upper bound on P, given by (68)
d,=16 dy=21 dy=26 d,=32
9 1 5.75E-2 5.10E-11 | 5.43E-21 | 5.55E-32 | 4.26E-46
12 2 1.77E-3 1.20E-5 2.70E~-14 | 1.54E-24 | L4.85E-38
1.00E-2{ 15 2 6.80E-4 [ —---—ee 1.58E-10 | 5.49E-20 | 6.37E-33
18 3 1.57E-5 | ======= | ==esoee 2.92E-14 | 3.67E-26
18 4 Y.WE-7 | =meee- -- 4.70E-24
9 1 5.00E0 3.02E~6 4.51E-11 | 6.75E-17 | 8.31E-25
12 2 4.93E0 1.28E-2 3.3TE-6 2.73E-11 | 1.36E-18
2.00E-2| 15 2 4.61E0 | ====-== 3.36E-3 1.55E=7 2.80E-14
18 3] 3.73E0 - | ==mmmmm | e 1.29E-3 2.36E-9
18 4 3.7T1IEQ | ======= | soemeee ] ceeeeee 2.81E-8
9 1 5.00E0 3.65E-14 | 3.02E-16 | 2.92E-19 | 8.94E-24
12 2 5.00EQ 3.25E-11 | 2.61E=12 | 1.23E~14 | 1.48E~-18
3.00E-2} 15 . 2 5.00E0 ——————= 1.29E-9 - | 2.79E-11 | 1.15E-14
' 18 3 5.00EO —-— - 2.97E-8 1.02E-10
18 4y 5.00E0 | ==mm=e= | mmemeee | eeeeeee 3.38E-10
9 1 5.00EQ 1.81E-29 | 5.83E-30 | 3.94E-31 | 2.42E-33
12 2 5.00E0 2.41E~26 | 1.87E-26 | 4.22E-27 | 9.00E~29
4.00E-2{ 15 2 5.00E0 | ====-=- 1.28E-23 | 6.57E-24 | 3.95E-25
18 3 5.00E0 | ~e=mmmee | cemeeee 3.59E-21 | 9.23E-22
18 y 5.00E0 | ======= | mmmmmeem | —ee—eee 1.36E-21
9 1 5.00E0 9.62E~49 | 9.31E-49 | 6.60E-U49 | 1.59E-U49
P12 2 5.00E0 5.16E-45 | 5.15E-45 | U4,81E-U45 | 2.U42E-45
5.00E-2} 15 2 5.00EQ0 | =====-- 1.29E-41 | 1.28E~41 | 9.47E-42
18 3 5.00E0 | —-=m=== | mememe- 1.74E-38 | 1.65E-38
18 y 5.00E0 | —=m==m= | mmmemes | semeees 1.69E-38




Table 10:

Upper Bounds on the Probabilitiy of Decoding Failure or Decoding
Error and Upper Bounds on the Probability of Decoding Error
for the Cascaded Coding Scheme such that

1) the inner code is the shortened (53,40) double-error-correcting
BCH code with generator polynomial
(14%) (1+x+x8) (1+x+x2+x4+x5) ,

2) LIA-only inner decoding is used ,

and

3) the degree of interleaving Id=5.

€ Teg 2 [(Pag*Pep)x1y Upper bound on P, given by (68)
d,=18 d,=23 d,=28 d,=32
9 5 6.68E~2 7.16E~-11 2.49E-20 5.50E-31 4.27E-40
14 8 3.92E-}4 4.94E~5 1.87TE-10 7.04E~-19 7.48E-27
1.00E~2] 17 11 1.81E~6 | =—m==——- 1.04E-6 4,88E-12 2.85E-18
20 13 . 1.99E~8 | ==—===ee | ~=—eee- 1.59E-9 6.48E-14
25 15 1.63E~10 | ======= | =memmeee | cmeemee 1.52E-11
9 5 5.00E0 2.TY4E~T 6.36E-12 1.50E-17 1.38E-22
14 8 | 4.78E0 1.87E-2 4,07E-5 3.03E-9 2.34E-13
2.00E-2] 17 11 4,09EQ0 | ~emm—e- 3.63E-2 7.93E-5 5.86E-8
20 13 2.90EQ | memmmems ] emmeee- 1.55E-2 8.90E-5
25 15 9.52E~1 | =—————— 2.62E-2
9 5 5.00E0 6.05E-15 3.37TE-17 3.08E-20 3.95E-23
14 8 5.00E0Q 3.T4E-10 2.73E-11 2.41E-13 1.48E-15
.13.,00E-2} 17 - 11 5.00E0 | -—-=——-—- 1.48E-8. 9.05%E-10 2.29E~11
20 13 5.00E0 | ==emmme | mmmee—— 2.13E-7 1.73E-8
25 15 5.00EQ | ====——= | ==mm=soe | csesees~ 2.31E-5
9 5 5.00ED 1.13E-29 1.88E-30 8.05E-32 2.67TE-33
14 8 5.00EQ 1.66E-24 9.59E-25 1.79E-25 1.83E-26
4,00E-2| 17 11 5.00EQ | seeee—- 5.70E-22 2.89E-22 7.44E~-23
20 13 5.00EQ | ===—=== | ===eee- 1.02E-19 4,92E-20
25 15 5.00EQ « | ======= | =mmmmem | emmeeee 2.59E-16
9 5 5.00EQ 9.52E-49 | 8.11E-49 | 4.11E-49 | 1.35E-49
14 8 | 5.00E0 1.03E-42 | 1.01E-42 | 8.55E-43 | 5.30E-43
5.00E~2| 17 1 5.00EQ | =--==-- 1.67E=39 | 1.63E-39 | 1.41E-39
20 13 §.Q0EQ | mmmmmmm | mmm——ee 1.57E-36 | 1.51E-36
25 | 15 | 5.0080 | mmmemmm | mmmmmmm | mmmeees 4.99E-32

+ e et e e





