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ABSTRACT

In this report, we investigate a cascaded coding scheme for error

control. The scheme employs a combination of hard and soft decisions in

decoding. Error performance is analyzed. If the inner and outer codes are

chosen properly, extremely high reliability can be attained even for a high

channel bit-error-rate. Some example schemes are evaluated. They seem to be

quite suitable for satellite down-link error control.



A CASCADED CODING SCHEME FOR ERROR CONTROL

1. Introduction

In this paper we investigate a cascaded coding scheme for error control

for a binary symmetric channel with bit-error-rate e< 1/2. In this scheme,

two linear block codes, C^ and C2, are used. The inner code C^ is a binary

(n^jk-^) code with minimum distance d,. The inner code is designed to cor-

rect t or fewer errors and simultaneously detect A (A >_ t1) or fewer

errors where t +A +1 <_ d [1], The outer code C, is an (n~,k_) code with

symbols from the Galois field GF(2 ) and minimum distance d,. If each code

symbol of the outer code is represented by a binary £-tuple based on certain

basis of GF(2^), then the outer code becomes an (n £,k £) linear binary code.

For the proposed coding scheme, we assumed that the following conditions hold:

(1)
and

r\2 = m1m2 . (2)

where m and m are positive integers.

The encoding is performed in two stages as shown in Figure 1. First a

message of k_£ binary information digits is divided into k0 bytes of i
£. JL —

information bits each. Each £-bit byte (or binary 2,-tuple) is regarded as a

symbol in GF(2^). These k, bytes are encoded according to the outer code

C2 to form an n2-byte (n2£ bits) codeword in C2. At the second stage of

encoding, the n--byte codeword at the output of the outer code encoder is

divided into m_ segments of m bytes (or m £ bits) each. Each m^-byte
£ J. X

segment is then encoded according to the inner code C. to form an n,-bit

codeword. This n,-bit codeword in C.^ is called a frame. Thus, corre-

sponding to a message of k_£ bits at the input of the outer code encoder,

the output of the inner code encoder is a sequence of m- frames of n2 bits

each. This sequence of nu frames is called a block. A block format is
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depicted in Figure 2. We may view that the entire encoding operation is to

cascade the two block codes, C and C . The resultant cascaded code,

denoted C, is a binary (m n ,k £) linear code. If m,=l, the cascaded code

C is a concatenated code [2],

In the proposed scheme, the decoding also consists of two stages as shown

in Figure 1. The first stage of decoding is the inner code decoding.

Depending on the number of errors in a received frame, the inner code decoder

performs one of the three following operations: error-correction^ erasure and

leave-it-alone (LIA) operations, when a frame in a block is received, its

syndrome is computed based on the inner code C,. If the syndrome corre-

sponds to an error pattern e of t or fewer errors, error correction is per-

formed by adding e to the received frame. The n -k parity bits are removed

from the decoded frame, and the decoded m -byte segment is stored in a

receiver buffer for the second stage of decoding. A successfully decoded seg-

ment is called a decoded segment with no mark. Note that the decoded segment

is error-free, if the number of transmission errors in the received frame is

t or less. If the number of transmission errors in a received frame is

more than A , the errors may result in a syndrome which corresponds to a

correctable error pattern with t. or fewer errors, in this case, the

decoding will be successful, but the decoded frame (or segment) contains

undetected errors. If an uncorrectable error pattern is detected in a

received frame, the inner code decoder will perform one of the following two

operations based on a certain criterion [3]:

1. Erasure Operation — The erroneous segment is erased. We will call

such a segment an erased segment.

2. Leave-it-alone (LIA) Operation — The erroneous segment is stored in

the receiver buffer with a mark. We call such segment a marked

segment.

-2-



Thus, after m frames of a received block have been processed, the receiver

buffer may contain three types of segments: decoded segments without marks,

erroneous segments with marks, and erased segments.

The above inner code decoding consists of three operations: error-

correction, erasure and LIA operations. The decoding operation is described

by the flowchart in Figure 3. An inner code decoding which performs only the

error-correction and erasure operations is called an erasure-only decoding.

On the other hand, an inner code decoding which performs only the error-

correction and LIA operations is called a LIA-only decoding.

As soon as m_ frames in a received block have been processed, the

second stage of decoding begins and the outer code decoder starts to decode

the m2 segments stored in the buffer. Note that an erased segment creates

m, symbol erasures (or m.. 5,-bit byte erasures). Symbol errors are con-

tained in the segments with or without marks. The outer code C_ and its

decoder are designed to correct the combinations of symbol erasures and symbol
0

errors. Maximum-distance-separable codes with symbols from GF(2 ) are most

effective in correcting symbol erasures and errors.

Now we describe outer code decoding process. Let i and h be the numbers

of erased segments and marked segments respectively. The outer code decoder

declares an erasure (or raises a flag) for the entire block of m_ segments

if either of the following two events occurs:

(i) The number i is greater than a certain threshold T with T <
, ™r-" -~- -*-*~-'- 6S Co ^~

L<d2~
1)/mlJ .

(ii) The number h is greater than a certain threshold T' (i) with

Tĝ (i) ̂ _ 1(d2-l-m1i)/2J for a given i.

If none of the above two events occurs, the outer code decoder starts the

error-correction operation on the m, decoded segments. The m,i symbol
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erasures and the symbol errors in the marked or unmarked segments are cor-

rected based on the outer code C_. Let t_(i) be the error-correction

threshold for a given i where

t2(i) <_ L(d2-l-m1i)/2j. (3)

If the syndrome of the m decoded segments in the buffer corresponds to an

error pattern of m,i erasures and t2(i) or fewer symbol errors, error-

correction is performed. The values of the erased symbols, and the values and

the locations of symbol errors are determined based on a certain algorithm.

If more than t (i) symbol errors are detected, then the outer code decoder

again declares an erasure (or raises a flag) for the entire block of m_

decoded segments. The entire outer code decoding operation is described by

the flowchart shown in Figure 4.

In the rest of this paper, the error performance of the proposed cascaded

coding scheme is analyzed. We show that, if proper inner and outer codes are

chosen, the scheme provides extremely good reliability even for high bit-

_2
error-rate e = 10 . The scheme is particularly suitable for down link error

control in satellite communications. We also consider interleaving the outer

code. The minimum distance of the cascaded code is studied, and a lower bound

is derived.

2. The Minimum Weight of a Cascaded Code

Consider the code C obtained by cascading the inner code C and the

outer code C- as described in Section 1. This cascaded code is an

(m n ,k £) binary linear code. Let d be its minimum distance. For Ooxm ,

let d, . be the minimum weight of those codewords in C, which have exactly1,1 i

i nonzero symbols (a symbol is an £-bit byte) in the first m, £-bit bytes.

Then we have that
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d j> min ( £ d . ) (4)
i i ^* m -I — 1 * "1

It is readily seen that

(dlfd2 /mi1 ' f°r m i< d l (5)

'M\d , for m >^ d . (6)

Suppose that the outer code C2 is a maximum-distance-separable code over

GF(2 J l } [4-8]. Then

(7)

Let R , R and R be the rates of Cp C2 and C respectively. Then

k £ km £
R = —— = -̂ -±— = R R . (8)

n m n.m m JL 2.

Let 6 be the ratio of d to the length n m of C. It follows from (5) to (7)

that

S
(d1/n1)(C(n-k2+l)/mJ./m2), for n̂  < &̂  (9)

(R,/£) d -R/R-, +l/n0) , for m >d. . (10)
1 X 2 i — JL

For a nontrivial maximum-distance-separable code with symbols from GF(2̂ ), the

o
code length is 2^+2 or less. Therefore, for a given £, the length of the

cascaded code is upper bounded by a constant. Since nu/n, = R-^/£, we see

that, if dj/n^ is lower bounded by a positive constant, then the condition

ml < dl

holds for large n . Suppose that m < d. and k2 is divisible by m...

It follows from (2) and (9) that
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6 >. (d /r^Ml-R/R +l/m ) . (11)

If the inner code meets the Varshamov-Gilbert bound [5-7], then

6 2. H~I(I-RI)'(I-R/RI + i/m ) , (12)

where H (x) is the inverse of the binary entropy function H(x) = -xlog x -

Equation (12) gives a lower bound on the ratio 6 of the minimum distance

to the length of the cascaded code C with a maximum-distance-separable as the

outer code C_. This bound is a generalization of Zyablov's bound [9] for con-

catenated codes,
-1

S >_ H (1-R1).(1-R/R1+ l/n2) . (13)

Since n2-^m2, the bound given by (12) is tighter than that of Zyablov's.

Blokh and Zyablov [10] showed that the general concatenated codes with

varying binary linear block inner codes exist which asymptotically meet the

Varshamov-Gilbert bound for all rates. Thommesen [ 11] showed that there exist

concatenated codes with varying nonsystematic binary linear block inner codes

and Reed-Solomon outer codes which asymptotically meet the Varshamov-Gilbert

bound for all rates. A concatenated code with varying binary linear block

inner code can be regarded as a cascaded code with n_ = m, and m- = l.
\

It is unknown whether there exist concatenated codes with, n >2 and a

single inner code or cascaded codes with m > 2 which asymptotically meet the

Varshamov-Gilbert bound.

3. Probabilities of Correct Decoding, Incorrect Decoding and Decoding
Failure for a Frame

In this section, we analyze the inner code decoding. We assume that the

channel is a binary symmetric channel with bit-error-rate e<l/2. Let P '

be the probability that a decoded segment is error-free. A decoded segment

is error-free if and only if the corresponding received frame contains t. or

fewer errors. Thus

-6-



(14)
i=0

Let P? be the probability of incorrect decoding for a frame. This is

actually the probability of an error pattern of Aj+1 or more errors whose

syndrome corresponds to a correctable error pattern of t, or fewer errors.

Let P be the probability of a frame erasure, and let P „ be the probabi-
S S 6 Jo

lity that a LIA operation is performed on a frame. Let P be the probability

that a decoded segment with or without a mark contains errors. Then

(1) x (1) (1) (1) ,p o - p j - p j - p — 1 (
*c ic * <2s + e£ L ' {

p(l) U) + (1)

Note that PC + P^c is the probability that a received frame is decoded

successfully, and P + P 0 represents the probability of a decoding~ es ex,

failure.

Let A. and B. be the numbers of codewords of weight i in the

inner code C. and its dual code C, respectively. Let W- ^(n) denote the
-J- -i- J /s

number of binary n-tuples with weight j which are at a Hamming distance s .

from a given binary n-tuple with weight i. The generating function for

WU)(n) [12] is

n n
I I WU;(n)XDYS = (l+XŶ U+Y)1 . (17)
j=0 s=0 D/

It was proved by MacWilliams [12] that

-,-r c\\ • !

=2 I BJ '(1-2G)1 I P (i,n ) , (19)
i=0 s=0 S -1
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where r =n -k is the number of parity-check bits of the inner code, and

P_(*,*) is a Krawtchouk polynomial {7, p. 129] whose generating function is
s n

I P (i,n)YS = (I+YJ^U-Y)1 . (20)
s=0 s

Equations (18) and (19) are useful for computing P*1' +P. if a formula

for A; or B. is known, or min(k ,r ) is small enough (say less

than 25) to be feasible to compute A. or B. by generating all the

codewords in C.. or C...

In order to evaluate the probability P £ , we need to specify the

condition under which the LIA operation is performed. For the LIA-only

decoding, the LIA-operation is performed whenever an incorrectable error

pattern in the received frame is detected. In this case, the frame erasure

probability Pes is "zero". For the erasure-only decoding, it is obvious that

P „ =0. Now we consider the following case. Let d =2t +2. Suppose

that t, is odd (or even), and the LIA-operation is performed whenever an

incorrectable error pattern with even (or odd) number of errors is detected.

Erasure-operation is performed otherwise. For odd t,, we have

even j . J i=0 s=0
j - nl

. _ n

~ I B(

i=0

(See Appendix A for a derivation of (22)). For even t.., we have

n, t,
11 \ • ni ~3 ni 1 /-i > 1 / • »

P£> - I e^i-e) 1 K1) - IA^ Jwf^^)] , (23)
6J6 D = 1 = D/S Xodd j i=0 s=0

-i ni ~ri rit • "i"
= 2 {1-CL-2E) -2 I BVt(l-2£)1- (1-2E) ]Pt (i-1 ,n -1) . (24)

i=0 X X

(See Appendix A for a derivation of (24) ) .
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If P (or P) is known, then P (or P ) and P can

be computed from (14) to (16) and (18) (or (19)).

4. Detail Error Probabilities for a Decoded Segment with no Mark

For 0£w£m,, let Pe ^ be the probability that the number of symbol (or

byte) errors in a decoded segment without a mark is w. It is clear that

pd) = P(l)

m
and c e'°

P.(1) = I P(1) . (25)
ic ^ e,w

To obtain the probability of a correct block decoding, we need to know P*1'
e,w

for 0 < w < m . In this section we will derive a formula for P* '.

For a binary n..-tuple v, we divide the first k = m £ bits into m £-bit

bytes as shown in Figure 5. For l^h^m^, let ih be the weight of the

h-th £-bit byte of v. Let i ^ be the weight of the last r., =nn-k, bits.m.+1 1 11

Then the (m,+l)-tuple, (i,,i9,...,i ,), is called the weight structure of v.
_L -L £ i "̂ "-̂

Suppose that a frame u is transmitted and an error pattern e with weight

structure (j^ j2f..»Jm +1) occurs. The probability of occurrence of e is

m.+l
nl X e 3hp(e) = (l-e) n (-̂ -) . (26)

h=l 1~e

Suppose that there is a codeword v in GI which is at a distance t. or less

from e. Since the minimum distance of C is assumed to be greater than 2t,,

such a codeword v in C-^ is uniquely determined. Then the inner code decoder

assumes that the frame u+v was sent, and the error pattern i+v occurred. The

decoded segment is the first k -bits of u+v. If v is a nonzero codeword,

the decoding is incorrect, and the first k -bits of v represent the errors

introduced by the inner code decoder. If there is no such codeword v in C ,

then the inner code decoder performs either the LIA-operation or the erasure-

operation. Conversely, for a codeword v in C whose weight structure is

(i ,i ,...,i ), there arel 2. m,+l

- -9-



l (i.)
n w.
h=l Vsh .' ir̂ +i

(27)

error patterns e' s with weight structure ( Jr J2, . . . ,Jm +1) such that the

weight structure of v+i is (s ,s ,...,s ). Let A<1}. . be the
1 1l'12'""1m1+l

number of codewords in C1 with weight structure (i1,i2, . . . ,im +1) . For

O^w^m, let

for ' and

exactly w components of (i,i ,...,! ) . are nonzero:} ,
-L ^ m

(1)
Then, P is given below:

e,-w

e,w ,i _,_)£! V1;
m+1 w

£ £
I - - - I

1
(S1'S2 Vl^t,

m.
1 (i

n w. r

h=l Dh'

-
)
' U)sh

(i,
W.

n.
(r,) (1-e)

(28)

h=l '1-e'

(29)

where

S. = {(s. ,s , ...,s ) :0 < s < H, for 1< h < m, , 0<s ,<r,t 12 m +1 — h— — — 1 — m+1— 1

and

m+1

h=l
h

(30)

The formula given by (29) is useful if either (1) the dimension of C , k ,

is small enough (say k <25) to be feasible to compute the detail weight

distribution, (A. . . '}, by generating all the-codewords in C, , or
1l'12'"*'1m1+l

 L

(2) the dimension of C., r,, is small enough to be feasible to compute the

j. w
detail weight distribution of C, and the number of elements in I , £ ,

J- w

is small enough to be feasible to enumerate all the elements in I andw

compute {A^ ^ ^ } by using the generalized MacWilliams1 Identity
l' 2'"" m+1

[7].

-10-



ORIGINAL PAGE IS
OF POOR QUALITY

Next we will express the probability Pa in terms of the detail weighte / w

distribution of the dual code c,. of C . Let H be a subset of {l,2,...,m

Let P (H) be the probability that for heH, the h-th £-bit byte of a

decoded segment is error-free. Define the following set:

Lh
I (H) = {(i ,i , .. .,i ) -. i =0 for h e H , 0 < i, < 5, for h e JL and12 m. +1 h — h — 0

<r (31)

where H = (l,2,...,m }-H. Then we have that

i i
(H)

Define

ieI(H> 1§ 2 .....
I "'I I

•l (i.)
n w. w

h=i Vsn Wjm1+l'Sm1+l(i:i)(1"e>

"m +1

n ( e ) h

h=l 1~e •

V j ,m»
Q (i,n,m,Y) = I Y (Js . rt J

(32)

(33)

Q (i,n,m,Y) = ^ Q (i,n,m,Y)
C s=0

(34)

It follows from (20) and (33) that

n+m
(l+YY)m(l+Y)n"1(l-Y)1 = I Q (i,n,m,Y)Y. (35)

s=0 S

/T\ J.

Let B. . . be the number of codewords in C with weight structure
i-, i !01 • • • i *• , i -*•1 2 m.+JL

(i ,i ,...,i ,). Let H be the complement of H in {l,2,...,m1+l}. Then we
1 2 m. +1 ...

have Lemma 1.

Lemma 1:

-r I £ 1
P^' tH) = 2 I ... I I B|

i =0 i =0 i j.i =0^ mj_ in^Tj,

Q ( I L,n-i\H\,t\H\.£/(!-£))
1 heH "

hen

(36)

where |H| denotes the number of elements in H.

-11-



Proof; See Appendix B.

ORIGINAL PAGE IS
OF POOR QUALITY

AA

(1)For Ofsj<m , let U be the sum of Pv (H) where H is taken over all thej. s e

subsets of {l,2,...,in } with s elements. Define

Hc{l,2,...,m } h£H
|H| = s

' Q*. ( L i,,n-£s,£s, £/(!-£))
1 h£H

(37)

Then it follows from (36) and (37) that

""I- ™ X/ X/ J- , _ .

^=0 imi=0 im, 4-1=0
U(i,i ,,..,! .̂:£) .s i 2. m +1

(38)

In the sum U , error patterns with m -s-L or less symbol (or byte) errors in a
S - J_

decoded segment are counted more than once. In fact,

= Ps e,m1-s

Using the principle of inclusion and exclusion [13], we have that

^ml-j+hN

hh=0
(39)

For 0 _< j _< m , define

3 , /m -j+hx .. . .
i -£) = I (-!)( In (ll' 2"'"JLmm +1' L \ h / m̂ j+h 11 h=0 1

;e) (40)

Then it follows from (38) to (40) that we have

Theorem 1;

_r J ? o ri
(1) 1 r r r r (1)

e,j = 2 . ?_ . ?."*.^_ . ̂  _ Bi ,i ,...,i Tj(il'i2'""im +1?£)

12 m ; L m;L+l 1 (41)

It is feasible to obtain the detail weight distribution {B. . . }

by generating all the codewords in C^ for relatively small r^, say less

than 25. Note that the number of terms to be added in the right-hand side of

-12-



ml
(37) is ( ), and therefore the number of terms to be added or subtracted in

S
m

the right-hand side of (40) is at most 2 x. For small m,, T.(i ,i ,...,

im +]_;£) can be easily computed and added for each codeword generated. If the
J. n \

dual code of C of C contains the all-one vector, then P . can be computed

by generating every codeword in the even-weight subcode and using

T.(i ,i , ...,i ;c) + T (£-i ,£-i ,...,£-i ,r -i ;e)J i i m +1 j 1 2 m.. 1 m +1

instead of T (i ,i ,...,i .,;£)-3 1 2 m + 1

For £=1, the outer code is a binary code. In this case, the formula

given by (41) is not easy to evaluate since m.. is relatively large. For

£ = 1, let A. . be the number of codewords in C whose weight in the first

k bits is i and weight in the last r bits is !„. Then

P(1> = I A. . ' I I I WU1> (kn)W
U2) (rĵ ^̂ d-e)1"1"31"32

.1 3n'
STi =0 1' 2 -i =0 -i =0 (s s )£S' Jl' 1 J2' 21— w J- ^ J -i ^ Jo*-* ^-I'^o'-f-^ 1 ^ 1 ^ t

(42)

where

S1 = {(s ,s ) : 0 < s < k , 0 <_ s _< r1 and 0 £ s1 + s < t } . (43)
t]L 1 2 1 1 21 I 2 i

Let B. . be the number of codewords in the dual code of C. whose weight in

the first k bits is i and weight in the last r bit is i . Define

v r (h) j
Q1 (i,n,h,m,y) =1? (i/n) YwV'(m).Y (44)
Q " c;—11 "1 .11S u=0 S U i=0 :'U

t
Q1(i,n,h,m,Y) = I Q'(i,n,h,m,Y) (45)
* s-0 S

Note that Q (i,n,m,y) = Q1(i,n,0,m,Y). It follows from (17), (20) and (44)
S S

that
n+m

(l+YY)m~h(Y+Y)h(l+Y)n~i(l-̂ )i = I Q'(i,n,h,m,Y)YS (46)
s=0

Then we have Theorem 2.

-13-



Theorem 2; For 2,= !,

k kl rl h
( 1 \ ~T"- 1 /T \ -\

p
e i ="2 • 1(1-e) I I B (l-2e) P. (h ,k )Q' (h , r , i ,k ,£/(!-£)).
6/ 1 v, -n u _n nn 'no 1, 1 1 t, 2 1 1 11 . h =0 h =0 12 1 1

(47)

Proof; See Appendix C.

.(1)For k > r , it is more convenient to use (47) than (42) to evaluate P .
e'1l

5. Detail Error Probability for a Marked Segment

In this section we will evaluate the probability of symbol errors in a

marked segment. Let P „ be the probability that the number of erroneousex,,w

symbols in a marked segment is w. Then

mlp „ = y P (48)
ex- ^ e£,w

w=l

We first consider the LIA-only decoding. Define

and there are exactly w nonzero components in (j ,j,...,j ,)}

(49)

Then it follows from the definition of P thatex,,w

k -£w £ £

nl

r1
(1)V ,1-U

I i , i ,..., i

mi
W. " (£)e "(1-e)
Vsh

• W. - (r )£ l(l-£) .- (50)
Dm1+l'

Sm1+l

where St is defined by (30). The first term of (50) represents the probabi-

lity that there are exactly w erroneous symbols (or bytes) in the first m

bytes of a received frame, and the second term is the probability that the

syndrome of these symbol errors corresponds to an error pattern of t or fewer

errors.

-14-



Define
i

R
w
(il'i2'""im

 :e) = £ n ((l-2e) h-(l-e) } , (51)
'l HC{1,2, .. . ,m } h£H

where the summation is taken over all the subsets of (l,2, — ,m..} with exactly

w elements. Then P 9 can be expressed in terms of the detail weight distri-
S A* f W

bution of the dual code of C .

Theorem 3;
(1) ^-Jlwi

P „ = (1-e)eJi, w l\
—r 2, SL 1

2 L ••• L L Bi ,i ,...,i (l-2e)
i =0 i =0 i =0 1 ^ m Tj.

Proof: See Appendix D. AA

For A=l, R (i_ ,i ,...,i ,-e) can be simplified as follows. Let i denote
w 1 2 m.

ml
) i, . Since 0 < i, < 1 for 1 < h < m, ,

h=l
 h - h~ - ~ X

- (l-e) = (-l) e.

Consequently, we have that

Using the definition of Krawtchouk polynomial [7, p. 151], we have that

R <i,i ,...,! ,-e) = ewp (i.kv) . (54)
w 1 2 m w -1-

Define

I . = {(i.,i.,...,i ): 0< i , <1 for K h < m = k andj 1 2 m — h — — — i l

ml
I ih - j)

h=l

-15-



Then

iPj = I B± ̂  i . (56)
1 2 1. 1' 2'" ' m ' 2

It follows from (52), (54) and (56) that we have Corollary 4 [see Appendix E].

Corollary 4: For £=1,

-r kl ri

i^O i2=0
 11'12

• Pt
 (ii+i2~1'nr1)pw(ii'ki)) • (57)

Now we consider the decoding in which both LIA and erasure operations are

performed. Suppose that the LIA-operation is performed whenever an incorrect-

able error pattern with even (or odd) weight is detected. In a similar way

to that for deriving (22), formulas (52) and (57) can be modified. as follows:

- (l-e)Vl(l± U-2e) X)w

[(i-(l-e)V- (d-2£)
Jl- (i-

k -Aw , £ £ ri
-r-1 Ptl(

imi=o imi+i=o .....

•Rw(£-i1,£-i2,...,£-imi;e) - (58)

where the upper sign is taken for the even case, and the lower sign is taken for

the odd case [see Appendix F for the derivation of (58)]. For the special case,

£=1, we have that

k,-w, /k. r

'e£,w

V0 12=

-16-



where + (or -) is taken for even w, and - (or +) is taken for odd w [see Appendix

F for the derivation of (59)].

An important question is which provides better performance, "the LIA-only

decoding," or "the erasure-only decoding." LIA-only decoding may be reasonable

only if

< > . (60)
. /,,.., e£,ww=Lm /2J+1

If

/olj, eil,w c icw=lm1/2j+l

where P „ is computed under the assumption that the inner code decoding is

a LIA-only decoding, then a LIA-only decoding provides better performance than

the erasure-only decoding.

6. The Probability of a Correct Block Decoding

In this section, we will evaluate the probability that a block of m segments

will be decoded correctly by the outer code decoder. Let P (j,i,h) denote the

probability that there are h segments with marks and j symbol errors in a set

consisting of i decoded segments without marks or segments with marks:.: -It

follows from the definition of P (j,i,h) that

p (j,l,0) = P(1). , for O^jfm , (61)
e e , ] J.

P (j,l,l) = P(J} . , forO<j<m_ , (62)
6 e x^ j ~~ X

Pe(j,l,0) = Pe(j,l,D = 0 , for j>mx , (63)

and
min(j,m )

X /1 \ / T \

,' (64)
w=0

From (61) to (64), P (j,i,h) can be computed readily.

-17-



The probability that, after the inner code decoding of a block of m frames,

there exist i erased segments, h marked segments, and j symbol errors in the

marked and unmarked (or decoded) segments is

Therefore, the probability of correct decoding of a block denoted P , is

given by
T— T (i) t2(i)

>(1)ii 6V y P_(i,m -i,h) .. (66)

Let P and P denote the probabilities of a block erasure and an incorrect
es er

decoding respectively. Then

P + P + P = 1 . (67)c es er

It follows from definitions that the following eguality and bounds hold:

T(i)Tes / \ Tr o^1' n -m a

- TfcV1'!1 i iL» \ i / *• «Q 1 L, u
i^1/ es [ h=o j=t2(i)

P +P = [P P (j,m -i,h) .
es er 3. es Si)+1e 2

in ~i . * •, i2 /m -i\ .,. , ,,. ... m -i-n'
+ I 2
h=T n(i)+l\ he£

m2

i=T +1
es

T T 0 U> n -m i
"•es /m_\ ,,, . eic 21

I I P (j,m -ifh) . (69)

m2 ~ '
Pes . _

i=Tes
— . _ . A i / es es

T

+

J. . ix „ v-i-; u -JH j.-u_ \j./-j.
es /m \ ... . I e£ 2 i 2

I (i)[PIs] I I Pe(J,»2-
i'h)i=0 \i/ es I h=Q j=t̂ (i)+1

-18-



where

P (j,m -i-h,h) = 0

if d2-m1i-l = 2t2(i) .

If every error pattern of symbol-weight equal to or greater than

d -m i-t (i) causes an incorrect block decoding, then the equality holds in

(69) . We consider the number of those error patterns of the smallest symbol-

weight w = d -m i-t (i) which lead to an incorrect decoding. Suppose that C is
*̂ -L £» £

aa maximum-distance-separable code over GF(2 ). Let L be a set of w symbol posi-

tions outside the erased segments such that every marked segment has a symbol

position in L. The number of codewords in C of weight j^d_ whose nonzero
\ ^ *~"~ ^

positions are specified is [6, p. 71]

j-d_ . £(j-h-d +1)
y (-l)n(̂ )(2 ^ -1) .

h=0

Let E(L) be the set of vectors of symbol-weight w which satisfies the following

conditions: (1) L is the set of nonzero symbol positions of each vector, and

(2) there exists a codeword in C which is at a distance (outside the erased

segments) t (i) or less from each vector. If such a codeword exists, then

the codeword is unique, has weight d and has a nonzero symbol at every symbol

position in either L or an erased segment. The number of such codewords in

n -m i-w\
(2 -1) . (71)

Therefore the number of error patterns in E(L) is

/n -m i-w\ „ M1**1

|E(L)| =( ) (2-1) < (2̂ -1) 2 /t (i)l (72)

-19-



The ratio of |E(L)| to the number of error patterns whose set of nonzero symbol

positions is L is

(
n -m i-wv .
2 1 \ „ , o m-, i+l-d_

(21-!)1-" < <2*-l> *
 2/t,(i),

V" / -2t2(i,
< (2-1) * /t2(i)! (73)

If any nonzero symbol error occurs with the same probability and P (w,m -i,h)

is dominant in the summation of (69), then P is nearly equal to

I "2t2(1)(2 -1) /t (i) ! times of the right-hand side of (69). On the other hand,

if a symbol error with a small bit-weight is more likely than the symbol errors

with a larger bit-weight, then the right-hand side of (69) might be a tight

bound.

No feasible procedure for computing P or P has been devised except
es er ^

for small k0£ or (n -k )£. The following simple bounds on P +p and P are2 2 2 j r e s e r e s

useful for small bit-error rate e. We will consider an erasure-only decoding.

If there are s symbol errors in a set of m decoded segments, then there are

at least fs/m 1 segments containing error symbols. Hence

n2-m1i / m^-i

It follows from (68), (69) and (74) that

P +P <Tf(m2)(mm)^(1)]i^(1)lf0es er — .Ln \ x/\,(l)/ es erf

T m •-1

+ y
i=T +1—' SS eS

es

T
?(1) i (1) 1 - (76)

es er

-20-



where

frt(i) = r(t0 I <: j. i j. ' <i 1 2 " ' ' ' 11 "

Suppose that d.̂ 2̂ +1. In the right-hand sides of (72) (73), the product,

._ (D.i f.l).f-.i(i)

for a = 0 or 1, is upper bounded by

,, \ f (i)
1 (J. ) GLmax x (1-P - x) . (77)

C
x

under the constraint,

T 1 < v < 1 _ t> f"7QN
c M _ o \ -1 _ X _ 1 P_ ' I 'OJ

since
d.-t -1

n \ 11 ,n,\ • n,-1

es — . r. LT !i = t1 +1

and P +P( =1-P ( 1 ) . Letl.Hdenote the left-hand side of (78). Then the
65 62T C

maximum of (77) occurs at x = LHfor i ( l -P ' ) / ( i+f ( i ) ) < LH, and
c tx —

x = i(l-P )/(i+f (i)) otherwise. Similarly, in the second summation of (72),
c ot

P is upperbound by 1-P if 1-P < i/m , otherwise P is upperbounded
65 C C ~~ £, OS

by i/m2- The bounds derived from (75) and (76) in this way are weak for large

£, however they are useful for a quick estimation of the system reliability

because they do not depend on the detail weight structure of the inner and outer

codes, C and C_.

7. Interleaving

In this section, we investigate how interleaving affects the error perfor-

mance of the cascaded scheme. Suppose that the outer code C2 is interleaved in

such a way that each symbol (or Ji-bit byte) in a segment is from a different

outer code codeword as shown in Figure 6. Thus, the interleaving depth (or

-21-



degree) is m . The code array consists of n frames and is transmitted column

by column. As for the decoding, after n received frames have been decoded,

the n. decoded segments are arranged into an array as shown in Figure 7. Then

each row is decoded based on the outer code C . Note that buffers are needed

to store code arrays at both transmitter and receiver.

For l_5.u_<m , let p (u) be the probability that the u-th symbol of a

decoded segment with no mark is erroneous. If the inner code C, is quasi-

cyclic by every s-bit shift where s divides £, then p (u) is independent of u.

It follows from the definition that

(79)
*e% ' c ic e vv" '

where p ({u}) is given by (31) or (35). Hence p (u) can be computed from

either (18) and (31) or (19) and (35).

Let p p(u) be the probability that the u-th symbol of a marked segment is

erroneous. We first consider the LIA-only decoding is considered. Define

J(u) •= for 0 and

0 < j < r }
— m +1 — 1

Modifying the derivation of (50) or (52), we have that

I H ri .,.
** V • • « Y V a'

eji i =0 i =0 i 1l'12''"'1m H
1 m-^ m +1 1

n w.
h=l

(l-e)
m,

W.:

I I
J(u) S,.

Jm +1 :
IE (1-e)

m (80)

and
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£ ~rl J J ^ (1)P -(u) = 1 - U-£) - 2 *• I ... I I Bi i i
i =0 i =0 i =0 1' 2""' mn+l1 m m +1 1

m +1 • . m +1

• n (1-2E) h[l-(l-£)£(l-2£) U] P ( I 1-1, n -1) . (81)
h=l fcl h=l h l

\
[See Appendix G for the derivation of (81)].

Suppose that the LIA-operation is performed whenever an incorrectable

error pattern with even (or odd) number of errors is detected. Then (81) can

be modified as follows:

-i, ' £ «, nr£
e£

+ (l-(l-2e)£) (i+. (1-2E) )}

r 1 £ £ mi+1~i-, —i * * ,, , -L

-2 ' I ••• I I B^ , ̂  Ptl( I ih-l, n-a)

m,+1 . m,+1
1 -̂v, n ~i ni 1 '^

• n (l-2£) (l-(l-e) (1-2E) U± (l-2£) n (1-2E)
h=l h=l

o i -£
• (l-(l-er(l-2e) u • )} , (82)

where the upper sign is taken for the even case, and the lower sign is taken

for the odd case [see Appendix H for the derivation of (82)].

Since the outer code is interleaved by a depth of m , the u-th symbol of

every segment is from the u-th outer code codeword for 1< u < m,. Let P (u),
— — 1 c

P (u) and P (u) denote the probabilities of a correct decoding, an erasure
6 o GIT

and an incorrect decoding for the u-th outer code codeword respectively. Then

formulas or bounds for P (u), P (u) and P (u) can be derived from those for
c es er

P , P or P by the following replacements: m i->-i, m -»• n and
C sS G2T X 2. 2.
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,n -iv j ,n^-i-h\/ h.
I I Pe(J,m2-i-h,h) +l( ) I l(
h j h h j s=0

„(!) «(D ', K~"

The restrictions on thresholds, T , T (i) and t_(i) can be relaxed as follows:
, es ex, 2

Tes - d2 ~ lf. Te£(i) - ̂ 2~
I~i}/2' fc2(i) - (V1"1*72'

8. Example Schemes

In the following we consider example schemes using cascaded coding for

error control. In these example schemes, the outer code C is either a

8
Reed-Solomon (RS) (or a shortened RS) code with symbols from GF(2 ), or a

code obtained by interleaving a RS (or shortened RS) code with symbols from

g
GF(2 ). The binary inner codes with their parameters and generator polyno-

mials are given in Table 1. The first inner code C (1) in the table is

obtained by deleting 4 information bits from the distance-8 (63,44) BCH code.

The code is capable of correcting three or fewer bit-errors in a frame. Since

the code contains only even-weight codewords, it is capable of detecting all

the error patterns of weight 4 and all the error patterns of odd weight

greater than 4. Moreover, the code is majority-logic decodable in two steps

[1], and hence the decoder can be easily implemented. The second and third

inner codes, C (2) and C (3), listed in Table 1 are obtained from the

distance-6 (63,50) BCH code by deleting 10 and 2 information bits respec-
*

tively. These two codes are capable of correcting all the double and single

errors. They are also capable of detecting all the error patterns of odd

weight greater than two. These two codes can be decoded with a table look-up

decoding. The fourth inner code C..(4) is obtained by deleting one infor-

mation bit from the (31,25) distance-4 Hamming code. This code is capable of

j correcting any single error in a frame, and detecting all double errors and
j
1 error patterns of odd weight. '
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For various combinations of code parameters and bit-error-rates, the sum

of the probability of a block erasure (decoding failure) and that of a

decoding error, P +P [given by (68)], and the upper bound on the proba-

bility of a decoding error given by the right-hand side of (69), denoted

Per, are given in Table 2. The degree of interleaving, denoted I , is

either 1 or m . For an interleaved outer code, m,(P +P ) and m, P are-L JL GS sir j. sir

given, which represent upper bounds on the probabilities for an entire set of

interleaved m blocks. Thresholds, Tes and t2, which are independent of the

number of erased segments are considered here. The parameter, m^Tgg/I^ +

2t2+lr is used as a measure of the complexity of the outer code.

Symbol "E" (or "L") shown in Table 2 indicates that an erasure-only inner

decoding (or a LIA-only inner decoding) is used. For a comparison, we also

consider a combined erasure and LIA inner decoding where the LIA-operation is

performed whenever an incorrectable error pattern whose weight parity (even or

odd) is the same as the parity of t.+l is detected in a received frame.

Symbol "E-L" indicates that the combined inner decoding is used.

Given the inner code C-^i), n2, Id and the type of inner code decoding,

the values of t-, Tes and Tg£ are chosen to minimize m,T /I +2t +1 under

the condition that

(P +P )I0 < 10"1es ec d
_2

for bit-error-rate e = 10 , and then the minimum value of d_ is chosen to

satisfy the following condition

%r<'«-10

for e= 10~ . If the exact value of P could be computed, we would haveer

smaller values of d-. The difference, however, is smaller than

d0-m,T /I,-2t_-l, and its ratio to n_ is small especially for interleaved
2 1 es a 2 2

outer codes.

The error performance of the example schemes for bit-error-rate e>10

is also shown in Tables 3-10.
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9. Conclusion

In this report, we have investigated a cascaded coding scheme for error

control. The scheme employs a combination of hard and soft decisions in

decoding. Error performance is analyzed. If the inner and outer codes are

chosen properly, extremely high reliability can be achieved even for a high

channel bit-error-rate. Many example schemes are being evaluated. They all

use shortened BCH codes as the inner codes. The inner code C (1) has a rate

of 2/3, and is majority-logic decodable. Hence the decoding can be imple-

mented easily. The other inner codes have rates about 4/5. since the number

of parity bits for each of these codes is small, they can be decoded by a

table-look-up decoding [1], Based on our computation results, all the example

schemes given in Table 2 provide high reliability even for a high bit-error-

rate, say e=10 . They seem to be quite suitable for satellite down-link

error control. Since the inner codes have rates greater than 1/2, the example

schemes definitely have advantage in bandwidth over the usual concatenated

coding scheme using a rate 1/2 convolutional code as the inner code and a RS

code as the outer code. Further evaluation of these example schemes will be

reported in our next technical report to NASA.
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APPENDIX A

Derivation of Expression (22) and (24)

It follows from (17) and MacWilliams1 identity [11] that

nl
I I W.(1> (n.)xV = I

i=0 j=0 s=0 :'S X i=0

tt-1

-i^ IB.'1'
^ 3

(A-l)

Therefore, we have that
I

"f A™ I "l H'"̂ )*̂ '
i=0 even j s=0

(or odd j)

-r -1 "l n n -i n -i . n,-i
= 2 -1 B̂.( J{(1+X) ^ (1-X) ± (1-X) -1 (l+xr}(l+Y) X (1-Y)1 . (A-2)

i=0 1

where the "+" and "-" signs of the second term in the bracket for even and

odd j respectively. It follows from (20) and (A-2) that

i=0 even j s=0
(or odd j)

'X) XDYS

IfS

1-1 1 ,,. / n -i . n -i . \ 1
I B( M(lH-X) -1 (l-X)1.! (1-X) -1 (1+X)1 ^P (i,ni)Y

S . (A-3)
i=0 1 l 's=0

Note that
t
I P(i,n) = P (i-l,n-l) (A-4)
s=0 S t

[see Ref. 7, p. 153]. Substituting e/(l-e) for X and 1 for Y and multiplying

• nl
both sides of (A-3) by (1-e) , we obtain the second term of (22) for even j

and the second term of (24) for odd j.
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APPENDIX B

Proof of Lemma 1

Let |H| = u. It follows from (17) that

(i, ) j, s,
.,.,...,. „. -. h ">- h» h

£ I (H) 12 m +1
1 h-1 Vu sh

(ri)X

•1
m +1 m +1

V- I V1 ,f h

£ T / T T \ •*•-! / - * • * } / • • • / •*- | T1ln> 12 m +1

"1 " m +1 m +1

1 h=l ̂  h=l ̂
= (1+XY) U Y A|1) . . , (l+XY) (X+Y)

(i i i )£I(H) 1' ̂''"'V '
< 1 / 2' mi+l) W X (B-l)

The set of codewords in C, whose weight in the h-th £-bit byte is zero for every

h in H is a linear (n.. ,k -&u) subcode of C . Let C, (H) denote the linear

(n -£u,k -£u) code obtained from the above subcode by deleting the u zero £-bit

bytes for the u positions in H. Let A. (H) denote the number of codewords of

weight i in C,(H). Then

Af}(H) = ' . . I . %,i ,...,i +1 (B-2)
I} ' A

where

1' 2''' '' m-,+1 " 1' 2''" '' nu+1

m +1

and T i = i} .
h

The right-hand side of (B-l) can be rewritten as

1 n -£u-i .
(1+XY) I A. ' (H) (1+XY) (X+Y) . (B-3)

1=0 *

B-l



Let BI (H) be the number of codewords of weight i in the dual code of C (H).

Then, by MacWilliams' identity [7], (B-3) can be writtenas

n -£u „-r . 1 n -Jlu-i
2 (1+XY) I B. ' (H) (1+X) (1-X)1(1+Y)

i=0 1

"'"

It follows from (35) , (B-l) and (B-4) that

n
.'12' 'inV

£I(H) :Ll'12""'1m1+l h=l

J? C K >A* A/ \ ̂"i_ /

L L -\ c

j, =0 s, =0 V h
h h

W
=0 s =0 +l' m +1^ ^Jm +1 m +1

(B-4)

(r )X Y
mi+l

(B-5)
n. -£u n • ni-r 1 n -£u-i i. 1 • .. . ..

i=0 1 s=0

Taking the terms on both sides of (B-5) for which the degree of Y is t. or less

and substituting "1" for Y, we have that

/ T \

( } -
j j ,

I I -• I2 ..... 1 j° =

(i.)
K W. (£)
h=l 3h' h

U
"' +!•= +i

(ri'n1 +1 m, +1

n. -x,u n-r. 1 n -ilu-i
= 2 1 ^ B. '(H)(1+X)

i=0 1

1(1-X) Q (i,n -2,u,£u,X)
n •"•

(B-6)

Substituting e/(l-E) for X and multiplying the left-hand side of (B-6) by
ni(l-£) , we obtain the right-hand side of (32). Therefore we have that

n -£u

P (̂H, =2"^ I ~(1)
6 i=0 * "1

£uBf1(H)(l-2e)(l-e)u Q (i,n -Jlufau,e/(l-e)). (B-7)
3. t. J-

B-2



Since a generator matrix of the dual code of C.. (H) can be obtained from a

parity-check matrix of C.. by deleting all columns corresponding to the h-th

Ji-bit positions for h£H, the following relation holds.

B11)(H) = i Bf!i i (B-S>
where

I. (H) = {(in , i_, . . . , i ): 0 < i < i for 1 < h < m , 0< i < r ,
i 1 £ m1 +1 — h — — — 1 — m1 +1 — 1

and I ^ = i^'
h£H n

Then, expression (36) of Lemma 1 follows from (B-7) and (B-8).
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APPENDIX C

Proof of Theorem 2

It follows from (17) that

VX2
I I Wj *s

 (ki)x X Y X
1 1 U2) j £
I [ W (r )X ^Y

j =0 s =0 32'S2 L

- 1 2

= (1+XY) 1 1(X+Y) 1 I A^ . (1+XY) -1 2(X+Y) 2'.
i2=o

 Irl2

By the generalized MacWilliams' identity [7, p. 147], we have

k r_. . -r 1 1
A. . = 2 £ )| B P. (h ,k )P. (h ,r ) .
11'12 h =0 h2=0 1' 2 ^ 2

It follows from (20) that

I P. (h ,r )(1+XY) 1 2(X+Y) 2 = (1+X) 1 2(1-X) 2(1+Y) 3

i2=0 ^

It follows from (C-l) to (C-3) and (46) that

ri ki ki fn
- \ .: „ r

n
 ri /^ \ j

i = '•I'Vj =0 s =0 3l'Sl
J. X

j =0 s =0 :2'S2
£. £.

k r
ki~ii ii ^ 1

= 2 1(1+XY) (X+Y) I T
-r

,
l'h2

P. (1-x)

(C-l)

(C-2)

(1-Y) . (C-3)

-r, kl
= 2

rrh2
 h

2 ">1 2(1-X) 2 y Q'(h ,r ,i .k .X)YS

(C-4)

Taking the terms on both sides of (C-4) for which the degree of Y is t^ or

less, substituting e/(l-e) for X and 1 for Y and multiplying the both sides by

(1-e) l, we obtain Eq. (47) from (42).

C-l



APPENDIX D
\

Proof of Theorem 3

Let F(X , X _ , . , . , X Ll ,Y) be defined as follows
1 2 m.+1

a £ ri
F(X ,x , . . . ,x _ , _ . , y ) = y ... y y A. .

1 2 V1 i lo i toi ^=0 V^
1 m. m1 +1

A £ (i, ) j. s, __ ri

, s , 1 m, TJ.-*•-i ^ j » — * ^ i3*—*•/ i* 11 j ~-\j o _ —\j ni ~f*i m +J- 1

1 1 (D-l)

It follows from (17) and generalized MacWilliams1 identity [7, p. 147] that

0 0 m
11 ^ TF ( X X . . . X Y ) = y y Y A n -•

(l+X. Y) (X. +Y)
m +1 m +1

—t- Q o *-~\ fini ™ /1 \ i ~ j -
2

. £ A l n. r l £-i ijli -i i B i i r n a+v (i-v Ji =0 i =0 i =0 1 l ' i 2 '""+I \ -h^ l * * J

^1 m m +1

^r -i i 1 u Ti ** 1h
(l+X ) ! ml+ (1-X Xl)

 mi+1(l+Y) h==1 (1-Y) h=1 (D-2)
m.+1 m1 +1

Let H be a subset of (1,2,3,...,m } and F (X ,X ,—,X ,Y) be the sum

of the terms of F(X,,X_,...X ,,Y) for which the degree of X. is nonzero for
1 2 m^+l n

heH and is zero for h e (l,2, ... ,m }-H, and the degree of Y is t.. or less.

Using (20), and (D-2), we have that

-r £ £ rl
F /v Y Y V} — 0 \ V V T5T^A ,A , — ,x ,x; - ^ i i i a . .

Etl * 2 V1 i=0 i =0 i x =0 1l'12'-'"1m1+l
1 m m +1 1

^ m.^+1 „ , . „ ,

(D"3)

^ h iS— U n— J. n&H JL

D-l



Let F . (X_,X_,...,X ,-Y) be defined as the sum of F ^ (X, ,X_,...,X . ,Y)
w,t. 1 2 m.+l H»t. 1 2 m.+l

over all the subsets, H's, of {l,2,...,m } with exactly w elements. Then the

second term of (50) is equal to
nl-(1-e) FW t (e/tl-e) ,e/(l-e),..., e/d-e) ,1) (D-4)

It follows from (D-3) , the definition of R given by (51) and (A-4) that (D-4)

is equal to

-r
-2 "d-O ... B4 .. (1-26)
-r k -£w H H rl V+l
•'(l-e)1 I -. I I »?\ ±

• _/-. • • J- 1'-
L
0»-««»i-Li=0 i _ i ., _ 1 2 n

h«?l

D-2



APPENDIX E

Derivation of (57)

Let

FfX^X ,Y) = * w < x 'l,,
Sl

J2 s

It follows from (17), (20) and the generalized MacWilliams1 identity [7, p. 147]

that

F(X ,X ,
1

k r

.
iO i=0 1'12 1

= 2
i =0 1=0 11'12

d-x_)2

'r .^
i1=0 i2=0

 1l'12Lj=0 3 1

"l
[ £ P (i +i ,n )YS] .

S -1 ^ -1 J
(E-2)

Let F. (X ,X_,Y) be the sum of the terms on the right-hand side of (E-l) for
3 1 1^ l ^

which the degree of X, is j and the degree of Y is t or less. Then, it follows
•J. J. .L

from (E-2) that

-r kl rl
F. (X ,X ,Y) =2

rt -1

j r -i i
B(1) P. (i ,k )X /(1+X ) l 2d-X ) 2
l ' X 1 1 1 2 2

s=0
Ps(il+i2'nl)Y'

By (56) , we have that

-(l-e) .
V

(E"3)

-e) ,e/(l-e) ,1) . (E-4)

Thus (57) follows from (E-3) and (E-4) .

E-l



APPENDIX F

Derivation of Expressions of (58) and (59)

The probability a that a byte has a nonzero even number of bit-errors is

and the probability ft that a byte has odd number of bit-errors is

The probability that w bytes have an even number of bit-errors and each byte

has at least one bit-error is

[̂(a+6)w + (a-3)w] .

The probability that w bytes have an odd number of bit-errors, and each byte

has at least one bit-error is

|[(a+6)w - (a-3)w] .

Hence the probability that there are exactly w erroneous bytes in the first

m bytes of a received frame, and the bit-weight of errors in the frame is

even (or odd) is given by,

m\ k -£ r
*-) (l-e) l w{[a+6)W+ (a-6)W][l± (l-e) ]w

r
+ [(a+g)w - (a-B)Wl [1+ (l-e) ]> . (F-l)

Let G denote the term derived from the second term (without the negative

sign) of the right-hand side of (50) by replacing J with the following set,w
m +1

J' = { ( J n • Jo/ • • -i J . i) eJ • I ju
 is even (°r odd)} .w 12 m, +1 w . , n1 h=l

Then P „ is obtained by subtracting G from (F-l). Let G ( X , Y ) be the sum of
e£,w

terms in F ( X , X , . . . , X , Y ) (defined in Appendix D) forwhich the degree of X is
- ~ w/fci

even (or odd). Then

F-l



n
G= (1-e) G(e/(l-e),l) . (F-2)

Since

G(X,Y) = -{F (X,X,...,X,Y) ±F (-X,-X,...,-X,Y)> ,
\ £. W,t Wft

the second term of (58) is equal to -G.

For H=I, the expression of (59) is derived from (58) by using (54), (56)

and the fact that, for 0=1,

Rw(£-i1,£-i2,. . . ,&-im ;£) = (-1) R̂ î i.̂ / . . .,im ;£) .

F-2



APPENDIX G

Derivation of (81)

Let F (X.,X-,...,X . ,Y) be the sum of terms of F(X,,X.,...,X ,,Y)
u 1 ^ m +1 1 2 m +1

defined in Appendix D for which the degree of X is nonzero and the degree of

Y is t or less. Using (20) and (D-2), we have that

F ( X , X , . . . , X , Y ) = 2
-r. £ £ 1

, 1 V V V Rd)
- / " * * / / -^ • • '

i =0 i =0 i =0 11'12'" ' / :L:

rti V1

s= =l

m +1

n d+x)
l<hfm

i. ud-x) -

d+X) (i-x) (F-l)

The second term of (80) is equal to

- (i-e)

Then (81) follows from (D-5).

G-l



APPENDIX H

Derivation of Expression (82)

The first term GI in the right-hand side of (82) represents the probability

that the u-th byte of a received frame has errors, and the bit-weight of errors

in the frame is even (or odd). Let G be the term obtained from the second

term (without the negative sign) of the right-hand side of (80) by replacing

J(u) with following set,

m +1

J'(u) = {(j,,j_,...,j ., £J(u): T j is even (or odd)}
1 2 m,+1 . , h

1 n=l
Then

1 ni
G = i(l-e) •L{F (e/(l-e),e/(l-e),.. .,e/(l-e),l)2 2 u >

± Fu(-e/(l-e),-e/(l-e),...,-e(l-e),l)> ,

which equals to the second term (without the negative sign) of the right-hand
<,

side of (82) . Hence,

Pe£(u) =G1~G2 '
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Table. 3: Probabilities of Decoding Failure or Decoding
Error and Upper Bounds on the Probability of Decoding Error
for the Cascaded Coding Scheme such that
1) the inner code is the shortened (59,̂ 0) triple-error-correcting

BCH code with generator polynomial
(1+X)(1+X+X6)(1+X+X2+XU+X6)(1+X+X2+X5+X6),

2) erasure-only inner decoding is used ,
and
3) the outer code is not interleaved.

e

1 . OOE-2

2.00E-2

3. OOE-2

4. OOE-2

5. OOE-2

Tles

1
3
5
5

1
3
5
5

1
3
5
5

1
3
5
5

1
3

. 5
5

t2

0
0
0
2

0
0
0
2

0
0
0
2

0
0
0
2

0
0
0
2

P +Pres rer

1.20E-2
2.31E-3
2.29E-3
2.10E-3

4.73E-1
1 .05E-1
4.63E-2
4.29E-2

9.72E-1
7.91E-1
H.90E-1
4.82E-1

1.00EO
9.98E-1
9.77E-1
9.76E-1

1.00EO
1.00EO
1.00EO
1.00EO

Upper bound on Per given by (68)

d2=17

6.71E-11
9.60E-7

1.31E-6
5.43E-3

1.32E-5
2.73E-2

1.35E-6
1.71E-3

4.29E-9
3.9^E-6

d2=22

1.02E-114
7.30E-10
1I.50E-7

4.05E-9
7.97E-5
1.55E-2

2.29E-7
1.91E-3
2.20E-1

8.13E-8
3.UOE-4
3 . 1 OE-2

6.89E-10
1.61IE-6
1.55E-4

d2=27

9.92E-19
2.04E-13
8.84E-10
1.21E-7

8.37E-12
H.H2E-7
5.60E-U
1.38E-2

2.88E-9
5.56E-5
3-53E-2
1.92E-1

3-73E-9
3.10E-5
1.22E-2
2.76E-2

8.10E-11
3.65E-7
1.03E-H
1.U5E-H

d2=32

6.95E-23
2.97E-17
6.39E-13
1.02E-10

1.32E-1H
1.31E-9
7.78E-6
7.32E-5

2.89E-11
9.1^4E-7
2.36E-3
6.87E-3

1.36E-10 ,
1 .78E-6
2.28E-3
4.03E-3

7.93E-12
5.55E-8
^.04E-5
5.57E-5



Table 4: Probabilities of Decoding Failure or Decoding
Error and Upper Bounds on the Probability of Decoding Error
for the Cascaded Coding Scheme such that
1) the inner code is the shortened (59,40) triple-error-correcting

BCH code with generator polynomial
(1+X) (1 *X+X6) (1 +X+X2+X^t-X6) (1 +X+X2+X5+X6),

2) LIA-only inner decoding is used ,
and
3) the outer code is not interleaved.

e

1.00E-2

2.00E-2

3.'OOE-2

4.00E-2

5.00E-2

Te*

2
2
3
5
8

2
2
3
5
8

2
2 -
3
5
8

2
2
3
5
8

2
2
3
5
8

t2

2
5
8

11
14

2
5
8

11
14

2
5
8

11
14

2
5
8

11
14

2

1
11
14

P +Pes er

6.22E-2
2.59E-3
8.11E-5
1.89E-6
3.92E-8

6.02E-1
2.72E-1
9.29E-2
1.95E-2
3.76E-3

9.81E-1
9.22E-1
7.97E-1
5.60E-1
3.46E-1

1.00EO
1.00EO
9.98E-1
9.86E-1
9.53E-1

1 . OOEO
1 .OOEO
1.00EO
1.00EO
1 . OOEO

Upper bound on Pgr given by (68)

d2=19

2,83E-1
3.64E-9
3.10E-6

1 .32E-6
3-97E-5
4.51E-3

3.89E-5
3.60E-4
1.99E-2

9.03E-6
3-79E-5
1.33E-3

5.46E-8
1.31E-7
3.43E-6

d2=24

3.19E-15
6.46E-13
9.36E-10
5.35E-7

4.34E-9
1.62E-7
3.66E-5
8.11E-3

7.70E-7
8.65E-6
9.33E-4
1.28E-1

6.05E-7
3.17E-6
2.01E-4
2.25E-2

9.26E-9
2.78E-8
1.20E-6
1.35E-4,

d2=29

2.69E-19
7.57E-17
1.55E-13
3.72E-10
3.92E-8

1.03E-11
4.36E-10
1.65E-7
1.18E-4
3.74E-3

1.08E-8
1.43E-7
2.46E-5
9.85E-3
2.91E-1

2.89E-8
1 .84E-7
1 .78E-5
5.16E-3
2.35E-1

1.15E-9
4.14E-9
2.64E-7
6.45E-5
5.87E-3

d2=32

1 .09E-21
2.69E-19
8.42E-16
3.10E-12
6.90E-10

2.32E-13
1.03E-11
5.15E-9
6.11E-6
5.99E-4

7.07E-10
1.08E-8
2.22E-6
1.44E-3
1.35E-1

4.09E-9
2.89E-8
3.42E-6
1.54E-3
T.76E-1

2.87E-10
1.15E-9
8.90E-8
3.22E-5
5.37E-3
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Table 7: Probabilities of Decoding Failure or Decoding
Error and Upper Bounds on the Probability of Decoding Error
for the Cascaded Coding Scheme such that
1) the inner code is the shortened (53,10) double-error-correcting

BCH code with generator polynomial
(1+X) (1 -t-X-t-X5) (1 +X+X2+X^X6),

2) erasure-only inner decoding is used ,
and
3) the outer code is not interleaved.

e

1 . OOE-2

2.00E-2

3. OOE-2

4. OOE-2

5. OOE-2

Tes

2
3
1
4

2
3
4
4

2
3
H
4 •

2
3
4
4

2
3
4
4

t2

0
4
4
5

0
N 4
4
5

0
4
4
5

0
4
4
5

0
4
4
5

P +Pes er

7.30E-2
9.86E-3
2.83E-3
1.53E-3

8.64E-1
6.48E-1
1.56E-1
1.47E-1

1.00EO
9.96E-1
9.86E-1
9.85E-1

1 . OOEO
1 .OOEO
1 .OOEO
1.00EO

1.00EO
1.00EO
1.00EO
1 .OOEO

Upper bound on Per given by (68)

d2=27

4.55E-11
2.58E-6

1.2.3E-6
1.76E-2

3-99E-6
6.81E-1

8.45E-8
3.90E-6

7.28E-11
1.67E-9

d2=29

2.14E-12
9.73E-8
1.08E-5

2.39E-7
4.02E-H
9.37E-3

1.16E-6
3.42E-H
4.66E-3

4.85E-8
2.92E-6
3.13E-5

5.80E-11
1.55E-9
1 .71E-8

d2=32

2.93E-14
2.80E-9
4.70E-7
1.28E-6

1.66E-8
4.11E-5
1.86E-3
3.99E-3

2.87E-7
9.47E-5
1.92E-3
2.91E-3

1.94E-8
1.62E-6
2.18E-5
2.56E-5

3.86E-11
1.30E-9
1.58E-8
1.61E-8



Table 8: Probabilities of Decoding Failure or Decoding
Error and Upper Bounds on the Probability of Decoding Error
for the Cascaded Coding Scheme such that
1) the inner code is the shortened (53,40) double-error-correcting

BCH code with generator polynomial
(1+X) (1 H-X-t-X6) (1 -t-X+X^X^+X6),

2) LIA-only inner decoding is used ,
and
3) the outer code is not interleaved.

e

1 . OOE-2

2.00E-2

•3; OOE-2

4. OOE-2

5. OOE-2

Teil

3
3
5
7
7

3
3
5
7
7

3
3
5
7
7

3
3
5
7
7

3
3
5
7
7

*2

H
7
10
13
15

4
7
10
13
15

J|
7
10
13
15

1
7
10

H
H
7
10
13
15

P +Pes er

9.97E-2
1.56E-2
1.29E-3
9.40E-5
1.52E-5

8.80E-1
7.17E-1
1.31E-1
2.16E-1
1.33E-1

1.00EO
9.98E-1
9.86E-1
9.48E-1
9.13E-1

1.00EO
1.00EO
1.00EO
1 . OOEO
1.00EO

1 . OOEO
1.00EO
1 .OOEO
1.00EO
1.00EO

Upper bound on Pep given by (68)

d2=27

5.28E-11
3.48E-9
1 .88E-6
9.28E-5

H.20E-6
4.52E-5
8.27E-3
1.55E-1

2.46E-5
9.74E-5
1.03E-2
1.50E-1

8.20E-7
1.65E-6
1.39E-4
2.53E-3

1.03E-9
1.32E-9
1 .29E-7
4.34E-6

d2=29

3.35E-12
2.15E-10
1.59E-7
1.39E-5

7.91E-7
9.37E-6
2.32E-3
7.09E-2

9.09E-6
3.96E-5
5.45E-3
1.15E-1

4.82E-7
1.05E-6
1.09E-4
2.39E-3

8.34E-10
1 . 1 3E-9
1.22E-7
4.32E-6

d2=32

4.27E-1U
3.35E-12
3.61E-9
5.79E-7
5.05E-6

5.96E-8
7.91E-7
2.87E-4
1.62E-2
4.49E-2

1.86E-6
9.09E-6
1 .79E-3
6.17E-2
9.55E-2

1 .98E-7
H.82E-7
6.68E-5
2.01E-3
2.29E-3

5.67E-10
8.34E-10
1 . 08E-7
4.23E-6
H.30E-6



Table 9t Upper Bounds on the Probability of Decoding Failure or Decoding
Error and Upper Bounds on the Probability of Decoding Error
for the Cascaded Coding Scheme such that
1) the inner code is the shortened (53,40) double-error-correcting

BCH code with generator polynomial
(1+X) (1+X+X6) (1 +X+X2+X2|-t-X6).

2) erasure-only inner decoding is used ,
and
3) the degree of interleaving Irt=>5.

e

1.00E-2

2.00E-2

3.00E-2

4.00E-2

5 . OOE-2

Tes

9
12
15
18
18

9
12
15
18
18

9
12
15 .
18
18

9
12
15
18
18

9
12
15
18
18

t2

1
2
2
3
4

1
2
2
3
H

1
2
2
3
4

1
2
2
3
4

1
2
2
3
4

(pes+Per>xId

5.75E-2
1.77E-3
6.80E-4
1.57E-5
4.41E-7

5.00EO
4.93EO
4.61EO
3.73EO
3-71EO

5.00EO
5.00EO
5.00EO
5.00EO
5.00EO

5.00EO
5.00EO
5.00EO
5.00EO
5.00EO

5.00EO
5.00EO
5.00EO
5.00EO
5.00EO

Upper bound on Pgr given by (68)

d2=l6

5.10E-11
1 .20E-5

3.02E-6
1.28E-2

3.65E-14
3-25E-11

1.81E-29
2.41E-26

9.62E-49
5.16E-45

d2=21

5.43E-21
2.70E-14
1.58E-10

M.51E-11
3.37E-6
3.36E-3

3.02E-16
2.61E-12
1.29E-9

5.83E-30
1.87E-26
1.28E-23

9.31E-49
5.15E-45
1.29E-U1

d2=26

5.55E-32
1.5l<E-2'<
5.19E-20
2.92E-14

6.75E-17
2.73E-11
1.55E-7
1.29E-3

2.92E-19
1.23E-11
2.79E-11
2.97E-8

3.94E-31
J4.22E-27
6.57E-2U
3.59E-21

6.60E-M9
4.81E-45
1.28E-11
1 .7UE-38

d2=32

4.26E-il6
4.85E-38
6.37E-33
3.67E-26
1.70E-21

8.31E-25
1.36E-18
2.80E-U
2.36E-9
2.81E-8

8.9UE-24
1.18E-18
1.15E-11
1 .02E-10
3-38E-10

2.42E-33
9.00E-29
3.95E-25
9.23E-22
1.36E-21

1.59E-49
2.42E-45
9.17E-12
1 .65E-38
1.69E-38



Table 10: Upper Bounds on the Probabilitiy of Decoding Failure or Decoding
Error and Upper Bounds on the Probability of Decoding Error
for the Cascaded Coding Scheme such that
1) the inner code is the shortened (53,40) double-error-correcting

BCH code with generator polynomial
(1 +X) (1 +X+X6) (1 -t-X+X^X^+X6),

2) LIA-only inner decoding is used ,
and
3) the degree of interleaving Id=5.

e

1-.OOE-2

2.00E-2

.3,OOE-2

4.00E-2

5.00E-2

Ted

9
14
17
20
25

9
14
17
20
25

9
14
17 '
20
25

9
14
17
20
25

9
14
17
20
25

t2

5
8

11
13
15

5
8

11
13
15

5
8

11
13
15

5
8

11
13
15

5
8

11
13
15

(pes+per>xld

6.68E-2
3.92E-4
1.81E-6
1.99E-8
1.63E-10

5.00EO
4.78EO
4.09EO
2.90EO
9.52E-1

5.00EO
5.00EO
5.00EO
5.00EO
5.00EO

5.00EO
5.00EO
5.00EO
5.00EO
5.00EO

5.00EO
5.00EO
5.00EO
5.00EO
5.00EO

Upper bound on Per given by (68)

d2=l8

7.16E-11
4.94E-5

2.74E-7
1.87E-2

6.05E-15
3.74E-10

1.13E-29
1 .66E-24

9.52E-49
1.03E-42

d2=23

2.49E-20
1.87E-IO
1.04E-6

6.36E-12
4.07E-5
3.63E-2

3-37E-17
2.73E-11
1 .48E-8

1 .88E-30
9.59E-25
5.70E-22

8.11E-49
1.01E-42
1.67E-39

d2=28

5.50E-31
7.04E-19
4.88E-12
1 .59E-9

1.50E-17
3.03E-9
7.93E-5
1.55E-2

3.08E-20
2.41E-13
.Oyh i U
.1 3h-/

8.05E-32
1.79E-25
2.89E-22
1.02E-19

4.11E-49
8.55E-43
1.63E-39
1.57E-36

d2=32

4.27E-40
7.48E-27
2.85E-18
6.48E-14
1.52E-11

1.38E-22
2.34E-13
5.86E-8
8.90E-5
2.62E-2

3.95E-23
1.48E-15
2.29E-11
1.73E-8
2.31E-5

2.67E-33
1.83E-26
7.44E-23
4.92E-20
2.59E-16

1.35E-49
5.30E-43
1.41E-39
1.51E-36
4.99E-32




